EP1801251B1 - Composition d'un superalliage de nickel - Google Patents

Composition d'un superalliage de nickel Download PDF

Info

Publication number
EP1801251B1
EP1801251B1 EP20060126538 EP06126538A EP1801251B1 EP 1801251 B1 EP1801251 B1 EP 1801251B1 EP 20060126538 EP20060126538 EP 20060126538 EP 06126538 A EP06126538 A EP 06126538A EP 1801251 B1 EP1801251 B1 EP 1801251B1
Authority
EP
European Patent Office
Prior art keywords
alloy
nickel
aluminum
titanium
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20060126538
Other languages
German (de)
English (en)
Other versions
EP1801251A1 (fr
Inventor
Ramgopal Darolia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP1801251A1 publication Critical patent/EP1801251A1/fr
Application granted granted Critical
Publication of EP1801251B1 publication Critical patent/EP1801251B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel

Definitions

  • the present invention is directed to a nickel-based superalloy composition.
  • the present invention is directed to a nickel-based superalloy composition for gas turbine engine components, such as low pressure turbine blades or vane segments, for use in gas turbine engines.
  • a gas turbine engine air is pressurized in a compressor, mixed with fuel in a combustor and is ignited to generate hot combustion gases.
  • the hot combustion gases flow into a turbine section of the engine.
  • the turbine section of the engine typically includes a plurality of stages that may include a combination of turbine blades and turbine vanes.
  • the expanding combustion gases drive the turbine by contacting the blades that rotate a turbine shaft.
  • the rotation of the turbine shaft is utilized to power the compressor and other engine or accessory components.
  • the vanes typically include an airfoil configuration and guide the combustion gases to the turbine blades of the next stage of the compressor. These combustion gases expose the turbine blades and vanes to high temperatures and corrosive atmospheres.
  • the turbine blades and vanes of a gas turbine engine may be fabricated from nickel-based superalloys.
  • nickel-base nickel-based or the similar, means that the composition has more nickel present than any other element.
  • alloys such as RENE ® 80 and RENE ® 77 may be used in the low pressure turbine section of the gas turbine engine as turbine blades and vanes.
  • the compositions of RENE ® 80 and RENE ® 77 are known and have been utilized in the fabrication of a variety of gas turbine engine components.
  • RENE ® is a trademark of Teledyne Industries, Inc., Los Angeles, CA for superalloy metals.
  • RENE ® 77 and RENE ® 80 typically have the following nominal compositions in weight percent: TABLE 1 Alloy Ni Co Cr Al W Ti Mo C B Zr Fe Density (lbs/in 3 ) kg/m 3 RENE ® 80 Balance 9.5 14 3 4 5 4 0.17 0.015 0.03 (0.295) 8166 RENE ® 77 Balance 15 14.6 4.3 0 3.35 4.2 0.07 0.015 0.04 0.5 (0.287) 7944
  • Nickel-based superalloys such as RENE ® 77 and RENE ® 80, are used in gas turbine engine components for the combination of properties that they provide.
  • One of the drawbacks to the use of these nickel-based superalloys is the relatively high density of these alloys. The high density contributes to the total weight of the gas turbine engine.
  • the low pressure turbine section may include six to seven stages of blades and vanes.
  • One type of engine may include the first two stages having both the blades and vanes of these two stages made out of RENE ® 80, and the later four stages being made out of RENE ® 77.
  • the use of RENE ® 80 and RENE ® 77 in the low pressure turbine section results in a relatively heavy turbine section, contributing to the total weight of the engine.
  • Aircraft and aircraft engine design have always strived for reduced weight and greater efficiency. Aircraft are becoming larger, requiring more thrust from the engines or additional engines. Reduced maintenance cost and initial cost can be achieved by enlarging the engine, increasing the thrust developed by the engines. However, as the engines grow in size, weight reduction becomes paramount as all the engine components within the engine, likewise, are required to grow. Further, additional engines on an aircraft in order to provide sufficient thrust likewise increase the total weight of the aircraft. In order to offset these problems, materials should be selected to minimize weight, while maintaining the required properties for gas turbine engine operation. A reduction in weight of individual components due to the use of lower density alloys provides significant advantages in engine efficiency, engine durability, payload capacity, lower fuel cost and other advantages relating to the lower total weight of the engine. The drawback to using lower density alloys previously has been that the lower density alloys do not have the combination of properties that are required for use in harsh, high-temperature conditions experienced in the turbine section of the gas turbine engine.
