EP1792057B1 - Method for positional determination for an ec motor - Google Patents

Method for positional determination for an ec motor Download PDF

Info

Publication number
EP1792057B1
EP1792057B1 EP05787299A EP05787299A EP1792057B1 EP 1792057 B1 EP1792057 B1 EP 1792057B1 EP 05787299 A EP05787299 A EP 05787299A EP 05787299 A EP05787299 A EP 05787299A EP 1792057 B1 EP1792057 B1 EP 1792057B1
Authority
EP
European Patent Office
Prior art keywords
value
measured value
crankshaft
position measured
sensor signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05787299A
Other languages
German (de)
French (fr)
Other versions
EP1792057A1 (en
Inventor
Holger Stork
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Publication of EP1792057A1 publication Critical patent/EP1792057A1/en
Application granted granted Critical
Publication of EP1792057B1 publication Critical patent/EP1792057B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear

Definitions

  • the invention relates to a method for determining the position of an EC motor for a device for adjusting the rotational angle position of the camshaft of a reciprocating internal combustion engine relative to the crankshaft, wherein the crankshaft via a variable speed drive is in driving connection with the camshaft, which is a three-shaft transmission with a crankshaft fixed drive shaft, a camshaft-fixed output shaft and an adjusting shaft is formed, which is in driving connection with the EC motor, wherein the rotor of the EC motor offset in the circumferential direction to each other, alternately magnetized in opposite directions magnetic segments, wherein for determining the position of the rotor relative to the Stator of the EC motor, a measuring device is provided, which has circumferentially offset from each other on the stator magnetic field sensors, which are arranged such that they at a rotational movement of the rotor relative to the stator with error-free measurement of a digital Produce sensor signal that undergoes an order of sensor signal states that occurs at least two times per mechanical revolution
  • the EC engine is part of a camshaft adjusting device, by means of which the rotational angle position of the camshaft of a reciprocating internal combustion engine is adjustable relative to the crankshaft.
  • the camshaft adjusting device has an adjusting gear, which is designed as a three-shaft gear, with the drive shaft a rotatably mounted relative to the camshaft camshaft gear is rotatably connected, which is in driving connection via a drive chain with a crankshaft gear.
  • An output shaft of the variable speed drive is in drive connection with the camshaft and an adjusting shaft with the EC motor.
  • the drive shaft is stationary, there is a gear ratio predetermined by the adjusting gear between the adjusting shaft and the output shaft, the so-called stationary gear ratio. If the adjusting rotates, increases or decreases depending on the direction of rotation of the adjusting relative to the camshaft gear, the phase angle of the camshaft relative to the crankshaft.
  • an internal combustion engine which is operated with a constant phase position
  • by adjusting the phase position better cylinder filling of the internal combustion engine can be achieved, whereby fuel can be saved, the pollutant emissions can be reduced and / or the output line of the internal combustion engine can be increased.
  • the position of the rotor relative to the stator is measured by means of a measuring device which has three Hall sensors fixedly connected to the stator, which are distributed over the circumference of the stator.
  • the Hall sensors are each flooded in a rotational movement between the stator and the rotor of the magnetic field of the just over them advancing magnetic segment of the rotor.
  • the magnetic fields of the magnetic segments induce electrical voltages in the Hall sensors, which can be used as a digital sensor signal for a position measurement.
  • a position measurement signal is first set to a start value and then the rotor is rotated relative to the stator, wherein the position measurement signal is tracked at each occurrence of a state change of the sensor signal.
  • the position measurement signal is fed to a drive device, which energizes the individual phases of the winding via an output stage such that a magnetic traveling field is formed between the stator and the rotor, which drives the rotor.
  • the EC motor and the measuring device are exposed to interference which, for example, can reach the measuring device via power supply lines and cause errors in the position measuring signal there.
  • too many state changes are detected when tracking the position measurement signal.
  • a deviation of the position measurement signal from the actual position of the rotor occurs, so that it is not energized correctly. This can cause torque losses, uneven engine running and errors in adjusting the rotational position of the camshaft relative to the crankshaft.
  • the angle of rotation of the crankshaft is detected and used to check a derived from the digital sensor signal position measurement signal. If, during the check, a deviation is detected which exceeds a predefined limit value, a coarse correction of the position measuring signal is carried out. In the coarse correction, a value is preferably added to or subtracted from the position measurement signal which corresponds to the path or an integral multiple of the path of a full rotation of the rotor divided by the number of magnetic field sensors. If the order The sensor signal values assigned to the position measurement values do not match the stored sequence of the sensor signal states, a fine correction of the position measurement signal is also performed in which the sensor signal is restored in accordance with the stored sequence of sensor signal states and the position measurement signal is corrected accordingly.
  • the method enables a reconstruction of the position measurement signal both when small amounts occur (eg, less than half the number of stored sensor signal states) and when larger errors occur.
  • the steps e) and f) can also be interchanged with the steps g) and h), ie it can also be performed first the fine correction and then the coarse correction.
  • a crankshaft rotation angle measurement time is detected for each of the first and second crankshaft rotation angles, wherein from the first and second crankshaft rotation angles, the time difference between the crankshaft rotation angle measurement times and the time interval between the crankshaft rotation angle measurement time of the second crankshaft rotation angle and a reference time
  • An estimate of the angle of rotation that the crankshaft has at the reference instant is extrapolated, and wherein the coarse correction and / or the fine correction with this estimated value is performed as a new second rotational angle measured value.
  • the correction of the second position measured value is carried out at a reference time, which is temporally after the crankshaft rotation angle measuring times.
  • the reference instant it is possible, in particular, for the reference instant to be asynchronous with respect to a clock kar, n with which the crankshaft rotation angle measurement values are detected. Nevertheless, due to the extrapolation of the new second rotational angle measurement with a uniformly moving rotor, a high precision of the position measurement signal is achieved.
  • a position measuring time is detected for the first and second position measured value, if from the first and second position measurement, the time difference between the Heilmesswert measuring times and the time interval between the Lümesswert measuring time of the second position measured value and the reference time an estimated value for the value that the position measurement signal has at the reference instant is extrapolated, and when the coarse correction with this estimated value is performed as a new second position measured value.
  • the reference time may be asynchronous to a clock used to acquire the position readings.
  • the reference time is generated at a predetermined angular position of the camshaft. This can be achieved, for example, by monitoring the position of the camshaft with the aid of a camshaft sensor and, when passing through the predetermined camshaft rotational position, triggering an interrupt in a control unit in which the position measurement signal is checked and, if necessary, restored.
  • the position measurement values are differentiated to form angular velocity values.
  • the corresponding angular velocity signal may be used to determine the estimates and / or to control the speed of the EC motor.
  • a correction value is determined and stored, the position measurement values and / or angular velocity values being corrected with the correction values.
  • An adjusting device for adjusting the rotational angle or phase angle of the camshaft 11 of a reciprocating internal combustion engine relative to the crankshaft 12 has an adjusting mechanism 13 which is a three-shaft transmission with a crankshaft fixed drive shaft, a camshaft fixed output shaft and one with the rotor of an EC motor 14 in drive connection Adjusting shaft is formed.
  • an inductive sensor 15 is provided for measuring the crankshaft rotation angle, which detects the tooth flanks of a gear rim 16 consisting of a magnetically conductive material arranged on the crankshaft 12.
  • One of the tooth gaps or teeth of the toothed rim 16 has a greater width than the other tooth gaps or teeth and serves as a reference mark.
  • the inductive sensor 15 is arranged on a not shown in the drawing engine block of the internal combustion engine.
  • the measured value for the crankshaft rotation angle is set to a starting value. Thereafter, the measured value is tracked until the reference mark is passed by the sensor 15 each time a tooth flank is detected.
  • the tracking of the measured value for the crankshaft angle takes place with the aid of a control device in whose operating program an interrupt is triggered in each case when a tooth flank is detected. The crankshaft rotation angle is therefore measured digitally.
  • the EC motor 14 has a rotor 17, on the circumference of a series of magnetized alternately in opposite directions magnetic segments is arranged 1..8, which interact magnetically via an air gap with teeth of a stator, not shown in the drawing , The teeth are wound with a winding, which is energized via a drive device.
  • the position of the magnet segments 1..8 relative to the stator is detected by means of a measuring device having a plurality of magnetic field sensors A, B, C, which are arranged offset to one another in the circumferential direction of the stator such that per revolution of the rotor a number of Magnetic segment sensor combinations is traversed. If the measurement is error-free, the magnetic field sensors A, B, C generate a digital sensor signal which, due to the arrangement of the magnetic field sensors A, B, C and the passing magnetic segments 1..8, passes through an order of 2 ⁇ m sensor signal states m the number the magnetic field sensors A, B, C means. Each sensor signal state has for each magnetic field sensor A, B, C each have a point A ', B', C ', the z. B.
  • the individual sensor signal states occur in error-free measurement in a predefined order, from which the direction of rotation of the rotor 17 can be seen. This sequence is determined and stored in a non-volatile memory. For three magnetic field sensors A, B, C and positive direction of rotation is the order z. 101, 100, 110. 010, 011, 001.
  • the newly read sensor signal value does not fit into the sequence, it is assumed either that one or more sensor signal states have been lost due to a fault, or that one or more sensor signal states have been received too much.
  • searching for the sensor signal value in the known order it is determined how many sensor signal states have been missing or received too much. If, for example, the current sensor signal value was not expected until the next pulse of a magnetic field sensor, then the rotor 17 has been replaced in the meantime z. B. by (2 + m ⁇ n) magnetic segment sensor combinations rotated without this being detected.
  • m is the number of magnetic field sensors of the measuring device and n is an integer number
  • the z. B. can have the value 0, ⁇ 1, ⁇ 2, etc.
  • the integer remainder R is in the range of 0 to 2 ⁇ m-1.
  • a sensor signal state is assigned a fixed remainder R. If the association between the sensor signal value and the position measurement signal value is not correct, the sensor signal value is changed by a fine correction so that the assignment is correct again. This is always achievable and can be carried out immediately when reading in a new sensor signal value. In addition to this fine correction, the position measurement signal value can be changed, if necessary, by a coarse correction with whole multiples of 2 ⁇ m, since they do not influence the remainder R.
  • the adjusting device has an encoder for the rotational angle position of the camshaft 11, which has a Hall sensor 18 on the engine block, which cooperates with a arranged on the camshaft 11 trigger 19. If the Hall sensor 18 detects an edge of the trigger wheel 19, an interrupt is triggered in the operating program of the control unit, in each case a crankshaft rotational angle measured value and a sensor signal value are buffered. This interrupt will also be referred to as a camshaft interrupt below. At a later time then another interrupt is triggered in the operating program of the controller, in which it is checked whether a coarse correction of the position measurement signal is required and in which this is optionally performed. This interrupt will also be referred to as a cyclic interrupt below.
  • ⁇ Cnk denote the rotational angle of the crankshaft 12, ⁇ the phase angle, the index 1 the time t 1 and the index 2 the time t 1 .
  • ⁇ Em (t) the rotor position (rotor rotation angle) at time t, ⁇ Em , 1 the rotor position at time t 1 and ⁇ Cnk (t) mean the angle of rotation of crankshaft 12 at time t :
  • ⁇ t ⁇ cnk . 1 + 1 i G ⁇ ⁇ cnk t - ⁇ cnk . 1 - 2 ⁇ ⁇ em t - ⁇ em . 1
  • ⁇ em . 2 ⁇ em . 1 - i G - 1 i G ⁇ ⁇ cnk . 2 - ⁇ cnk . 1
  • the correct rotor angle ⁇ Em , 2 can be calculated with this equation and used for the coarse correction of the position measurement value.
  • the achievable accuracy should show:
  • n Em is the speed of the EC motor and n Cam is the speed of the camshaft 11.
  • the following inaccuracies, which are specified as super and subscripts at the individual angles in degrees, are present: ⁇ em . 2 - 7.7 + 16.2 ⁇ em . 1 - 0 + 8:57 + 31.5 ⁇ ⁇ cnk . 2 - 0 + 12:25 - ⁇ cnk . 1 - 0 + 12:25
  • the uncertainty can be halved from + 8.57 ° / - 0 ° to approximately + 2 ° / -2 °.
  • estimated values are determined for the position that the rotor 17 has at the time of the camshaft interrupt and the cyclic interrupt.
  • the method for determining the position of the EC motor 14 for the device for adjusting the rotational angle position of the camshaft 11 of the reciprocating internal combustion engine relative to the crankshaft 12 is thus at each occurrence of a change in state of a sensor signal arranged on the stator of the EC motor 14 magnetic field sensors A, B, C, which are provided for detecting magnetic poles of the EC rotor 17, tracking a position measurement signal.
  • the sensor signal undergoes an order of sensor signal states, which occurs at least twice per mechanical revolution of the rotor 17.
  • the order of the sensor signal states is determined and stored. With the aid of the stored sequence, a fine correction of the position measuring signal is carried out if the order of the measured sensor signal values deviates from the stored sequence.
  • the rotation angle of the crankshaft 12 of the internal combustion engine is determined, and with the aid of the rotation angle and a transmission characteristic of an epicyclic gear of the camshaft adjusting device, a coarse correction of the position measurement signal is performed upon detection of a position measurement error that can not be eliminated with the fine correction.

