Piezoelektrischer Brennraum-Drucksensor mit einem DruckübertragungsstiftPiezoelectric combustion chamber pressure sensor with a pressure transfer pin
Stand der TechnikState of the art
Die Erfindung betrifft einen piezoelektrischen Sensor zum Messen des Drucks in einem Brennraum einer Brennkraftmaschine mit einem Druckübertragungsstift.The invention relates to a piezoelectric sensor for measuring the pressure in a combustion chamber of an internal combustion engine with a pressure transfer pin.
Für verschiedene Anwendungen ist es wünschenswert, den in einem Brennraum herrschenden Druck durch einen geeigneten Sensor zu erfassen. Ein Sensor aus einem piezoelektrischen Material zur Bestimmung des Drucks in einem Brennraum einer Brennkraftmaschine ist beispielsweise aus DE-692 09 132 T2 bekannt. Wie allgemein bekannt, entstehen bei einem piezoelektrischen Material, auf dem ein mechanischer Druck ausgeübt wird, elektrische Ladungen. Aus diesen Ladungen resultiert eine elektrische Spannung im piezoelektrischen Material, die man abgreifen und messen kann. Da bei einer direkten Aussetzung des piezoelektrischen Materials im Brennraum der Sensor u. a. aus thermischen Gründen geschädigt wird, wird der Druck im Brennraum zunächst auf ein druckempfangendes Bauteil ausgeübt, das dem Brennraum direkt ausgesetzt ist. Das druckempfangende Bauteil leitet dann den Druck letztlich auf das piezoelektrische Material des Sensors weiter. Gemäß der Lehre der genannten Schrift wird der Druck zunächst auf eine Membran am Zylinderkopf der
Brennkraftmaschine ausgeübt, der dann über einen mit der Membran verbundenen Druckübertragungsstift auf das piezoelektrische Material übertragen wird.For various applications, it is desirable to detect the pressure prevailing in a combustion chamber through a suitable sensor. A sensor made of a piezoelectric material for determining the pressure in a combustion chamber of an internal combustion engine is known, for example, from DE-692 09 132 T2. As is well known, a piezoelectric material on which a mechanical pressure is applied generates electric charges. These charges result in an electrical voltage in the piezoelectric material that can be tapped and measured. Since, in the case of direct exposure of the piezoelectric material in the combustion chamber, the sensor is damaged, inter alia, for thermal reasons, the pressure in the combustion chamber is first exerted on a pressure-receiving component which is directly exposed to the combustion chamber. The pressure-receiving component then forwards the pressure to the piezoelectric material of the sensor. According to the teaching of the cited document, the pressure is first applied to a diaphragm on the cylinder head Internal combustion engine exerted, which is then transferred via a diaphragm connected to the pressure transfer pin on the piezoelectric material.
Die im Stand der Technik beschriebene Vorrichtung zeigt in der Praxis jedoch gewisse Nachteile. Zunächst sind Membrane als Druckempfänger in einem Brennraum grundsätzlich problematisch, da die Lebensdauer eines solchen Bauteils durch z. B. Verschmutzungen, insbesondere durch Rußpartikeln, begrenzt wird. Auch die mechanische Stabilität einer Membran ist im Vergleich mit anderen Bauteilen als kritisch zu bewerten. Weiter wird in der vorgestellten Vorrichtung der Drucksensor als Einzelbauteil am Zylinderkopf der Brennkraftmaschine vorgesehen. Der an dem Zylinderkopf vorhandene Einbauplatz ist aber sehr begrenzt. Denn heutige Brennkraftmaschinen weisen aber typischerweise mehrere Einlass- und Auslassventile pro Brennraum auf, und ferner ist bei der Direkteinspritztechnik neben einem Brennstoffeinspritzventil zum direkten Einspritzen des Brennstoffes in den Brennraum der Brennkraftmaschine bei fremdgezündeten Brennkraftmaschinen auch noch eine Zündkerze zum Zünden des Brennstoffes erforderlich. Bei Selbstzündern ist eine Glühstiftkerze notwendig. Eine direkte Platzierung der Membran mit dem Druckübertragungsstift am Brennraum stößt daher auf Schwierigkeiten.However, the device described in the prior art has certain disadvantages in practice. First, membranes are basically problematic as a pressure receiver in a combustion chamber, since the life of such a component by z. As contamination, especially by soot particles is limited. The mechanical stability of a membrane is also critical in comparison with other components. Furthermore, in the presented device, the pressure sensor is provided as a single component on the cylinder head of the internal combustion engine. The existing on the cylinder head slot is very limited. For today's internal combustion engines but typically have multiple intake and exhaust valves per combustion chamber, and also in the direct injection technique in addition to a fuel injector for direct injection of fuel into the combustion chamber of the internal combustion engine in spark-ignited internal combustion engines also requires a spark plug to ignite the fuel. With auto-igniters a glow plug is necessary. A direct placement of the membrane with the pressure transfer pin on the combustion chamber therefore encounters difficulties.