  • US 3536542 discloses the elevated temperature stress-rupture life of nickel-base alloys containing as major constituents nickel, cobalt, chromium, alumunum, titanium, and molybdenum, which are also characterized by good oxidation and hot corrosion resistance at elevated temperature, is improved by a special heat treatment.
  • the heat treating method comprises treating the alloy to a temperature of from 1149-1204°C (2100°F to 2200°F) for from 2 to 8 hours followed by fast cooling, treating at a temperature of 1079°C (1975°F) for from 2 to 8 hours, fast cooling, treating said alloy at a temperature of 927°C (1700°F) for from 12 to 48 hours followed by fast cooling, and treating said alloy at a temperature of 760°C (1400°F) for from 8 to 25 hours followed by fast cooling.
  • the present invention includes a nickel-based alloy composition including from 8 % to 18 % cobalt, from 12 % to 16 % chromium, from 4 % to 8 % aluminum, up to 6 % tungsten, from 0.5 % to 3.5 % titanium, from 2 % to 6 % molybdenum, from 0.05 % to 0.25 % carbon, from 0.005 % to 0.025 % boron, from 0.02 % to 0.1 % zirconium, up to 1.0% iron, up to 2.0% rhenium, up to 2.0% tantalum, up to 1.0 % hafnium, balance nickel and incidental impurities, wherein the sum weight percent of aluminum and titanium is from 4.5 wt% to 13 wt%.
  • the ratio of the weight percentage of aluminum to titanium is at least 2:1.
  • the alloy has properties, including, but not limited to stress rupture life, fatigue strength, oxidation resistance and hot corrosion resistance that are equal to or greater than conventional polycrystalline equiaxed nickel-based superalloys, such as RENE ® 77 and RENE ® 80.
  • the present invention also includes gas turbine engine components, including, but not limited to compressor blades, compressor vanes, turbine vanes, and turbine blades.
  • gas turbine engine components including, but not limited to compressor blades, compressor vanes, turbine vanes, and turbine blades.
  • the gas turbine engine components fabricated from the nickel-based superalloys, according to the invention have a lower density, providing a reduced total engine weight while providing acceptable mechanical properties and oxidation/corrosion resistance for use in the above-listed applications.
  • the present invention includes a lower density nickel-based superalloy and articles fabricated therefrom comprising, in weight percent, the composition shown in TABLE 2.
  • TABLE 2 Typical Alloy Compositions (in weight %) Ni Balance Balance Balance Co 8 to 11 9 to 10 9.5 Cr 12 to 16 13 to 15 14 Al 4 to 8 5 to 7 6 W 4 to 6 3 to 5 4 Ti 0.5 to 3.5 1 to 3 1 Mo 2 to 6 3 to 5 4 C 0.05 to 0.25 0.1 to 0.2 0.17 B 0.005 to 0.025 0.010 to 0.020 0.015 Zr 0.02 to 0.1 0.02 to 0.05 0.05 Fe up to 1.0 up to 0.5 Re up to 2.0 up to 1.0 Ta up to 2.0 up to 1.0 Hf up to 1.0 up to 0.5 Al + Ti 4.5 to 11.5 6 to 10 7 Al:Ti 1.5:1 to 6:1 2:1 to 6:1 6:1
  • Another embodiment of the present invention includes a lower density nickel-based superalloy and articles fabricated therefrom comprising, in weight percent, having the composition shown in TABLE 3.
  • TABLE 3 Typical Alloy Compositions (in weight %) Ni Balance Balance Balance Co 12 to 18 13 to 16 15 Cr 13 to 16 14 to 15 14.3 Al 4 to 8 5 to 7 6 W up to 1 up to 0.5 0 Ti 1 to 3 2 to 3 3 Mo 2 to 6 3 to 5 4.2 C 0.05 to 0.25 0.1 to 0.2 0.07 B 0.005 to 0.025 0.010 to 0.020 0.015 Zr 0.01 to 0.1 0.05 to 0.1 0.05 Fe up to 1.0 up to 0.75 0.5 Re up to 2.0 up to 1.0 Ta up to 2.0 up to 1.0 Hf up to 1.0 up to 0.5 Al + Ti 4.5 to 11 7 to 11 9 Al:Ti 1:1 to 5:1 1.5:1 to 3:1 2:1
  • the nickel-based superalloys according to the present invention include conventionally cast polycrystalline equiaxed microstructure containing alloys.
  • the alloys may be formed by vacuum melting alloy constituents, as shown in TABLES 2 and 3 and conventionally casting the melt.
  • Subsequent heat treatment may be used to desirably precipitate the gamma-prime (i.e., ⁇ ') phase into the gamma (i.e., ⁇ ) phase matrix.
  • the casting process for forming the alloy of the present invention may include conventional investment casting to polycrystalline substantially equiaxed alloy having sufficient ⁇ ' phase to provide stress rupture life, fatigue strength, oxidation resistance and hot corrosion resistance equal to or greater than conventional polycrystalline equiaxed nickel-based superalloys, such as RENE ® 77 and RENE ® 80.
