EP1798809A1 - Device for transmitting and/or receiving electromagnetic waves for aerodynes - Google Patents

Device for transmitting and/or receiving electromagnetic waves for aerodynes Download PDF

Info

Publication number
EP1798809A1
EP1798809A1 EP06125691A EP06125691A EP1798809A1 EP 1798809 A1 EP1798809 A1 EP 1798809A1 EP 06125691 A EP06125691 A EP 06125691A EP 06125691 A EP06125691 A EP 06125691A EP 1798809 A1 EP1798809 A1 EP 1798809A1
Authority
EP
European Patent Office
Prior art keywords
antenna
reflector
network
transmitting
aerodynes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06125691A
Other languages
German (de)
French (fr)
Other versions
EP1798809B1 (en
Inventor
Michel Soiron
Georges Guillaumot
Thierry Dousset
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1798809A1 publication Critical patent/EP1798809A1/en
Application granted granted Critical
Publication of EP1798809B1 publication Critical patent/EP1798809B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/282Modifying the aerodynamic properties of the vehicle, e.g. projecting type aerials
    • H01Q1/283Blade, stub antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/286Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft
    • H01Q1/287Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft integrated in a wing or a stabiliser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Definitions

  • the present invention relates to a device for transmitting and / or receiving electromagnetic waves for aerodynes. It applies for example in the field of aeronautics.
  • IFE services entail new constraints. For example, high-speed Internet access for each passenger requires very high transmission rates to geostationary satellites in charge of distributing information.
  • An additional transmitting and / or receiving antenna must be installed on the upper part of the aircraft fuselage. First of all, this antenna must be able to target any satellite according to the geographical position of the aircraft which is constantly moving. In addition, the antenna must emit a high frequency wave suitable for broadband, in the X band, Ku or Ka for example, that is to say between 10 and 35 gigahertz. Knowing that the conventional functions of communication and navigation already require a large number of antennas distributed on the back and under the belly of the device, this poses problems of availability and choice of implantation areas, as well as problems decoupling verification between antennas.
  • a conventional solution is the use of a directional antenna oriented mechanically in the direction of the satellite, the entire device being enclosed in a fixed radome.
  • the permanent increase of the rates implies a constant increase of the frequencies, until Ka band for example, and the cost of design, realization and maintenance of this type of antenna increases rapidly.
  • the limited reliability of any mechanical servocontrol is all the more economically damaging because the maintenance operations on the back of the device are difficult.
  • these antennas are bulky and make a considerable protuberance appears on the surface of the fuselage, significantly increasing the drag of the aircraft and thus its consumption of kerosene.
  • the use of several of these antennas on the same carrier generates masking areas.
  • Another solution can be envisaged which overcomes the disadvantages of reliability of a mechanical servocontrol. It is the use of 3 fixed antennas with electronic scanning arranged on the fuselage of the apparatus according to 3 very precise directions. Indeed, a single antenna of this type has an angular coverage that is very limited to a cone of about 60 degrees around the normal direction to the antenna. In addition, the signal loses in quality when it is emitted with an angle away from the normal direction to the antenna. Three of them are correctly oriented in order to satisfy the angular coverage constraints, one horizontally arranged on the top of the fuselage and the two others arranged vertically on each side of the fuselage.
  • these antennas have a relatively large thickness because they incorporate a wave emitting device behind the antenna itself, the latter being traversed by the waves it refracts. Their size, although lower than a mechanical scanning antenna, remains high and still shows significant protuberances. Finally, such a device with three antennas requires an implantation surface on the surface of the fuselage rather extended and therefore hardly available. Their maintenance from inside the plane is also made difficult by the need to develop 3 separate accesses.
  • a reflector array antenna adjusts the angle of reflection of the beam by relative phase shift of the radiated field by elements arranged in a network.
  • the radiating elements arranged in a network may be waveguides incorporating phase shifters with diodes or microelectromechanical systems for example, commonly called MEMS according to the English expression "Micro-Electro-Mechanical System”.
  • MEMS microelectromechanical systems
  • This technology is well known elsewhere.
  • it is also necessary to install 3 masts with aerodynamic profile and equipped with lighting horns at their summit to illuminate the three reflector networks. Since this type of antenna has the same angular coverage limitations as conventional electronic scanning antennas, ie about 60 degrees around the normal direction of the antenna, it also takes three correctly oriented to satisfy the angular cover constraints. One of them must be arranged horizontally on the top of the fuselage with its illumination mast and the other two vertically on each side with their illumination masts as well. But even if the thickness is considerably reduced, such a solution still requires a too large implantation surface.
  • the invention aims in particular to overcome the aforementioned drawbacks by opportunely exploiting an already existing structure on the fuselage of the aircraft, namely the saber type antenna.
  • a saber antenna is present on any aircraft to provide radio voice communications in VHF and UHF bands.