Vorteile der ErfindungAdvantages of the invention
Der erfindungsgemäße piezoelektrische Sensor SE mit einem Druckübertragungsstift mit den angegebenen Merkmalen hat gegenüber dem Stand der Technik den Vorteil, dass eine Integration des Sensors in bereits vorhandene Bauteile der Brennkraftmaschine ermöglicht und somit eine platzsparende
Lösung bereitgestellt wird. Insbesondere wird dabei auch die aus dem Stand der Technik bekannte Membran als druckempfangendes Bauteil verzichtet, wodurch eine Reduzierung der Problematik durch Verschmutzungen erzielt wird. Weiter ist das piezoelektrische Material des Sensors vorteilhaft von mechanischen Anzugsmomenten und thermisch induzierten mechanischen Spannungen am Zylinderkopf entkoppelt und minimiert so verfälschte Druckmessungen.The inventive piezoelectric sensor SE with a pressure transfer pin with the specified features has the advantage over the prior art that an integration of the sensor in existing components of the engine allows and thus a space-saving Solution is provided. In particular, the known from the prior art membrane is omitted as a pressure-receiving component, whereby a reduction of the problem is achieved by contamination. Furthermore, the piezoelectric material of the sensor is advantageously decoupled from mechanical tightening torques and thermally induced mechanical stresses on the cylinder head and thus minimizes falsified pressure measurements.
Vorteilhafte Weiterbildungen des erfindungsgemäßen Sensors sind in den Unteransprüchen angegeben und in der Beschreibung beschrieben.Advantageous developments of the sensor according to the invention are specified in the subclaims and described in the description.
Zeichnungdrawing
Ausführungsbeispiele der Erfindung werden anhand der Zeich¬ nung und der nachfolgenden Beschreibung näher erläutert. Es zeigen:Embodiments of the invention will be explained in more detail with reference to the drawing and the following description. Show it:
Figur 1 einen in eine Glühstiftkerze integrierten, piezoelektrischen Sensor mit einem Widerlager,1 shows a built-in glow plug, piezoelectric sensor with an abutment,
Figur 2a bis 2c jeweils eine Ausführung des Sensors im Schnitt und in Draufsicht,2a to 2c each show an embodiment of the sensor in section and in plan view,
Figur 3 ein Quarzkristall mit den kristallographischen Achsen X, Y und Z in perspektivischer Darstellung,FIG. 3 is a perspective view of a quartz crystal with the crystallographic axes X, Y and Z;
Figur 4 ein im Querschnitt sechseckiges Quarzkristall,FIG. 4 a cross-sectionally hexagonal quartz crystal,
Figur 5 ein piezoelektrisches Bauteil im X-Schnitt mit Schnittwinkel θ,
Figur 6 die lineare Abhängigkeit der Empfindlichkeit des Z- Schnittes von der Temperatur,FIG. 5 shows a piezoelectric component in the X-section with a cutting angle θ, FIG. 6 shows the linear dependence of the sensitivity of the Z cut on the temperature,
Figur 7a ein piezoelektrisches Material 1 im Z-Schnitt in perspektivischer Darstellung bei einer schiefwinkligen Krafteinwirkung,7a shows a piezoelectric material 1 in the Z-section in a perspective view at a skewed force,
Figur 7b und 7c Vektor-Darstellungen zur Verdeutlichung der Winkeln α bzw. ß,FIGS. 7b and 7c are vector illustrations illustrating the angles α and β, respectively;
Figur 8a und 8b die Empfindlichkeit des piezoelektrischen Materials im Z-Schnitt in Abhängigkeit vom Winkel OC bzw. ß, undFigure 8a and 8b, the sensitivity of the piezoelectric material in the Z-section as a function of the angle OC or ß, and
Figur 9a und 9b die Empfindlichkeit des piezoelektrischen Materials im Y-Schnitt in Abhängigkeit vom Winkel OC bzw. ß.Figures 9a and 9b, the sensitivity of the piezoelectric material in the Y-section as a function of the angle OC or ß.