  • An advantage of the present invention is that the nickel-based superalloy of the present invention has a density that is less than the density of nickel-based superalloys that have been previously used in the turbine section of the gas turbine engine.
  • nickel-based superalloy composition maintains an aluminum to titanium ratio that provides sufficient aluminum to form an aluminum oxide containing coating on the alloy surface, which further protects the alloy from oxidation and hot corrosion and forms a surface suitable for additional coatings, while also allowing the ⁇ ' phase to form.
  • Still another advantage of the present invention is that the properties of the alloys equal or exceed the properties of substantially equiaxed, conventionally cast alloys, such as RENE ® 77 and RENE ® 80.
  • the meeting or exceeding of the mechanical properties and oxidation/corrosion resistance properties of RENE ® 77 and RENE ® 80 permits the replacement of turbine engine components with lower density materials, while maintaining or exceeding operating parameters for the gas turbine engine.
  • Still another advantage of the present invention is that gas turbine engines fabricated using the alloys of the present invention are lighter, providing significant advantages in, among other things, engine efficiency, engine durability, payload capacity, and lower specific fuel consumption.
  • the present invention includes lower density nickel-based superalloys for use in gas turbine engine components.
  • the present invention includes gas turbine engine turbine blades and vanes fabricated from lower density nickel-based superalloys.
  • One embodiment of the present invention includes a nickel-based superalloy comprising, in weight percent, from 8 % to 11 % cobalt, from 12 % to 16 % chromium, from 4 % to 8 % aluminum, from 4 % to 6 % tungsten, from 0.5 % to 3.5 % titanium, from 2 % to 6 % molybdenum, from 0.05 % to 0.25 % carbon, from 0.005 % to 0.025 % boron, from 0.02 % to 0.1 % zirconium, up to 2.0% rhenium, up to 2.0% tantalum, up to 1.0 % hafnium, balance essentially nickel and incidental impurities.
  • Another embodiment of the present invention includes a nickel-based superalloy comprising, in weight percent, from 12 % to 18 % cobalt, from 13 % to 16 % chromium, from 4 % to 8 % aluminum, from 1 % to 3 % titanium, from 2 % to 6 % molybdenum, from 0.05 % to 0.25 % carbon, from 0.005 % to 0.025 % boron, from 0.01 % to 0.1 % zirconium, up to 1.0 % iron, up to 2.0% rhenium, up to 2.0% tantalum, up to 1.0 % hafnium, balance nickel and incidental impurities.
  • the nickel-based superalloy according to an embodiment of the invention is preferably a composition having a low density compared to conventional polycrystalline equiaxed microstructure cast alloys.
  • the alloy of the present invention includes a conventionally cast alloy having a polycrystalline substantially equiaxed microstructure.
  • the elemental composition is first melted. Melting for casting purposes may take place using any suitable melting process, including vacuum-induction melting or vacuum-arc melting. Additional remelting steps may also be applied to remove impurities from the melt, including additional vacuum-arc remelting, electroslab remelting and combinations thereof. Subsequent heat treatment may be applied to provide the desired microstructure.
  • a lower density is provided by maintaining a ratio of aluminum to titanium in the alloy composition at least 2:1 by weight.
  • the ratio is preferably sufficiently large to provide a lower density alloy, but sufficiently low to provide the nickel-based superalloy with the properties.
  • the ratio of the aluminum to titanium and the total amount of aluminum and titanium is provided to increase the amount of ⁇ ' phase precipitated into the alloy matrix as compared to conventionally cast alloys.
  • the ⁇ ' phase precipitate typically includes Ni 3 (Al,Ti) or Co 3 (Al,Ti), which provides the primary strengthening phase of the alloy, without significant lowering the fracture toughness of the alloy.
  • the amount of titanium and aluminum increases, the amount of titanium and aluminum available to form the ⁇ ' phase likewise increases.
  • the greater the ratio of aluminum to titanium the greater the presence of the ⁇ ' phase in the alloy matrix.
  • the presence of ⁇ ' phase provides properties that are desirable in alloys used in gas turbine engine components.
  • the nickel-based superalloy preferably includes a combined weight percent of aluminum and titanium greater than about 5 wt%.
  • the combination of the sum of the aluminum and titanium in addition to the ratio of aluminum and titanium also permits the alloy to have a density lower than conventional cast alloys, such as RENE ® 80 and RENE ® 77.
