EP1785773A1 - Kristallines Wachs - Google Patents
Kristallines Wachs Download PDFInfo
- Publication number
- EP1785773A1 EP1785773A1 EP06123677A EP06123677A EP1785773A1 EP 1785773 A1 EP1785773 A1 EP 1785773A1 EP 06123677 A EP06123677 A EP 06123677A EP 06123677 A EP06123677 A EP 06123677A EP 1785773 A1 EP1785773 A1 EP 1785773A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wax
- percent
- crystallinity
- resin
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000019383 crystalline wax Nutrition 0.000 title claims description 9
- 239000004169 Hydrogenated Poly-1-Decene Substances 0.000 title claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000002844 melting Methods 0.000 claims abstract description 16
- 230000008018 melting Effects 0.000 claims abstract description 16
- 239000001993 wax Substances 0.000 claims description 142
- -1 polyethylene Polymers 0.000 claims description 80
- 239000000203 mixture Substances 0.000 claims description 47
- 239000004698 Polyethylene Substances 0.000 claims description 14
- 229920000573 polyethylene Polymers 0.000 claims description 14
- 239000004743 Polypropylene Substances 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 4
- WCOXQTXVACYMLM-UHFFFAOYSA-N 2,3-bis(12-hydroxyoctadecanoyloxy)propyl 12-hydroxyoctadecanoate Chemical compound CCCCCCC(O)CCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC(O)CCCCCC)COC(=O)CCCCCCCCCCC(O)CCCCCC WCOXQTXVACYMLM-UHFFFAOYSA-N 0.000 claims description 3
- 240000007594 Oryza sativa Species 0.000 claims description 3
- 235000007164 Oryza sativa Nutrition 0.000 claims description 3
- 235000013871 bee wax Nutrition 0.000 claims description 3
- 239000012166 beeswax Substances 0.000 claims description 3
- 239000004203 carnauba wax Substances 0.000 claims description 3
- 235000013869 carnauba wax Nutrition 0.000 claims description 3
- 229940119170 jojoba wax Drugs 0.000 claims description 3
- 239000004200 microcrystalline wax Substances 0.000 claims description 3
- 235000019808 microcrystalline wax Nutrition 0.000 claims description 3
- 235000013872 montan acid ester Nutrition 0.000 claims description 3
- 239000012188 paraffin wax Substances 0.000 claims description 3
- 235000009566 rice Nutrition 0.000 claims description 3
- 229920005989 resin Polymers 0.000 description 66
- 239000011347 resin Substances 0.000 description 66
- 239000000049 pigment Substances 0.000 description 40
- 239000002245 particle Substances 0.000 description 30
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 28
- 238000000034 method Methods 0.000 description 28
- 239000006185 dispersion Substances 0.000 description 27
- 230000008569 process Effects 0.000 description 25
- 239000004816 latex Substances 0.000 description 22
- 229920000126 latex Polymers 0.000 description 22
- 239000000178 monomer Substances 0.000 description 21
- CYUZOYPRAQASLN-UHFFFAOYSA-N 3-prop-2-enoyloxypropanoic acid Chemical compound OC(=O)CCOC(=O)C=C CYUZOYPRAQASLN-UHFFFAOYSA-N 0.000 description 14
- 239000003086 colorant Substances 0.000 description 14
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 13
- 238000004581 coalescence Methods 0.000 description 13
- 239000003945 anionic surfactant Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- 239000004094 surface-active agent Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000000839 emulsion Substances 0.000 description 9
- 239000002736 nonionic surfactant Substances 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 8
- 239000002563 ionic surfactant Substances 0.000 description 8
- 238000001953 recrystallisation Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000000701 coagulant Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 6
- PUKLDDOGISCFCP-JSQCKWNTSA-N 21-Deoxycortisone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2=O PUKLDDOGISCFCP-JSQCKWNTSA-N 0.000 description 6
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 6
- FCYKAQOGGFGCMD-UHFFFAOYSA-N Fulvic acid Natural products O1C2=CC(O)=C(O)C(C(O)=O)=C2C(=O)C2=C1CC(C)(O)OC2 FCYKAQOGGFGCMD-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 230000000536 complexating effect Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 239000002509 fulvic acid Substances 0.000 description 6
- 229940095100 fulvic acid Drugs 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- 239000004021 humic acid Substances 0.000 description 6
- 239000001508 potassium citrate Substances 0.000 description 6
- 229960002635 potassium citrate Drugs 0.000 description 6
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 6
- 235000011082 potassium citrates Nutrition 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000001509 sodium citrate Substances 0.000 description 6
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 6
- 239000000176 sodium gluconate Substances 0.000 description 6
