EP1797344B1 - Gas bearing-mounted arrangement of bodies that can be displaced relative to one another - Google Patents
Gas bearing-mounted arrangement of bodies that can be displaced relative to one another Download PDFInfo
- Publication number
- EP1797344B1 EP1797344B1 EP05795041A EP05795041A EP1797344B1 EP 1797344 B1 EP1797344 B1 EP 1797344B1 EP 05795041 A EP05795041 A EP 05795041A EP 05795041 A EP05795041 A EP 05795041A EP 1797344 B1 EP1797344 B1 EP 1797344B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bearing
- gas
- microholes
- sleeve
- arrangement according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 claims description 13
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 230000005855 radiation Effects 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 238000003860 storage Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H23/00—Registering, tensioning, smoothing or guiding webs
- B65H23/04—Registering, tensioning, smoothing or guiding webs longitudinally
- B65H23/32—Arrangements for turning or reversing webs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H23/00—Registering, tensioning, smoothing or guiding webs
- B65H23/04—Registering, tensioning, smoothing or guiding webs longitudinally
- B65H23/24—Registering, tensioning, smoothing or guiding webs longitudinally by fluid action, e.g. to retard the running web
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2406/00—Means using fluid
- B65H2406/10—Means using fluid made only for exhausting gaseous medium
- B65H2406/11—Means using fluid made only for exhausting gaseous medium producing fluidised bed
- B65H2406/111—Means using fluid made only for exhausting gaseous medium producing fluidised bed for handling material along a curved path, e.g. fluidised turning bar
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2406/00—Means using fluid
- B65H2406/10—Means using fluid made only for exhausting gaseous medium
- B65H2406/11—Means using fluid made only for exhausting gaseous medium producing fluidised bed
- B65H2406/113—Details of the part distributing the air cushion
- B65H2406/1131—Porous material
Definitions
- the invention relates to a gas-bearing arrangement of relatively movable bodies and a method for producing a gas bearing for such an arrangement.
- An aerostatic bearing is known as a combined axial and radial bearing in which the Air supply structure is provided for the aerostatic bearing in the outer stationary bearing body, wherein the inner bearing body is formed as a rotational body.
- the introduction of the microholes does not take place from the bearing side, but from the side facing away from the bearing side of the outer body, in which the gas supply structure is provided.
- the EP 0 686 781 A2 discloses a heatable and coolable roll with virtually frictionless support. Such a role consists of a cylindrical core which is provided at its periphery with axially parallel longitudinal grooves. The core is surrounded by a cylindrical sleeve which has substantially radially extending so-called supply holes, which open into the axially parallel grooves, and having the so-called discharge holes, which open into the paraxial grooves.
- supply holes which open into the axially parallel grooves
- discharge holes which open into the paraxial grooves.
- Around the core provided with the sleeve around a roller shell is arranged, wherein between the sleeve and the roller shell, a bearing gap is formed.
- each an end-side side cap is arranged, which are each firmly connected to the core and the cylindrical sleeve, but extending in the radial direction to the outer peripheral surface of the roll shell and laterally abut this seems.
- the two side caps are provided with outgoing from an axial bore radial channels, which are in the assembled state of the roller in fluid communication with the paraxial grooves.
- the core is also provided in its interior with radial bores, which connect a central axial bore of the core with the paraxial longitudinal grooves.
- the US 4,744,676 A discloses an annular gas bearing having a cylindrical inner bearing body formed of a cylinder of porous material compressed on its surface. In the compacted surface blind holes are introduced, which penetrate through the compacted surface into the porous material and from which introduced into the cylinder and passing through the porous material pressure fluid can escape into the bearing gap surrounding the cylinder. A defined gas supply structure is not provided in this cylindrical body.
- Object of the present invention is to provide a gas-bearing arrangement of relatively movable bodies, which has an outer moving body, which can also reach high speeds of movement and has a low-inertia startup behavior. Furthermore, it is an object to provide a method for producing a gas bearing for such an arrangement.
- the first object is achieved by the gas-bearing arrangement with the features of patent claim 1.
- microholes are introduced from the side of the bearing surface into the inner body, then the production costs are significantly reduced.
- the particularly advantageous preferably two-part design of the inner bearing body consisting of the support body and the sleeve or bearing shell makes it possible to achieve both a high load capacity of the inner bearing body, as well as to allow the introduction of high-precision micro holes in the storage area.
- the support body can be configured in the required dimensional stability, without having to take into account the required for the introduction of micro holes in the bearing surface small wall thickness in this area consideration. This small wall thickness is provided in the gas-tightly applied to the support sleeve or bearing shell. In these can then be easily introduced the microholes.
- microholes are laser drilled microholes.
- the sleeve or bearing shell is provided on its outer circumference with a friction-reducing coating.
- a friction-reducing coating provides runflat performance if, in the event of overload, bearing surface contact should occur between the relatively moving bodies.
- the microholes of a radial plane are not exactly aligned radially, but are inclined at an angle to the radial direction. In this way, the gas cushion can be set in motion in the bearing in a desired circumferential direction and a predetermined direction of contact for the outer body can be determined.
- the inner body is a body of revolution and the outer body is stationary.
- the outer body is provided in its bearing surface opposite the inner body with an inner peripheral groove into which at least one connected to a compressed gas source Gaszu 1500kanal, and the inner body is in an axially central portion of the outer body opposite bearing surface with at least one gas inlet bore the gas supply structure provided, wherein the at least one gas inlet bore of the Inner circumferential groove opposite.
- the pressurized gas is introduced from the outside into the rotating inner body, without the rotating inner body having to have a compressed gas connection mechanically connected to the rotating inner body, whereby the friction in the rotation of the inner body is substantially reduced.