  • the subject of the invention is a device for transmitting and / or receiving electromagnetic waves for aerodynes comprising a saber antenna present on the top of the fuselage of the aircraft. It also has a main reflector array horizontally at the foot of the saber antenna and a main illumination horn located at the top of the saber antenna, the horn illuminating the main reflector network. It also has two secondary reflector networks arranged vertically on both sides. other faces of the saber antenna and two secondary lighting horns arranged at the foot of the antenna in the plane of the main reflector network, each horn illuminating one of the secondary reflector networks. Each reflector network reflects the waves emitted by the illuminating cornet illuminating it.
  • one of the directional reflective planes may be an array of reflective and directional radiating elements by relative phase shift of the field radiated by the elements, thin enough not to inadvertently increase the thickness of the saber antenna.
  • reflected waves are in the X, Ku or Ka band.
  • the main advantages of the invention are that it integrates with an existing reception structure that is the saber antenna without disturbing its operation. Indeed, the traditional voice communication functions UHF radio and VHF saber antenna remain independent of the new functions on other frequency bands. Decoupling is ensured by the fact that these functions are addressed to very different frequency ranges. In particular, one can fail without consequence on the other. Thus it is a compact and modular multifunction solution that limits the increasing proliferation of antennas and facilitates maintenance. Not involving any complex mechanical servocontrol device for the benefit of electronic scanning technology, it is not only a more reliable solution but also a better solution in terms of accuracy and speed of beam pointing.
  • FIG. 1 and Figure 2 illustrate the same embodiment of a device according to the invention, Figure 1 by a side view and Figure 2 by a view from above.
  • a saber antenna 2 is implanted vertically by its base on the upper part of the fuselage 1 of an aircraft.
  • a saber antenna is a conductive plate whose shape can resemble that of a blade. It is also better known by its Anglo-Saxon designation "blade antenna” which means “blade antenna”. For example it is a quadrilateral whose 2 opposite sides forming the base and the top of the antenna are parallel, the length of its base being of the order of twice that of its top.
  • This blade shape has the dual advantage of having an aerodynamic profile and being adapted to transmit and receive waves in VHF and UHF bands used for radio voice communications between the pilot and the ground traffic controllers. . It can be protected by a polyurethane cover for example.
  • a reflector network 3 is located flat horizontally on the fuselage of the aircraft at the foot of the saber antenna 2.
  • a lighting horn 4 is disposed at the top of the saber antenna, at the rear for example of to overhang the reflector network 3 and oriented so as to illuminate it as efficiently as possible.
  • this reflector network technology does not allow to reflect a quality signal outside a 60 degree cone focused on the normal direction to the reflector network. This antenna alone is not enough to cover a portion of space enough to hope to point any geostationary satellite.
  • two other reflector networks 5 and 6 are advantageously arranged vertically flat on either side of the conductive plate forming the saber antenna.
  • Two lighting horns 7 and 8 are arranged at the foot of the saber antenna in the plane of the reflector array 3 facing the reflector gratings 5 and 6 and oriented so as to illuminate them as efficiently as possible.
  • circular wave beams 10 and 11 coming from the illumination horns 7 and 8 are reflected by the reflecting gratings 5 and 6 in planar wave beams. If each of the two lateral reflector array antennas has the same angular coverage limitation as that placed at the base of the saber antenna, the assembly made by the three reflector array antennas, on the other hand, has a much wider total angular coverage.
  • the beams of emitted and reflected waves are in the frequency band X, Ku or Ka, that is to say between 10 and 35 gigahertz.
  • FIGS. 3a and 3b illustrate the angular coverage of the reflector array antenna 3 of the preceding example of embodiment of a device according to the invention.
  • FIG. 3a shows, in a side view, the angular coverage of the device in a right cone of 60 degrees of half-opening oriented on the normal direction 20 to the reflector network 3.
  • FIG. 3b shows by a front view the angular range of the device in this cone. All the space above the unit is covered.
  • FIGS. 4a and 4b illustrate the angular coverage of the reflector array antennas 5 and 6 of the preceding embodiment of a device according to the invention.
  • FIG. 4a shows in a view from above, on the one hand, the angular range of the device in a straight cone of 60 degrees of half opening oriented on the normal direction 21 to the reflector network 5, and on the other hand the angular range of the device in a right cone of 60 degrees of half-aperture centered on the normal 22 to the reflector network 6.
  • Figure 4b shows by a front view the angular range of the device in these two cones. The entire area of space on the right and left of the device is covered.
  • the device according to the invention leaves only two shaded areas, one towards the front of the device and the other towards the rear. Each of these shaded areas forms a right cone of about 30 degrees half-aperture and oriented longitudinally to the apparatus. But it should be noted that the current solutions based on mechanical servocontrol or conventional electronic scanning also have shadows, often due to adjacent equipment. In the case of the device according to the invention, only a satellite located far in front of the device or far behind can not be pointed.
  • the device according to the invention is therefore entirely suitable for transmitting information from IFE systems. Moreover, not presenting the difficulties of maintenance, the problems of reliability or excess consumption of current solutions based on mechanical servocontrol or conventional electronic scanning, the device according to the invention therefore has a major economic interest.