  • the increase in the amount of aluminum and the ratio of aluminum to titanium permits an excess amount of aluminum to be available to form aluminum oxide-containing layers on the exterior surface of the alloy.
  • These oxide-containing layers provide protections against the atmosphere, providing oxidation resistance and hot corrosion resistance, as well as forming a surface favorable to providing subsequent coatings, such as thermal barrier coatings.
  • the excess aluminum provides self-healing coating properties, wherein aluminum oxide containing coatings regenerate in locations on the surface where the coatings have been damaged or eroded.
  • strengthening elements may be added to the alloy composition.
  • High density elements such as W and Mo, add significant weight to the overall component formed of the nickel-based superalloy.
  • concentrations of these high density elements may be reduced by the addition of smaller amounts of strengthening elements including Re, Ta, Hf and combinations thereof.
  • the addition of Re, Ta, Hf and combinations thereof increases the strength of the material.
  • Ta and Hf present in the alloy provide further strengthening of the alloy by solid solution strengthening of the ⁇ ' phase.
  • Re present in the alloy provides further strengthening of the alloy by solid solution strengthening of the ⁇ matrix.
  • the addition of relatively small amounts of these strengthening elements permits reduction in the use of W and Mo in the alloy composition.
  • the reduction of W and Mo and the ability to strengthen the alloy composition with smaller amounts of strengthening elements, such as Re, Ta, Hf, has the overall effect of reducing the density of the alloy.
  • the concentrations of W may be reduced to as low as 2 % in the alloy by introduction of these alternate strengthening elements.
  • the concentrations of Mo may be reduced or eliminated in the alloy by introduction of these alternate strengthening elements.
  • the density of the alloy is reduced an additional 2% from the alloy having the Al:Ti ratio of the present invention by substitution of these alternate strengthening elements for W and/or Mo.
  • Example 1 Table 3 shows the Comparative Example 1 having a nominal composition of RENE ® 80 and Example 1 having the shown amounts of Ti and Al. Aluminum and titanium are both ⁇ ' formers and form the ⁇ ' phase structure, which strengthens the alloy. Comparative Example 1 includes 5 wt % Ti and 3 wt % Al, and has a density of 8166kg/m 3 (0.295 lbs/in 3 ) .
  • Example 1 includes a nickel-based alloy that includes, in weight percent, about 9.5 % cobalt, about 14 % chromium, about 6 % aluminum, about 4 % tungsten, about 2 % titanium, about 4 % molybdenum, about 0.17 % carbon, about 0.015 % boron, about 0.03 % zirconium, balance essentially nickel and incidental impurities.
  • Example 1 includes a total of 8 wt % Al + Ti, with an Al:Ti ratio of about 3:1. As shown in Table 3, Example 1 has a density of 7944kg/m 3 (0.287 lbs/in 3 ). The density of Example 1 is about 3% less than the density for Comparative Example 1.
  • the 3% density reduction in the alloy may correspond to a reduction in total weight of the assembled engine of about 36.7kg (81 lbs) more. This reduction in density yields significant reductions in the total weight of the component fabricated from the alloy of Example 1.
  • Table 4 Alloy Al + Ti Al:Ti Density (lbs/in 3 ) kg/m 3 Comparative Example 2* 7.65 4.3:3.35 (0.286) 7916
  • Example 2 9 2 (0.279) 7723 *Comparative Example 2 includes a nominal composition of RENE ® 77
  • Example 2 Table 4 shows the relative presence of titanium and aluminum and density of Example 2 in comparison to the density of Comparative Example 2, which is a nominal composition of RENE TM 77.
  • Comparative Example 2 includes 3.35 wt % Ti and 4.3wt % Al, and has a density of 7916 kg/m 3 (0.286 lbs/in 3 ).
  • Example 2 includes a nickel-based alloy that includes, in weight percent, about 15 % cobalt, about 14.3 % chromium, about 6 % aluminum, about 3 % titanium, about 4.2 % molybdenum, about 0.07 % carbon, about 0.015 % boron, about 0.04 % zirconium and about 0.5 % iron.
  • Example 2 includes a total of 9 wt % Al+Ti, with an Al:Ti ratio of about 2:1, has a density of 7723 kg/m 3 (0.279 lbs/in 3 ).
  • the density of Example 2 is about 3 % less than the density for Comparative Example 2.
  • the 3% density reduction in the alloy may correspond to a reduction in total weight of the assembled engine of about 36.7 kg (81 lbs) more. This reduction in density yields significant reductions in total weight of the component fabricated from the alloy of Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (9)