- the inner body is provided in its bearing surface facing the outer body with an outer circumferential groove, wherein at least one gas inlet hole of the gas supply structure opens into the redesignsometimessnut, and wherein the outer body in an axially central portion of the inner body opposite bearing surface with at least one in this bearing surface opening gas supply channel is provided, which is connected to a compressed gas source, wherein the at least one gas supply channel of the outer circumferential groove opposite.
- Both aforementioned embodiments have the advantage that the inner rotary body is not mechanically connected to a compressed gas source, which significantly reduces the rotational friction of the inner body.
- the arrangement of the inner circumferential groove or the outer circumferential groove substantially in the - viewed in the axial direction - central portion of the respective bearing surface causes the flow resistance along the bearing gap in the respective axial direction is so high that the gas supplied from the outer body does not escape through the bearing gap, but through which at least one gas inlet bore of the inner body flows into the gas supply structure provided in the inner body and exits from there through the microholes in the bearing surface of the inner body into the bearing gap.
- the gas-bearing arrangement is to be dimensioned so that the flow resistance between the at least one gas inlet bore and the opening into the bearing gap microholes is lower than that Flow resistance between the inner circumferential groove or the outer circumferential groove and the respective axial end of the common bearing surface.
- the sleeve or the bearing shell Due to the airtight application of the sleeve or the bearing shell on the support body, it is possible to prefabricate the sleeve or bearing shell with the desired dimensions of a material that allows a quick and easy insertion of the microholes using the high-energy radiation, while the support body of a Material can be manufactured, which has optimal properties for the load capacity.
- the sleeve or the bearing shell can be brought to a desired dimension after application to the support body and prior to the introduction of the micro-holes by means of cutting and / or grinding machining of the outer circumference.
- the sleeve or the bearing shell can first be applied to the support body in a statically stable form, preferably shrunk on, or adhesively bonded.
- the thin wall thickness required for optimum introduction of the microholes is therefore produced only after the sleeve or bearing shell has been applied to the support body by the machining and / or grinding of the outer circumference of the sleeve.
- the sleeve can also be formed, for example, as a high-precision molding part of the inner circumference of the outer body designed as a rotational body.
- the high-energy radiation source is formed by a laser device, so that the micro-holes by means of a laser beam are introduced into the sleeve or bearing shell.
- Fig. 1 is embodied as an axle formed and hereinafter also referred to as bearing body inner body 1, which in a conventional manner in a schematic and shown with dashed lines shown housing 2 is supported.
- the inner body 1 has a supporting body 10 clamped in the housing.
- At its protruding from the housing 2 side of the support body 10 is provided with a circular cross-section receiving portion 12 for a bearing sleeve 14.
- the bearing sleeve 14 is shrunk onto the receiving portion 12 and connected in this way gas-tight with the support body 10.
- the sleeve 14 is provided in the region of the annular grooves 120, 121, 122, 123 with radially extending microholes 140, 141, 142, 143, which, starting from the bearing surface 14 'on the radial outer circumference of the bearing sleeve 14, through the wall of the bearing sleeve 14 therethrough into the associated annular groove 120, 121, 122, 123 lead.
- a plurality of radial bores 140, 141, 142, 143 are provided over the circumference of the bearing sleeve in the region of each annular groove.
- 3 formed gap 30 and forms there an air cushion, which supports the outer rotary body 3.
- the excess pressurized gas exits at the axial ends of the bearing gap 30. In this way, the aerostatic bearing is formed.
- Fig. 3 shows an enlarged section of a section similar to in FIG Fig. 2
- the micro holes 140 ' are inclined at an angle ⁇ to the radial direction R.
- the gas cushion formed in the bearing gap 30 rotates in the direction of the arrow U and thus ensures a predetermined start-up behavior of the outer rotary body 3 in the direction of the arrow U.
- the wall thickness of the annular bearing sleeve 14 is reduced by machining and / or grinding its outer periphery to a predetermined thickness d, which is sufficiently low to allow easy insertion of microholes by means of a high-energy radiation source, such as a laser device.
- a high-energy radiation source such as a laser device.
- a plurality of microholes 140, 141, 142, 143 are introduced into the bearing sleeve 14 by means of the high-energy radiation source from the side of the bearing surface 14 ', wherein the radiation source is radially outside the inner Bearing body 1 is located.
- a friction-reducing coating is applied to the bearing surface 14 'before or after the introduction of the microholes.
- the outer rotational body is still pushed onto the inner bearing body and, if necessary, secured in a known manner in the axial direction against displacement.
- Fig. 4 is a modified embodiment of the first arrangement similar Fig. 2 shown.
- the bearing sleeve 114 is not provided on its entire circumference with the trained as micro holes radial bores 140, but only in a peripheral portion of about 170 °.
- This gas-bearing arrangement with the bearing sleeve 114 is designed as a deflection bearing for a guided on the gas cushion over the bearing surface 114 'to the inner bearing body 101 around material web 4, wherein the material web 4 in the arrow direction around the fixed bearing body 101 runs around.
- FIG Fig. 5 A modification of a fixed bearing body 201 is shown in FIG Fig. 5 shown.
- the bearing body 201 is formed from a supporting body 210 designed as a support beam.
- the support body 210 is provided in a portion with an arcuate or curved in cross section formed bearing shell 214 which is connected to the bearing body 210 airtight, for example glued, is.
- the bearing shell 214 has a likewise curved bearing surface 214 ', over which a material web 204 rotates.
- the material web 204 moves in the direction of the arrow relative to the stationary bearing body 210, wherein the compressed gas flowing out of the microholes 240 provided in the bearing shell 214 carries the material web 204.