Abstract

The device has a blade antenna (2) presented above a fuselage (1) of an aerodyne, and a main reflector array (3) disposed horizontally at the base of the blade antenna. A main lighting cone (4) is disposed at the top of the blade antenna for illuminating the reflector array. Two secondary reflector arrays are disposed vertically on both sides of the antenna. Two secondary lighting cones are disposed at the base of the antenna in a plane of the main reflector array for illuminating the secondary reflector arrays.

Description

La présente invention concerne un dispositif d'émission et/ou de réception d'ondes électromagnétiques pour aérodynes. Elle s'applique par exemple dans le domaine de l'aéronautique.The present invention relates to a device for transmitting and / or receiving electromagnetic waves for aerodynes. It applies for example in the field of aeronautics.

De nouveaux services de divertissement ou de communication sont aujourd'hui offerts aux passagers des avions commerciaux ou d'affaire, ces services étant couramment rassemblés sous la dénomination anglo-saxonne de « In Flight Entertainment » (qu'on appellera services IFE par la suite). Les services IFE entraînent des contraintes nouvelles. Par exemple l'accès à l'Internet haut débit pour chaque passager exige des débits de transmission très importants vers des satellites géostationnaires en charge de distribuer l'information. Une antenne additionnelle émettrice et/ou réceptrice doit être implantée sur la partie supérieure du fuselage des avions. Tout d'abord cette antenne doit permettre de viser n'importe quel satellite en fonction de la position géographique de l'avion qui est sans cesse en mouvement. En plus, l'antenne doit émettre une onde à fréquence élevée adaptée au haut débit, dans la bande X, Ku ou Ka par exemple, c'est-à-dire entre 10 et 35 gigahertz. Sachant que les fonctions classiques de communication et de navigation nécessitent déjà un grand nombre d'antennes réparties sur le dos et sous le ventre de l'appareil, ceci pose des problèmes de disponibilité et de choix des zones d'implantation, ainsi que des problèmes de vérification de découplage entre les antennes.New entertainment or communication services are now offered to passengers on commercial or business aircraft, these services being commonly referred to as the Anglo-Saxon "In Flight Entertainment" (which will be called IFE services later ). IFE services entail new constraints. For example, high-speed Internet access for each passenger requires very high transmission rates to geostationary satellites in charge of distributing information. An additional transmitting and / or receiving antenna must be installed on the upper part of the aircraft fuselage. First of all, this antenna must be able to target any satellite according to the geographical position of the aircraft which is constantly moving. In addition, the antenna must emit a high frequency wave suitable for broadband, in the X band, Ku or Ka for example, that is to say between 10 and 35 gigahertz. Knowing that the conventional functions of communication and navigation already require a large number of antennas distributed on the back and under the belly of the device, this poses problems of availability and choice of implantation areas, as well as problems decoupling verification between antennas.

Une solution classique est l'utilisation d'une antenne directionnelle orientée mécaniquement dans la direction du satellite, l'ensemble du dispositif étant enfermé dans un radôme fixe. Mais l'augmentation permanente des débits implique une augmentation constante des fréquences, jusqu'en bande Ka par exemple, et le coût de conception, de réalisation et de maintenance de ce type d'antenne augmente rapidement. La fiabilité limitée de tout asservissement mécanique est d'autant plus dommageable économiquement que les interventions de maintenance sur le dos de l'appareil sont difficiles. Enfin ces antennes sont encombrantes et font apparaître une protubérance considérable à la surface du fuselage, augmentant notablement la traînée de l'appareil et donc sa consommation de kérosène. De plus, l'utilisation de plusieurs de ces antennes sur un même porteur engendre des zones de masquage.A conventional solution is the use of a directional antenna oriented mechanically in the direction of the satellite, the entire device being enclosed in a fixed radome. But the permanent increase of the rates implies a constant increase of the frequencies, until Ka band for example, and the cost of design, realization and maintenance of this type of antenna increases rapidly. The limited reliability of any mechanical servocontrol is all the more economically damaging because the maintenance operations on the back of the device are difficult. Finally these antennas are bulky and make a considerable protuberance appears on the surface of the fuselage, significantly increasing the drag of the aircraft and thus its consumption of kerosene. In addition, the use of several of these antennas on the same carrier generates masking areas.

Une autre solution peut être envisagée qui s'affranchit des inconvénients de fiabilité d'un asservissement mécanique. C'est l'utilisation de 3 antennes fixes à balayage électronique classique disposées sur le fuselage de l'appareil selon 3 directions bien précises. En effet, une seule antenne de ce type n'a une couverture angulaire que très limitée à un cône de l'ordre de 60 degrés environ autour de la direction normale à l'antenne. De plus le signal perd en qualité lorsqu'il est émis avec un angle s'éloignant de la direction normale à l'antenne. Il en faut donc trois correctement orientées pour satisfaire aux contraintes de couverture angulaire, l'une disposée horizontalement sur le dessus du fuselage et les deux autres disposées verticalement de chaque coté du fuselage. Mais ces antennes ont une épaisseur relativement importante car elles intègrent un dispositif d'émission d'ondes derrière l'antenne elle-même, celle-ci étant traversée par les ondes qu'elle réfracte. Leur encombrement, quoique inférieur à une antenne à balayage mécanique, reste élevé et fait encore apparaître des protubérances importantes. Enfin un tel dispositif à trois antennes nécessite une surface d'implantation à la surface du fuselage plutôt étendue et donc difficilement disponible. Leur maintenance à partir de l'intérieur de l'avion est également rendue difficile par la nécessité d'aménager 3 accès distincts.Another solution can be envisaged which overcomes the disadvantages of reliability of a mechanical servocontrol. It is the use of 3 fixed antennas with electronic scanning arranged on the fuselage of the apparatus according to 3 very precise directions. Indeed, a single antenna of this type has an angular coverage that is very limited to a cone of about 60 degrees around the normal direction to the antenna. In addition, the signal loses in quality when it is emitted with an angle away from the normal direction to the antenna. Three of them are correctly oriented in order to satisfy the angular coverage constraints, one horizontally arranged on the top of the fuselage and the two others arranged vertically on each side of the fuselage. But these antennas have a relatively large thickness because they incorporate a wave emitting device behind the antenna itself, the latter being traversed by the waves it refracts. Their size, although lower than a mechanical scanning antenna, remains high and still shows significant protuberances. Finally, such a device with three antennas requires an implantation surface on the surface of the fuselage rather extended and therefore hardly available. Their maintenance from inside the plane is also made difficult by the need to develop 3 separate accesses.

