EP1797344B1 - Gas bearing-mounted arrangement of bodies that can be displaced relative to one another - Google Patents

Gas bearing-mounted arrangement of bodies that can be displaced relative to one another Download PDF

Info

Publication number
EP1797344B1
EP1797344B1 EP05795041A EP05795041A EP1797344B1 EP 1797344 B1 EP1797344 B1 EP 1797344B1 EP 05795041 A EP05795041 A EP 05795041A EP 05795041 A EP05795041 A EP 05795041A EP 1797344 B1 EP1797344 B1 EP 1797344B1
Authority
EP
European Patent Office
Prior art keywords
bearing
gas
microholes
sleeve
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05795041A
Other languages
German (de)
French (fr)
Other versions
EP1797344A1 (en
Inventor
Michael Muth
Georg Slotta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerolas GmbH
Original Assignee
Aerolas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerolas GmbH filed Critical Aerolas GmbH
Publication of EP1797344A1 publication Critical patent/EP1797344A1/en
Application granted granted Critical
Publication of EP1797344B1 publication Critical patent/EP1797344B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/32Arrangements for turning or reversing webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/24Registering, tensioning, smoothing or guiding webs longitudinally by fluid action, e.g. to retard the running web
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2406/00Means using fluid
    • B65H2406/10Means using fluid made only for exhausting gaseous medium
    • B65H2406/11Means using fluid made only for exhausting gaseous medium producing fluidised bed
    • B65H2406/111Means using fluid made only for exhausting gaseous medium producing fluidised bed for handling material along a curved path, e.g. fluidised turning bar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2406/00Means using fluid
    • B65H2406/10Means using fluid made only for exhausting gaseous medium
    • B65H2406/11Means using fluid made only for exhausting gaseous medium producing fluidised bed
    • B65H2406/113Details of the part distributing the air cushion
    • B65H2406/1131Porous material

Definitions

  • the invention relates to a gas-bearing arrangement of relatively movable bodies and a method for producing a gas bearing for such an arrangement.
  • An aerostatic bearing is known as a combined axial and radial bearing in which the Air supply structure is provided for the aerostatic bearing in the outer stationary bearing body, wherein the inner bearing body is formed as a rotational body.
  • the introduction of the microholes does not take place from the bearing side, but from the side facing away from the bearing side of the outer body, in which the gas supply structure is provided.
  • the EP 0 686 781 A2 discloses a heatable and coolable roll with virtually frictionless support. Such a role consists of a cylindrical core which is provided at its periphery with axially parallel longitudinal grooves. The core is surrounded by a cylindrical sleeve which has substantially radially extending so-called supply holes, which open into the axially parallel grooves, and having the so-called discharge holes, which open into the paraxial grooves.
  • supply holes which open into the axially parallel grooves
  • discharge holes which open into the paraxial grooves.
  • Around the core provided with the sleeve around a roller shell is arranged, wherein between the sleeve and the roller shell, a bearing gap is formed.
  • each an end-side side cap is arranged, which are each firmly connected to the core and the cylindrical sleeve, but extending in the radial direction to the outer peripheral surface of the roll shell and laterally abut this seems.
  • the two side caps are provided with outgoing from an axial bore radial channels, which are in the assembled state of the roller in fluid communication with the paraxial grooves.
  • the core is also provided in its interior with radial bores, which connect a central axial bore of the core with the paraxial longitudinal grooves.
  • the US 4,744,676 A discloses an annular gas bearing having a cylindrical inner bearing body formed of a cylinder of porous material compressed on its surface. In the compacted surface blind holes are introduced, which penetrate through the compacted surface into the porous material and from which introduced into the cylinder and passing through the porous material pressure fluid can escape into the bearing gap surrounding the cylinder. A defined gas supply structure is not provided in this cylindrical body.
  • Object of the present invention is to provide a gas-bearing arrangement of relatively movable bodies, which has an outer moving body, which can also reach high speeds of movement and has a low-inertia startup behavior. Furthermore, it is an object to provide a method for producing a gas bearing for such an arrangement.
  • the first object is achieved by the gas-bearing arrangement with the features of patent claim 1.
  • microholes are introduced from the side of the bearing surface into the inner body, then the production costs are significantly reduced.
  • the particularly advantageous preferably two-part design of the inner bearing body consisting of the support body and the sleeve or bearing shell makes it possible to achieve both a high load capacity of the inner bearing body, as well as to allow the introduction of high-precision micro holes in the storage area.
  • the support body can be configured in the required dimensional stability, without having to take into account the required for the introduction of micro holes in the bearing surface small wall thickness in this area consideration. This small wall thickness is provided in the gas-tightly applied to the support sleeve or bearing shell. In these can then be easily introduced the microholes.
  • microholes are laser drilled microholes.
  • the sleeve or bearing shell is provided on its outer circumference with a friction-reducing coating.
  • a friction-reducing coating provides runflat performance if, in the event of overload, bearing surface contact should occur between the relatively moving bodies.
  • the microholes of a radial plane are not exactly aligned radially, but are inclined at an angle to the radial direction. In this way, the gas cushion can be set in motion in the bearing in a desired circumferential direction and a predetermined direction of contact for the outer body can be determined.
  • the inner body is a body of revolution and the outer body is stationary.
  • the outer body is provided in its bearing surface opposite the inner body with an inner peripheral groove into which at least one connected to a compressed gas source Gaszu 1500kanal, and the inner body is in an axially central portion of the outer body opposite bearing surface with at least one gas inlet bore the gas supply structure provided, wherein the at least one gas inlet bore of the Inner circumferential groove opposite.
  • the pressurized gas is introduced from the outside into the rotating inner body, without the rotating inner body having to have a compressed gas connection mechanically connected to the rotating inner body, whereby the friction in the rotation of the inner body is substantially reduced.
  • the inner body is provided in its bearing surface facing the outer body with an outer circumferential groove, wherein at least one gas inlet hole of the gas supply structure opens into the redesignsometimessnut, and wherein the outer body in an axially central portion of the inner body opposite bearing surface with at least one in this bearing surface opening gas supply channel is provided, which is connected to a compressed gas source, wherein the at least one gas supply channel of the outer circumferential groove opposite.
  • Both aforementioned embodiments have the advantage that the inner rotary body is not mechanically connected to a compressed gas source, which significantly reduces the rotational friction of the inner body.
  • the arrangement of the inner circumferential groove or the outer circumferential groove substantially in the - viewed in the axial direction - central portion of the respective bearing surface causes the flow resistance along the bearing gap in the respective axial direction is so high that the gas supplied from the outer body does not escape through the bearing gap, but through which at least one gas inlet bore of the inner body flows into the gas supply structure provided in the inner body and exits from there through the microholes in the bearing surface of the inner body into the bearing gap.
  • the gas-bearing arrangement is to be dimensioned so that the flow resistance between the at least one gas inlet bore and the opening into the bearing gap microholes is lower than that Flow resistance between the inner circumferential groove or the outer circumferential groove and the respective axial end of the common bearing surface.
  • the sleeve or the bearing shell Due to the airtight application of the sleeve or the bearing shell on the support body, it is possible to prefabricate the sleeve or bearing shell with the desired dimensions of a material that allows a quick and easy insertion of the microholes using the high-energy radiation, while the support body of a Material can be manufactured, which has optimal properties for the load capacity.
  • the sleeve or the bearing shell can be brought to a desired dimension after application to the support body and prior to the introduction of the micro-holes by means of cutting and / or grinding machining of the outer circumference.
  • the sleeve or the bearing shell can first be applied to the support body in a statically stable form, preferably shrunk on, or adhesively bonded.
  • the thin wall thickness required for optimum introduction of the microholes is therefore produced only after the sleeve or bearing shell has been applied to the support body by the machining and / or grinding of the outer circumference of the sleeve.
  • the sleeve can also be formed, for example, as a high-precision molding part of the inner circumference of the outer body designed as a rotational body.
  • the high-energy radiation source is formed by a laser device, so that the micro-holes by means of a laser beam are introduced into the sleeve or bearing shell.
  • Fig. 1 is embodied as an axle formed and hereinafter also referred to as bearing body inner body 1, which in a conventional manner in a schematic and shown with dashed lines shown housing 2 is supported.
  • the inner body 1 has a supporting body 10 clamped in the housing.
  • At its protruding from the housing 2 side of the support body 10 is provided with a circular cross-section receiving portion 12 for a bearing sleeve 14.
  • the bearing sleeve 14 is shrunk onto the receiving portion 12 and connected in this way gas-tight with the support body 10.
  • the sleeve 14 is provided in the region of the annular grooves 120, 121, 122, 123 with radially extending microholes 140, 141, 142, 143, which, starting from the bearing surface 14 'on the radial outer circumference of the bearing sleeve 14, through the wall of the bearing sleeve 14 therethrough into the associated annular groove 120, 121, 122, 123 lead.
  • a plurality of radial bores 140, 141, 142, 143 are provided over the circumference of the bearing sleeve in the region of each annular groove.
  • 3 formed gap 30 and forms there an air cushion, which supports the outer rotary body 3.
  • the excess pressurized gas exits at the axial ends of the bearing gap 30. In this way, the aerostatic bearing is formed.
  • Fig. 3 shows an enlarged section of a section similar to in FIG Fig. 2
  • the micro holes 140 ' are inclined at an angle ⁇ to the radial direction R.
  • the gas cushion formed in the bearing gap 30 rotates in the direction of the arrow U and thus ensures a predetermined start-up behavior of the outer rotary body 3 in the direction of the arrow U.
  • the wall thickness of the annular bearing sleeve 14 is reduced by machining and / or grinding its outer periphery to a predetermined thickness d, which is sufficiently low to allow easy insertion of microholes by means of a high-energy radiation source, such as a laser device.
  • a high-energy radiation source such as a laser device.
  • a plurality of microholes 140, 141, 142, 143 are introduced into the bearing sleeve 14 by means of the high-energy radiation source from the side of the bearing surface 14 ', wherein the radiation source is radially outside the inner Bearing body 1 is located.
  • a friction-reducing coating is applied to the bearing surface 14 'before or after the introduction of the microholes.
  • the outer rotational body is still pushed onto the inner bearing body and, if necessary, secured in a known manner in the axial direction against displacement.
  • Fig. 4 is a modified embodiment of the first arrangement similar Fig. 2 shown.
  • the bearing sleeve 114 is not provided on its entire circumference with the trained as micro holes radial bores 140, but only in a peripheral portion of about 170 °.
  • This gas-bearing arrangement with the bearing sleeve 114 is designed as a deflection bearing for a guided on the gas cushion over the bearing surface 114 'to the inner bearing body 101 around material web 4, wherein the material web 4 in the arrow direction around the fixed bearing body 101 runs around.
  • FIG Fig. 5 A modification of a fixed bearing body 201 is shown in FIG Fig. 5 shown.
  • the bearing body 201 is formed from a supporting body 210 designed as a support beam.
  • the support body 210 is provided in a portion with an arcuate or curved in cross section formed bearing shell 214 which is connected to the bearing body 210 airtight, for example glued, is.
  • the bearing shell 214 has a likewise curved bearing surface 214 ', over which a material web 204 rotates.
  • the material web 204 moves in the direction of the arrow relative to the stationary bearing body 210, wherein the compressed gas flowing out of the microholes 240 provided in the bearing shell 214 carries the material web 204.
  • the support body 210 is analogous to the support body 10 with a pressure gas supply bore 211 extending in the axial direction and outgoing from this pressure gas bore 211 Provided radial bores 224, which each open into a groove-like compressed gas chamber 220, in which open the micro holes 240.
  • the respective inner body 301, 401 formed as a rotational body, while the respective outer body 303, 403 with respect to the rotational movement stationary, ie stationary, is arranged.
  • the supply of the compressed gas for acting in the respective inner body 301, 401 gas supply structure for acting on the respective Druckgaspolster between the opposing bearing surfaces 313 'and 314' or 413 'and 414' takes place from the outside by a gas supply channel 340 and 440, respectively in the outer body 303 or 403 is provided.
  • Fig. 6 an embodiment is shown in which the outer body 303 is provided in its inner body 301 opposite bearing surface 313 'with an inner circumferential groove 342.
  • the gas supply passage 340 opens.
  • the inner circumferential groove 342 there is provided at least one gas entrance hole 311 'in the bearing surface 314' of the inner body 301, which is connected to the gas supply structure 311 formed in the support body 310 of the inner body 301.
  • the circumferential groove is not in the inner periphery of the bearing surface 413 'of the outer body 403, but as the outer circumferential groove 442 in the bearing surface 414 'of the inner body 401.
  • the gas supply passage 440 opens into the bearing surface 413' of the outer body 403 in a portion facing the outer circumferential groove 442.
  • the gas inlet bore 411 ' opens into the outer circumferential groove 442 of the inner body 401 and is also connected to the gas supply structure 411 provided in the supporting body 410 of the inner body 401.
  • the compressed gas flows from the compressed gas source through the Gaszu 1500 in theticiansnut 442 and from there through the gas inlet bore 411 'in the gas supply structure 411 and from there through the provided in the bearing sleeve 414 micro holes 450, 451, 452, 453 in the bearing gap 430, where it forms the compressed gas cushion for storage.
  • the ratio between the thickness d of the respective bearing gap to the respective distance between the mecanicsnut 342 and the technicallymaysnut 442 and the respective axial outer end of the respective common bearing surfaces is dimensioned so that the flow resistance of the respective groove 342, 442 directly through the respective bearing gap 330, 430 to the outside is greater than the flow resistance through the respective gas supply structure 311, 411 and the microholes connected thereto and outwardly in the axis-parallel direction, so as to ensure that the introduced into the mecanicsnut 342 andproofallell 442 pressurized gas is not directly through the respective bearing gap 330, 430 escapes, but by the respective Gas supply structure 311, 411 and the associated microholes is introduced into the bearing gap.