Beschreibung der AusführungsbeispieleDescription of the embodiments
Figur 1 zeigt ein Ausführungsbeispiel des erfindungsgemäßen, in eine Glühstiftskerze integrierten Sensor SE aus einem einkristallinen, piezoelektrischen Material 1. Der Sensor SE ist dabei in einem Kanal 2 zum Brennraum einer Brennkraftmaschine angeordnet. Er ist jedoch nicht direkt dem Druck 6 des Brennraumes ausgesetzt, sondern kraftschlüssig mit einem Glühstift 4 verbunden. Der Glühstift 4 ist teilweise im Kanal 2 angeordnet, ragt aber mit einem Ende in den Brennraum hinein und ist verschiebbar, insbesondere axial verschiebbar, gelagert. Typischerweise ist der Glühstift 4 in einer Dichtung 3, insbesondere einem O-Ring, Graphitring oder einer Metallsicke, gelagert. Der Sensor SE selbst ist an der dem Brennraum abgewandten Seite des Glühstiftes 4 angeordnet. Weiter ist ein starres
Widerlager 5 dem Sensor SE in entgegengesetzter Richtung des Brennraumes nachgelagert.FIG. 1 shows an exemplary embodiment of the sensor SE according to the invention, which is integrated into an incandescent glow plug and made of a monocrystalline, piezoelectric material 1. The sensor SE is arranged in a channel 2 relative to the combustion chamber of an internal combustion engine. However, it is not directly exposed to the pressure 6 of the combustion chamber, but positively connected to a glow plug 4. The glow plug 4 is partially arranged in the channel 2, but protrudes with one end into the combustion chamber and is displaceable, in particular axially displaceable, stored. Typically, the glow plug 4 in a gasket 3, in particular an O-ring, graphite ring or a metal bead stored. The sensor SE itself is arranged on the side facing away from the combustion chamber of the glow plug 4. Next is a rigid one Abutment 5 downstream of the sensor SE in the opposite direction of the combustion chamber.
Wird nun ein Druck 6 auf den Glühstift 4 ausgeübt, so leitet der axial verschiebbar gelagerte Glühstift 4 den Druck 6 auf das piezoelektrische Material 1 weiter, welches aufgrund des ihm nachgelagerten, starren Widerlagers 5 mechanisch deformiert wird. Durch eine Spannungsmessung am piezoelektrischen Material 1 kann der Wert des Druckes 6 im Brennraum 3 abgeleitet werden. Zum Abgreifen der Spannung ist der Sensor SE aus dem piezoelektrischen Material 1 an zwei Seiten, wie die Figuren 2a bis 2c zeigen, zur Bildung von Elektroden 7 metallisiert, vorzugsweise mit einer Chrom- Gold(CrAu) -Schicht, insbesondere Legierung. Die Elektroden 7 sind, wie in Figur 1 erkennbar, so angeordnet, dass sie senkrecht zur Druckeinwirkung stehen und sind mit elektrischen Leitungen 8 direkt oder alternativ indirekt über in den Figuren nicht dargestellten Metallscheiben kontaktiert. Mögliche äußere Formen des Sensors SE sind, neben der eines Quaders (Fig. 2b) oder einer Vollscheibe (Fig. 2c), bevorzugt die eines Rings (Fig. 2a), da dann durch die offene Mitte des Ringes die elektrischen Leitungen 8 geführt werden können. Durch die offene Mitte des Ringes kann auch die elektrische Leitung für den Glühstrom der Glühkerze gelegt werden.Now, if a pressure 6 exerted on the glow plug 4, so the axially displaceably mounted glow plug 4 passes the pressure 6 on the piezoelectric material 1 on, which is mechanically deformed due to the downstream of him, rigid abutment 5. By a voltage measurement on the piezoelectric material 1, the value of the pressure 6 in the combustion chamber 3 can be derived. For picking up the voltage, the sensor SE of the piezoelectric material 1 is metallized on two sides, as shown in FIGS. 2a to 2c, to form electrodes 7, preferably with a chromium-gold (CrAu) layer, in particular alloy. The electrodes 7 are, as can be seen in Figure 1, arranged so that they are perpendicular to the pressure and are contacted with electrical leads 8 directly or alternatively indirectly via metal discs, not shown in the figures. Possible external shapes of the sensor SE are, in addition to a cuboid (FIG. 2 b) or a solid disc (FIG. 2 c), preferably those of a ring (FIG. 2 a), since the electrical leads 8 are then guided through the open center of the ring can. Through the open center of the ring and the electrical line for the glow current of the glow plug can be placed.