Description

Die Erfindung betrifft ein Verfahren zur Lagebestimmung bei einem EC-Motor für eine Vorrichtung zum Einstellen der Drehwinkellage der Nockenwelle einer Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle, wobei die Kurbelwelle über ein Verstellgetriebe mit der Nockenwelle in Antriebsverbindung steht, das als Dreiwellengetriebe mit einer kurbelwellenfesten Antriebswelle, einer nockenwellenfesten Abtriebswelle und einer Verstellwelle ausgebildet ist, die mit dem EC-Motor in Antriebsverbindung steht, wobei der Rotor des EC-Motors in Umfangsrichtung zueinander versetzte, abwechselnd in zueinander entgegengesetzte Richtungen magnetisierten Magnetsegmente aufweist, wobei zur Bestimmung der Lage des Rotors relativ zu dem Stator des EC-Motors eine Messeinrichtung vorgesehen ist, die am Stator in Umfangsrichtung zueinander versetzte Magnetfeld-Sensoren aufweist, die derart angeordnet sind, dass sie bei einer Drehbewegung des Rotors relativ zum Stator bei fehlerfreier Messung ein digitales Sensorsignal erzeugen, das eine Reihenfolge von Sensorsignal-Zuständen durchläuft, die mindestens zwei mal pro mechanischer Umdrehung des Rotors auftritt.The invention relates to a method for determining the position of an EC motor for a device for adjusting the rotational angle position of the camshaft of a reciprocating internal combustion engine relative to the crankshaft, wherein the crankshaft via a variable speed drive is in driving connection with the camshaft, which is a three-shaft transmission with a crankshaft fixed drive shaft, a camshaft-fixed output shaft and an adjusting shaft is formed, which is in driving connection with the EC motor, wherein the rotor of the EC motor offset in the circumferential direction to each other, alternately magnetized in opposite directions magnetic segments, wherein for determining the position of the rotor relative to the Stator of the EC motor, a measuring device is provided, which has circumferentially offset from each other on the stator magnetic field sensors, which are arranged such that they at a rotational movement of the rotor relative to the stator with error-free measurement of a digital Produce sensor signal that undergoes an order of sensor signal states that occurs at least two times per mechanical revolution of the rotor.