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Fluid-Damping Devices (AREA)
  • Air Bags (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

The invention relates to a gas bearing-mounted arrangement of bodies, which can be displaced relative to one another, with an inner body (1; 101; 201; 301; 401) having a bearing surface (14'; 114'; 214'; 314'; 414') that, at least in sections, extends in a curved manner, and with an outer body (3; 203; 303; 403), which at least partially surrounds at least the curved section of the bearing surface (14'; 114'; 214'; 314'; 414') of the inner body (1; 101; 201; 301; 401). The inner body (1; 101; 201; 301; 401) is, in its bearing surface (14'; 114'; 214'; 314'; 414'), provided, at least in areas, with microholes (140, 141, 142, 143; 140'; 240; 350, 351, 352, 353; 450, 451, 452, 453), which define a gas bearing between the inner body (1; 101; 201; 301; 401) and the outer body (3; 203; 303; 403), these microholes (140, 141, 142, 143; 140'; 240; 350, 351, 352, 353; 450, 451, 452, 453) leading into a gas supply structure of the inner body (1; 101; 201; 301; 401). The invention is characterized in that the microholes (140, 141, 142, 143; 140'; 240; 350, 351, 352, 353; 450, 451, 452, 453) are made in the inner body (1; 101; 201; 301; 401) starting from the side of the bearing surface (14'; 114'; 214'; 314'; 414').

Description

Die Erfindung betrifft eine gasgelagerte Anordnung von relativ zueinander bewegbaren Körpern sowie ein Verfahren zur Herstellung eines Gaslagers für eine derartige Anordnung.The invention relates to a gas-bearing arrangement of relatively movable bodies and a method for producing a gas bearing for such an arrangement.

Es ist bekannt, eine luftgelagerte Anordnung von relativ zueinander bewegbaren Körpern vorzusehen, bei welcher die Luftversorgung des dadurch gebildeten Luftlagers durch den aus Sintermaterial bestehenden inneren Körper erfolgt. Derartige Sintermaterialkörper sind jedoch in ihrer Tragfähigkeit und Steifigkeit beschränkt. Zudem ist das durch die aus dem Sintermaterial ausströmende Luft gebildete Luftpolster im Luftlager sehr inhomogen, wodurch die Lagerung sehr unbestimmt ist.It is known to provide an air-bearing arrangement of relatively movable bodies, in which the air supply of the air bearing formed thereby takes place through the inner body made of sintered material. However, such sintered body are limited in their carrying capacity and rigidity. In addition, the air cushion formed by the air flowing out of the sintered material in the air bearing is very inhomogeneous, whereby the storage is very indefinite.

Aus der DE 44 36 156 C1 ist ein aerostatisches Lager als kombiniertes Axial- und Radiallager bekannt, bei welchem die Luftversorgungsstruktur für das aerostatische Lager im äußeren stationären Lagerkörper vorgesehen ist, wobei der inneren Lagerkörper als Rotationskörper ausgebildet ist. Bei diesem bekannten aerostatischen Lager erfolgt die Einbringung der Mikrolöcher nicht von der Lagerseite aus, sondern von der von der Lagerseite abgewandten Seite des äußeren Körpers, in welchem die Gasversorgungsstruktur vorgesehen ist.From the DE 44 36 156 C1 An aerostatic bearing is known as a combined axial and radial bearing in which the Air supply structure is provided for the aerostatic bearing in the outer stationary bearing body, wherein the inner bearing body is formed as a rotational body. In this known aerostatic bearing the introduction of the microholes does not take place from the bearing side, but from the side facing away from the bearing side of the outer body, in which the gas supply structure is provided.