Cette solution à trois antennes pourrait être améliorée par l'utilisation d'antennes à balayage électronique d'un type connu par sa désignation anglo-saxonne de « reflect-array » (que l'on appellera réseau réflecteur par la suite). Ces antennes ont la caractéristique de ne pas comporter de dispositif d'émission d'ondes intégré au réseau rayonnant et par conséquent d'offrir une épaisseur très faible. Ces dispositifs ne réfractent pas une onde générée à l'arrière de l'antenne, ils réfléchissent une onde générée à l'avant de l'antenne par un dispositif d'émission d'ondes déporté. Selon exactement le même principe qu'une antenne à balayage électronique classique pour ajuster l'angle de réfraction, une antenne à réseau réflecteur ajuste l'angle de réflexion du faisceau par déphasage relatif du champ rayonné par des éléments disposés en réseau. Les éléments rayonnants disposés en réseau peuvent être des guides d'ondes intégrant des déphaseurs à diodes ou à systèmes micro-électro-mécaniques par exemple, couramment appelés MEMS selon l'expression anglo-saxonne « Micro-Electro-Mechanical System ». Cette technologie est bien connue par ailleurs. Pour mettre en oeuvre cette solution, il faut implanter également 3 mâts au profil aérodynamique et équipés de cornets d'éclairage à leur sommet pour illuminer les trois réseaux réflecteurs. Ce type d'antenne ayant les mêmes limitations en couverture angulaire que les antennes à balayage électronique classique, à savoir environ 60 degrés autour de la direction normale à l'antenne, il en faut également trois correctement orientées pour satisfaire aux contraintes de couverure angulaire. L'une d'entre elles doit être disposée horizontalement sur le dessus du fuselage avec son mât d'illumination et les deux autres verticalement de chaque coté avec leurs mâts d'illumination également. Mais même si l'épaisseur est considérablement réduite, une telle solution nécessite encore une surface d'implantation trop étendue.This solution with three antennas could be improved by the use of electronic scanning antennas of a type known by its Anglo-Saxon designation of "reflect-array" (which will be called reflective network thereafter). These antennas have the characteristic of not having a wave transmission device integrated in the radiating network and therefore to offer a very small thickness. These devices do not refract a wave generated at the rear of the antenna, they reflect a wave generated at the front of the antenna by a remote wave transmission device. According to exactly the same principle as a conventional electronic scanning antenna for adjusting the refraction angle, a reflector array antenna adjusts the angle of reflection of the beam by relative phase shift of the radiated field by elements arranged in a network. The radiating elements arranged in a network may be waveguides incorporating phase shifters with diodes or microelectromechanical systems for example, commonly called MEMS according to the English expression "Micro-Electro-Mechanical System". This technology is well known elsewhere. To implement this solution, it is also necessary to install 3 masts with aerodynamic profile and equipped with lighting horns at their summit to illuminate the three reflector networks. Since this type of antenna has the same angular coverage limitations as conventional electronic scanning antennas, ie about 60 degrees around the normal direction of the antenna, it also takes three correctly oriented to satisfy the angular cover constraints. One of them must be arranged horizontally on the top of the fuselage with its illumination mast and the other two vertically on each side with their illumination masts as well. But even if the thickness is considerably reduced, such a solution still requires a too large implantation surface.

Il apparaît que difficulté d'implantation, surconsommation, manque de fiabilité et maintenance difficile sont des inconvénients essentiels qui font que les solutions actuelles sont médiocres surtout d'un point de vue économique.It appears that difficulty of implementation, overconsumption, unreliability and difficult maintenance are essential disadvantages that make current solutions are poor especially from an economic point of view.

L'invention a notamment pour but de pallier les inconvénients précités en exploitant de manière opportune une structure déjà existante sur le fuselage de l'appareil, à savoir l'antenne de type sabre. Une antenne sabre est présente sur tout avion pour assurer les communications vocales par radio en bandes VHF et UHF.The invention aims in particular to overcome the aforementioned drawbacks by opportunely exploiting an already existing structure on the fuselage of the aircraft, namely the saber type antenna. A saber antenna is present on any aircraft to provide radio voice communications in VHF and UHF bands.

A cet effet, l'invention a pour objet un dispositif d'émission et/ou de réception d'ondes électromagnétiques pour aérodynes comportant une antenne sabre présente sur le dessus du fuselage de l'aérodyne. Il comporte également un réseau réflecteur principal disposé horizontalement au pied de l'antenne sabre et un cornet d'éclairage principal disposé au sommet de l'antenne sabre, le cornet illuminant le réseau réflecteur principal. Il comporte aussi deux réseaux réflecteurs secondaires disposés verticalement de part et d'autre des faces de l'antenne sabre et deux cornets d'éclairage secondaires disposés au pied de l'antenne dans le plan du réseau réflecteur principal, chaque cornet illuminant l'un des réseaux réflecteurs secondaires. Chaque réseau réflecteur réfléchit les ondes émises par le cornet d'éclairage l'illuminant.To this end, the subject of the invention is a device for transmitting and / or receiving electromagnetic waves for aerodynes comprising a saber antenna present on the top of the fuselage of the aircraft. It also has a main reflector array horizontally at the foot of the saber antenna and a main illumination horn located at the top of the saber antenna, the horn illuminating the main reflector network. It also has two secondary reflector networks arranged vertically on both sides. other faces of the saber antenna and two secondary lighting horns arranged at the foot of the antenna in the plane of the main reflector network, each horn illuminating one of the secondary reflector networks. Each reflector network reflects the waves emitted by the illuminating cornet illuminating it.

Avantageusement, l'un des plans réflecteurs directif peut être un réseau d'éléments rayonnants réflecteur et directif par déphasage relatif du champ rayonné par les éléments, suffisamment mince pour ne pas augmenter inconsidérément l'épaisseur de l'antenne sabre.Advantageously, one of the directional reflective planes may be an array of reflective and directional radiating elements by relative phase shift of the field radiated by the elements, thin enough not to inadvertently increase the thickness of the saber antenna.

Par exemple, les ondes réfléchies sont dans la bande X, Ku ou Ka.For example, reflected waves are in the X, Ku or Ka band.