  1. Composition d'alliage à base de nickel présentant une microstructure polycristalline équiaxe comprenant :
    de 8 % à 18 % de cobalt, de 12 % à 16 % de chrome, de 4 % à 8 % d'aluminium, jusqu'à 6 % de tungstène, de 0,5 % à 3,5 % de titane, de 2 % à 6 % de molybdène, de 0,05 % à 0,25 % de carbone, de 0,005 % à 0,025 % de bore, de 0,02 % à 0,1 % de zirconium, jusqu'à 1,0 % de fer, jusqu'à 2,0 % de rhénium, jusqu'à 2,0 % de tantale, jusqu'à 1,0 % de hafnium, le complément en nickel et impuretés résiduelles ; et
    dans laquelle le pourcentage en poids total d'aluminium et de titane est compris entre 4,5 % en poids et 13 % en poids et le rapport de l'aluminium sur le titane est d'au moins 2:1
  2. Alliage selon la revendication 1, comprenant, en pourcentage en poids, de 8 % à 11 % de cobalt, de 12 % à 16 % de chrome, de 4 % à 8 % d'aluminium, de 4 % à 6 % de tungstène, de 0,5 % à 3,5 % de titane, de 2 % à 6 % de molybdène, de 0,05 % à 0,25 % de carbone, de 0,005 % à 0,025 % de bore, de 0,02 % à 0,1 % de zirconium, jusqu'à 2,0 % de rhénium, jusqu'à 2,0 % de tantale, jusqu'à 1,0 % de hafnium, le complément en nickel et impuretés résiduelles.
  3. Alliage selon la revendication 2, comprenant, en pourcentage en poids, de 9 % à 10 % de cobalt, de 13 % à 15 % de chrome, de 5 % à 7 % d'aluminium, de 3 % à 5 % de tungstène, de 1 % à 3 % de titane, de 3 % à 5 % de molybdène, de 0,1 % à 0,2 % de carbone, de 0,010 % à 0,020 % de bore, de 0,02 % à 0,05 % de zirconium, jusqu'à 1,0% rhénium, jusqu'à 1,0% de tantale, jusqu'à 1,0 % de hafnium, le complément en nickel et impuretés résiduelles.
  4. Alliage selon la revendication 3, comprenant, en pourcentage en poids, 9,5 % de cobalt, 14 % de chrome, 6 % d'aluminium, 4 % de tungstène, 1 % de titane, 4 % de molybdène, 0,17% de carbone, 0,015% de bore, 0.05% de zirconium, le complément en nickel et impuretés résiduelles.
  5. Alliage selon la revendication 1, comprenant, en pourcentage en poids, de 12 % à 18 % de cobalt, de 13 % à 16 % de chrome, de 4 % à 8 % d'aluminium, de 1 % à 3 % de titane, de 2 % à 6 % de molybdène, de 0,05 % à 0,25 % de carbone, de 0,005 % à 0,025 % de bore, de 0,01 % à 0,1 % de zirconium, jusqu'à 1,0 % de fer, jusqu'à 2,0% de rhénium, jusqu'à 2,0% de tantale, jusqu'à 1,0 % de hafnium, le complément en nickel et impuretés résiduelles.
  6. Alliage selon la revendication 5, comprenant, en pourcentage en poids, de 13 % à 16 % de cobalt, de 14 % à 15 % de chrome, de 5 % à 7 % d'aluminium, de 2 % à 3 % de titane, de 3 % à 5 % de molybdène, de 0,10 % à 0,20 % de carbone, de 0,010 % à 0,020 % de bore, de 0,02 % à 0,05 % de zirconium, jusqu'à 0,75 % de fer, jusqu'à 1,0% de rhénium, jusqu'à 1,0% de tantale, jusqu'à 1,0 % de hafnium, le complément en nickel et impuretés résiduelles.
  7. Alliage selon la revendication 6 comprenant, en pourcentage en poids, 15 % de cobalt, 14,3 % de chrome, 6 % d'aluminium, 3 % de titane, 4,2 % de molybdène, 0,07 % de carbone, 0,015 % de bore, 0,05 % de zirconium, 0,5 % de fer, le complément en nickel et impuretés résiduelles.
  8. Alliage selon la revendication 1, dans lequel l'alliage présente une densité inférieure à 7944 Kg/m3 (0,287 lbs/in3).
  9. Alliage selon la revendication 1, dans lequel l'alliage présente une densité inférieure à 7723 Kg/m3 (0,279 lbs/in3).
EP20060126538 2005-12-21 2006-12-19 Composition d'un superalliage de nickel Expired - Fee Related EP1801251B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US31449505A 2005-12-21 2005-12-21