Die EP 0 686 781 A2 offenbart eine heiz- und kühlbare Rolle mit nahezu reibungsfreier Lagerung. Eine derartige Rolle besteht aus einem zylindrischen Kern, der an seinem Umfang mit achsparallel verlaufenden Längsnuten versehen ist. Der Kern ist von einer zylindrischen Hülse umgeben, die im wesentlichen radial verlaufende sogenannte Zuführbohrungen aufweist, die in die achsparallelen Nuten münden, und die sogenannte Abströmbohrungen aufweist, die in die achsparallelen Nuten münden. Um den mit der Hülse versehenen-Kern herum ist ein Rollenmantel angeordnet, wobei zwischen der Hülse und dem Rollenmantel ein Lagerspalt ausgebildet ist. An den axialen Enden dieser Anordnung aus Kern, Hülse und Rollenmantel ist jeweils eine stirnseitige Seitenkappe angeordnet, die jeweils offenbar mit dem Kern und der zylindrischen Hülse fest verbunden sind, die sich aber in Radialrichtung bis zur äußeren Umfangsfläche des Rollenmantels erstreckt und seitlich an diesem anzuliegen scheint. Die beiden Seitenkappen sind mit von einer axialen Bohrung ausgehenden radialen Kanälen versehen, die im montierten Zustand der Rolle in Fluidverbindung mit den achsparallelen Nuten stehen. Auch der Kern ist in seinem Inneren mit Radialbohrungen versehen, die eine zentrale Axialbohrung des Kerns mit den achsparallelen Längsnuten verbinden. Das durch die jeweilige zentrale Bohrung des Kerns und der einen Seitenkappe eingeleitete Druckfluid dringt durch die entsprechenden Radialbohrungen in die achsparallelen Nuten ein, fließt von dort durch erste Radialbohrungen in den Lagerspalt, tritt vom Lagerspalt durch zweite Radialbohrungen der Hülse wieder aus dem Lagerspalt aus und in die zweiten Längsnuten ein und verläßt diese durch entsprechende Auslassöffnungen. Die Hülse ist zwar auf dem Kern gelegen, doch wird diese Hülse nicht gasdicht auf den Kern aufgebracht. Die an ihren axialen Enden offenen achsparallelen Nuten verhindern die Schaffung einer gasdicht geschlossenen Gasversorgungsstruktur zwischen dem Kern und der Hülse. Es wechseln sich in Umfangsrichtung Zuführöffnungen und Abströmöffnungen ab. Es entstehen somit im Bereich der Zuströmöffnungen Druckspitzen im Lagerspalt, wohingegen in Umfangsrichtung unmittelbar benachbart im Bereich der Abströmöffnungen Drucksenken entstehen.The EP 0 686 781 A2 discloses a heatable and coolable roll with virtually frictionless support. Such a role consists of a cylindrical core which is provided at its periphery with axially parallel longitudinal grooves. The core is surrounded by a cylindrical sleeve which has substantially radially extending so-called supply holes, which open into the axially parallel grooves, and having the so-called discharge holes, which open into the paraxial grooves. Around the core provided with the sleeve around a roller shell is arranged, wherein between the sleeve and the roller shell, a bearing gap is formed. At the axial ends of this arrangement of core, sleeve and roller shell each an end-side side cap is arranged, which are each firmly connected to the core and the cylindrical sleeve, but extending in the radial direction to the outer peripheral surface of the roll shell and laterally abut this seems. The two side caps are provided with outgoing from an axial bore radial channels, which are in the assembled state of the roller in fluid communication with the paraxial grooves. The core is also provided in its interior with radial bores, which connect a central axial bore of the core with the paraxial longitudinal grooves. The introduced through the respective central bore of the core and the one side cap pressure fluid penetrates through the corresponding radial bores in the paraxial grooves, flows from there through first radial holes in the bearing gap, passes from the bearing gap second radial bores of the sleeve again from the bearing gap and into the second longitudinal grooves and leaves them through corresponding outlet openings. Although the sleeve is located on the core, but this sleeve is not applied gas-tight on the core. The axially parallel grooves open at their axial ends prevent the creation of a gas-tight closed gas supply structure between the core and the sleeve. In the circumferential direction, feed openings and outflow openings alternate. Thus, pressure peaks occur in the bearing gap in the region of the inflow openings, whereas pressure drops occur in the circumferential direction immediately adjacent in the area of the outflow openings.

Die US 4,744,676 A offenbart ein ringförmiges Gaslager mit einem zylindrischen inneren Lagerkörper, der aus einem an seiner Oberfläche verdichteten Zylinder aus porösem Material gebildet ist. In die verdichtete Oberfläche sind Sacklochbohrungen eingebracht, die durch die verdichtete Oberfläche hindurch in das poröse Material eindringen und aus denen in den Zylinder eingeführtes und durch das poröse Material hindurchtretendes Druckfluid in den den Zylinder umgebenden Lagerspalt austreten kann. Eine definierte Gaszufuhr-Versorgungsstruktur ist in diesem zylindrischen Körper nicht vorgesehen.The US 4,744,676 A discloses an annular gas bearing having a cylindrical inner bearing body formed of a cylinder of porous material compressed on its surface. In the compacted surface blind holes are introduced, which penetrate through the compacted surface into the porous material and from which introduced into the cylinder and passing through the porous material pressure fluid can escape into the bearing gap surrounding the cylinder. A defined gas supply structure is not provided in this cylindrical body.

Aufgabe der vorliegenden Erfindung ist es, eine gasgelagerte Anordnung von relativ zueinander bewegbaren Körpern anzugeben, die einen außen liegenden bewegten Körper aufweist, der auch hohe Bewegungsgeschwindigkeiten erreichen kann und ein trägheitsarmes Anlaufverhalten besitzt. Weiterhin ist es Aufgabe, ein Verfahren zur Herstellung eines Gaslagers für eine derartige Anordnung anzugeben.Object of the present invention is to provide a gas-bearing arrangement of relatively movable bodies, which has an outer moving body, which can also reach high speeds of movement and has a low-inertia startup behavior. Furthermore, it is an object to provide a method for producing a gas bearing for such an arrangement.

Die erste Aufgabe wird durch die gasgelagerte Anordnung mit den Merkmalen des Patentanspruchs 1 gelöst.The first object is achieved by the gas-bearing arrangement with the features of patent claim 1.

Sind die Mikrolöcher von der Seite der Lagerfläche aus in den inneren Körper eingebracht, so sind die Herstellungskosten deutlich herabgesetzt.If the microholes are introduced from the side of the bearing surface into the inner body, then the production costs are significantly reduced.

Die besonders vorteilhafte vorzugsweise zweiteilige Ausgestaltung des inneren Lagerkörpers bestehend aus dem Tragkörper und der Hülse oder Lagerschale ermöglicht es, sowohl eine hohe Tragfähigkeit des inneren Lagerkörpers zu erreichen, als auch die Einbringung von hochfeinen Mikrolöchern in die Lagerfläche zu ermöglichen. Der Tragkörper kann dabei in der erforderlichen Formsteifigkeit ausgestaltet werden, ohne daß auf die für das Einbringen von Mikrolöchern in die Lagerfläche erforderliche geringe Wandstärke in diesem Bereich Rücksicht genommen werden muß. Diese geringe Wandstärke ist in der auf den Tragkörper gasdicht aufgebrachten Hülse oder Lagerschale vorgesehen. In diese können dann die Mikrolöcher problemlos eingebracht werden.The particularly advantageous preferably two-part design of the inner bearing body consisting of the support body and the sleeve or bearing shell makes it possible to achieve both a high load capacity of the inner bearing body, as well as to allow the introduction of high-precision micro holes in the storage area. The support body can be configured in the required dimensional stability, without having to take into account the required for the introduction of micro holes in the bearing surface small wall thickness in this area consideration. This small wall thickness is provided in the gas-tightly applied to the support sleeve or bearing shell. In these can then be easily introduced the microholes.

Vorteilhafte Weiterbildungen der erfindungsgemäßen Anordnung sind in den weiteren Unteransprüchen angegeben.Advantageous developments of the arrangement according to the invention are specified in the further subclaims.

Dabei ist es insbesondere vorteilhaft, wenn die Mikrolöcher lasergebohrte Mikrolöcher sind.It is particularly advantageous if the microholes are laser drilled microholes.