L'invention a encore pour principaux avantages qu'elle s'intègre sur une structure d'accueil existante qu'est l'antenne sabre sans en perturber le fonctionnement. En effet les fonctions classiques de communication vocale par radio UHF et VHF de l'antenne sabre restent indépendantes des nouvelles fonctions sur les autres bandes de fréquences. Le découplage est assuré par le fait que ces fonctions s'adressent à des gammes de fréquence bien différentes. En particulier, l'une peut tomber en panne sans conséquence sur l'autre. Ainsi c'est une solution multifonction compacte et modulaire qui limite la prolifération grandissante des antennes et facilite la maintenance. Ne faisant intervenir aucun dispositif complexe d'asservissement mécanique au bénéfice d'une technologie à base de balayage électronique, c'est non seulement une solution plus fiable mais également une solution meilleure en terme de précision et de rapidité de pointage de faisceau.The main advantages of the invention are that it integrates with an existing reception structure that is the saber antenna without disturbing its operation. Indeed, the traditional voice communication functions UHF radio and VHF saber antenna remain independent of the new functions on other frequency bands. Decoupling is ensured by the fact that these functions are addressed to very different frequency ranges. In particular, one can fail without consequence on the other. Thus it is a compact and modular multifunction solution that limits the increasing proliferation of antennas and facilitates maintenance. Not involving any complex mechanical servocontrol device for the benefit of electronic scanning technology, it is not only a more reliable solution but also a better solution in terms of accuracy and speed of beam pointing.

D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :

  • la figure 1, une illustration d'un exemple de réalisation d'un dispositif selon l'invention par une vue de profil ;
  • la figure 2, une illustration de l'exemple précédent de réalisation d'un dispositif selon l'invention par une vue du dessus ;
  • les figures 3a et 3b, une illustration de la couverture angulaire de l'exemple précédent de réalisation d'un dispositif selon l'invention par une vue de profil et de face ;
  • la figures 4a et 4b, une illustration de la couverture angulaire de l'exemple précédent de réalisation d'un dispositif selon l'invention par une vue du dessus et de face.
Other characteristics and advantages of the invention will become apparent with the aid of the following description made with reference to appended drawings which represent:
  • Figure 1, an illustration of an exemplary embodiment of a device according to the invention by a side view;
  • Figure 2, an illustration of the previous embodiment of a device according to the invention by a view from above;
  • FIGS. 3a and 3b, an illustration of the angular coverage of the preceding example of embodiment of a device according to the invention by a profile and front view;
  • Figures 4a and 4b, an illustration of the angular coverage of the previous embodiment of a device according to the invention by a view from above and from the front.

La figure 1 et la figure 2 illustrent le même exemple de réalisation d'un dispositif selon l'invention, la figure 1 par une vue de profil et la figure 2 par une vue du dessus. Une antenne sabre 2 est implantée verticalement par sa base sur la partie supérieure du fuselage 1 d'un avion. Une antenne sabre est une plaque conductrice dont la forme peut s'apparenter à celle d'une lame. Elle est d'ailleurs plus connue sous sa désignation anglo-saxonne de « blade antenna » qui signifie « antenne lame ». Par exemple c'est un quadrilatère dont 2 côtés opposés formant la base et le sommet de l'antenne sont parallèles, la longueur de sa base étant de l'ordre de deux fois celle de son sommet. Cette forme en lame a le double avantage de présenter un profil aérodynamique et d'être adaptée à l'émission et à la réception des ondes en bandes VHF et UHF utilisées pour les communications vocales par radio entre le pilote et les contrôleurs de trafic au sol. Elle peut être protégée par un capot en polyuréthane par exemple.Figure 1 and Figure 2 illustrate the same embodiment of a device according to the invention, Figure 1 by a side view and Figure 2 by a view from above. A saber antenna 2 is implanted vertically by its base on the upper part of the fuselage 1 of an aircraft. A saber antenna is a conductive plate whose shape can resemble that of a blade. It is also better known by its Anglo-Saxon designation "blade antenna" which means "blade antenna". For example it is a quadrilateral whose 2 opposite sides forming the base and the top of the antenna are parallel, the length of its base being of the order of twice that of its top. This blade shape has the dual advantage of having an aerodynamic profile and being adapted to transmit and receive waves in VHF and UHF bands used for radio voice communications between the pilot and the ground traffic controllers. . It can be protected by a polyurethane cover for example.

Avantageusement, un réseau réflecteur 3 est implanté à plat horizontalement sur le fuselage de l'avion au pied de l'antenne sabre 2. Un cornet d'éclairage 4 est disposé au sommet de l'antenne sabre, à l'arrière par exemple de manière à surplomber le réseau réflecteur 3 et orienté de manière à l'illuminer le plus efficacement possible. Un faisceau d'ondes circulaire 9 issu du cornet d'éclairage 4, c'est-à-dire composé d'ondes sphériques partant dans toutes les directions, est réfléchi par le réseau réflecteur 3 en un faisceau d'ondes planaires, c'est-à-dire composé d'ondes dans une unique direction. Cette direction de réflexion dépend du déphasage relatif du champ rayonné par les éléments du réseau réflecteur. En commandant la modulation de ce déphasage, il est aisé de changer la direction dans laquelle le faisceau est réfléchi et ainsi de viser un satellite géostationnaire. Toutefois cette technologie de réseau réflecteur ne permet pas de réfléchir un signal de qualité en dehors d'un cône de 60 degrés axé sur la direction normale au réseau réflecteur. Cette antenne ne suffit donc pas à elle seule à couvrir une portion de l'espace suffisante pour espérer pointer n'importe quel satellite géostationnaire.Advantageously, a reflector network 3 is located flat horizontally on the fuselage of the aircraft at the foot of the saber antenna 2. A lighting horn 4 is disposed at the top of the saber antenna, at the rear for example of to overhang the reflector network 3 and oriented so as to illuminate it as efficiently as possible. A circular wave beam 9 coming from the illumination horn 4, that is to say composed of spherical waves going in all directions, is reflected by the reflector network 3 into a planar wave beam, c ' that is, composed of waves in a single direction. This direction of reflection depends on the relative phase shift of the field radiated by the elements of the reflector network. By controlling the modulation of this phase shift, it is easy to change the direction in which the beam is reflected and thus target a geostationary satellite. However this reflector network technology does not allow to reflect a quality signal outside a 60 degree cone focused on the normal direction to the reflector network. This antenna alone is not enough to cover a portion of space enough to hope to point any geostationary satellite.