Ein derartiges Verfahren zur Bestimmung der Lage des Rotors eines EC-Motors relativ zu dessen Stator ist aus der Praxis bekannt. So offenbart Dokument EP0918142 A2 ein solches Verfahren. Ein ähnliches Verfahren entnimmt man dem Dokument US2004/083999 A1 . Dabei ist der EC-Motor ein Teil einer Nockenwellen-verstellvorrichtung, mittels der die Drehwinkellage der Nockenwelle einer Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle einstellbar ist. Die Nockenwellenverstellvorrichtung weist ein Verstellgetriebe auf, das als Dreiwellengetriebe ausgebildet ist, mit dessen Antriebswelle ein relativ zur Nockenwelle verdrehbar gelagertes Nockenwellenzahnrad drehfest verbunden ist, das über eine Antriebskette mit einem Kurbelwellenzahnrad in Antriebsverbindung steht. Eine Abtriebswelle des Verstellgetriebes steht mit der Nockenwelle und eine Verstellwelle mit dem EC-Motor in Antriebsverbindung. Bei stillstehender Antriebswelle liegt zwischen der Verstellwelle und der Abtriebswelle eine durch das Verstellgetriebe vorgegebene Getriebeübersetzung vor, die so genannte Standgetriebeübersetzung. Wenn sich die Verstellwelle dreht, vergrößert bzw. verkleinert sich je nach Drehrichtung der Verstellwelle relativ zum Nockenwellenzahnrad die Phasenlage der Nockenwelle relativ zur Kurbelwelle. Im Vergleich zu einer Verbrennungsmaschine, die mit konstanter Phasenlage betrieben wird, kann durch die Anpassung der Phasenlage eine bessere Zylinderfüllung der Verbrennungsmaschine erreicht werden, wodurch Kraftstoff eingespart, der Schadstoffausstoß reduziert und/oder die Ausgangsleitung der Verbrennungsmaschine erhöht werden kann.Such a method for determining the position of the rotor of an EC motor relative to its stator is known in practice. So revealed document EP0918142 A2 such a procedure. A similar procedure is taken from the document US2004 / 083999 A1 , In this case, the EC engine is part of a camshaft adjusting device, by means of which the rotational angle position of the camshaft of a reciprocating internal combustion engine is adjustable relative to the crankshaft. The camshaft adjusting device has an adjusting gear, which is designed as a three-shaft gear, with the drive shaft a rotatably mounted relative to the camshaft camshaft gear is rotatably connected, which is in driving connection via a drive chain with a crankshaft gear. An output shaft of the variable speed drive is in drive connection with the camshaft and an adjusting shaft with the EC motor. When the drive shaft is stationary, there is a gear ratio predetermined by the adjusting gear between the adjusting shaft and the output shaft, the so-called stationary gear ratio. If the adjusting rotates, increases or decreases depending on the direction of rotation of the adjusting relative to the camshaft gear, the phase angle of the camshaft relative to the crankshaft. Compared to an internal combustion engine, which is operated with a constant phase position, by adjusting the phase position better cylinder filling of the internal combustion engine can be achieved, whereby fuel can be saved, the pollutant emissions can be reduced and / or the output line of the internal combustion engine can be increased.

Die Lage des Rotors relativ zum Stator wird mit Hilfe einer Messeinrichtung gemessen, die drei mit dem Stator fest verbundene Hallsensoren hat, die über den Umfang des Stators verteilt angeordnet sind. Die Hallsensoren werden bei einer Drehbewegung zwischen Stator und Rotor jeweils von dem Magnetfeld des gerade an ihnen vorziehenden Magnetsegments des Rotors durchflutet. Die Magnetfelder der Magnetsegmente induzieren in den Hallsensoren elektrische Spannungen, die als digitales Sensorsignal für eine Lagemessung nutzbar sind. Bei der Lagemessung wird zunächst ein Lagemesssignal auf einen Startwert gesetzt und danach wird der Rotor relativ zum Stator verdreht, wobei das Lagemesssignal bei jedem Auftreten eines Zustandswechsels des Sensorsignals nachgeführt wird. Das Lagemesssignal wird einer Ansteuereinrichtung zugeführt, die über eine Endstufe die einzelnen Phasen der Wicklung derart bestromt, dass sich zwischen dem Stator und dem Rotor ein magnetisches Wanderfeld ausbildet, das den Rotor antreibt. Der EC-Motor und die Messeinrichtung sind jedoch in der Praxis Störeinstrahlungen ausgesetzt, die beispielsweise über Stromversorgungsleitungen in die Messeinrichtung gelangen und dort Fehler in dem Lagemesssignal verursachen können. Dabei kann es einerseits vorkommen, dass aufgrund einer Störung ein oder mehrere Zustandswechsel bei der Nachführung des Lagemesssignals unberücksichtigt bleiben. Andererseits ist es aber auch möglich, dass bei der Nachführung des Lagemesssignals zu viele Zustandswechsel detektiert werden. In beiden Fällen tritt eine Abweichung des Lagemesssignals gegenüber der tatsächlichen Lage des Rotors auf, so dass dieser nicht richtig bestromt wird. Dadurch können Drehmomentverluste, ein ungleichmäßiger Motorlauf und Fehler bei der Einstellung der Drehwinkellage der Nockenwelle relativ zur Kurbelwelle auftreten.The position of the rotor relative to the stator is measured by means of a measuring device which has three Hall sensors fixedly connected to the stator, which are distributed over the circumference of the stator. The Hall sensors are each flooded in a rotational movement between the stator and the rotor of the magnetic field of the just over them advancing magnetic segment of the rotor. The magnetic fields of the magnetic segments induce electrical voltages in the Hall sensors, which can be used as a digital sensor signal for a position measurement. In the position measurement, a position measurement signal is first set to a start value and then the rotor is rotated relative to the stator, wherein the position measurement signal is tracked at each occurrence of a state change of the sensor signal. The position measurement signal is fed to a drive device, which energizes the individual phases of the winding via an output stage such that a magnetic traveling field is formed between the stator and the rotor, which drives the rotor. However, in practice, the EC motor and the measuring device are exposed to interference which, for example, can reach the measuring device via power supply lines and cause errors in the position measuring signal there. On the one hand, it may happen that one or more state changes in the tracking of the position measurement signal are ignored due to a fault. On the other hand, it is also possible that too many state changes are detected when tracking the position measurement signal. In both cases, a deviation of the position measurement signal from the actual position of the rotor occurs, so that it is not energized correctly. This can cause torque losses, uneven engine running and errors in adjusting the rotational position of the camshaft relative to the crankshaft.

Es besteht deshalb die Aufgabe, ein Verfahren der eingangs genannten Art zu schaffen, das auch beim Auftreten von Störungen eine präzise Einstellung der Drehwinkellage der Nockenwelle ermöglicht.It is therefore an object to provide a method of the type mentioned, which allows a precise adjustment of the rotational position of the camshaft even when interference occurs.

Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved with the features of claim 1.

Erfindungsgemäß wird dabei der Drehwinkel der Kurbelwelle erfasst und zur Überprüfung eines aus dem digitalen Sensorsignal abgeleiteten Lagemesssignals herangezogen. Wird bei der Überprüfung eine Abweichung festgestellt, die einen vorgegebenen Grenzwert betragsmäßig überschreitet, wird eine Grobkorrektur des Lagemesssignals durchgeführt. Bei der Grobkorrektur wird bevorzugt ein Wert zu dem Lagemesssignal hinzuaddiert oder von diesem subtrahiert, der dem Weg oder einem ganzzahligen Vielfachen des Wegs einer Volldrehung des Rotors dividiert durch die Anzahl der Magnetfeld-Sensoren entspricht. Wenn die Reihenfolge der den Lagemesswerten zugeordneten Sensorsignalwerten nicht zu der gespeicherten Reihenfolge der Sensorsignal-Zustände passt, wird außerdem eine Feinkorrektur des Lagemesssignals durchgeführt, bei der das Sensorsignal entsprechend der gespeicherten Reihenfolge der Sensorsignal-Zustände wiederhergestellt und das Lagemesssignal entsprechend korrigiert wird. In vorteilhafter Weise ermöglicht das Verfahren sowohl beim Auftreten kleiner (z. B. weniger als die Hälfte der Anzahl der gespeicherten Sensorsignal-Zustände) als auch beim Auftreten größerer Fehler eine Rekonstruktion des Lagemesssignals. Der Anspruch 1 ist so zu verstehen, dass bei dem erfindungsgemäßen Verfahren die Schritte e) und f) auch mit den Schritten g) und h) vertauscht werden können, d. h. es kann auch zuerst die Feinkorrektur und danach die Grobkorrektur durchgeführt werden.According to the invention, the angle of rotation of the crankshaft is detected and used to check a derived from the digital sensor signal position measurement signal. If, during the check, a deviation is detected which exceeds a predefined limit value, a coarse correction of the position measuring signal is carried out. In the coarse correction, a value is preferably added to or subtracted from the position measurement signal which corresponds to the path or an integral multiple of the path of a full rotation of the rotor divided by the number of magnetic field sensors. If the order The sensor signal values assigned to the position measurement values do not match the stored sequence of the sensor signal states, a fine correction of the position measurement signal is also performed in which the sensor signal is restored in accordance with the stored sequence of sensor signal states and the position measurement signal is corrected accordingly. Advantageously, the method enables a reconstruction of the position measurement signal both when small amounts occur (eg, less than half the number of stored sensor signal states) and when larger errors occur. The claim 1 is to be understood that in the inventive method, the steps e) and f) can also be interchanged with the steps g) and h), ie it can also be performed first the fine correction and then the coarse correction.