Weiterhin ist es vorteilhaft, wenn die Hülse oder Lagerschale auf ihrem Außenumfang mit einer reibungsreduzierenden Beschichtung versehen ist. Eine derartige Beschichtung sorgt für Notlaufeigenschaften, falls im Fall einer Überlast eine Lagerflächenberührung zwischen den sich relativ zueinander bewegenden Körpern stattfinden sollte.Furthermore, it is advantageous if the sleeve or bearing shell is provided on its outer circumference with a friction-reducing coating. Such a coating provides runflat performance if, in the event of overload, bearing surface contact should occur between the relatively moving bodies.

Es ist außerdem besonders vorteilhaft, wenn die Mikrolöcher einer Radialebene nicht exakt radial ausgerichtet sind, sondern in einem Winkel zur Radialrichtung geneigt sind. Auf diese Weise kann das Gaspolster im Lager in eine gewünschte Umfangsrichtung in Bewegung versetzt werden und eine vorgegebene Anlaufrichtung für den äußeren Körper kann so bestimmt werden.It is also particularly advantageous if the microholes of a radial plane are not exactly aligned radially, but are inclined at an angle to the radial direction. In this way, the gas cushion can be set in motion in the bearing in a desired circumferential direction and a predetermined direction of contact for the outer body can be determined.

In einer anderen vorteilhaften Ausführungsform ist der innere Körper ein Rotationskörper und der äußere Körper ist stationär angeordnet.In another advantageous embodiment, the inner body is a body of revolution and the outer body is stationary.

Dabei ist der äußere Körper in seiner dem inneren Körper gegenüber gelegenen Lagerfläche mit einer Innenumfangsnut versehen, in die zumindest ein mit einer Druckgasquelle verbundener Gaszuführkanal mündet, und der innere Körper ist in einem axial mittleren Abschnitt der dem äußeren Körper gegenüber gelegenen Lagerfläche mit zumindest einer Gaseintrittsbohrung der Gasversorgungsstruktur versehen, wobei die zumindest eine Gaseintrittsbohrung der Innenumfangsnut gegenüberliegt. Auf diese Weise wird das Druckgas von außen in den rotierenden inneren Körper eingeleitet, ohne daß der rotierende inneren Körper einen mechanisch an den rotierenden inneren Körper angeschlossenen Druckgasanschluß aufweisen muß, wodurch die Reibung bei der Rotation des inneren Körpers wesentlich herabgesetzt wird.In this case, the outer body is provided in its bearing surface opposite the inner body with an inner peripheral groove into which at least one connected to a compressed gas source Gaszuführkanal, and the inner body is in an axially central portion of the outer body opposite bearing surface with at least one gas inlet bore the gas supply structure provided, wherein the at least one gas inlet bore of the Inner circumferential groove opposite. In this way, the pressurized gas is introduced from the outside into the rotating inner body, without the rotating inner body having to have a compressed gas connection mechanically connected to the rotating inner body, whereby the friction in the rotation of the inner body is substantially reduced.

Alternativ dazu ist der innere Körper in seiner dem äußeren Körper gegenübergelegenen Lagerfläche mit einer Außenumfangsnut versehen, wobei zumindest eine Gaseintrittsbohrung der Gasversorgungsstruktur in die Außenumfangsnut mündet, und wobei der äußere Körper in einem axial mittleren Abschnitt der dem inneren Körper gegenüber gelegenen Lagerfläche mit zumindest einem in diese Lagerfläche mündenden Gaszuführkanal versehen ist, der mit einer Druckgasquelle verbunden ist, wobei der zumindest eine Gaszuführkanal der Außenumfangsnut gegenüberliegt.Alternatively, the inner body is provided in its bearing surface facing the outer body with an outer circumferential groove, wherein at least one gas inlet hole of the gas supply structure opens into the Außenumfangsnut, and wherein the outer body in an axially central portion of the inner body opposite bearing surface with at least one in this bearing surface opening gas supply channel is provided, which is connected to a compressed gas source, wherein the at least one gas supply channel of the outer circumferential groove opposite.

Beide vorgenannten Ausführungsformen weisen den Vorteil auf, daß der innere Rotationskörper nicht auf mechanische Weise mit einer Druckgasquelle verbunden ist, was die Rotationsreibung des inneren Körpers deutlich reduziert. Die Anordnung der Innenumfangsnut beziehungsweise der Außenumfangsnut im wesentlichen im - in Axialrichtung betrachtet - mittleren Abschnitt der jeweiligen Lagerfläche bewirkt, daß der Strömungswiderstand entlang des Lagerspalts in der jeweiligen Axialrichtung so hoch ist, daß das vom äußeren Körper zugeführte Druckgas nicht durch den Lagerspalt entweicht, sondern durch die zumindest eine Gaseintrittsbohrung des inneren Körpers in die im inneren Körper vorgesehene Gasversorgungsstruktur fließt und von dort durch die Mikrolöcher in der Lagerfläche des inneren Körpers in den Lagerspalt austritt. Dazu ist die gasgelagerte Anordnung so zu dimensionieren, daß der Strömungswiderstand zwischen der zumindest einen Gaseintrittsbohrung und den in den Lagerspalt mündenden Mikrolöchern niedriger ist als der Strömungswiderstand zwischen der Innenumfangsnut beziehungsweise der Außenumfangsnut und dem jeweiligen axialen Ende der gemeinsamen Lagerfläche.Both aforementioned embodiments have the advantage that the inner rotary body is not mechanically connected to a compressed gas source, which significantly reduces the rotational friction of the inner body. The arrangement of the inner circumferential groove or the outer circumferential groove substantially in the - viewed in the axial direction - central portion of the respective bearing surface causes the flow resistance along the bearing gap in the respective axial direction is so high that the gas supplied from the outer body does not escape through the bearing gap, but through which at least one gas inlet bore of the inner body flows into the gas supply structure provided in the inner body and exits from there through the microholes in the bearing surface of the inner body into the bearing gap. For this purpose, the gas-bearing arrangement is to be dimensioned so that the flow resistance between the at least one gas inlet bore and the opening into the bearing gap microholes is lower than that Flow resistance between the inner circumferential groove or the outer circumferential groove and the respective axial end of the common bearing surface.

Der das Verfahren betreffende Teil der Aufgabe wird durch die im Patentansprüch 15 angegebenen Verfahrensmerkmale gelöst.The part of the problem relating to the method is achieved by the method features specified in patent claim 15.

Durch das luftdichte Aufbringen der Hülse oder der Lagerschale auf den Tragkörper ist es möglich, die Hülse oder Lagerschale mit den gewünschten Abmessungen aus einem Material vorzufertigen, das eine schnelle und leichte Einbringung der Mikrolöcher mit Hilfe der hochenergetischen Strahlung ermöglicht, während der Tragkörper dabei aus einem Material gefertigt werden kann, welches optimale Eigenschaften für die Tragfähigkeit aufweist.Due to the airtight application of the sleeve or the bearing shell on the support body, it is possible to prefabricate the sleeve or bearing shell with the desired dimensions of a material that allows a quick and easy insertion of the microholes using the high-energy radiation, while the support body of a Material can be manufactured, which has optimal properties for the load capacity.

Besonders vorteilhaft ist es, wenn die Hülse oder die Lagerschale nach dem Aufbringen auf den Tragkörper und vor dem Einbringen der Mikrolöcher mittels spanender und/oder schleifender Bearbeitung des Außenumfangs auf eine gewünschte Abmessung gebracht werden kann. Hierdurch kann die Hülse oder die Lagerschale zunächst in einer statisch stabilen Form auf den Tragkörper aufgebracht, vorzugsweise aufgeschrumpft, oder aufgeklebt, werden. Die zur optimalen Einbringung der Mikrolöcher erforderliche dünne Wandstärke wird somit erst nach dem Aufbringen der Hülse oder Lagerschale auf den Tragkörper durch das spanende und/oder schleifende Bearbeiten des Außenumfangs der Hülse hergestellt.It is particularly advantageous if the sleeve or the bearing shell can be brought to a desired dimension after application to the support body and prior to the introduction of the micro-holes by means of cutting and / or grinding machining of the outer circumference. As a result, the sleeve or the bearing shell can first be applied to the support body in a statically stable form, preferably shrunk on, or adhesively bonded. The thin wall thickness required for optimum introduction of the microholes is therefore produced only after the sleeve or bearing shell has been applied to the support body by the machining and / or grinding of the outer circumference of the sleeve.

Die Hülse kann beispielsweise aber auch als hochpräzises Abformteil des Innenumfangs des als Rotationskörper ausgestalteten äußeren Körpers gebildet sein.However, the sleeve can also be formed, for example, as a high-precision molding part of the inner circumference of the outer body designed as a rotational body.