Durch die beschriebene Anordnung des Sensors SE ist der Sensor SE in eine Glühstiftskerze bzw. in einem bereits vorhandenen Kanal 2 zum Brennraum integriert. Weder ein eigener Kanal 2 noch ein eigener Druckübertragungsstift für den Sensor SE ist notwendig, vielmehr wird beides vorteilhaft für zwei unterschiedliche Zwecke verwendet. Auch wird auf eine Membran als druckempfangendes Bauteil ganz verzichtet. Ein zusätzlicher Vorteil ergibt sich dadurch,
dass Kräfte wie beispielsweise die durch das Anzugsmoment beim Einschrauben in den Zylinderkopf auf das Glühstiftkerzengehäuse wirken, nahezu keinen Einfluss auf den Sensor SE haben.Due to the described arrangement of the sensor SE, the sensor SE is integrated into a glow plug or in an already existing channel 2 to the combustion chamber. Neither a separate channel 2 nor a separate pressure transfer pin for the sensor SE is necessary, but both are advantageously used for two different purposes. Also completely dispensed with a membrane as a pressure-receiving component. An additional advantage arises from that forces such as those acting through the tightening torque when screwing into the cylinder head on the Glühstiftkerzengehäuse have almost no effect on the sensor SE.
Der Sensor SE kann durch eine angemessene Materialauswahl und durch definierte Kristallschnitte in seiner Gesamtleistung noch weiter verbessert werden. Bei einem piezoelektrischen Sensor SE wird als piezoelektrisches Material 1 hauptsächlich Quarz oder Piezokeramik verwendet. Beide Möglichkeiten haben jedoch gewisse Vor- und Nachteile im Vergleich miteinander. So zeigt Quarz einerseits als die einkristalline Variante des Siliziumdioxids SiO2 keine Alterung und ist temperaturstabil bis zu einer relativ hohen Temperatur von 573 0C. Bei einer noch höheren Temperatur wandelt der Quarz von der sogenannten α-Modifikation in die ß-Modifikation. Erst dann verliert der Quarz seine piezoelektrische Eigenschaft. Andererseits hat der Quarz nur eine kleine Empfindlichkeit von 2,3 pC/N, so dass üblicherweise zwei Piezoelemente ladungsmäßig parallel geschaltet werden. Dies erfordert einen hohen Aufwand und damit hohe Kosten bei der Aufbau- und Verbindungstechnik. Dagegen weisen piezoelektrische Keramiken eine hohe Empfindlichkeit auf, wodurch auf eine aufwendige Aufbautechnik mit mehreren Piezoelementen verzichtet werden kann. Nachteilig ändert sich jedoch die Empfindlichkeit der piezoelektrischen Keramiken mit der Lebensdauer. Die Änderung wird durch Depolarisation in piezoelektrischen Keramiken verursacht und schränkt die Einsatzmöglichkeit des Materials stark ein. Die Depolarisation wird bei relativ großen Krafteinwirkungen beschleunigt, so dass diese Materialien nur bei kleinen Kräften betrieben werden. Zudem führen hohe Krafteinwirkungen zu nicht-linearen und hysteretischen Ladungs-Kraftkennlinien. Dieses Problem wird