Bei einer vorteilhaften Ausführungsform der Erfindung wird für den ersten und zweiten Kurbelwellendrehwinkel jeweils ein Kurbelwellendrehwinkel-Messzeitpunkt erfasst, wobei aus dem ersten und zweiten Kurbelwellendrehwinkel, dem Zeitunterschied zwischen den Kurbelwellendrehwinkel-Messzeitpunkten sowie dem Zeitabstand zwischen dem Kurbelwellendrehwinkel-Messzeitpunkt des zweiten Kurbelwellendrehwinkels und einem Bezugszeitpunkt ein Schätzwert für den Drehwinkel, den die Kurbelwelle an dem Bezugszeitpunkt aufweist, extrapoliert wird, und wobei die Grobkorrektur und/oder die Feinkorrektur mit diesem Schätzwert als neuem zweiten Drehwinkelmesswert durchgeführt wird. Die Korrektur des zweiten Lagemesswerts wird dabei an einem Bezugszeitpunkt durchgeführt, der zeitlich nach den Kurbelwellendrehwinkel-Messzeitpunkten liegt. Dabei ist es insbesondere möglich, dass der Bezugszeitpunkt asynchron zum einem Takt liegen kar,n, mit dem die Kurbelwellendrehwinkelmesswerte erfasst werden. Dennoch wird aufgrund der Extrapolation des neuen zweiten Drehwinkelmesswerts bei gleichförmig bewegtem Rotor eine hohe Präzision des Lagemesssignals erreicht.In an advantageous embodiment of the invention, a crankshaft rotation angle measurement time is detected for each of the first and second crankshaft rotation angles, wherein from the first and second crankshaft rotation angles, the time difference between the crankshaft rotation angle measurement times and the time interval between the crankshaft rotation angle measurement time of the second crankshaft rotation angle and a reference time An estimate of the angle of rotation that the crankshaft has at the reference instant is extrapolated, and wherein the coarse correction and / or the fine correction with this estimated value is performed as a new second rotational angle measured value. The correction of the second position measured value is carried out at a reference time, which is temporally after the crankshaft rotation angle measuring times. In this case, it is possible, in particular, for the reference instant to be asynchronous with respect to a clock kar, n with which the crankshaft rotation angle measurement values are detected. Nevertheless, due to the extrapolation of the new second rotational angle measurement with a uniformly moving rotor, a high precision of the position measurement signal is achieved.

Vorteilhaft ist, wenn für den ersten und zweiten Lagemesswert jeweils ein Lagemesswert-Messzeitpunkt erfasst wird, wenn aus dem ersten und zweiten Lagemesswert, dem Zeitunterschied zwischen den Lagemesswert-Messzeitpunkten sowie dem Zeitabstand zwischen dem Lagemesswert-Messzeitpunkt des zweiten Lagemesswerts und dem Bezugszeitpunkt ein Schätzwert für den Wert, den das Lagemesssignal an dem Bezugszeitpunkt aufweist, extrapoliert wird, und wenn die Grobkorrektur mit diesem Schätzwert als neuem zweiten Lagemesswert durchgeführt wird. Durch diese Maßnahme kann eine noch größere Genauigkeit bei der Lagebestimmung erreicht werden. Der Bezugszeitpunkt kann asynchron zum einem Takt liegen, mit dem die Lagemesswerte erfasst werden.It is advantageous if in each case a position measuring time is detected for the first and second position measured value, if from the first and second position measurement, the time difference between the Lagemesswert measuring times and the time interval between the Lagemesswert measuring time of the second position measured value and the reference time an estimated value for the value that the position measurement signal has at the reference instant is extrapolated, and when the coarse correction with this estimated value is performed as a new second position measured value. By this measure, an even greater accuracy in determining the position can be achieved. The reference time may be asynchronous to a clock used to acquire the position readings.

Bei einer bevorzugten Ausführungsform der Erfindung wird der Bezugszeitpunkt an einer vorgegebenen Drehwinkellage der Nockenwelle generiert. Dies kann beispielsweise dadurch erreicht werden, dass die Position der Nockenwelle mit Hilfe eines Nockenwellensensors überwacht und beim Durchlaufen der vorgegebenen Nockenwellen-Drehwinkellage in einem Steuergerät ein Interrupt ausgelöst wird, bei dem das Lagemesssignal überprüft und gegebenenfalls wiederhergestellt wird.In a preferred embodiment of the invention, the reference time is generated at a predetermined angular position of the camshaft. This can be achieved, for example, by monitoring the position of the camshaft with the aid of a camshaft sensor and, when passing through the predetermined camshaft rotational position, triggering an interrupt in a control unit in which the position measurement signal is checked and, if necessary, restored.

Vorteilhaft ist, wenn die Lagemesswerte zur Bildung von Winkelgeschwindigkeitswerten differenziert werden. Das entsprechende Winkelgeschwindigkeitssignal kann zur Bestimmung der Schätzwerte und/oder zum Regeln der Drehzahl des EC-Motors verwendet werden.It is advantageous if the position measurement values are differentiated to form angular velocity values. The corresponding angular velocity signal may be used to determine the estimates and / or to control the speed of the EC motor.

Bei einer vorteilhaften Ausführungsform der Erfindung wird zur Kompensation von Toleranzen der Magnetsegmente und/ oder Magnetfeld-Sensoren für die einzelnen Magnetsegment-Sensor-Kombinationen jeweils ein Korrekturwert ermittelt und gespeichert, wobei die Lagemesswerte und/oder Winkelgeschwindigkeitswerte mit den Korrekturwerten korrigiert werden. Dadurch können insbesondere Positionierungstoleranzen der Magnetsegmente und/ oder Magnetfeld-Sensoren ausgeglichen werden. Das erfindungsgemäße Verfahren ermöglicht dann eine noch größere Präzision bei der Bestimmung der Lage des Rotors relativ zum Stator.In an advantageous embodiment of the invention, in order to compensate for tolerances of the magnet segments and / or magnetic field sensors for the individual magnet segment sensor combinations, a correction value is determined and stored, the position measurement values and / or angular velocity values being corrected with the correction values. As a result, in particular positioning tolerances of the magnetic segments and / or magnetic field sensors can be compensated. The inventive method then allows even greater precision in determining the position of the rotor relative to the stator.

Nachfolgend ist ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert. Es zeigen:

Fig. 1:
eine schematische Darstellung eine Kurbelwellen-Nockenwellenanordnung eines Hubkolben-Verbrennungsmotors, die eine Verstellvorrichtung zum Verändern der Drehwinkellage der Nockenwelle relativ zur Kurbelwelle aufweist,
Fig. 2
eine schematische Stirnseitenansicht des Rotors eines EC-Motors, bei der auch die an dem Stator angeordneten Magnetfeld-Sensoren zu sehen sind,
Fig. 3
eine graphische Darstellung eines mit Hilfe einer Lagemesseinrichtung erfassten Sensorsignals, und
Fig. 4
eine graphische Darstellung des tatsächlichen Drehwinkels des EC-Motor-Rotors, wobei die Stellen, an denen Magnetfeldsensor-Pulse auftreten, im Drehwinkelverlauf markiert sind, wobei auf der Abszisse die Zeit und auf der Ordinate der Drehwinkel aufgetragen ist.
An exemplary embodiment of the invention is explained in more detail below with reference to the drawing. Show it:
Fig. 1:
1 is a schematic representation of a crankshaft camshaft arrangement of a reciprocating internal combustion engine having an adjusting device for changing the rotational angle position of the camshaft relative to the crankshaft,
Fig. 2
a schematic end view of the rotor of an EC motor, in which the arranged on the stator magnetic field sensors are seen,
Fig. 3
a graphical representation of a detected by means of a position measuring sensor signal, and
Fig. 4
a graphical representation of the actual angle of rotation of the EC motor rotor, wherein the locations where magnetic field sensor pulses occur in the rotation angle curve are marked on the abscissa, the time and on the ordinate of the rotation angle is plotted.