In einer vorteilhaften Weiterbildung dieses Verfahrens ist die hochenergetische Strahlungsquelle von einer Lasereinrichtung gebildet, so daß die Mikrolöcher mittels eines Laserstrahls in die Hülse oder Lagerschale eingebracht werden.In an advantageous development of this method, the high-energy radiation source is formed by a laser device, so that the micro-holes by means of a laser beam are introduced into the sleeve or bearing shell.

Die Erfindung wird nachfolgend anhand von Beispielen unter Bezugnahme auf die Zeichnung näher erläutert. In dieser zeigt:

Fig. 1
einen Längsschnitt durch eine erste erfindungsgemäße gasgelagerte Anordnung;
Fig. 2
einen Querschnitt gemäß Linie II-II in Fig. 1;
Fig. 3
einen Querschnitt analog Fig. 2 durch eine alternative Ausführungsform dieser ersten Anordnung;
Fig. 4
einen Querschnitt durch eine Abwandlung der ersten Ausführungsform der erfindungsgemäßen gasgelagerten Anordnung;
Fig. 5
einen Querschnitt analog Fig. 4 durch eine alternative Ausführungsform dieser zweiten Anordnung;
Fig. 6
einen Längsschnitt durch eine weitere Ausführungsform der vorliegenden Erfindung mit rotierendem inneren Körper und
Fig. 7
einen Längsschnitt durch noch eine weitere abgewandelte Ausführungsform mit einem rotierenden inneren Körper.
The invention will be explained in more detail by way of examples with reference to the drawing. In this shows:
Fig. 1
a longitudinal section through a first gas-bearing arrangement according to the invention;
Fig. 2
a cross section according to line II-II in Fig. 1 ;
Fig. 3
a cross section analog Fig. 2 by an alternative embodiment of this first arrangement;
Fig. 4
a cross section through a modification of the first embodiment of the gas-bearing arrangement according to the invention;
Fig. 5
a cross section analog Fig. 4 by an alternative embodiment of this second arrangement;
Fig. 6
a longitudinal section through another embodiment of the present invention with rotating inner body and
Fig. 7
a longitudinal section through yet another modified embodiment with a rotating inner body.

In Fig. 1 ist ein als Achse ausgebildeter und nachfolgend auch als Lagerkörper bezeichneter innerer Körper 1 dargestellt, der auf herkömmliche Weise in einem nur schematisch dargestellten und mit gestrichelten Linien gezeigten Gehäuse 2 gehaltert ist. Der innere Körper 1 weist einen im Gehäuse eingespannten Tragkörper 10 auf. An seiner aus dem Gehäuse 2 herausragenden Seite ist der Tragkörper 10 mit einem im Querschnitt kreisförmigen Aufnahmeabschnitt 12 für eine Lagerhülse 14 versehen. Die Lagerhülse 14 ist auf den Aufnahmeabschnitt 12 aufgeschrumpft und auf diese Weise gasdicht mit dem Tragkörper 10 verbunden.In Fig. 1 is embodied as an axle formed and hereinafter also referred to as bearing body inner body 1, which in a conventional manner in a schematic and shown with dashed lines shown housing 2 is supported. The inner body 1 has a supporting body 10 clamped in the housing. At its protruding from the housing 2 side of the support body 10 is provided with a circular cross-section receiving portion 12 for a bearing sleeve 14. The bearing sleeve 14 is shrunk onto the receiving portion 12 and connected in this way gas-tight with the support body 10.

Der Tragkörper 10 ist im Bereich des Aufnahmeabschnitts 12 mit als Umfangsnuten 120, 121, 122, 123 ausgebildeten Ausnehmungen versehen. Jede dieser am Außenumfang des Aufnahmeabschnitts 12 vorgesehenen Umfangsnuten 120, 121, 122, 123 ist über zumindest eine Radialbohrung 124, 125, 126, 127 mit einer Axialbohrung 11 des Tragkörpers 10 verbunden. Auf diese Weise kann von einer nicht gezeigten Druckgasquelle in die Axialbohrung 11 eingeleitetes Druckgas, insbesondere Druckluft, durch die Radialbohrungen 124, 125, 126 und 127 in die jeweils zugeordneten Ringnuten 120, 121, 122, 123 eintreten und dort einen entsprechenden Gasdruck aufbauen.The support body 10 is provided in the region of the receiving portion 12 with recesses formed as circumferential grooves 120, 121, 122, 123. Each of these provided on the outer circumference of the receiving portion 12 circumferential grooves 120, 121, 122, 123 is connected via at least one radial bore 124, 125, 126, 127 with an axial bore 11 of the support body 10. In this way, from a pressurized gas source not shown in the axial bore 11 introduced pressurized gas, in particular compressed air, through the radial bores 124, 125, 126 and 127 in the respective associated annular grooves 120, 121, 122, 123 occur and build there a corresponding gas pressure.

Die Hülse 14 ist im Bereich der Ringnuten 120, 121, 122, 123 mit radial verlaufenden Mikrolöchern 140, 141, 142, 143 versehen, die, von der Lagerfläche 14' am radialen Außenumfang der Lagerhülse 14 ausgehend, durch die Wandung der Lagerhülse 14 hindurch in die zugehörige Ringnut 120, 121, 122, 123 hineinführen.The sleeve 14 is provided in the region of the annular grooves 120, 121, 122, 123 with radially extending microholes 140, 141, 142, 143, which, starting from the bearing surface 14 'on the radial outer circumference of the bearing sleeve 14, through the wall of the bearing sleeve 14 therethrough into the associated annular groove 120, 121, 122, 123 lead.

Wie Fig. 2 zeigt, sind über den Umfang der Lagerhülse im Bereich einer jeden Ringnut eine Vielzahl von Radialbohrungen 140, 141, 142, 143 vorgesehen. Die in der jeweiligen Ringnut 120, 121, 122, 123 anstehende Druckluft beziehungsweise das dort anstehende Druckgas tritt aus den Mikrolöchern 140, 141, 142, 143 in den zwischen der von der radialen Außenumfangsfläche der Lagerhülse 14 gebildeten Lagerfläche 14' und der dieser gegenübergelegenen Lagerfläche auf der Innenseite einer Lagerbohrung des äußeren Rotationskörpers 3 gebildeten Spalt 30 ein und bildet dort ein Luftpolster, welches den äußeren Rotationskörper 3 abstützt. Das überschüssige Druckgas tritt an den axialen Enden des Lagerspalts 30 aus. Auf diese Weise ist das aerostatische Lager gebildet.As Fig. 2 shows, a plurality of radial bores 140, 141, 142, 143 are provided over the circumference of the bearing sleeve in the region of each annular groove. The pending in the respective annular groove 120, 121, 122, 123 compressed air or the pressurized gas there occurs from the microholes 140, 141, 142, 143 in between the formed by the radial outer peripheral surface of the bearing sleeve 14 bearing surface 14 'and the opposite bearing surface on the inside of a bearing bore of the outer rotary body. 3 formed gap 30 and forms there an air cushion, which supports the outer rotary body 3. The excess pressurized gas exits at the axial ends of the bearing gap 30. In this way, the aerostatic bearing is formed.

Fig. 3 zeigt einen vergrößerten Ausschnitt eines Schnitts ähnlich dem in Fig. 2, wobei bei dieser Ausführungsform jedoch die Mikrolöcher 140' unter einem Winkel α zur Radialrichtung R geneigt sind. Bei dieser Ausführungsform rotiert das im Lagerspalt 30 gebildete Gaspolster in Richtung des Pfeils U und sorgt auf diese Weise für ein vorgegebenes Anlaufverhalten des äußeren Rotationskörpers 3 in Richtung des Pfeils U. Fig. 3 shows an enlarged section of a section similar to in FIG Fig. 2 However, in this embodiment, the micro holes 140 'are inclined at an angle α to the radial direction R. In this embodiment, the gas cushion formed in the bearing gap 30 rotates in the direction of the arrow U and thus ensures a predetermined start-up behavior of the outer rotary body 3 in the direction of the arrow U.