Pour cette raison, deux autres réseaux réflecteurs 5 et 6 sont avantageusement disposés à plat verticalement de part et d'autre des faces de la plaque conductrice formant l'antenne sabre. Deux cornets d'éclairage 7 et 8 sont disposés au pied de l'antenne sabre dans le plan du réseau réflecteur 3 en regard des réseaux réflecteurs 5 et 6 et orientés de manière à les illuminer le plus efficacement possible. Par le même principe que précédemment décrit, des faisceaux d'ondes circulaires 10 et 11 issus des cornets d'éclairage 7 et 8 sont réfléchis par les réseaux réflecteurs 5 et 6 en faisceaux d'ondes planaires. Si chacune des deux antennes à réseau réflecteur latérales a la même limitation en couverture angulaire que celle disposée au pied de l'antenne sabre, l'ensemble réalisé par les trois antennes à réseau réflecteur a en revanche une couverture angulaire totale bien plus étendue.For this reason, two other reflector networks 5 and 6 are advantageously arranged vertically flat on either side of the conductive plate forming the saber antenna. Two lighting horns 7 and 8 are arranged at the foot of the saber antenna in the plane of the reflector array 3 facing the reflector gratings 5 and 6 and oriented so as to illuminate them as efficiently as possible. By the same principle as previously described, circular wave beams 10 and 11 coming from the illumination horns 7 and 8 are reflected by the reflecting gratings 5 and 6 in planar wave beams. If each of the two lateral reflector array antennas has the same angular coverage limitation as that placed at the base of the saber antenna, the assembly made by the three reflector array antennas, on the other hand, has a much wider total angular coverage.

Par exemple les faisceaux d'ondes émis et réfléchis sont dans la bande de fréquence X, Ku ou Ka, c'est-à-dire entre 10 et 35 gigahertz.For example, the beams of emitted and reflected waves are in the frequency band X, Ku or Ka, that is to say between 10 and 35 gigahertz.

Les figures 3a et 3b illustrent la couverture angulaire de l'antenne à réseau réflecteur 3 de l'exemple précédent de réalisation d'un dispositif selon l'invention.FIGS. 3a and 3b illustrate the angular coverage of the reflector array antenna 3 of the preceding example of embodiment of a device according to the invention.

La figure 3a met en évidence par une vue de profil la couverture angulaire du dispositif dans un cône droit de 60 degrés de demi-ouverture axé sur la direction normale 20 au réseau réflecteur 3. La figure 3b met en évidence par une vue de face la portée angulaire du dispositif dans ce cône. Toute la portion d'espace se situant au-dessus de l'appareil est couverte.FIG. 3a shows, in a side view, the angular coverage of the device in a right cone of 60 degrees of half-opening oriented on the normal direction 20 to the reflector network 3. FIG. 3b shows by a front view the angular range of the device in this cone. All the space above the unit is covered.

Les figures 4a et 4b illustrent la couverture angulaire des antennes à réseaux réflecteurs 5 et 6 de l'exemple précédent de réalisation d'un dispositif selon l'invention.FIGS. 4a and 4b illustrate the angular coverage of the reflector array antennas 5 and 6 of the preceding embodiment of a device according to the invention.

La figure 4a met en évidence par une vue de dessus, d'une part la portée angulaire du dispositif dans un cône droit de 60 degrés de demi ouverture axé sur la direction normale 21 au réseau réflecteur 5, et d'autre part la portée angulaire du dispositif dans un cône droit de 60 degrés de demi-ouverture axé sur la normale 22 au réseau réflecteur 6. La figure 4b met en évidence par une vue de face la portée angulaire du dispositif dans ces deux cônes. Toute la portion d'espace se situant à droite comme à gauche de l'appareil est couverte.FIG. 4a shows in a view from above, on the one hand, the angular range of the device in a straight cone of 60 degrees of half opening oriented on the normal direction 21 to the reflector network 5, and on the other hand the angular range of the device in a right cone of 60 degrees of half-aperture centered on the normal 22 to the reflector network 6. Figure 4b shows by a front view the angular range of the device in these two cones. The entire area of space on the right and left of the device is covered.

Ainsi le dispositif selon l'invention ne laisse subsister que deux zones d'ombre, l'une vers l'avant de l'appareil et l'autre vers l'arrière. Chacune de ces zones d'ombre forme un cône droit de 30 degrés de demi-ouverture environ et axé longitudinalement à l'appareil. Mais il faut noter que les solutions actuelles à base d'asservissement mécanique ou de balayage électronique classique présentent également des zones d'ombre, souvent dues aux équipements mitoyens. Dans le cas du dispositif selon l'invention, seul un satellite situé très loin devant l'appareil ou très loin derrière ne pourra être pointé.Thus the device according to the invention leaves only two shaded areas, one towards the front of the device and the other towards the rear. Each of these shaded areas forms a right cone of about 30 degrees half-aperture and oriented longitudinally to the apparatus. But it should be noted that the current solutions based on mechanical servocontrol or conventional electronic scanning also have shadows, often due to adjacent equipment. In the case of the device according to the invention, only a satellite located far in front of the device or far behind can not be pointed.

Or il a été constaté que la position des satellites visés et les trajectoires suivies par les vols long courrier dans lesquels les services IFE aux passagers seront majoritairement proposés, des vols est-ouest et notamment transatlantiques, ne nécessitent pas de pointer un faisceau dans ces directions. Le dispositif selon l'invention est donc tout à fait adapté à la transmission des informations des systèmes IFE. Ne présentant pas par ailleurs les difficultés de maintenance, les problèmes de fiabilité ou encore de surconsommation des solutions actuelles à base d'asservissement mécanique ou de balayage électronique classique, le dispositif selon l'invention présente donc bien un intérêt économique majeur.However, it has been observed that the position of the targeted satellites and the trajectories followed by the long-haul flights in which IFE services to passengers will be mainly proposed, east-west and especially transatlantic flights, do not need to point a beam in these directions. . The device according to the invention is therefore entirely suitable for transmitting information from IFE systems. Moreover, not presenting the difficulties of maintenance, the problems of reliability or excess consumption of current solutions based on mechanical servocontrol or conventional electronic scanning, the device according to the invention therefore has a major economic interest.