Eine Verstellvorrichtung zum Verstellen der Drehwinkel- oder Phasenlage der Nockenwelle 11 einer Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle 12 weist ein Verstellgetriebe 13 auf, das als Dreiwellengetriebe mit einer kurbelwellenfesten Antriebswelle, einer nockenwellenfesten Abtriebswelle und einer mit dem Rotor eines EC-Motor 14 in Antriebsverbindung stehenden Verstellwelle ausgebildet ist. In Fig. 1 ist erkennbar, dass zur Messung des Kurbelwellendrehwinkels ein induktiver Sensor 15 vorgesehen ist, der die Zahnflanken eines aus einem magnetisch leitenden Werkstoff bestehenden, auf der Kurbelwelle 12 angeordneten Zahnkranzes 16 detektiert. Eine der Zahnlücken oder Zähne des Zahnkranzes 16 weist eine größere Breite auf als die anderen Zahnlücken bzw. Zähne und dient als Referenzmarke. Der induktive Sensor 15 ist an einem in der Zeichnung nicht näher dargestellten Motorblock der Verbrennungsmaschine angeordnet.An adjusting device for adjusting the rotational angle or phase angle of the camshaft 11 of a reciprocating internal combustion engine relative to the crankshaft 12 has an adjusting mechanism 13 which is a three-shaft transmission with a crankshaft fixed drive shaft, a camshaft fixed output shaft and one with the rotor of an EC motor 14 in drive connection Adjusting shaft is formed. In Fig. 1 It can be seen that an inductive sensor 15 is provided for measuring the crankshaft rotation angle, which detects the tooth flanks of a gear rim 16 consisting of a magnetically conductive material arranged on the crankshaft 12. One of the tooth gaps or teeth of the toothed rim 16 has a greater width than the other tooth gaps or teeth and serves as a reference mark. The inductive sensor 15 is arranged on a not shown in the drawing engine block of the internal combustion engine.

Beim Vorbeilaufen der Referenzmarke am Sensor 15 wird der Messwert für den Kurbelwellendrehwinkel auf einen Startwert gesetzt. Danach wird der Messwert bis zum Erneuten Vorbeilaufen der Referenzmarke am Sensor 15 bei jedem Detektieren einer Zahnflanke nachgeführt. Das Nachführen des Messwerts für den Kurbelwellenwinkel erfolgt mit Hilfe eines Steuergeräts, in dessen Betriebsprogramm jeweils beim Detektieren einer Zahnflanke ein Interrupt ausgelöst wird. Der Kurbelwellendrehwinkel wird also digital gemessen.When passing the reference mark on the sensor 15, the measured value for the crankshaft rotation angle is set to a starting value. Thereafter, the measured value is tracked until the reference mark is passed by the sensor 15 each time a tooth flank is detected. The tracking of the measured value for the crankshaft angle takes place with the aid of a control device in whose operating program an interrupt is triggered in each case when a tooth flank is detected. The crankshaft rotation angle is therefore measured digitally.

Wie in Fig. 2 erkennbar ist, weist der EC-Motor 14 einen Rotor 17 auf, an dessen Umfang eine Reihe von abwechselnd in zueinander entgegengesetzte Richtungen magnetisierten Magnetsegmenten 1..8 angeordnet ist, die über einen Luftspalt mit Zähnen eines in der Zeichnung nicht näher dargestellten Stators magnetisch zusammenwirken. Die Zähne sind mit einer Wicklung bewickelt, die über eine Ansteuereinrichtung bestromt wird.As in Fig. 2 can be seen, the EC motor 14 has a rotor 17, on the circumference of a series of magnetized alternately in opposite directions magnetic segments is arranged 1..8, which interact magnetically via an air gap with teeth of a stator, not shown in the drawing , The teeth are wound with a winding, which is energized via a drive device.

Die Lage der Magnetsegmente 1..8 relativ zum Stator wird mit Hilfe einer Messeinrichtung detektiert, die an dem Stator mehrere Magnetfeldsensoren A, B, C aufweist, die derart in Umfangsrichtung des Stators zueinander versetzt angeordnet sind, dass pro Umdrehung des Läufers eine Anzahl von Magnetsegment-Sensor-Kombinationen durchlaufen wird. Bei fehlerfreier Messung erzeugen die Magnetfeld-Sensoren A, B, C ein digitales Sensorsignal, das wegen der Anordnung der Magnetfeld-Sensoren A, B, C und der vorbeiziehenden Magnetsegmente 1..8 eine Reihenfolge von 2·m Sensorsignal-Zuständen durchläuft, wobei m die Anzahl der Magnetfeldsensoren A, B, C bedeutet. Jeder Sensorsignal-Zustand weist für jeden Magnetfeldsensor A, B, C jeweils eine Stelle A', B', C' auf, die z. B. "0" oder "1" sein kann. Die einzelnen Sensorsignal-Zustände treten bei fehlerfreier Messung in einer vordefinierten Reihenfolge auf, aus der sich die Drehrichtung des Rotors 17 erkennen lässt. Diese Reihenfolge wird ermittelt und in einem nichtflüchtigen Speicher abgelegt. Bei drei Magnetfeldsensoren A, B, C und positiver Drehrichtung lautet die Reihenfolge z. B. 101, 100, 110. 010, 011, 001.The position of the magnet segments 1..8 relative to the stator is detected by means of a measuring device having a plurality of magnetic field sensors A, B, C, which are arranged offset to one another in the circumferential direction of the stator such that per revolution of the rotor a number of Magnetic segment sensor combinations is traversed. If the measurement is error-free, the magnetic field sensors A, B, C generate a digital sensor signal which, due to the arrangement of the magnetic field sensors A, B, C and the passing magnetic segments 1..8, passes through an order of 2 · m sensor signal states m the number the magnetic field sensors A, B, C means. Each sensor signal state has for each magnetic field sensor A, B, C each have a point A ', B', C ', the z. B. "0" or "1" can be. The individual sensor signal states occur in error-free measurement in a predefined order, from which the direction of rotation of the rotor 17 can be seen. This sequence is determined and stored in a non-volatile memory. For three magnetic field sensors A, B, C and positive direction of rotation is the order z. 101, 100, 110. 010, 011, 001.

Bei konstanter Drehrichtung wiederholt sich bei fehlerfreier Messung jeder Sensorsignal-Zustand alle 2·m Sensorsignalwerte. Bei einer Rotorumdrehung tritt jedes Muster p mal auf, wobei p die Anzahl der Polpaare des Rotors 17 bedeutet. Jeder Wechsel eines Sensorsignal-Zustands löst im Steuergerät einen Interrupt aus, bei dem - ausgehend von einem Startwert, der z. B. null sein kann - ein Lagemesssignal nachgeführt wird. Dabei wird bei positiver Rotordrehrichtung das Lagemesssignal z. B. um einen Schritt erhöht und bei negativer Rotordrehrichtung um einen Schritt reduziert. Wenn die Sensorsignalwerte mit der gespeicherten Reihenfolge der Sensorsignal-Zustände übereinstimmen, wird angenommen, dass sich der Rotor 17 um die Breite eines Magnetsegments gedreht hat.When the direction of rotation is constant, every sensor signal state is repeated every 2 · m sensor signal values if the measurement is error-free. In one rotor revolution, each pattern occurs p times, where p is the number of pole pairs of the rotor 17. Each change of a sensor signal state triggers an interrupt in the control unit, in which - starting from a start value, the z. B. can be zero - a position measurement signal is tracked. In this case, the position measurement signal z. B. increased by one step and reduced by one step in the negative direction of rotor rotation. If the sensor signal values match the stored order of the sensor signal states, it is assumed that the rotor 17 has rotated by the width of a magnet segment.

Passt der neu eingelesene Sensorsignalwert dagegen nicht in die Reihenfolge, wird entweder angenommen, dass durch eine Störung ein oder mehr Sensorsignal-Zustände verloren gegangen sind, oder dass ein oder mehrere Sensorsignal-Zustände zuviel empfangen wurden. Durch Suchen des Sensorsignalwerts in der bekannten Reihenfolge, wird ermittelt, wieviele Sensorsignal-Zustände gefehlt haben bzw. zuviel empfangen wurden. Wurde beispielsweise der aktuelle Sensorsignalwert erst beim nächsten Puls eines Magnetfeld-Sensors erwartet, so wurde der Rotor 17 zwischenzeitlich z. B. um (2+m·n) Magnetsegment-Sensor-Kombinationen gedreht, ohne dass dies detektiert wurde. Dabei bedeuten m die Anzahl der Magnetfeld-Sensoren der Messeinrichtung und n eine ganzzahlige Zahl, die z. B. den Wert 0, ±1, ±2 usw. aufweisen kann.On the other hand, if the newly read sensor signal value does not fit into the sequence, it is assumed either that one or more sensor signal states have been lost due to a fault, or that one or more sensor signal states have been received too much. By searching for the sensor signal value in the known order, it is determined how many sensor signal states have been missing or received too much. If, for example, the current sensor signal value was not expected until the next pulse of a magnetic field sensor, then the rotor 17 has been replaced in the meantime z. B. by (2 + m · n) magnetic segment sensor combinations rotated without this being detected. In this case, m is the number of magnetic field sensors of the measuring device and n is an integer number, the z. B. can have the value 0, ± 1, ± 2, etc.