- the support body 210 is analogous to the support body 10 with a pressure gas supply bore 211 extending in the axial direction and outgoing from this pressure gas bore 211 Provided radial bores 224, which each open into a groove-like compressed gas chamber 220, in which open the micro holes 240.
- the respective inner body 301, 401 formed as a rotational body, while the respective outer body 303, 403 with respect to the rotational movement stationary, ie stationary, is arranged.
- the supply of the compressed gas for acting in the respective inner body 301, 401 gas supply structure for acting on the respective Druckgaspolster between the opposing bearing surfaces 313 'and 314' or 413 'and 414' takes place from the outside by a gas supply channel 340 and 440, respectively in the outer body 303 or 403 is provided.
- Fig. 6 an embodiment is shown in which the outer body 303 is provided in its inner body 301 opposite bearing surface 313 'with an inner circumferential groove 342.
- the gas supply passage 340 opens.
- the inner circumferential groove 342 there is provided at least one gas entrance hole 311 'in the bearing surface 314' of the inner body 301, which is connected to the gas supply structure 311 formed in the support body 310 of the inner body 301.
- the circumferential groove is not in the inner periphery of the bearing surface 413 'of the outer body 403, but as the outer circumferential groove 442 in the bearing surface 414 'of the inner body 401.
- the gas supply passage 440 opens into the bearing surface 413' of the outer body 403 in a portion facing the outer circumferential groove 442.
- the gas inlet bore 411 ' opens into the outer circumferential groove 442 of the inner body 401 and is also connected to the gas supply structure 411 provided in the supporting body 410 of the inner body 401.
- the compressed gas flows from the compressed gas source through the Gaszu 1500 in theticiansnut 442 and from there through the gas inlet bore 411 'in the gas supply structure 411 and from there through the provided in the bearing sleeve 414 micro holes 450, 451, 452, 453 in the bearing gap 430, where it forms the compressed gas cushion for storage.
- the ratio between the thickness d of the respective bearing gap to the respective distance between the mecanicsnut 342 and the technicallymaysnut 442 and the respective axial outer end of the respective common bearing surfaces is dimensioned so that the flow resistance of the respective groove 342, 442 directly through the respective bearing gap 330, 430 to the outside is greater than the flow resistance through the respective gas supply structure 311, 411 and the microholes connected thereto and outwardly in the axis-parallel direction, so as to ensure that the introduced into the mecanicsnut 342 andproofallell 442 pressurized gas is not directly through the respective bearing gap 330, 430 escapes, but by the respective Gas supply structure 311, 411 and the associated microholes is introduced into the bearing gap.
Landscapes
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Fluid-Damping Devices (AREA)
- Air Bags (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
Die Erfindung betrifft eine gasgelagerte Anordnung von relativ zueinander bewegbaren Körpern sowie ein Verfahren zur Herstellung eines Gaslagers für eine derartige Anordnung.The invention relates to a gas-bearing arrangement of relatively movable bodies and a method for producing a gas bearing for such an arrangement.
Es ist bekannt, eine luftgelagerte Anordnung von relativ zueinander bewegbaren Körpern vorzusehen, bei welcher die Luftversorgung des dadurch gebildeten Luftlagers durch den aus Sintermaterial bestehenden inneren Körper erfolgt. Derartige Sintermaterialkörper sind jedoch in ihrer Tragfähigkeit und Steifigkeit beschränkt. Zudem ist das durch die aus dem Sintermaterial ausströmende Luft gebildete Luftpolster im Luftlager sehr inhomogen, wodurch die Lagerung sehr unbestimmt ist.It is known to provide an air-bearing arrangement of relatively movable bodies, in which the air supply of the air bearing formed thereby takes place through the inner body made of sintered material. However, such sintered body are limited in their carrying capacity and rigidity. In addition, the air cushion formed by the air flowing out of the sintered material in the air bearing is very inhomogeneous, whereby the storage is very indefinite.
Aus der
Die
Die
Aufgabe der vorliegenden Erfindung ist es, eine gasgelagerte Anordnung von relativ zueinander bewegbaren Körpern anzugeben, die einen außen liegenden bewegten Körper aufweist, der auch hohe Bewegungsgeschwindigkeiten erreichen kann und ein trägheitsarmes Anlaufverhalten besitzt. Weiterhin ist es Aufgabe, ein Verfahren zur Herstellung eines Gaslagers für eine derartige Anordnung anzugeben.Object of the present invention is to provide a gas-bearing arrangement of relatively movable bodies, which has an outer moving body, which can also reach high speeds of movement and has a low-inertia startup behavior. Furthermore, it is an object to provide a method for producing a gas bearing for such an arrangement.
Die erste Aufgabe wird durch die gasgelagerte Anordnung mit den Merkmalen des Patentanspruchs 1 gelöst.The first object is achieved by the gas-bearing arrangement with the features of patent claim 1.
Sind die Mikrolöcher von der Seite der Lagerfläche aus in den inneren Körper eingebracht, so sind die Herstellungskosten deutlich herabgesetzt.If the microholes are introduced from the side of the bearing surface into the inner body, then the production costs are significantly reduced.
Die besonders vorteilhafte vorzugsweise zweiteilige Ausgestaltung des inneren Lagerkörpers bestehend aus dem Tragkörper und der Hülse oder Lagerschale ermöglicht es, sowohl eine hohe Tragfähigkeit des inneren Lagerkörpers zu erreichen, als auch die Einbringung von hochfeinen Mikrolöchern in die Lagerfläche zu ermöglichen. Der Tragkörper kann dabei in der erforderlichen Formsteifigkeit ausgestaltet werden, ohne daß auf die für das Einbringen von Mikrolöchern in die Lagerfläche erforderliche geringe Wandstärke in diesem Bereich Rücksicht genommen werden muß. Diese geringe Wandstärke ist in der auf den Tragkörper gasdicht aufgebrachten Hülse oder Lagerschale vorgesehen. In diese können dann die Mikrolöcher problemlos eingebracht werden.The particularly advantageous preferably two-part design of the inner bearing body consisting of the support body and the sleeve or bearing shell makes it possible to achieve both a high load capacity of the inner bearing body, as well as to allow the introduction of high-precision micro holes in the storage area. The support body can be configured in the required dimensional stability, without having to take into account the required for the introduction of micro holes in the bearing surface small wall thickness in this area consideration. This small wall thickness is provided in the gas-tightly applied to the support sleeve or bearing shell. In these can then be easily introduced the microholes.