bei Temperaturen, die höher als 50 % der Curie-Temperatur liegen, noch weiter verschärft.The sensor SE can be further improved by an appropriate selection of materials and by defined crystal cuts in its overall performance. In a piezoelectric sensor SE is used as the piezoelectric material 1 mainly quartz or piezoceramic. Both options, however, have certain advantages and disadvantages compared to each other. Thus, quartz is the one hand as the single-crystal version of the silicon dioxide SiO 2 and no aging is temperature-stable up to a relatively high temperature of 573 0 C. At an even higher temperature of the quartz transforms of the so-called α-modification in the ß-modification. Only then does the quartz lose its piezoelectric property. On the other hand, the quartz has only a small sensitivity of 2.3 pC / N, so that usually two piezo elements are connected in parallel in terms of charge. This requires a lot of effort and thus high costs in the construction and connection technology. In contrast, piezoelectric ceramics have a high sensitivity, which makes it possible to dispense with a complicated construction technique with a plurality of piezoelectric elements. However, disadvantageously, the sensitivity of the piezoelectric ceramics changes with the lifetime. The change is caused by depolarization in piezoelectric ceramics and severely restricts the potential for use of the material. The depolarization is accelerated at relatively large forces, so that these materials are operated only at low forces. In addition, high force effects lead to non-linear and hysteretic charge-force characteristics. This problem will at temperatures higher than 50% of the Curie temperature, further exacerbated.
Um die Nachteile der beiden Materialien zu umgehen, besteht der erfindungsgemäße Sensor SE vorteilhaft aus dem einkristallinen, piezoelektrischen Material Lithiumniobat (LiNbO3) . Die Curie-Temperatur dieses Materials liegt bei über 1200 0C. Gleichzeitig können eine hohe Empfindlichkeit und ein geringer Temperaturgang durch ausgewählte Schnitte aus dem Kristall erreicht werden.In order to avoid the disadvantages of the two materials, the sensor SE according to the invention advantageously consists of the monocrystalline, piezoelectric material lithium niobate (LiNbO 3 ). The Curie temperature of this material is above 1200 ° C. At the same time, high sensitivity and low temperature response can be achieved through selected cuts from the crystal.
Um die verschiedenen Schnitte aus dem Kristall definieren zu können, wird zunächst in der Figur 3 ein Quarzkristall mit den kristallographischen Achsen X, Y und Z in perspektivischer Darstellung gezeigt. Ausgehend von der Gestalt eines natürlichen, im Querschnitt sechseckigen Quarzkristalls und der in der Kristallographie üblichen Festlegung der senkrecht aufeinanderstehenden Achsen X, Y und Z, definieren wir als Z-Achse die durch die Spitze des Kristalls gehende gedachte Achse. Eine senkrecht hierzu stehende und durch eine Ecke des hexagonalen Prismas gehende Achse wird als X-Achse bestimmt. Die Y-Achse steht wiederum senkrecht zu den beiden anderen Achsen und geht damit durch eine Fläche des Kristalls. Figur 4 zeigt das sechseckige Kristall im Querschnitt, d. h. man sieht die X-Y-Ebene in Draufsicht. Wie bereits erwähnt, kann das piezoelektrische Bauteil aus dem Kristall zur Erzielung bestimmter Eigenschaften wie beispielsweise eines minimalen Temperaturganges unter einem optimalen Achsenschnitt und/oder Schnittwinkel θ herausgeschnitten werden. Dabei werden die Schnitte nach der kristallographischen Achse bezeichnet, die normal zur Hauptoberfläche des Bauteils steht. Die Hauptoberfläche ist dabei die Oberfläche des Bauteils, auf die später der Druck bzw. die Kraft auf das