Zur Herstellung des Gaslagers wird zunächst der Tragkörper 10 vorbereitet, indem die von der Axialbohrung 11, den Radialbohrungen 124, 125, 126, 127 und den Ringnuten 120, 121, 122, 123 gebildete Gasversorgungsstruktur im Tragkörper 10 eines inneren Lagerkörpers 1 vorgesehen wird. Dann wird auf den kreisförmigen Abschnitt 12 der Tragstruktur 10 die Lagerhülse 14 luftdicht befestigt, z.B. aufgeschrumpft oder aufgeklebt, so daß die Lagerhülse 14 gasdicht mit der Tragstruktur 10 verbunden ist. Anschließend wird die Wandstärke der ringförmigen Lagerhülse 14 durch spanendes und/schleifendes Bearbeiten ihres Außenumfangs auf eine vorgegebene Dicke d reduziert, die ausreichend gering ist, um ein problemloses Einbringen von Mikrolöchern mittels einer hochenergetischen Strahlungsquelle, beispielsweise einer Lasereinrichtung, zu ermöglichen. Im Anschluß an diese Materialbearbeitung der Lagerhülse 14 wird eine Vielzahl von Mikrolöchern 140, 141, 142, 143 in die Lagerhülse 14 mittels der hochenergetischen Strahlungsquelle von der Seite der Lagerfläche 14' aus in die Lagerhülse 14 eingebracht, wobei sich die Strahlungsquelle radial außerhalb des inneren Lagerkörpers 1 befindet. Vorzugsweise wird vor oder nach dem Einbringen der Mikrolöcher noch eine reibungsmindernde Beschichtung auf die Lagerfläche 14' aufgebracht. Anschließend wird noch der äußere Rotationskörper auf den inneren Lagerkörper aufgeschoben und bei Bedarf auf dem Fachmann bekannte Weise in Axialrichtung gegen Verschieben gesichert.To produce the gas bearing, the support body 10 is first prepared by providing the gas supply structure formed by the axial bore 11, the radial bores 124, 125, 126, 127 and the annular grooves 120, 121, 122, 123 in the support body 10 of an inner bearing body 1. Then, the bearing sleeve 14 is airtight attached to the circular portion 12 of the support structure 10, for example, shrunk or glued, so that the bearing sleeve 14 is gas-tightly connected to the support structure 10. Subsequently, the wall thickness of the annular bearing sleeve 14 is reduced by machining and / or grinding its outer periphery to a predetermined thickness d, which is sufficiently low to allow easy insertion of microholes by means of a high-energy radiation source, such as a laser device. Following this material processing of the bearing sleeve 14, a plurality of microholes 140, 141, 142, 143 are introduced into the bearing sleeve 14 by means of the high-energy radiation source from the side of the bearing surface 14 ', wherein the radiation source is radially outside the inner Bearing body 1 is located. Preferably, a friction-reducing coating is applied to the bearing surface 14 'before or after the introduction of the microholes. Subsequently, the outer rotational body is still pushed onto the inner bearing body and, if necessary, secured in a known manner in the axial direction against displacement.

In Fig. 4 ist eine abgewandelte Ausführungsform der ersten Anordnung ähnlich Fig. 2 gezeigt. Hier ist die Lagerhülse 114 nicht auf ihrem gesamten Umfang mit den als Mikrolöcher ausgebildeten Radialbohrungen 140 versehen, sondern nur in einem Umfangsabschnitt von etwa 170°. Diese gasgelagerte Anordnung mit der Lagerhülse 114 ist als Umlenklager für eine auf dem Gaspolster über der Lagerfläche 114' um den inneren Lagerkörper 101 herum geführte Materialbahn 4 ausgestaltet, wobei die Materialbahn 4 in Pfeilrichtung um den feststehenden Lagerkörper 101 herumläuft.In Fig. 4 is a modified embodiment of the first arrangement similar Fig. 2 shown. Here, the bearing sleeve 114 is not provided on its entire circumference with the trained as micro holes radial bores 140, but only in a peripheral portion of about 170 °. This gas-bearing arrangement with the bearing sleeve 114 is designed as a deflection bearing for a guided on the gas cushion over the bearing surface 114 'to the inner bearing body 101 around material web 4, wherein the material web 4 in the arrow direction around the fixed bearing body 101 runs around.

Eine Abwandlung eines feststehenden Lagerkörpers 201 ist in Fig. 5 dargestellt. Dort ist der Lagerkörper 201 aus einem als Tragbalken ausgebildeten Tragkörper 210 gebildet. Der Tragkörper 210 ist in einem Abschnitt mit einer im Querschnitt bogenförmig oder gekrümmt ausgebildeten Lagerschale 214 versehen, die mit dem Lagerkörper 210 luftdicht verbunden, beispielsweise verklebt, ist. Die Lagerschale 214 besitzt eine ebenfalls gekrümmt verlaufende Lagerfläche 214', über welche eine Materialbahn 204 umläuft. Die Materialbahn 204 bewegt sich in Pfeilrichtung relativ zu dem stationären Lagerkörper 210, wobei das aus den in der Lagerschale 214 vorgesehenen Mikrolöchern 240 ausströmende Druckgas die Materialbahn 204 trägt.A modification of a fixed bearing body 201 is shown in FIG Fig. 5 shown. There, the bearing body 201 is formed from a supporting body 210 designed as a support beam. The support body 210 is provided in a portion with an arcuate or curved in cross section formed bearing shell 214 which is connected to the bearing body 210 airtight, for example glued, is. The bearing shell 214 has a likewise curved bearing surface 214 ', over which a material web 204 rotates. The material web 204 moves in the direction of the arrow relative to the stationary bearing body 210, wherein the compressed gas flowing out of the microholes 240 provided in the bearing shell 214 carries the material web 204.

Der Tragkörper 210 ist analog zum Tragkörper 10 mit einer in Axialrichtung verlaufenden Druckgas-Versorgungsbohrung 211 und von dieser Druckgasbohrung 211 ausgehenden Radialbohrungen 224 versehen, die jeweils in einen nutenartigen Druckgasraum 220 münden, in welchen auch die Mikrolöcher 240 münden.The support body 210 is analogous to the support body 10 with a pressure gas supply bore 211 extending in the axial direction and outgoing from this pressure gas bore 211 Provided radial bores 224, which each open into a groove-like compressed gas chamber 220, in which open the micro holes 240.

In den Beispielen der Fig. 6 und 7 ist der jeweils innere Körper 301, 401 als Rotationskörper ausgebildet, während der jeweilige äußere Körper 303, 403 bezüglich der Rotationsbewegung stationär, also ortsfest, angeordnet ist. Die Zufuhr des Druckgases zur Beaufschlagung der im jeweiligen inneren Körper 301, 401 vorgesehenen Gasversorgungsstruktur zur Beaufschlagung der jeweiligen Druckgaspolster zwischen den einander gegenübergelegenen Lagerflächen 313' und 314' beziehungsweise 413' und 414' erfolgt von außen durch einen Gaszuführkanal 340 beziehungsweise 440, der jeweils im äußeren Körper 303 beziehungsweise 403 vorgesehen ist.In the examples of 6 and 7 is the respective inner body 301, 401 formed as a rotational body, while the respective outer body 303, 403 with respect to the rotational movement stationary, ie stationary, is arranged. The supply of the compressed gas for acting in the respective inner body 301, 401 gas supply structure for acting on the respective Druckgaspolster between the opposing bearing surfaces 313 'and 314' or 413 'and 414' takes place from the outside by a gas supply channel 340 and 440, respectively in the outer body 303 or 403 is provided.

In Fig. 6 ist eine Ausführungsform gezeigt, bei der der äußere Körper 303 in seiner dem inneren Körper 301 gegenüber gelegenen Lagerfläche 313' mit einer Innenumfangsnut 342 versehen ist. In die Innenumfangsnut 342 mündet der Gaszuführkanal 340. Der Innenumfangsnut 342 gegenüber gelegen ist zumindest eine Gaseintrittsbohrung 311' in der Lagerfläche 314' des inneren Körpers 301 vorgesehen, die mit der im Tragkörper 310 des inneren Körpers 301 ausgebildeten Gasversorgungsstruktur 311 verbunden ist. Auf diese Weise kann das von einer Druckgasquelle über den Gaszuführkanal 340 in die Innenumfangsnut 342 eingeleitete Druckgas durch die Gaseintrittsbohrung 311' in die Gasversorgungsstruktur 311 des inneren Körpers 301 eintreten und wird von dort zu den in der Lagerhülse 314 vorgesehenen Mikrolöchern 350, 351, 352, 353 geleitet, durch welche es in den Lagerspalt 330 eintritt, um dort das Druckgaspolster für die Lagerung zu erzeugen.In Fig. 6 an embodiment is shown in which the outer body 303 is provided in its inner body 301 opposite bearing surface 313 'with an inner circumferential groove 342. Into the inner circumferential groove 342, the gas supply passage 340 opens. Opposite the inner circumferential groove 342, there is provided at least one gas entrance hole 311 'in the bearing surface 314' of the inner body 301, which is connected to the gas supply structure 311 formed in the support body 310 of the inner body 301. In this way, the compressed gas introduced into the inner circumferential groove 342 from a compressed gas source via the gas supply passage 340 can enter the gas supply structure 311 of the inner body 301 through the gas inlet bore 311 'and from there to the microholes 350, 351, 352 provided in the bearing sleeve 314. 353 passed, through which it enters the bearing gap 330 to produce there the compressed gas cushion for storage.