Teilt man den Lagemesssignalwert durch 2·m, so liegt der ganzzahlige Rest R im Bereich von 0 bis 2·m-1. Einem Sensorsignal-Zustand ist ein fester Rest R zugeordnet. Stimmt die Zuordnung zwischen dem Sensorsignalwert und dem Lagemesssignalwert nicht, wird der Sensorsignalwert durch eine Feinkorrektur so geändert, dass die Zuordnung wieder stimmt. Dies ist immer erreichbar und sofort beim Einlesen eines neuen Sensorsignalwerts durchführbar. Zusätzlich zu dieser Feinkorrektur kann der Lagemesssignalwert bei Bedarf um eine Grobkorrektur mit ganzen Vielfachen von 2·m verändert werden, da sie den Rest R nicht beeinflussen. Die Verstellvorrichtung hat einen Geber für die Drehwinkellage der Nockenwelle11, die an dem Motorblock einen Hall-Sensor 18 aufweist, der mit einem auf der Nockenwelle 11 angeordneten Triggerrad 19 zusammenwirkt. Wenn der Hall-Sensor 18 eine Flanke des Triggerrads 19 detektiert, wird im Betriebsprogramm des Steuergeräts ein Interrupt ausgelöst, bei dem jeweils ein Kurbelwellen-Drehwinkelmesswert und ein Sensorsignalwert zwischengespeichert werden. Dieser Interrupt wird nachstehend auch als Nockenwellen-Interrupt bezeichnet. Zu einem späteren Zeitpunkt wird dann im Betriebsprogramm des Steuergeräts ein weiterer Interrupt ausgelöst, bei dem geprüft wird, ob eine Grobkorrektur des Lagemesssignals erforderlich ist und bei dem diese gegebenenfalls durchgeführt wird. Dieser Interrupt wird nachstehend auch als zyklischer Interrupt bezeichnet.Dividing the position measurement signal value by 2 · m, the integer remainder R is in the range of 0 to 2 · m-1. A sensor signal state is assigned a fixed remainder R. If the association between the sensor signal value and the position measurement signal value is not correct, the sensor signal value is changed by a fine correction so that the assignment is correct again. This is always achievable and can be carried out immediately when reading in a new sensor signal value. In addition to this fine correction, the position measurement signal value can be changed, if necessary, by a coarse correction with whole multiples of 2 × m, since they do not influence the remainder R. The adjusting device has an encoder for the rotational angle position of the camshaft 11, which has a Hall sensor 18 on the engine block, which cooperates with a arranged on the camshaft 11 trigger 19. If the Hall sensor 18 detects an edge of the trigger wheel 19, an interrupt is triggered in the operating program of the control unit, in each case a crankshaft rotational angle measured value and a sensor signal value are buffered. This interrupt will also be referred to as a camshaft interrupt below. At a later time then another interrupt is triggered in the operating program of the controller, in which it is checked whether a coarse correction of the position measurement signal is required and in which this is optionally performed. This interrupt will also be referred to as a cyclic interrupt below.

Um die Grobkorrektur durchzuführen, werden die Getriebegleichung des Dreiwellengetriebes und die sogenannte Standgetriebeübersetzung, d. h. die Übersetzung, die das Verstellgetriebe 13 bei stillstehender Antriebswelle aufweist, genutzt. Zum Zeitpunkt t1 eines ersten Nockenwellen-Interrupts und zum Zeitpunkt t2 eines zweiten Nockenwellen-Interrupts gilt: ε 1 = ε t 1 = ϕ Cnk , 1

Figure imgb0001
ε 2 = ε t 2 = ϕ Cnk , 2
Figure imgb0002
In order to carry out the coarse correction, the gear ratio of the three-shaft transmission and the so-called stationary gear ratio, ie the translation which has the adjusting mechanism 13 when the drive shaft is stationary, are used. At time t 1 of a first camshaft interrupt and at time t 2 of a second camshaft interrupt, the following applies: ε 1 = ε t 1 = φ cnk . 1
Figure imgb0001
ε 2 = ε t 2 = φ cnk . 2
Figure imgb0002

Dabei bezeichnen ϕCnk den Drehwinkel der Kurbelwelle 12, ε den Phasenwinkel, der Index 1 den Zeitpunkt t1 und der Index 2 den Zeitpunkt t1.In this case, φ Cnk denote the rotational angle of the crankshaft 12, ε the phase angle, the index 1 the time t 1 and the index 2 the time t 1 .

Bei jedem zyklischen Interrupt gilt ferner folgende Extrapolationsgleichung, bei der ϕEm(t) die Rotorlage (Rotordrehwinkel) zur Zeit t, ϕEm,1 die Rotorlage zur Zeit t1 und ϕCnk(t) den Drehwinkel der Kurbelwelle 12 zur Zeit t bedeuten: ε t = ϕ Cnk , 1 + 1 i g ϕ Cnk t - ϕ Cnk , 1 - 2 ϕ Em t - ϕ Em , 1

Figure imgb0003
For each cyclic interrupt, the following extrapolation equation applies, in which φ Em (t) the rotor position (rotor rotation angle) at time t, φ Em , 1 the rotor position at time t 1 and φ Cnk (t) mean the angle of rotation of crankshaft 12 at time t : ε t = φ cnk . 1 + 1 i G φ cnk t - φ cnk . 1 - 2 φ em t - φ em . 1
Figure imgb0003

Stellt man Gleichung (3) nach der Rotorlage ϕEm um, und wertet Sie für den Zeitpunkt t2 des nächsten Nockenwellen-Interrupts aus, so erhält man unter Berücksichtigung der Gleichungen (1) und (2): ϕ Em , 2 = ϕ Em , 1 - i g - 1 i g ϕ Cnk , 2 - ϕ Cnk , 1

Figure imgb0004
If one converts equation (3) according to the rotor position φ Em , and evaluates it for the time t 2 of the next camshaft interrupt, taking into account equations (1) and (2), φ em . 2 = φ em . 1 - i G - 1 i G φ cnk . 2 - φ cnk . 1
Figure imgb0004

Wird zwischen den beiden Nockenwellen-Interrupts ein Fehler im Sensorsignal erkannt, so kann mit dieser Gleichung der korrekte Rotorwinkel ϕEm,2 berechnet und für die Grobkorrektur des Lagemesswerts verwendet werden.If an error in the sensor signal is detected between the two camshaft interrupts, the correct rotor angle φ Em , 2 can be calculated with this equation and used for the coarse correction of the position measurement value.

Für ein Beispiel soll die damit erreichbare Genauigkeit aufzeigen:For an example, the achievable accuracy should show:

Der EC-Motor 14 habe m=3 Magnetfeld-Sensoren und p=7 Polpaare. Die Standgetriebeübersetzung des Verstellgetriebes bei stehender Kurbelwelle 12 sei i g = n Em / n Cam = - 62 ,

Figure imgb0005

wobei nEm die Drehzahl des EC-Motors und nCam die Drehzahl der Nockenwelle 11 bezeichnen. Folgende Ungenauigkeiten, die als Super- und Subscripts an den einzelnen Winkeln in Grad angegeben sind, seinen vorhanden: ϕ Em , 2 - 7.7 + 16.2 = ϕ Em , 1 - 0 + 8.57 + 31.5 ϕ Cnk , 2 - 0 + 0.25 - ϕ Cnk , 1 - 0 + 0.25
Figure imgb0006
The EC motor 14 has m = 3 magnetic field sensors and p = 7 pole pairs. The stationary gear ratio of the variable transmission with standing crankshaft 12 is i G = n em / n Cam = - 62 .
Figure imgb0005

where n Em is the speed of the EC motor and n Cam is the speed of the camshaft 11. The following inaccuracies, which are specified as super and subscripts at the individual angles in degrees, are present: φ em . 2 - 7.7 + 16.2 = φ em . 1 - 0 + 8:57 + 31.5 φ cnk . 2 - 0 + 12:25 - φ cnk . 1 - 0 + 12:25
Figure imgb0006

Die Unsicherheit des Rotorwinkels von +16.2° / -7.7° entspricht +2 / -1 Inkrementen, also deutlich weniger als 2·m = 6 Inkremente. Eine Grobkorrektur mit Hilfe dieses Verfahrens ist somit möglich.The uncertainty of the rotor angle of + 16.2 ° / -7.7 ° corresponds to +2 / -1 increments, ie significantly less than 2 · m = 6 increments. A coarse correction using this method is thus possible.