Le mode de réalisation décrit par les figures utilise des réseaux réflecteurs directifs par déphasage relatif du champ rayonné par des éléments. Mais l'invention peut être mise en oeuvre en utilisant n'importe quelle autre technologie de plan réflecteur directif.The embodiment described in the figures uses directional reflective gratings by relative phase shift of the field radiated by elements. But the invention can be implemented using any other directional reflective plane technology.

Claims (4)

Dispositif d'émission et/ou de réception d'ondes électromagnétiques pour aérodynes caractérisé en ce qu'il comporte : - une antenne sabre (2) présente sur le dessus du fuselage de l'aérodyne; - un réseau réflecteur principal (3) disposé horizontalement au pied de l'antenne sabre; - un cornet d'éclairage principal (4) disposé au sommet de l'antenne sabre, le cornet illuminant le réseau réflecteur principal ; - deux réseaux réflecteurs secondaires (5, 6) disposés verticalement de part et d'autre des faces de l'antenne sabre ; - deux cornets d'éclairage secondaires (7, 8) disposés au pied de l'antenne sabre dans le plan du réseau réflecteur principal, chaque cornet illuminant l'un des réseaux réflecteurs secondaires ; chaque réseau réflecteur réfléchissant les ondes (9, 10, 11) émises par le cornet d'éclairage l'illuminant.Device for transmitting and / or receiving electromagnetic waves for aerodynes, characterized in that it comprises: - A saber antenna (2) on the top of the fuselage of the aircraft; - a main reflector network (3) disposed horizontally at the foot of the saber antenna; - a main lighting horn (4) disposed at the top of the saber antenna, the horn illuminating the main reflector network; - two secondary reflector networks (5, 6) arranged vertically on either side of the saber antenna faces; - two secondary lighting horns (7, 8) arranged at the foot of the saber antenna in the plane of the main reflector network, each horn illuminating one of the secondary reflector gratings; each reflecting network reflecting the waves (9, 10, 11) emitted by the illumination horn illuminating it. Dispositif d'émission et/ou de réception d'ondes électromagnétiques pour aérodynes selon la revendication 1, caractérisé en ce que le réseau réflecteur principal (3) ou l'un des réseaux réflecteurs secondaires (5, 6) est un réseau réflecteur directif permettant de réfléchir toutes les ondes dans une même direction.Apparatus for transmitting and / or receiving electromagnetic waves for aerodynes according to claim 1, characterized in that the main reflector network (3) or one of the secondary reflector gratings (5, 6) is a directional reflective grating allowing to reflect all the waves in the same direction. Dispositif d'émission et/ou de réception d'ondes électromagnétiques pour aérodynes selon la revendication 1, caractérisé en ce que le réseau réflecteur principal (3) ou l'un des réseaux réflecteurs secondaires (5, 6) est un réseau d'éléments rayonnants directif par déphasage relatif du champ rayonné par les éléments.Device for transmitting and / or receiving electromagnetic waves for aerodynes according to claim 1, characterized in that the main reflector network (3) or one of the secondary reflector gratings (5, 6) is an array of elements radiating direction by relative phase shift of the field radiated by the elements. Dispositif d'émission et/ou de réception d'ondes électromagnétiques pour aérodynes selon l'une quelconque des revendications précédentes, caractérisé en ce que les ondes réfléchies sont dans la bande de fréquence X, Ku ou Ka.Device for transmitting and / or receiving electromagnetic waves for aerodynes according to any one of the preceding claims, characterized in that the reflected waves are in the frequency band X, Ku or Ka.
EP06125691A 2005-12-16 2006-12-08 Device for transmitting and/or receiving electromagnetic waves for aerodynes Not-in-force EP1798809B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0512846A FR2895152B1 (en) 2005-12-16 2005-12-16 DEVICE FOR TRANSMITTING AND / OR RECEIVING ELECTROMAGNETIC WAVES FOR AERODYNES

Publications (2)

Publication Number Publication Date
EP1798809A1 true EP1798809A1 (en) 2007-06-20
EP1798809B1 EP1798809B1 (en) 2008-08-13

Family

ID=36072115

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06125691A Not-in-force EP1798809B1 (en) 2005-12-16 2006-12-08 Device for transmitting and/or receiving electromagnetic waves for aerodynes

Country Status (5)

Country Link
US (1) US7372414B2 (en)
EP (1) EP1798809B1 (en)
AT (1) ATE405002T1 (en)
DE (1) DE602006002230D1 (en)
FR (1) FR2895152B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2720317A1 (en) * 2012-10-09 2014-04-16 The Boeing Company Conformal active reflect array for co-site and multi-path interference reduction
US9300040B2 (en) 2008-07-18 2016-03-29 Phasor Solutions Ltd. Phased array antenna and a method of operating a phased array antenna
US9628125B2 (en) 2012-08-24 2017-04-18 Phasor Solutions Limited Processing a noisy analogue signal
US9917714B2 (en) 2014-02-27 2018-03-13 Phasor Solutions Limited Apparatus comprising an antenna array

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10170843B2 (en) 2015-05-29 2019-01-01 California Institute Of Technology Parabolic deployable antenna
US20170110803A1 (en) * 2015-07-08 2017-04-20 California Institute Of Technology Deployable reflectarray high gain antenna for satellite applications
US11677140B2 (en) * 2020-09-15 2023-06-13 Gilat Satellite Networks Ltd. Controllable antenna arrays for wireless communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148040A (en) * 1976-11-03 1979-04-03 The Boeing Company High resolution side-looking airborne radar antenna
EP0829918A2 (en) * 1996-09-12 1998-03-18 Trw Inc. A multifunction structurally integrated VHF-UHF aircraft antenna system
US6208304B1 (en) * 1999-05-10 2001-03-27 Ems Technologies Canada, Ltd. Aircraft mounted dual blade antenna array
WO2003058753A2 (en) * 2001-12-21 2003-07-17 The Boeing Company Structurally-integrated, space-fed phased array antenna system for use on an aircraft