Bei der Ausführungsform nach Fig. 7 ist die umlaufende Nut nicht im Innenumfang der Lagerfläche 413' des äußeren Körpers 403 vorgesehen, sondern als Außenumfangsnut 442 in der Lagerfläche 414' des inneren Körpers 401. Der Gaszuführkanal 440 mündet in die Lagerfläche 413' des äußeren Körpers 403 in einem Abschnitt, der der Außenumfangsnut 442 gegenüberliegt. Die Gaseintrittsbohrung 411' mündet in die Außenumfangsnut 442 des inneren Körpers 401 und ist ebenfalls mit der im Tragkörper 410 des inneren Körpers 401 vorgesehenen Gasversorgungsstruktur 411 verbunden. Auch bei dieser Ausführungsform fließt das Druckgas von der Druckgasquelle durch den Gaszuführkanal 440 in die Außenumfangsnut 442 und von dort durch die Gaseintrittsbohrung 411' in die Gasversorgungsstruktur 411 und tritt von dort durch die in der Lagerhülse 414 vorgesehenen Mikrolöcher 450, 451, 452, 453 in den Lagerspalt 430 aus, wo es das Druckgaspolster für die Lagerung bildet.In the embodiment according to Fig. 7 the circumferential groove is not in the inner periphery of the bearing surface 413 'of the outer body 403, but as the outer circumferential groove 442 in the bearing surface 414 'of the inner body 401. The gas supply passage 440 opens into the bearing surface 413' of the outer body 403 in a portion facing the outer circumferential groove 442. The gas inlet bore 411 'opens into the outer circumferential groove 442 of the inner body 401 and is also connected to the gas supply structure 411 provided in the supporting body 410 of the inner body 401. Also in this embodiment, the compressed gas flows from the compressed gas source through the Gaszuführkanal 440 in the Außenumfangsnut 442 and from there through the gas inlet bore 411 'in the gas supply structure 411 and from there through the provided in the bearing sleeve 414 micro holes 450, 451, 452, 453 in the bearing gap 430, where it forms the compressed gas cushion for storage.

Sowohl in der Ausführungsform gemäß Fig. 6 als auch in der Ausführungsform gemäß Fig. 7 sind die Innenumfangsnut 342 beziehungsweise die Außenumfangsnut 442 im Bereich der Mitte der Axialerstreckung L der einander gegenübergelegenen jeweiligen Lagerflächen 313', 314' beziehungsweise 413', 414' angeordnet. Das Verhältnis zwischen der Dicke d des jeweiligen Lagerspalts zum jeweiligen Abstand zwischen der Innenumfangsnut 342 beziehungsweise der Außenumfangsnut 442 und dem jeweiligen axialen äußeren Ende der jeweiligen gemeinsamen Lagerflächen ist dabei so bemessen, daß der Strömungswiderstand von der jeweiligen Nut 342, 442 direkt durch den jeweiligen Lagerspalt 330, 430 nach außen größer ist als der Strömungswiderstand durch die jeweilige Gasversorgungsstruktur 311, 411 und die mit dieser verbundenen Mikrolöcher und in achsparalleler Richtung nach außen, so daß gewährleistet ist, daß das in die Innenumfangsnut 342 beziehungsweise Außenumfangsnut 442 eingeleitete Druckgas nicht unmittelbar durch den jeweiligen Lagerspalt 330, 430 entweicht, sondern durch die jeweilige Gasversorgungsstruktur 311, 411 und die zugeordneten Mikrolöcher in den Lagerspalt eingeleitet wird.Both in the embodiment according to Fig. 6 as well as in the embodiment according to Fig. 7 the inner circumferential groove 342 and the outer circumferential groove 442 are arranged in the region of the center of the axial extent L of the mutually opposite respective bearing surfaces 313 ', 314' or 413 ', 414'. The ratio between the thickness d of the respective bearing gap to the respective distance between the Innenumfangsnut 342 and the Außenumfangsnut 442 and the respective axial outer end of the respective common bearing surfaces is dimensioned so that the flow resistance of the respective groove 342, 442 directly through the respective bearing gap 330, 430 to the outside is greater than the flow resistance through the respective gas supply structure 311, 411 and the microholes connected thereto and outwardly in the axis-parallel direction, so as to ensure that the introduced into the Innenumfangsnut 342 and Außenumfangsnut 442 pressurized gas is not directly through the respective bearing gap 330, 430 escapes, but by the respective Gas supply structure 311, 411 and the associated microholes is introduced into the bearing gap.

Die Materialbahnen, die in den Figuren 4 und 5 gezeigt sind, können beispielsweise Papierbahnen oder Folienbahnen aus Kunststoff oder Metall, beispielsweise Aluminium, sein.The material webs in the FIGS. 4 and 5 can be, for example, paper webs or film webs of plastic or metal, for example aluminum, be.

Claims (18)