Durch eine Feinextrapolation des Rotorwinkels beim ersten Nockenwellen-Interrupt lässt sich die Unsicherheit von +8.57° / - 0° auf etwa +2° / -2° halbieren. Dazu werden Schätzwerte für die Lage, die der Rotor 17 zum Zeitpunkt des Nockenwellen-Interrupts und des zyklischen Interrupts aufweist, ermittelt.By subtly extrapolating the rotor angle at the first camshaft interrupt, the uncertainty can be halved from + 8.57 ° / - 0 ° to approximately + 2 ° / -2 °. For this purpose, estimated values are determined for the position that the rotor 17 has at the time of the camshaft interrupt and the cyclic interrupt.

Nachstehend wird die Extrapolation anhand von Fig. 4 erläutert. Zum Zeitpunkt tTrigNW des Nockenwellen-Interrupt stehen die dem Rotordrehwinkelwert entsprechende Lagemesswert NTrigNW der Messeinrichtung, die Zeit ΔtTrigNW sowie die Drehzahl ωEm, TrigNW (vorzeichenbehaftet) beim letzten Wechsel der Magnetsegment-Sensor-Kombination zur Verfügung. Auf entsprechende Daten kann bei jedem zyklischen Interrupt zugegriffen werden. Beispielsweise ist zur Zeit t18 der Zählerstand Nt18, die Differenzzeit Δt18 und die Drehzahl ωEm,t18 verfügbar.Below is the extrapolation based on Fig. 4 explained. At the instant t TrigNW of the camshaft interrupt, the position value N TrigNW of the measuring device corresponding to the rotor rotational angle value , the time Δt TrigNW and the rotational speed ω Em, TrigNW (signed) are available at the last change of the magnetic segment-sensor combination. On appropriate Data can be accessed at each cyclic interrupt. For example, at time t 18 the count N t18 , the difference time Δt 18 and the speed ω Em, t18 are available.

Mit diesen Daten lässt sich der seit dem Auftreten des letzten Wechsels der der Magnetsegment-Sensor-Kombination überstrichene Winkel, und damit die Lage des EC-Motors beim Nockenwellentrigger und zum aktuellen Steuergeräteinterrupt ti wie folgt bestimmen: ϕ Em , TrigNW = N TrigNW δ Em + Δ t TrigNW ω Em , TrigNW

Figure imgb0007
ϕ Em , ti = N ti δ Em + Δ t i ω Em , ti
Figure imgb0008
This data can be used to determine the angle swept since the last change of the magnetic segment-sensor combination, and thus the position of the EC motor in the case of the camshaft trigger and the current ECU interrupt t i, as follows: φ em . TrigNW = N TrigNW δ em + Δ t TrigNW ω em . TrigNW
Figure imgb0007
φ em . ti = N ti δ em + Δ t i ω em . ti
Figure imgb0008

Die Auflösung δEM der Messeinrichtung 17 ergibt sich aus der Anzahl der Polpaare p und der Anzahl m der Magnetfeldsensoren A, B, C: δ Em = 360 ° 2 m P = 360 ° 2 3 7 = 8 , 57 ° ,

Figure imgb0009
The resolution δ EM of the measuring device 17 results from the number of pole pairs p and the number m of the magnetic field sensors A, B, C: δ em = 360 ° 2 m P = 360 ° 2 3 7 = 8th . 57 ° .
Figure imgb0009

Bei dem Verfahren zur Lagebestimmung bei dem EC-Motor 14 für die Vorrichtung zum Einstellen der Drehwinkellage der Nockenwelle 11 der Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle 12 wird also bei jedem Auftreten eines Zustandswechsels eines Sensorsignals von am Stator des EC-Motors 14 angeordneten Magnetfeldsensoren A, B, C, die zur Detektion von Magnetpolen des EC-Rotors 17 vorgesehen sind, ein Lagemesssignal nachgeführt. Bei fehlerfreier Messung durchläuft das Sensorsignal eine Reihenfolge von Sensorsignal-Zuständen, die mindestens zweimal pro mechanische Umdrehung des Rotors 17 auftritt. Die Reihenfolge der Sensorsignal-Zustände wird ermittelt und gespeichert. Mit Hilfe der gespeicherten Reihenfolge wird eine Feinkorrektur des Lagemesssignals durchgeführt, wenn die Reihenfolge der gemessenen Sensorsignalwerte von der gespeicherten Reihenfolge abweicht. Außerdem wird der Drehwinkel der Kurbelwelle 12 der Verbrennungsmaschine bestimmt und mit Hilfe des Drehwinkels und einer Getriebekenngröße eines Umlaufgetriebes der Nockenwellen-Verstellvorrichtung wird beim Feststellen eines Lagemessfehlers, der mit der Feinkorrektur nicht beseitigt werden kann, eine Grobkorrektur des Lagemesssignals durchgeführt.In the method for determining the position of the EC motor 14 for the device for adjusting the rotational angle position of the camshaft 11 of the reciprocating internal combustion engine relative to the crankshaft 12 is thus at each occurrence of a change in state of a sensor signal arranged on the stator of the EC motor 14 magnetic field sensors A, B, C, which are provided for detecting magnetic poles of the EC rotor 17, tracking a position measurement signal. In error-free measurement, the sensor signal undergoes an order of sensor signal states, which occurs at least twice per mechanical revolution of the rotor 17. The order of the sensor signal states is determined and stored. With the aid of the stored sequence, a fine correction of the position measuring signal is carried out if the order of the measured sensor signal values deviates from the stored sequence. In addition, the rotation angle of the crankshaft 12 of the internal combustion engine is determined, and with the aid of the rotation angle and a transmission characteristic of an epicyclic gear of the camshaft adjusting device, a coarse correction of the position measurement signal is performed upon detection of a position measurement error that can not be eliminated with the fine correction.

BezuaszeichenlisteBezuaszeichenliste

1..81..8
Magnetfeld-SensorMagnetic field sensor
1111
Nockenwellecamshaft
1212
Kurbelwellecrankshaft
1313
Verstellgetriebevariator
1414
EC-MotorEC motor
1515
Sensorsensor
1616
Zahnkranzsprocket
1717
Rotorrotor
1818
Hall-SensorHall sensor
1919
Triggerradtrigger wheel
AA
Magnetfeld-SensorMagnetic field sensor
BB
Magnetfeld-SensorMagnetic field sensor
CC
Magnetfeld-SensorMagnetic field sensor

Claims (6)