Bauteil eingekoppelt wird. So ist in der Figur 5 beispielhaft ein piezoelektrisches Bauteil im X-Schnitt dargestellt, da das Bauteil derart aus dem Kristall herausgeschnitten wurde, dass die X-Achse des Kristalls normal zur Hauptoberfläche des Bauteils steht. Das Bauteil schließt gleichzeitig mit der Y-Achse einen Schnittwinkel θ ein. Die oben eingeführten Bezeichnungen der kristallographischen Achsen X, Y und Z gelten analog auch für LiNbO3-Kristalle, wobei zu berücksichtigen ist, dass der Querschnitt des LiNbO3-Kristalls die Grundfläche eines ditrigonalen Prismas aufweist. Die genaue geometrische Form mit den Achsenbezeichnungen ist der Fachliteratur zu entnehmen.In order to be able to define the various sections from the crystal, a quartz crystal with the crystallographic axes X, Y and Z is first shown in a perspective view in FIG. Starting from the shape of a natural quartz crystal with a hexagonal cross-section and the usual definition of the mutually perpendicular axes X, Y and Z, we define as the Z-axis the imaginary axis passing through the tip of the crystal. A perpendicular axis passing through a corner of the hexagonal prism is determined to be the X axis. The Y axis is again perpendicular to the other two axes and thus passes through an area of the crystal. FIG. 4 shows the hexagonal crystal in cross section, ie the XY plane is seen in plan view. As already mentioned, the piezoelectric component can be cut out of the crystal to obtain certain properties, such as a minimum temperature response, below an optimum axial section and / or cutting angle θ. The sections are named after the crystallographic axis, which is normal to the main surface of the component. The main surface is the surface of the component, on which later the pressure or the force on the Component is coupled. For example, in FIG. 5, a piezoelectric component is shown in the X-section, since the component has been cut out of the crystal in such a way that the X-axis of the crystal is normal to the main surface of the component. The component includes a cutting angle θ simultaneously with the Y axis. The above-mentioned designations of the crystallographic axes X, Y and Z apply analogously to LiNbO 3 crystals, wherein it should be noted that the cross section of the LiNbO 3 crystal has the base of a ditrigonal prism. The exact geometric shape with the axis designations can be found in the literature.
Bevorzugt werden LiNbO3-Bauteile mit Z- oder Y-Schnitt eingesetzt, d. h. die Z- bzw. Y-Achse des Kristalls steht senkrecht zur Hauptoberfläche des Bauteils oder mit anderen Worten, zur Ebene der Krafteinkoppelung.Preferably LiNbO 3 components are used with Z or Y-section, ie, the Z or Y-axis of the crystal is perpendicular to the main surface of the component or in other words, to the level of force coupling.
Zunächst ist die Empfindlichkeit eines LiNbO3-Bauteils mit einem Z-Schnitt vorteilhaft etwa um Faktor drei größer als die eines Quarz-Bauteils. Der Temperaturgang beträgt etwa 480 ppm/K und damit etwas mehr als im Vergleich zu Quarz, jedoch ändert sich die Empfindlichkeit S (= Sensitivity) , wie aus Figur 6 erkennbar, linear mit der Temperatur T und ist daher besonders einfach kompensierbar. Darüber hinaus bietet der Z-Schnitt den Vorteil einer geringen Querempfindlichkeit auf schiefwinkelige Krafteinkoppelung. Zur besseren Veranschaulichung ist in Figur 7a das piezoelektrische Bauteil mit einem Z-Schnitt in perspektivischer Darstellung mit den kristallographischen X-, Y- und Z-Achsen skizziert. Entsprechend zu der zuvor erläuterten Definition verläuft die Z-Achse hier bei einem Bauteil mit einem Z-Schnitt senkrecht zur Ebene der