Vorteilhafte Weiterbildungen der erfindungsgemäßen Anordnung sind in den weiteren Unteransprüchen angegeben.Advantageous developments of the arrangement according to the invention are specified in the further subclaims.
Dabei ist es insbesondere vorteilhaft, wenn die Mikrolöcher lasergebohrte Mikrolöcher sind.It is particularly advantageous if the microholes are laser drilled microholes.
Weiterhin ist es vorteilhaft, wenn die Hülse oder Lagerschale auf ihrem Außenumfang mit einer reibungsreduzierenden Beschichtung versehen ist. Eine derartige Beschichtung sorgt für Notlaufeigenschaften, falls im Fall einer Überlast eine Lagerflächenberührung zwischen den sich relativ zueinander bewegenden Körpern stattfinden sollte.Furthermore, it is advantageous if the sleeve or bearing shell is provided on its outer circumference with a friction-reducing coating. Such a coating provides runflat performance if, in the event of overload, bearing surface contact should occur between the relatively moving bodies.
Es ist außerdem besonders vorteilhaft, wenn die Mikrolöcher einer Radialebene nicht exakt radial ausgerichtet sind, sondern in einem Winkel zur Radialrichtung geneigt sind. Auf diese Weise kann das Gaspolster im Lager in eine gewünschte Umfangsrichtung in Bewegung versetzt werden und eine vorgegebene Anlaufrichtung für den äußeren Körper kann so bestimmt werden.It is also particularly advantageous if the microholes of a radial plane are not exactly aligned radially, but are inclined at an angle to the radial direction. In this way, the gas cushion can be set in motion in the bearing in a desired circumferential direction and a predetermined direction of contact for the outer body can be determined.
In einer anderen vorteilhaften Ausführungsform ist der innere Körper ein Rotationskörper und der äußere Körper ist stationär angeordnet.In another advantageous embodiment, the inner body is a body of revolution and the outer body is stationary.
Dabei ist der äußere Körper in seiner dem inneren Körper gegenüber gelegenen Lagerfläche mit einer Innenumfangsnut versehen, in die zumindest ein mit einer Druckgasquelle verbundener Gaszuführkanal mündet, und der innere Körper ist in einem axial mittleren Abschnitt der dem äußeren Körper gegenüber gelegenen Lagerfläche mit zumindest einer Gaseintrittsbohrung der Gasversorgungsstruktur versehen, wobei die zumindest eine Gaseintrittsbohrung der Innenumfangsnut gegenüberliegt. Auf diese Weise wird das Druckgas von außen in den rotierenden inneren Körper eingeleitet, ohne daß der rotierende inneren Körper einen mechanisch an den rotierenden inneren Körper angeschlossenen Druckgasanschluß aufweisen muß, wodurch die Reibung bei der Rotation des inneren Körpers wesentlich herabgesetzt wird.In this case, the outer body is provided in its bearing surface opposite the inner body with an inner peripheral groove into which at least one connected to a compressed gas source Gaszuführkanal, and the inner body is in an axially central portion of the outer body opposite bearing surface with at least one gas inlet bore the gas supply structure provided, wherein the at least one gas inlet bore of the Inner circumferential groove opposite. In this way, the pressurized gas is introduced from the outside into the rotating inner body, without the rotating inner body having to have a compressed gas connection mechanically connected to the rotating inner body, whereby the friction in the rotation of the inner body is substantially reduced.
Alternativ dazu ist der innere Körper in seiner dem äußeren Körper gegenübergelegenen Lagerfläche mit einer Außenumfangsnut versehen, wobei zumindest eine Gaseintrittsbohrung der Gasversorgungsstruktur in die Außenumfangsnut mündet, und wobei der äußere Körper in einem axial mittleren Abschnitt der dem inneren Körper gegenüber gelegenen Lagerfläche mit zumindest einem in diese Lagerfläche mündenden Gaszuführkanal versehen ist, der mit einer Druckgasquelle verbunden ist, wobei der zumindest eine Gaszuführkanal der Außenumfangsnut gegenüberliegt.Alternatively, the inner body is provided in its bearing surface facing the outer body with an outer circumferential groove, wherein at least one gas inlet hole of the gas supply structure opens into the Außenumfangsnut, and wherein the outer body in an axially central portion of the inner body opposite bearing surface with at least one in this bearing surface opening gas supply channel is provided, which is connected to a compressed gas source, wherein the at least one gas supply channel of the outer circumferential groove opposite.