  1. Position determination method in an EC motor (14) for an apparatus for setting the rotational angle position of the camshaft (11) of a reciprocating piston internal combustion engine relative to the crankshaft (12), the crankshaft (12) having a drive connection to the camshaft (11) via an adjusting gear (13) which is in the form of a triple-shaft gear having a drive shaft fixed to the crankshaft, an output shaft fixed to the camshaft and an adjusting shaft which has a drive connection to the EC motor (14), the rotor (17) of the EC motor (14) having magnetic segments (1..8) which are offset with respect to one another in the circumferential direction and are alternately magnetized in mutually opposite directions, a measuring device being provided for the purpose of determining the position of the rotor (17) relative to the stator of the EC motor (14) and having magnetic field sensors (A, B, C) which are offset with respect to one another in the circumferential direction on the stator, characterized in that these magnetic field sensors (A, B, C) are arranged in such a manner that, in the case of a rotational movement of the rotor (17) in the direction of the arrow (Pf) relative to the stator with error-free measurement, they generate a digital sensor signal which passes through a sequence of sensor signal states which occurs at least twice per mechanical revolution of the rotor (17),
    a) the sequence of sensor signal states being determined and stored,
    b) a position measurement signal being set to a starting value,
    c) the rotor (17) being rotated relative to the stator and the position measurement signal being tracked each time a state change of the sensor signal occurs,
    d) a first rotational angle measured value of the crankshaft (12) being recorded for a first position measured value of the position measurement signal and a second rotational angle measured value of the crankshaft (12) being recorded for a second position measured value,
    e) a control value for the second position measured value being determined with the aid of the first position measured value, the first and second rotational angle measured values and a gear characteristic variable of the adjusting gear,
    f) the difference between the control value and the second position measured value being formed and, if the magnitude of the difference exceeds a predefined limit value, a coarse correction of the position measurement signal being carried out by adding a coarse correction value, which corresponds to the difference, to the second position measured value and adopting the result as the new second position measured value,
    g) a test value for a second sensor signal value associated with the second position measured value being determined using a first sensor signal value associated with the first position measured value and the stored sequence of sensor signal states,
    h) the test value being compared with the second sensor signal value and, if a discrepancy is determined, a fine correction of the position measurement signal being carried out by adding a fine correction value, which corresponds to the distance between the test value in the sequence of sensor signal states and the second sensor signal value, to the second position measured value and adopting the result as the new second position measured value,
    i) and steps c) to h) being run through again if necessary.
  2. Method according to Claim 1, characterized in that a crankshaft rotational angle measuring time is respectively recorded for the first and second crankshaft rotational angles, in that the first and second crankshaft rotational angles, the time difference between the crankshaft rotational angle measuring times and the interval of time between the crankshaft rotational angle measuring time for the second crankshaft rotational angle and a reference time are used to extrapolate an estimated value for the rotational angle of the crankshaft (12) at the reference time, and in that the coarse correction and/or the fine correction is/are carried out with this estimated value as the new second rotational angle measured value.
  3. Method according to Claim 1 or 2, characterized tin that a position measured value measuring time is respectively recorded for the first and second position measured values, in that the first and second position measured values, the time difference between the position measured value measuring times and the interval of time between the position measured value measuring time for the second position measured value and the reference time are used to extrapolate an estimated value for the value of the position measurement signal at the reference time, and in that the coarse correction is carried out with this estimated value as the new second position measured value.
  4. Method according to one of Claims 1 to 3, characterized in that the reference time is generated at a predefined rotational angle position of the camshaft (11).
  5. Method according to one of Claims 1 to 4, characterized in that the position measured values are differentiated in order to form angular velocity values.
  6. Method according to one of Claims 1 to 5, characterized in that, in order to compensate for tolerances of the magnetic segments (1..8) and/or magnetic field sensors (A, B, C), a correction value is respectively determined and stored for the individual magnetic segment/sensor combinations, and in that the position measured values and/or angular velocity values are corrected using the correction values.
EP05787299A 2004-09-13 2005-09-03 Method for positional determination for an ec motor Expired - Fee Related EP1792057B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004044620 2004-09-13
PCT/DE2005/001545 WO2006029592A1 (en) 2004-09-13 2005-09-03 Method for positional determination for an ec motor

Publications (2)

Publication Number Publication Date
EP1792057A1 EP1792057A1 (en) 2007-06-06
EP1792057B1 true EP1792057B1 (en) 2013-01-30

Family

ID=35457070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05787299A Expired - Fee Related EP1792057B1 (en) 2004-09-13 2005-09-03 Method for positional determination for an ec motor

Country Status (4)

Country Link
US (1) US7430998B2 (en)
EP (1) EP1792057B1 (en)
DE (1) DE112005002806A5 (en)
WO (1) WO2006029592A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506504B2 (en) * 2005-02-25 2010-07-21 トヨタ自動車株式会社 Control device for internal combustion engine
DE102006016650B4 (en) * 2006-04-08 2019-05-16 Schaeffler Technologies AG & Co. KG Camshaft drive for an internal combustion engine
US8096271B2 (en) * 2009-06-01 2012-01-17 GM Global Technology Operations LLC System and method for determining a camshaft position in a variable valve timing engine
WO2011079302A2 (en) * 2009-12-24 2011-06-30 Incube Labs, Llc Swallowable drug delivery device and methods of drug delivery
DE102010062243B4 (en) * 2010-12-01 2023-01-26 Robert Bosch Gmbh Method, computer program, storage medium and control and/or regulating device for controlling an internal combustion engine
JP2012177421A (en) * 2011-02-25 2012-09-13 Honda Motor Co Ltd Control apparatus for clutch driving mechanism
US10243724B2 (en) 2014-02-12 2019-03-26 Infineon Technologies Ag Sensor subassembly and method for sending a data signal
DE102014101754B4 (en) 2014-02-12 2015-11-19 Infineon Technologies Ag A SENSOR COMPONENT AND METHOD FOR SENDING A DATA SIGNAL
GB2527114B (en) * 2014-06-12 2017-03-01 Control Techniques Ltd Method and system for determining an offset between a detector and a point on a motor
DE102015214596A1 (en) * 2015-07-31 2017-02-02 Robert Bosch Gmbh Method for determining a position of a rotor of an electrical machine
JP7366827B2 (en) * 2020-03-31 2023-10-23 本田技研工業株式会社 Detection device and control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69818946T2 (en) * 1997-11-21 2004-05-13 Mazda Motor Corp. Device for controlling the rotation phase
DE10315317B4 (en) * 2002-09-13 2017-06-22 Schaeffler Technologies AG & Co. KG Method for operating a Phasenverstellvorrichtung and Phasenverstellvorrichtung for performing the method
JP4123127B2 (en) * 2002-10-25 2008-07-23 株式会社デンソー Variable valve timing control device for internal combustion engine
JP4159854B2 (en) * 2002-10-31 2008-10-01 株式会社日立製作所 Control device for variable valve timing mechanism

Also Published As

Publication number Publication date
US20080216782A1 (en) 2008-09-11
EP1792057A1 (en) 2007-06-06
DE112005002806A5 (en) 2007-08-30
WO2006029592A1 (en) 2006-03-23
US7430998B2 (en) 2008-10-07

Similar Documents

Publication Publication Date Title
EP1792057B1 (en) Method for positional determination for an ec motor
EP1630363B1 (en) Method to determine the phase of a camshaft in an internal combustion engine
EP1797287B1 (en) Method for adjusting the rotational angle position of the camshaft of a reciprocating internal combustion engine in relation to the crankshaft
DE10330872B4 (en) Method for determining the angle of rotation of a camshaft relative to the crankshaft of an internal combustion engine
EP1087232B1 (en) Method for measuring a frequency information, in particular an angular frequency information of a motor, and device for implementing such a method
EP1812691B1 (en) Process for adjusting the angular position of the camshaft of a reciprocating internal combustion engine relative to the crankshaft
DE102005035881A1 (en) Method for determining rotational angular position of camshaft of piston engine in relation to crankshaft entails extrapolating assessed value for rotational angle from adjusting shaft rotational angle measurements
EP1596493B1 (en) Method for measuring the speed of an electronically commutated motor
EP3080555B1 (en) Device for and method of measuring a rotor parameter
DE102008001408A1 (en) Offset angle determination in synchronous machines
DE102005019515B4 (en) Method for measuring the speed of an EC motor
DE10204196B4 (en) Method for determining the crankshaft position of an internal combustion engine
DE102019115787B3 (en) Method for determining the angle of the rotor of an electric motor, control unit and vehicle
DE102004011807A1 (en) Method and device for determining the angular position of a crankshaft of an internal combustion engine
DE19622042C2 (en) Method for recognizing and correcting errors in the time measurement on rotating shafts
EP2534547B1 (en) Method for predicting the duration of a future time interval
DE102017222841A1 (en) Method for determining a rotational angle position of a crankshaft of an internal combustion engine
DE102012111799A1 (en) Method for calibrating electrically commutated motor, involves storing correction angle as zero point for detected error of sensor unit for controlling angle of electrically commutated motor
WO2021004574A1 (en) Internal combustion engine and method for operating an electromechanical camshaft adjuster
DE10315317B4 (en) Method for operating a Phasenverstellvorrichtung and Phasenverstellvorrichtung for performing the method
EP2492475B1 (en) Method for automatic detection of a rotary encoder error of a combustion engine
DE102019105055B4 (en) Motor shaft arrangement, internal combustion engine
DE102013216122A1 (en) Method for determining a change of direction of rotation of a crankshaft of an internal combustion engine
WO2004033996A1 (en) Sensing wheel
DE19802109C2 (en) Process for adapting mechanical tolerances when measuring time on rotating shafts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB HU IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB HU IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB HU IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013448

Country of ref document: DE

Effective date: 20130328

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130130

26N No opposition filed

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013448

Country of ref document: DE

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005013448

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20140218

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005013448

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER KG, 91074 HERZOGENAURACH, DE

Effective date: 20130130

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005013448

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20140218

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005013448

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER KG, 91074 HERZOGENAURACH, DE

Effective date: 20130130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130903

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005013448

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20150213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211118

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005013448

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401