  1. Gas bearing arrangement of bodies that are movable relative to one another, comprising
    - an inner bearing body (1; 101; 201; 301; 401) having a bearing surface (14'; 114'; 214'; 314'; 414') extending at least in sections in a curved manner and
    - an outer body (3; 203; 303; 403) that at least partially surrounds at least the curved portion of the bearing surface (14'; 114'; 214'; 314'; 414') of the inner bearing body (1; 101; 201; 301; 401),
    - wherein the inner bearing body (1; 101; 201) comprises a supporting body (10; 210), which is provided at its outer periphery with a bearing sleeve (14; 114) or bearing shell (214),
    - wherein the bearing sleeve (14; 114) or bearing shell (214) is provided at least in sections with microholes (140, 141, 142, 143; 140'; 240), which penetrate the wall of the bearing sleeve (14; 114) or bearing shell (214) and open out into recesses (120, 121, 122, 123; 220), which extend in peripheral direction, of a gas-feed supply structure of the supporting body (10; 210) in order to form gas outlet nozzles of a gas bearing, and
    - wherein the microholes (140, 141, 142, 143; 140'; 240) are introduced into the bearing sleeve (14; 114) from the bearing surface (14'; 114'; 214') side by means of a high-energy radiation source.
  2. Arrangement according to claim 1,
    characterized in
    that the bearing sleeve (14; 114; 314; 414) or bearing shell (214) is mounted in a rotationally and axially fixed manner on the supporting body (10; 210; 310; 410).
  3. Arrangement according to claim 1 or 2,
    characterized in
    that the bearing sleeve (14; 114; 314; 414) or bearing shell (214) is provided on its outer periphery in the region of the bearing surface (14'; 114'; 214'; 314'; 414') with a friction-reducing coating.
  4. Arrangement according to one of the preceding claims,
    characterized in
    that the gas bearing is an aerostatic bearing.
  5. Arrangement according to one of the preceding claims,
    characterized in
    that the microholes (140, 141, 142, 143; 140'; 240; 350, 351, 352, 353; 450, 451, 452, 453) are microholes bored by a high-energy radiation source.
  6. Arrangement according to claim 5,
    characterized in
    that the microholes (140, 141, 142, 143; 140'; 240; 350, 351, 352, 353; 450, 451, 452, 453) are laser-bored microholes.
  7. Arrangement according to one of the preceding claims,
    characterized in
    that the microholes (140') in a radial plane are not exactly radially oriented but are inclined at an angle (α) relative to the radial direction (R).
  8. Arrangement according to one of the preceding claims,
    characterized in
    that the inner bearing body (1) is an axle and that the outer body (3) is a rotational body (30), which is mounted rotatably on the axle.
  9. Arrangement according to claim 8,
    characterized in
    that the outer rotational body (30) is fixed in axial direction relative to the inner bearing body (1).
  10. Arrangement according to one of claims 1 to 7,
    characterized in
    that the inner bearing body (1) is an axle, wherein the bearing sleeve (114) is provided only over a sub-portion of its periphery with microholes (140), and that the outer body (4) is a material web, which is deflected over the sub-portion of the inner bearing body (1) and moved relative to the inner bearing body (1).
  11. Arrangement according to one of claims 1 to 7,
    characterized in
    - that the inner bearing body (201) is a beam that is provided with the bearing sleeve (214),
    - that the outer body (204) is formed by a material web, which extends over the bearing surface (214') of the bearing sleeve (214) and which moves relative to the inner bearing body (201).
  12. Arrangement according to one of claims 1 to 7,
    characterized in
    that the inner bearing body (301; 401) is a rotational body and that the outer body (303; 403) is disposed in a stationary manner.
  13. Arrangement according to claim 12,
    characterized in
    - that the outer body (303) in its bearing surface (313') situated opposite the inner bearing body (301) is provided with an inner peripheral groove (342),
    - that at least one gas feed channel (340), which is connected to a pressure gas source, opens out into the inner peripheral groove (342), and
    - that the inner bearing body (301) in an axially central portion of the bearing surface (314') situated opposite the outer body (303) is provided with at least one gas inlet bore (311') of the gas supply structure (311), wherein the gas inlet bore (311') lies opposite the inner peripheral groove (342).
  14. Arrangement according to claim 12,
    characterized in
    - that the inner bearing body (401) in its bearing surface (414') situated opposite the outer body (403) is provided with an outer peripheral groove (442),
    - that at least one gas inlet bore (411') of the gas supply structure (411) opens out into the outer peripheral groove (442), and
    - that the outer body (403) in an axially central portion of the bearing surface (413') situated opposite the inner bearing body (401) is provided with at least one gas feed channel (440), which opens out into said bearing surface (413') and is connected to a pressure gas source, wherein the at least one gas feed channel (440) lies opposite the outer peripheral groove (442).
  15. Method of manufacturing a gas bearing for an arrangement of bodies that are movable relative to one another, comprising the steps:
    a) provision of a supporting body (10; 210; 310; 410) that is provided with a gas-feed supply structure, wherein the gas-feed supply structure comprises recesses (120, 121, 122, 123; 220), which are provided in an outer peripheral portion of the supporting body (10; 210; 310; 410) and extend in peripheral direction;
    b) mounting of a bearing sleeve (14; 114; 314; 414) or an, at least in sections, curved bearing shell (214) in a gastight manner onto the supporting body (10; 210; 310; 410) to form an inner bearing body (1; 101; 201; 301; 401) in the region of the recesses (120, 121, 122, 123; 220) of the gas-feed supply structure, wherein the inner bearing body (1; 101; 201; 301; 401) forms an inner body that is at least partially surrounded by an outer body;
    c) introduction of microholes (140, 141, 142, 143; 140'; 240; 350, 351, 352, 353; 450, 451, 452, 453), which penetrate the wall of the bearing sleeve (14; 114) or bearing shell (214), into the bearing sleeve (14; 114; 314; 414) or bearing shell (214) by means of a high-energy radiation source, wherein the radiation source is situated radially outwardly of the inner bearing body (1; 101; 201; 301; 401) and the introduction of the microholes (140, 141, 142, 143; 140'; 240; 350, 351, 352, 353; 450, 451, 452, 453) is effected from the bearing surface (14'; 114'; 214'; 314'; 414') side.
  16. Method according to claim 15,
    characterized in
    that the outer periphery of the bearing sleeve (14) is formed by high-precision moulding of the inner periphery of an outer body (3), which takes the form of a rotational body and surrounds the bearing sleeve (14).
  17. Method according to claim 15,
    characterized in
    that the high-energy radiation source is a laser device.
  18. Method according to claim 15,
    characterized in
    that prior to the step c) a cutting and/or grinding operation is carried out on the outer periphery of the bearing sleeve (14; 114; 314; 414) or the bearing shell (214) in order to achieve a defined outside diameter and/or radius of curvature of the bearing shell (214).
EP05795041A 2004-10-07 2005-10-06 Gas bearing-mounted arrangement of bodies that can be displaced relative to one another Active EP1797344B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004048944A DE102004048944A1 (en) 2004-10-07 2004-10-07 Gas bearing arrangement of relatively movable bodies
PCT/EP2005/010782 WO2006040073A1 (en) 2004-10-07 2005-10-06 Gas bearing-mounted arrangement of bodies that can be displaced relative to one another

Publications (2)

Publication Number Publication Date
EP1797344A1 EP1797344A1 (en) 2007-06-20
EP1797344B1 true EP1797344B1 (en) 2010-04-07

Family

ID=35759287

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05795041A Active EP1797344B1 (en) 2004-10-07 2005-10-06 Gas bearing-mounted arrangement of bodies that can be displaced relative to one another

Country Status (4)

Country Link
EP (1) EP1797344B1 (en)
AT (1) ATE463678T1 (en)
DE (2) DE102004048944A1 (en)
WO (1) WO2006040073A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102003442B1 (en) 2012-05-11 2019-07-24 에어로라스 게엠베하, 에어로슈타티쉐 라거- 레이저테크닉 Piston/cylinder unit
DE102013102924B3 (en) 2013-03-21 2014-04-24 AeroLas GmbH Aerostatische Lager- Lasertechnik Gas pressure bearing element and method for producing a gas pressure bearing element and gas pressure bearing with such a gas pressure bearing element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1187384B (en) * 1956-05-16 1965-02-18 Philips Nv Device for measuring angles by pulse counting
US3466952A (en) * 1967-12-06 1969-09-16 Babcock & Wilcox Co Hydrostatic bearing supported boring bar
US3645589A (en) * 1970-12-03 1972-02-29 Gen Motors Corp Air bearing with low tensile strength permeable sleeve
SE448252B (en) * 1986-03-18 1987-02-02 Skf Ab GAS STORAGE WITH A STORAGE AREA ORGANIZED ON A GAS TRANSFERABLE ELEMENT AS WELL AS TO MAKE A SUCH STOCK
JPS62228713A (en) * 1986-03-29 1987-10-07 Kyocera Corp Air bearing
EP0563290A1 (en) * 1990-12-19 1993-10-06 Eastman Kodak Company Non-contact web turnbars and reversers with angled holes
DE4416421C2 (en) * 1994-05-10 1996-07-04 Heinz Dr Ing Gros Heatable and coolable roll with almost frictionless storage
DE9421536U1 (en) * 1994-10-10 1996-02-22 Heinzl Joachim Aerostatic warehouse

Also Published As

Publication number Publication date
EP1797344A1 (en) 2007-06-20
ATE463678T1 (en) 2010-04-15
DE502005009376D1 (en) 2010-05-20
WO2006040073B1 (en) 2006-06-22
WO2006040073A1 (en) 2006-04-20
DE102004048944A1 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
EP0708262B1 (en) Aerostatic bearing and fabrication process of an aerostatic bearing
EP1731722B1 (en) Camshaft adjusting device with a rotor of a swivel motor type with reduced leckage
DE3828363C2 (en)
EP1261820B1 (en) Labyrinth seal between rotating parts
EP1738081B1 (en) Radial oscillating motor, and method for the production thereof
DE102006024841B4 (en) Electromagnetic actuator
EP2403682B1 (en) Spindle comprising a lance
EP2210005A1 (en) Axial bearing, particularly for a turbocharger
EP0206029B1 (en) Aerostatic bearing
EP1998009A1 (en) Storage device
EP3324062A1 (en) Rotation system with radial gas bearing
DE3316332C2 (en)
DE102004058905A1 (en) Rolling bearing with segmented bearing rings for rotating shaft has inner and outer rings with at least three segments each
EP1797344B1 (en) Gas bearing-mounted arrangement of bodies that can be displaced relative to one another
EP0768270A2 (en) Bobbin holder for the one bobbin or more bobbins arranged one behind the other
DE10149833B4 (en) Rolling elements for rolling bearings and method for producing rolling elements
WO2004018843A2 (en) Plain bearing for turbocharger shaft
DE102013224413A1 (en) Thrust bearing with lubricant supply for a high-speed shaft
DE102014209062A1 (en) radial bearings
WO2005075720A1 (en) Fiber guide channel for an open-end spinning device and method for producing a fiber guide channel
EP0761968A1 (en) Valve for a gerotor motor with hydrostatic bearing
EP1591700B1 (en) Mechanical seal and method of assembling a mechanical seal
DE102010013928A1 (en) Rotor assembly for cam shaft adjuster of cam shaft adjustable system, has short axial channel connected with oil distribution chamber between inner circumference of hub part and central screw, where channel is connected with one of channels
DE102005062649B4 (en) roller bearing
DE102014116992A1 (en) Slide bearing arrangement for high-speed shafts in the automotive sector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080829

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005009376

Country of ref document: DE

Date of ref document: 20100520

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100407

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100718

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100809

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

26N No opposition filed

Effective date: 20110110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

BERE Be: lapsed

Owner name: AEROLAS G.M.B.H. AEROSTATISCHE LAGER-LASERTECHNIK

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 463678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101006

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211022

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211021

Year of fee payment: 17

Ref country code: CH

Payment date: 20211020

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221006

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231020

Year of fee payment: 19