Beide vorgenannten Ausführungsformen weisen den Vorteil auf, daß der innere Rotationskörper nicht auf mechanische Weise mit einer Druckgasquelle verbunden ist, was die Rotationsreibung des inneren Körpers deutlich reduziert. Die Anordnung der Innenumfangsnut beziehungsweise der Außenumfangsnut im wesentlichen im - in Axialrichtung betrachtet - mittleren Abschnitt der jeweiligen Lagerfläche bewirkt, daß der Strömungswiderstand entlang des Lagerspalts in der jeweiligen Axialrichtung so hoch ist, daß das vom äußeren Körper zugeführte Druckgas nicht durch den Lagerspalt entweicht, sondern durch die zumindest eine Gaseintrittsbohrung des inneren Körpers in die im inneren Körper vorgesehene Gasversorgungsstruktur fließt und von dort durch die Mikrolöcher in der Lagerfläche des inneren Körpers in den Lagerspalt austritt. Dazu ist die gasgelagerte Anordnung so zu dimensionieren, daß der Strömungswiderstand zwischen der zumindest einen Gaseintrittsbohrung und den in den Lagerspalt mündenden Mikrolöchern niedriger ist als der Strömungswiderstand zwischen der Innenumfangsnut beziehungsweise der Außenumfangsnut und dem jeweiligen axialen Ende der gemeinsamen Lagerfläche.Both aforementioned embodiments have the advantage that the inner rotary body is not mechanically connected to a compressed gas source, which significantly reduces the rotational friction of the inner body. The arrangement of the inner circumferential groove or the outer circumferential groove substantially in the - viewed in the axial direction - central portion of the respective bearing surface causes the flow resistance along the bearing gap in the respective axial direction is so high that the gas supplied from the outer body does not escape through the bearing gap, but through which at least one gas inlet bore of the inner body flows into the gas supply structure provided in the inner body and exits from there through the microholes in the bearing surface of the inner body into the bearing gap. For this purpose, the gas-bearing arrangement is to be dimensioned so that the flow resistance between the at least one gas inlet bore and the opening into the bearing gap microholes is lower than that Flow resistance between the inner circumferential groove or the outer circumferential groove and the respective axial end of the common bearing surface.
Der das Verfahren betreffende Teil der Aufgabe wird durch die im Patentansprüch 15 angegebenen Verfahrensmerkmale gelöst.The part of the problem relating to the method is achieved by the method features specified in patent claim 15.
Durch das luftdichte Aufbringen der Hülse oder der Lagerschale auf den Tragkörper ist es möglich, die Hülse oder Lagerschale mit den gewünschten Abmessungen aus einem Material vorzufertigen, das eine schnelle und leichte Einbringung der Mikrolöcher mit Hilfe der hochenergetischen Strahlung ermöglicht, während der Tragkörper dabei aus einem Material gefertigt werden kann, welches optimale Eigenschaften für die Tragfähigkeit aufweist.Due to the airtight application of the sleeve or the bearing shell on the support body, it is possible to prefabricate the sleeve or bearing shell with the desired dimensions of a material that allows a quick and easy insertion of the microholes using the high-energy radiation, while the support body of a Material can be manufactured, which has optimal properties for the load capacity.
Besonders vorteilhaft ist es, wenn die Hülse oder die Lagerschale nach dem Aufbringen auf den Tragkörper und vor dem Einbringen der Mikrolöcher mittels spanender und/oder schleifender Bearbeitung des Außenumfangs auf eine gewünschte Abmessung gebracht werden kann. Hierdurch kann die Hülse oder die Lagerschale zunächst in einer statisch stabilen Form auf den Tragkörper aufgebracht, vorzugsweise aufgeschrumpft, oder aufgeklebt, werden. Die zur optimalen Einbringung der Mikrolöcher erforderliche dünne Wandstärke wird somit erst nach dem Aufbringen der Hülse oder Lagerschale auf den Tragkörper durch das spanende und/oder schleifende Bearbeiten des Außenumfangs der Hülse hergestellt.It is particularly advantageous if the sleeve or the bearing shell can be brought to a desired dimension after application to the support body and prior to the introduction of the micro-holes by means of cutting and / or grinding machining of the outer circumference. As a result, the sleeve or the bearing shell can first be applied to the support body in a statically stable form, preferably shrunk on, or adhesively bonded. The thin wall thickness required for optimum introduction of the microholes is therefore produced only after the sleeve or bearing shell has been applied to the support body by the machining and / or grinding of the outer circumference of the sleeve.
Die Hülse kann beispielsweise aber auch als hochpräzises Abformteil des Innenumfangs des als Rotationskörper ausgestalteten äußeren Körpers gebildet sein.However, the sleeve can also be formed, for example, as a high-precision molding part of the inner circumference of the outer body designed as a rotational body.
In einer vorteilhaften Weiterbildung dieses Verfahrens ist die hochenergetische Strahlungsquelle von einer Lasereinrichtung gebildet, so daß die Mikrolöcher mittels eines Laserstrahls in die Hülse oder Lagerschale eingebracht werden.In an advantageous development of this method, the high-energy radiation source is formed by a laser device, so that the micro-holes by means of a laser beam are introduced into the sleeve or bearing shell.
Die Erfindung wird nachfolgend anhand von Beispielen unter Bezugnahme auf die Zeichnung näher erläutert. In dieser zeigt:
- Fig. 1
- einen Längsschnitt durch eine erste erfindungsgemäße gasgelagerte Anordnung;
- Fig. 2
- einen Querschnitt gemäß Linie II-II in
Fig. 1 ; - Fig. 3
- einen Querschnitt analog
Fig. 2 durch eine alternative Ausführungsform dieser ersten Anordnung; - Fig. 4
- einen Querschnitt durch eine Abwandlung der ersten Ausführungsform der erfindungsgemäßen gasgelagerten Anordnung;
- Fig. 5
- einen Querschnitt analog
Fig. 4 durch eine alternative Ausführungsform dieser zweiten Anordnung; - Fig. 6
- einen Längsschnitt durch eine weitere Ausführungsform der vorliegenden Erfindung mit rotierendem inneren Körper und
- Fig. 7
- einen Längsschnitt durch noch eine weitere abgewandelte Ausführungsform mit einem rotierenden inneren Körper.