Publications (2)

Publication Number Publication Date
EP1801251A1 EP1801251A1 (fr) 2007-06-27
EP1801251B1 true EP1801251B1 (fr) 2010-10-06

Family

ID=37757117

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060126538 Expired - Fee Related EP1801251B1 (fr) 2005-12-21 2006-12-19 Composition d'un superalliage de nickel

Country Status (3)

Country Link
EP (1) EP1801251B1 (fr)
JP (1) JP2007191791A (fr)
DE (1) DE602006017324D1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8597440B2 (en) * 2009-08-31 2013-12-03 General Electric Company Process and alloy for turbine blades and blades formed therefrom
CN103952595A (zh) * 2014-05-15 2014-07-30 中国人民解放军第五七一九工厂 一种用于修复定向凝固镍基高温合金叶片的激光熔覆粉末
GB2539959A (en) 2015-07-03 2017-01-04 Univ Oxford Innovation Ltd A Nickel-based alloy
KR20180114226A (ko) * 2016-04-20 2018-10-17 아르코닉 인코포레이티드 알루미늄, 코발트, 크롬, 및 니켈로 이루어진 fcc 재료, 및 이로 제조된 제품
GB2554898B (en) 2016-10-12 2018-10-03 Univ Oxford Innovation Ltd A Nickel-based alloy
US10793934B2 (en) * 2017-05-02 2020-10-06 United Technologies Corporation Composition and method for enhanced precipitation hardened superalloys
WO2019212529A1 (fr) * 2018-05-01 2019-11-07 Siemens Energy, Inc. Apport de brasure en superalliage à base de nickel
EP3572540A1 (fr) 2018-05-23 2019-11-27 Rolls-Royce plc Superalliage à base de nickel
US10577679B1 (en) 2018-12-04 2020-03-03 General Electric Company Gamma prime strengthened nickel superalloy for additive manufacturing
CN109504879A (zh) * 2018-12-28 2019-03-22 西安欧中材料科技有限公司 一种航空发动机用镍基高温合金