Krafteinkoppelung. Wirkt nun auf diese Ebene eine Kraft F nicht senkrecht auf diese ein, sondern mit einem Winkel OC ungleich Null gegenüber der Z-Achse, so kann die gesamte (totale) Kraft Ftot vektoriell zerlegt werden in eine Tangentialkomponete Tpar, die parallel zur Hauptoberfläche oder X-Y-Ebene des Bauteils verläuft, und in eine Z- Komponente Fz, die parallel zur Z-Achse verläuft. Die Vektorzerlegung der gesamten Kraft Ftot in Teilkomponenten Tpar und Fz wird in Figur 7b dargestellt, wobei die Vektoren Ftot und Fz einen Winkel OC einschließen. DieFirst, the sensitivity of a LiNbO 3 device with a Z-cut is advantageously about three times larger than that of a quartz device. The temperature response is about 480 ppm / K and thus slightly more than in comparison to quartz, but the sensitivity S (= sensitivity), as can be seen from FIG. 6, changes linearly with the temperature T and is therefore particularly easily compensated. In addition, the Z-cut offers the advantage of a low cross-sensitivity to skew-angle force coupling. For a better illustration, the piezoelectric component with a Z-section in FIG. 7a is sketched in perspective representation with the crystallographic X, Y and Z axes. In accordance with the definition explained above, the Z-axis here extends perpendicular to the plane of a component with a Z-section Krafteinkoppelung. If a force F does not act perpendicular to this plane, but with an angle OC not equal to zero with respect to the Z-axis, then the total (total) force F tot can be vectorially decomposed into a tangential component T par parallel to the main surface or XY plane of the component, and a Z component F z which is parallel to the Z axis. The vector decomposition of the total force F tot into subcomponents T par and F z is shown in FIG. 7b, where the vectors F tot and F z enclose an angle OC. The
Tangentialkomponete Tpar kann wiederum in weiteren Komponenten Tx und Ty zerlegt werden, die jeweils parallel zur X- bzw. Y-Achse verlaufen. Die Komponenten Tpar und Tx schließen dabei einen Winkel ß ein, wie aus Figur 7c ersichtlich. Weiter zeigen Figur 8a und 8b dieTangential component T par can in turn be decomposed into further components T x and T y , each of which runs parallel to the X or Y axis. The components T par and T x include an angle β, as shown in FIG. 7c. Further, Figs. 8a and 8b show the
Empfindlichkeit S des piezoelektrischen Bauteils im Z- Schnitt in prozentualer Veränderung in Abhängigkeit vom Winkel OC bzw. ß. Die Empfindlichkeit S nimmt nur geringfügig ab.Sensitivity S of the piezoelectric component in Z-section in percent change as a function of the angle OC or ß. The sensitivity S decreases only slightly.
Der Y-Schnitt bietet mit einer Empfindlichkeit S von 20 pC/N einen deutlich höheren Wert im Vergleich mit den bisher genannten Werten, und weist gleichzeitig einen kleinen Temperaturgang mit 240 ppm/K auf. Allerdings hängt die Empfindlichkeit sehr stark von den Winkeln OC bzw. ß derWith a sensitivity S of 20 pC / N, the Y-cut offers a significantly higher value compared to the previously mentioned values, and at the same time has a small temperature response of 240 ppm / K. However, the sensitivity depends very much on the angles OC and ß of the
Einkoppelung ab (Fig. 9a und 9b) . Schiefe Oberflächen bei der Krafteinkoppelung bzw. Nichtparallität der Oberflächen des piezoelektrischen Bauteils resultieren in große Winkeln OC und ß, und beeinflussen somit die Empfindlichkeit. Die an sich hohe Empfindlichkeit S kann dennoch genutzt werden, wenn das Bauteil sorgfältig und richtig orientiert im Kanal 2 eingebaut wird. Ein gewisses Maß an Empfindlichkeits¬ variation kann also abgeglichen und damit toleriert werden.
Coupling in (FIGS. 9a and 9b). Oblique surfaces in the force coupling or non-parallelism of the surfaces of the piezoelectric component result in large angles OC and β, and thus influence the sensitivity. The inherently high sensitivity S can nevertheless be used if the component is installed carefully and correctly oriented in the channel 2. A certain degree of sensitivity variation can thus be adjusted and thus tolerated.