- Fig. 1
- a longitudinal section through a first gas-bearing arrangement according to the invention;
- Fig. 2
- a cross section according to line II-II in
Fig. 1 ; - Fig. 3
- a cross section analog
Fig. 2 by an alternative embodiment of this first arrangement; - Fig. 4
- a cross section through a modification of the first embodiment of the gas-bearing arrangement according to the invention;
- Fig. 5
- a cross section analog
Fig. 4 by an alternative embodiment of this second arrangement; - Fig. 6
- a longitudinal section through another embodiment of the present invention with rotating inner body and
- Fig. 7
- a longitudinal section through yet another modified embodiment with a rotating inner body.
In
Der Tragkörper 10 ist im Bereich des Aufnahmeabschnitts 12 mit als Umfangsnuten 120, 121, 122, 123 ausgebildeten Ausnehmungen versehen. Jede dieser am Außenumfang des Aufnahmeabschnitts 12 vorgesehenen Umfangsnuten 120, 121, 122, 123 ist über zumindest eine Radialbohrung 124, 125, 126, 127 mit einer Axialbohrung 11 des Tragkörpers 10 verbunden. Auf diese Weise kann von einer nicht gezeigten Druckgasquelle in die Axialbohrung 11 eingeleitetes Druckgas, insbesondere Druckluft, durch die Radialbohrungen 124, 125, 126 und 127 in die jeweils zugeordneten Ringnuten 120, 121, 122, 123 eintreten und dort einen entsprechenden Gasdruck aufbauen.The
Die Hülse 14 ist im Bereich der Ringnuten 120, 121, 122, 123 mit radial verlaufenden Mikrolöchern 140, 141, 142, 143 versehen, die, von der Lagerfläche 14' am radialen Außenumfang der Lagerhülse 14 ausgehend, durch die Wandung der Lagerhülse 14 hindurch in die zugehörige Ringnut 120, 121, 122, 123 hineinführen.The
Wie
Zur Herstellung des Gaslagers wird zunächst der Tragkörper 10 vorbereitet, indem die von der Axialbohrung 11, den Radialbohrungen 124, 125, 126, 127 und den Ringnuten 120, 121, 122, 123 gebildete Gasversorgungsstruktur im Tragkörper 10 eines inneren Lagerkörpers 1 vorgesehen wird. Dann wird auf den kreisförmigen Abschnitt 12 der Tragstruktur 10 die Lagerhülse 14 luftdicht befestigt, z.B. aufgeschrumpft oder aufgeklebt, so daß die Lagerhülse 14 gasdicht mit der Tragstruktur 10 verbunden ist. Anschließend wird die Wandstärke der ringförmigen Lagerhülse 14 durch spanendes und/schleifendes Bearbeiten ihres Außenumfangs auf eine vorgegebene Dicke d reduziert, die ausreichend gering ist, um ein problemloses Einbringen von Mikrolöchern mittels einer hochenergetischen Strahlungsquelle, beispielsweise einer Lasereinrichtung, zu ermöglichen. Im Anschluß an diese Materialbearbeitung der Lagerhülse 14 wird eine Vielzahl von Mikrolöchern 140, 141, 142, 143 in die Lagerhülse 14 mittels der hochenergetischen Strahlungsquelle von der Seite der Lagerfläche 14' aus in die Lagerhülse 14 eingebracht, wobei sich die Strahlungsquelle radial außerhalb des inneren Lagerkörpers 1 befindet. Vorzugsweise wird vor oder nach dem Einbringen der Mikrolöcher noch eine reibungsmindernde Beschichtung auf die Lagerfläche 14' aufgebracht. Anschließend wird noch der äußere Rotationskörper auf den inneren Lagerkörper aufgeschoben und bei Bedarf auf dem Fachmann bekannte Weise in Axialrichtung gegen Verschieben gesichert.To produce the gas bearing, the
In
Eine Abwandlung eines feststehenden Lagerkörpers 201 ist in
Der Tragkörper 210 ist analog zum Tragkörper 10 mit einer in Axialrichtung verlaufenden Druckgas-Versorgungsbohrung 211 und von dieser Druckgasbohrung 211 ausgehenden Radialbohrungen 224 versehen, die jeweils in einen nutenartigen Druckgasraum 220 münden, in welchen auch die Mikrolöcher 240 münden.The
In den Beispielen der
In
Bei der Ausführungsform nach
Sowohl in der Ausführungsform gemäß
Die Materialbahnen, die in den
Claims (18)
- Gas bearing arrangement of bodies that are movable relative to one another, comprising- an inner bearing body (1; 101; 201; 301; 401) having a bearing surface (14'; 114'; 214'; 314'; 414') extending at least in sections in a curved manner and- an outer body (3; 203; 303; 403) that at least partially surrounds at least the curved portion of the bearing surface (14'; 114'; 214'; 314'; 414') of the inner bearing body (1; 101; 201; 301; 401),- wherein the inner bearing body (1; 101; 201) comprises a supporting body (10; 210), which is provided at its outer periphery with a bearing sleeve (14; 114) or bearing shell (214),- wherein the bearing sleeve (14; 114) or bearing shell (214) is provided at least in sections with microholes (140, 141, 142, 143; 140'; 240), which penetrate the wall of the bearing sleeve (14; 114) or bearing shell (214) and open out into recesses (120, 121, 122, 123; 220), which extend in peripheral direction, of a gas-feed supply structure of the supporting body (10; 210) in order to form gas outlet nozzles of a gas bearing, and- wherein the microholes (140, 141, 142, 143; 140'; 240) are introduced into the bearing sleeve (14; 114) from the bearing surface (14'; 114'; 214') side by means of a high-energy radiation source.