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536542A (en) * 1968-05-31 1970-10-27 Gen Electric Alloy heat treatment
GB1224804A (en) * 1968-10-18 1971-03-10 Gen Electric Co Ltd Improvements in or relating to sintered nickel-based alloys
US4574015A (en) * 1983-12-27 1986-03-04 United Technologies Corporation Nickle base superalloy articles and method for making
US5143563A (en) * 1989-10-04 1992-09-01 General Electric Company Creep, stress rupture and hold-time fatigue crack resistant alloys
JP2002167636A (ja) * 2000-10-30 2002-06-11 United Technol Corp <Utc> 接合被覆なしに断熱被覆を保持できる低密度耐酸化性超合金材料

Also Published As

Publication number Publication date
EP1801251A1 (fr) 2007-06-27
DE602006017324D1 (de) 2010-11-18
JP2007191791A (ja) 2007-08-02

Similar Documents

Publication Publication Date Title
EP1801251B1 (fr) Composition d&#39;un superalliage de nickel
US6673308B2 (en) Nickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof
EP1842934B1 (fr) Superalliage resistant a la chaleur
EP1717326B1 (fr) Elément d&#39;alliage à base de Nickel, procédé de fabrication et pièces de turbine
EP2503013B1 (fr) Superalliage réfractaire
EP2778241B1 (fr) Superalliage à base de nickel à haute résistance
EP3183372B1 (fr) Superalliages améliorés par l&#39;ajout de zirconium
EP2796578B1 (fr) Superalliage à base de nickel coulé comprenant du fer
EP2471965B1 (fr) Surperalliage à base de Ni, rotor de turbine et pales de stator pour turbine à gaz l&#39;utilisant
EP2188400B1 (fr) Compositions de superalliage au nickel à faible teneur en rhénium, et articles en superalliage
EP2039789A1 (fr) Alliage à base de nickel pour rotor de turbine d&#39;une turbine à vapeur et rotor de turbine d&#39;une turbine à vapeur
EP2006402B1 (fr) SUPERALLIAGE À BASE DE Ni ET SON PROCÉDÉ DE FABRICATION
EP1748089A1 (fr) Matériau composite métallique intermétallique réfractaire basé sur des siliciures de niobium, et produits relatifs
RU2295585C2 (ru) Высокопрочный, стойкий к высокотемпературной коррозии и окислению суперсплав на основе никеля и направленно отвержденное изделие из этого суперсплава
EP1334215B1 (fr) Superalliage a base de nickel pour application a temperature elevee et sous forte contrainte
EP3862448A1 (fr) Superalliages à base de nickel
US6554920B1 (en) High-temperature alloy and articles made therefrom
EP2554697A1 (fr) Alliage à base de ni et lame de stator et lame de rotor de turbine à gaz utilisant chacune celui-ci
EP2537951B1 (fr) Dispositif terminal et programme
EP1927669B1 (fr) Superalliages monocristallins solidifiés directionnellement à faible densité
JP5626920B2 (ja) ニッケル基合金の鋳造品、ガスタービン翼及びガスタービン
EP2169087B1 (fr) Superalliage basé sur du nickel et pale de turbine à gaz l&#39;utilisant
EP3042973A1 (fr) Alliage de nickel
CN109554580B (zh) 一种镍基合金、其制备方法与制造物品
EP2944704B1 (fr) Composition d&#39;alliage de nickel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071227

17Q First examination report despatched

Effective date: 20080204

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006017324

Country of ref document: DE

Date of ref document: 20101118

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110707

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006017324

Country of ref document: DE

Effective date: 20110707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121227

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130110

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121231

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006017324

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006017324

Country of ref document: DE

Effective date: 20140701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131219

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231