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931808A (en) * 1989-01-10 1990-06-05 Ball Corporation Embedded surface wave antenna
US5359338A (en) * 1989-09-20 1994-10-25 The Boeing Company Linear conformal antenna array for scanning near end-fire in one direction
USH1219H (en) * 1991-04-19 1993-08-03 The United States Of America As Represented By The Secretary Of The Navy Electrically small cavity antenna
US5982339A (en) * 1996-11-26 1999-11-09 Ball Aerospace & Technologies Corp. Antenna system utilizing a frequency selective surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148040A (en) * 1976-11-03 1979-04-03 The Boeing Company High resolution side-looking airborne radar antenna
EP0829918A2 (en) * 1996-09-12 1998-03-18 Trw Inc. A multifunction structurally integrated VHF-UHF aircraft antenna system
US6208304B1 (en) * 1999-05-10 2001-03-27 Ems Technologies Canada, Ltd. Aircraft mounted dual blade antenna array
WO2003058753A2 (en) * 2001-12-21 2003-07-17 The Boeing Company Structurally-integrated, space-fed phased array antenna system for use on an aircraft

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300040B2 (en) 2008-07-18 2016-03-29 Phasor Solutions Ltd. Phased array antenna and a method of operating a phased array antenna
US10008772B2 (en) 2008-07-18 2018-06-26 Phasor Solutions Limited Phased array antenna and a method of operating a phased array antenna
US9628125B2 (en) 2012-08-24 2017-04-18 Phasor Solutions Limited Processing a noisy analogue signal
US10069526B2 (en) 2012-08-24 2018-09-04 Phasor Solutions Limited Processing a noisy analogue signal
EP2720317A1 (en) * 2012-10-09 2014-04-16 The Boeing Company Conformal active reflect array for co-site and multi-path interference reduction
EP3309900A1 (en) * 2012-10-09 2018-04-18 The Boeing Company Co-site and multi-path interference reduction
US9917714B2 (en) 2014-02-27 2018-03-13 Phasor Solutions Limited Apparatus comprising an antenna array

Also Published As

Publication number Publication date
US20070216586A1 (en) 2007-09-20
FR2895152A1 (en) 2007-06-22
FR2895152B1 (en) 2008-01-25
ATE405002T1 (en) 2008-08-15
EP1798809B1 (en) 2008-08-13
DE602006002230D1 (en) 2008-09-25
US7372414B2 (en) 2008-05-13

Similar Documents

Publication Publication Date Title
EP1798809B1 (en) Device for transmitting and/or receiving electromagnetic waves for aerodynes
EP2532050B1 (en) On-board directional flat-plate antenna, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle
EP0656671B1 (en) Orientable antenna with maintenance of the polarisations axes
EP2532046B1 (en) Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle
FR2922051A1 (en) ON-SATELLITE PACKAGE ANTENNA SYSTEM WITH POLARIZATION CONTROL
FR2911011A1 (en) Reconfigurable radiating network antenna e.g. reflector array network antenna for telecommunication geostationary satellite, has charging and placing units comprising unwinding system of film positioning sub-assembly in emitting position
WO1999000868A1 (en) Telecommunication system antenna and method for transmitting and receiving using said antenna
EP2688142A1 (en) Multi-beam transmission and reception antenna with a plurality of sources per beam, antenna system and satellite telecommunication system comprising such an antenna
EP1198864B1 (en) System comprising a satellite with radiofrequency antenna
EP0131512B1 (en) Dual reflector antenna with quasitoroidal coverage
EP1074064A1 (en) Apparatus for tracking moving satellites
FR2777117A1 (en) MULTI-LAYERED FOCUSING SPHERICAL LENS
EP3639409B1 (en) Satellite payload comprising a dual reflective surface reflector
FR2518828A1 (en) Frequency spatial filter for two frequency microwave antenna - comprising double sandwich of metallic grids and dielectric sheets
FR3085234A1 (en) ANTENNA FOR TRANSMITTING AND / OR RECEIVING AN ELECTROMAGNETIC WAVE, AND SYSTEM COMPRISING THE SAME
FR3068523A1 (en) TRANSMITTER NETWORK ANTENNA COMPRISING A MECHANISM FOR REORIENTATION OF THE DIRECTION OF THE BEAM
EP3155689B1 (en) Flat antenna for satellite communication
EP3902059B1 (en) Directional broadband antenna with longitudinal transmission
EP3365943A1 (en) Acquisition aid antenna device and associated antenna system for monitoring a moving target
FR2965410A1 (en) Spatial radio communication antenna, has maintenance unit for maintaining positions and relative orientations of source and reflecting satellites between each other, where positions correspond to optical configuration of antenna
FR3135572A1 (en) LOW PROFILE ANTENNA WITH TWO-DIMENSIONAL ELECTRONIC SCANNING
WO2011101471A1 (en) Antenna having reflectors
WO2019238643A1 (en) Beam-forming mispointing system
FR2596208A1 (en) Two-frequency antenna with independent steerable beams
FR2530872A1 (en) Array antenna with phase shifter for radars with spherical coverage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071220

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602006002230

Country of ref document: DE

Date of ref document: 20080925

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081124

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: THALES

Effective date: 20081231

26N No opposition filed

Effective date: 20090514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081208

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090214

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151201

Year of fee payment: 10

Ref country code: GB

Payment date: 20151202

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006002230

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161208

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701