- Arrangement according to claim 1,
characterized in
that the bearing sleeve (14; 114; 314; 414) or bearing shell (214) is mounted in a rotationally and axially fixed manner on the supporting body (10; 210; 310; 410). - Arrangement according to claim 1 or 2,
characterized in
that the bearing sleeve (14; 114; 314; 414) or bearing shell (214) is provided on its outer periphery in the region of the bearing surface (14'; 114'; 214'; 314'; 414') with a friction-reducing coating. - Arrangement according to one of the preceding claims,
characterized in
that the gas bearing is an aerostatic bearing. - Arrangement according to one of the preceding claims,
characterized in
that the microholes (140, 141, 142, 143; 140'; 240; 350, 351, 352, 353; 450, 451, 452, 453) are microholes bored by a high-energy radiation source. - Arrangement according to claim 5,
characterized in
that the microholes (140, 141, 142, 143; 140'; 240; 350, 351, 352, 353; 450, 451, 452, 453) are laser-bored microholes. - Arrangement according to one of the preceding claims,
characterized in
that the microholes (140') in a radial plane are not exactly radially oriented but are inclined at an angle (α) relative to the radial direction (R). - Arrangement according to one of the preceding claims,
characterized in
that the inner bearing body (1) is an axle and that the outer body (3) is a rotational body (30), which is mounted rotatably on the axle. - Arrangement according to claim 8,
characterized in
that the outer rotational body (30) is fixed in axial direction relative to the inner bearing body (1). - Arrangement according to one of claims 1 to 7,
characterized in
that the inner bearing body (1) is an axle, wherein the bearing sleeve (114) is provided only over a sub-portion of its periphery with microholes (140), and that the outer body (4) is a material web, which is deflected over the sub-portion of the inner bearing body (1) and moved relative to the inner bearing body (1). - Arrangement according to one of claims 1 to 7,
characterized in- that the inner bearing body (201) is a beam that is provided with the bearing sleeve (214),- that the outer body (204) is formed by a material web, which extends over the bearing surface (214') of the bearing sleeve (214) and which moves relative to the inner bearing body (201). - Arrangement according to one of claims 1 to 7,
characterized in
that the inner bearing body (301; 401) is a rotational body and that the outer body (303; 403) is disposed in a stationary manner. - Arrangement according to claim 12,
characterized in- that the outer body (303) in its bearing surface (313') situated opposite the inner bearing body (301) is provided with an inner peripheral groove (342),- that at least one gas feed channel (340), which is connected to a pressure gas source, opens out into the inner peripheral groove (342), and- that the inner bearing body (301) in an axially central portion of the bearing surface (314') situated opposite the outer body (303) is provided with at least one gas inlet bore (311') of the gas supply structure (311), wherein the gas inlet bore (311') lies opposite the inner peripheral groove (342). - Arrangement according to claim 12,
characterized in- that the inner bearing body (401) in its bearing surface (414') situated opposite the outer body (403) is provided with an outer peripheral groove (442),- that at least one gas inlet bore (411') of the gas supply structure (411) opens out into the outer peripheral groove (442), and- that the outer body (403) in an axially central portion of the bearing surface (413') situated opposite the inner bearing body (401) is provided with at least one gas feed channel (440), which opens out into said bearing surface (413') and is connected to a pressure gas source, wherein the at least one gas feed channel (440) lies opposite the outer peripheral groove (442). - Method of manufacturing a gas bearing for an arrangement of bodies that are movable relative to one another, comprising the steps:a) provision of a supporting body (10; 210; 310; 410) that is provided with a gas-feed supply structure, wherein the gas-feed supply structure comprises recesses (120, 121, 122, 123; 220), which are provided in an outer peripheral portion of the supporting body (10; 210; 310; 410) and extend in peripheral direction;b) mounting of a bearing sleeve (14; 114; 314; 414) or an, at least in sections, curved bearing shell (214) in a gastight manner onto the supporting body (10; 210; 310; 410) to form an inner bearing body (1; 101; 201; 301; 401) in the region of the recesses (120, 121, 122, 123; 220) of the gas-feed supply structure, wherein the inner bearing body (1; 101; 201; 301; 401) forms an inner body that is at least partially surrounded by an outer body;c) introduction of microholes (140, 141, 142, 143; 140'; 240; 350, 351, 352, 353; 450, 451, 452, 453), which penetrate the wall of the bearing sleeve (14; 114) or bearing shell (214), into the bearing sleeve (14; 114; 314; 414) or bearing shell (214) by means of a high-energy radiation source, wherein the radiation source is situated radially outwardly of the inner bearing body (1; 101; 201; 301; 401) and the introduction of the microholes (140, 141, 142, 143; 140'; 240; 350, 351, 352, 353; 450, 451, 452, 453) is effected from the bearing surface (14'; 114'; 214'; 314'; 414') side.
- Method according to claim 15,
characterized in
that the outer periphery of the bearing sleeve (14) is formed by high-precision moulding of the inner periphery of an outer body (3), which takes the form of a rotational body and surrounds the bearing sleeve (14). - Method according to claim 15,
characterized in
that the high-energy radiation source is a laser device. - Method according to claim 15,
characterized in
that prior to the step c) a cutting and/or grinding operation is carried out on the outer periphery of the bearing sleeve (14; 114; 314; 414) or the bearing shell (214) in order to achieve a defined outside diameter and/or radius of curvature of the bearing shell (214).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004048944A DE102004048944A1 (en) | 2004-10-07 | 2004-10-07 | Gas bearing arrangement of relatively movable bodies |
PCT/EP2005/010782 WO2006040073A1 (en) | 2004-10-07 | 2005-10-06 | Gas bearing-mounted arrangement of bodies that can be displaced relative to one another |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1797344A1 EP1797344A1 (en) | 2007-06-20 |
EP1797344B1 true EP1797344B1 (en) | 2010-04-07 |
Family
ID=35759287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05795041A Active EP1797344B1 (en) | 2004-10-07 | 2005-10-06 | Gas bearing-mounted arrangement of bodies that can be displaced relative to one another |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1797344B1 (en) |
AT (1) | ATE463678T1 (en) |
DE (2) | DE102004048944A1 (en) |
WO (1) | WO2006040073A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102003442B1 (en) | 2012-05-11 | 2019-07-24 | 에어로라스 게엠베하, 에어로슈타티쉐 라거- 레이저테크닉 | Piston/cylinder unit |
DE102013102924B3 (en) | 2013-03-21 | 2014-04-24 | AeroLas GmbH Aerostatische Lager- Lasertechnik | Gas pressure bearing element and method for producing a gas pressure bearing element and gas pressure bearing with such a gas pressure bearing element |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1187384B (en) * | 1956-05-16 | 1965-02-18 | Philips Nv | Device for measuring angles by pulse counting |
US3466952A (en) * | 1967-12-06 | 1969-09-16 | Babcock & Wilcox Co | Hydrostatic bearing supported boring bar |
US3645589A (en) * | 1970-12-03 | 1972-02-29 | Gen Motors Corp | Air bearing with low tensile strength permeable sleeve |
SE448252B (en) * | 1986-03-18 | 1987-02-02 | Skf Ab | GAS STORAGE WITH A STORAGE AREA ORGANIZED ON A GAS TRANSFERABLE ELEMENT AS WELL AS TO MAKE A SUCH STOCK |
JPS62228713A (en) * | 1986-03-29 | 1987-10-07 | Kyocera Corp | Air bearing |
EP0563290A1 (en) * | 1990-12-19 | 1993-10-06 | Eastman Kodak Company | Non-contact web turnbars and reversers with angled holes |
DE4416421C2 (en) * | 1994-05-10 | 1996-07-04 | Heinz Dr Ing Gros | Heatable and coolable roll with almost frictionless storage |
DE9421536U1 (en) * | 1994-10-10 | 1996-02-22 | Heinzl Joachim | Aerostatic warehouse |
-
2004
- 2004-10-07 DE DE102004048944A patent/DE102004048944A1/en not_active Withdrawn
-
2005
- 2005-10-06 WO PCT/EP2005/010782 patent/WO2006040073A1/en active Application Filing
- 2005-10-06 EP EP05795041A patent/EP1797344B1/en active Active
- 2005-10-06 DE DE502005009376T patent/DE502005009376D1/en active Active
- 2005-10-06 AT AT05795041T patent/ATE463678T1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP1797344A1 (en) | 2007-06-20 |
ATE463678T1 (en) | 2010-04-15 |
DE502005009376D1 (en) | 2010-05-20 |
WO2006040073B1 (en) | 2006-06-22 |
WO2006040073A1 (en) | 2006-04-20 |
DE102004048944A1 (en) | 2006-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0708262B1 (en) | Aerostatic bearing and fabrication process of an aerostatic bearing | |
EP1731722B1 (en) | Camshaft adjusting device with a rotor of a swivel motor type with reduced leckage | |
DE3828363C2 (en) | ||
EP1261820B1 (en) | Labyrinth seal between rotating parts | |
EP1738081B1 (en) | Radial oscillating motor, and method for the production thereof | |
DE102006024841B4 (en) | Electromagnetic actuator | |
EP2403682B1 (en) | Spindle comprising a lance | |
EP2210005A1 (en) | Axial bearing, particularly for a turbocharger | |
EP0206029B1 (en) | Aerostatic bearing | |
EP1998009A1 (en) | Storage device | |
EP3324062A1 (en) | Rotation system with radial gas bearing | |
DE3316332C2 (en) | ||
DE102004058905A1 (en) | Rolling bearing with segmented bearing rings for rotating shaft has inner and outer rings with at least three segments each | |
EP1797344B1 (en) | Gas bearing-mounted arrangement of bodies that can be displaced relative to one another | |
EP0768270A2 (en) | Bobbin holder for the one bobbin or more bobbins arranged one behind the other | |
DE10149833B4 (en) | Rolling elements for rolling bearings and method for producing rolling elements | |
WO2004018843A2 (en) | Plain bearing for turbocharger shaft | |
DE102013224413A1 (en) | Thrust bearing with lubricant supply for a high-speed shaft | |
DE102014209062A1 (en) | radial bearings | |
WO2005075720A1 (en) | Fiber guide channel for an open-end spinning device and method for producing a fiber guide channel | |
EP0761968A1 (en) | Valve for a gerotor motor with hydrostatic bearing | |
EP1591700B1 (en) | Mechanical seal and method of assembling a mechanical seal | |
DE102010013928A1 (en) | Rotor assembly for cam shaft adjuster of cam shaft adjustable system, has short axial channel connected with oil distribution chamber between inner circumference of hub part and central screw, where channel is connected with one of channels | |
DE102005062649B4 (en) | roller bearing | |
DE102014116992A1 (en) | Slide bearing arrangement for high-speed shafts in the automotive sector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070425 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20080829 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502005009376 Country of ref document: DE Date of ref document: 20100520 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100407 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100718 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100708 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100809 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 |
|
26N | No opposition filed |
Effective date: 20110110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 |
|
BERE | Be: lapsed |
Owner name: AEROLAS G.M.B.H. AEROSTATISCHE LAGER-LASERTECHNIK Effective date: 20101031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 463678 Country of ref document: AT Kind code of ref document: T Effective date: 20101006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101006 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101008 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20211022 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20211021 Year of fee payment: 17 Ref country code: CH Payment date: 20211020 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221006 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221006 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231020 Year of fee payment: 19 |