- 235000012207 sodium gluconate Nutrition 0.000 description 6
- 229940005574 sodium gluconate Drugs 0.000 description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 239000002270 dispersing agent Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000007720 emulsion polymerization reaction Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 229960001790 sodium citrate Drugs 0.000 description 5
- 235000011083 sodium citrates Nutrition 0.000 description 5
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 235000019241 carbon black Nutrition 0.000 description 4
- 239000012986 chain transfer agent Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000002952 polymeric resin Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical class OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N butadiene group Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 3
- 125000002843 carboxylic acid group Chemical group 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- WNWZKKBGFYKSGA-UHFFFAOYSA-N n-(4-chloro-2,5-dimethoxyphenyl)-2-[[2,5-dimethoxy-4-(phenylsulfamoyl)phenyl]diazenyl]-3-oxobutanamide Chemical compound C1=C(Cl)C(OC)=CC(NC(=O)C(N=NC=2C(=CC(=C(OC)C=2)S(=O)(=O)NC=2C=CC=CC=2)OC)C(C)=O)=C1OC WNWZKKBGFYKSGA-UHFFFAOYSA-N 0.000 description 3
- VKWNTWQXVLKCSG-UHFFFAOYSA-N n-ethyl-1-[(4-phenyldiazenylphenyl)diazenyl]naphthalen-2-amine Chemical compound CCNC1=CC=C2C=CC=CC2=C1N=NC(C=C1)=CC=C1N=NC1=CC=CC=C1 VKWNTWQXVLKCSG-UHFFFAOYSA-N 0.000 description 3
- 229920000058 polyacrylate Chemical group 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- TXWSZJSDZKWQAU-UHFFFAOYSA-N 2,9-dimethyl-5,12-dihydroquinolino[2,3-b]acridine-7,14-dione Chemical compound N1C2=CC=C(C)C=C2C(=O)C2=C1C=C(C(=O)C=1C(=CC=C(C=1)C)N1)C1=C2 TXWSZJSDZKWQAU-UHFFFAOYSA-N 0.000 description 2
- CVEPFOUZABPRMK-UHFFFAOYSA-N 2-methylprop-2-enoic acid;styrene Chemical class CC(=C)C(O)=O.C=CC1=CC=CC=C1 CVEPFOUZABPRMK-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical class OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- JBTHDAVBDKKSRW-UHFFFAOYSA-N chembl1552233 Chemical compound CC1=CC(C)=CC=C1N=NC1=C(O)C=CC2=CC=CC=C12 JBTHDAVBDKKSRW-UHFFFAOYSA-N 0.000 description 2
- ZLFVRXUOSPRRKQ-UHFFFAOYSA-N chembl2138372 Chemical compound [O-][N+](=O)C1=CC(C)=CC=C1N=NC1=C(O)C=CC2=CC=CC=C12 ZLFVRXUOSPRRKQ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- SMQZZQFYHUDLSJ-UHFFFAOYSA-L disodium;1-dodecylnaphthalene;sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O.C1=CC=C2C(CCCCCCCCCCCC)=CC=CC2=C1 SMQZZQFYHUDLSJ-UHFFFAOYSA-L 0.000 description 2
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- HXHCOXPZCUFAJI-UHFFFAOYSA-N prop-2-enoic acid;styrene Chemical class OC(=O)C=C.C=CC1=CC=CC=C1 HXHCOXPZCUFAJI-UHFFFAOYSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 2
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- WTXXSZUATXIAJO-OWBHPGMISA-N (Z)-14-methylpentadec-2-enoic acid Chemical compound CC(CCCCCCCCCC\C=C/C(=O)O)C WTXXSZUATXIAJO-OWBHPGMISA-N 0.000 description 1
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- QAQSNXHKHKONNS-UHFFFAOYSA-N 1-ethyl-2-hydroxy-4-methyl-6-oxopyridine-3-carboxamide Chemical compound CCN1C(O)=C(C(N)=O)C(C)=CC1=O QAQSNXHKHKONNS-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- PQHYOGIRXOKOEJ-UHFFFAOYSA-N 2-(1,2-dicarboxyethylamino)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NC(C(O)=O)CC(O)=O PQHYOGIRXOKOEJ-UHFFFAOYSA-N 0.000 description 1
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- IAFBRPFISOTXSO-UHFFFAOYSA-N 2-[[2-chloro-4-[3-chloro-4-[[1-(2,4-dimethylanilino)-1,3-dioxobutan-2-yl]diazenyl]phenyl]phenyl]diazenyl]-n-(2,4-dimethylphenyl)-3-oxobutanamide Chemical compound C=1C=C(C)C=C(C)C=1NC(=O)C(C(=O)C)N=NC(C(=C1)Cl)=CC=C1C(C=C1Cl)=CC=C1N=NC(C(C)=O)C(=O)NC1=CC=C(C)C=C1C IAFBRPFISOTXSO-UHFFFAOYSA-N 0.000 description 1
- VOBNSQKMDIOJTQ-UHFFFAOYSA-N 2-aminoethyl phosphono hydrogen phosphate Chemical compound NCCOP(O)(=O)OP(O)(O)=O VOBNSQKMDIOJTQ-UHFFFAOYSA-N 0.000 description 1
- GFHWCDCFJNJRQR-UHFFFAOYSA-M 2-ethenyl-1-methylpyridin-1-ium;chloride Chemical compound [Cl-].C[N+]1=CC=CC=C1C=C GFHWCDCFJNJRQR-UHFFFAOYSA-M 0.000 description 1
- VWFJDQUYCIWHTN-YFVJMOTDSA-N 2-trans,6-trans-farnesyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-YFVJMOTDSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- LQUSVSANJKHVTM-UHFFFAOYSA-N 3-hydroxy-3h-pyridin-4-one Chemical compound OC1C=NC=CC1=O LQUSVSANJKHVTM-UHFFFAOYSA-N 0.000 description 1
- XCKGFJPFEHHHQA-UHFFFAOYSA-N 5-methyl-2-phenyl-4-phenyldiazenyl-4h-pyrazol-3-one Chemical compound CC1=NN(C=2C=CC=CC=2)C(=O)C1N=NC1=CC=CC=C1 XCKGFJPFEHHHQA-UHFFFAOYSA-N 0.000 description 1
- CGLVZFOCZLHKOH-UHFFFAOYSA-N 8,18-dichloro-5,15-diethyl-5,15-dihydrodiindolo(3,2-b:3',2'-m)triphenodioxazine Chemical compound CCN1C2=CC=CC=C2C2=C1C=C1OC3=C(Cl)C4=NC(C=C5C6=CC=CC=C6N(C5=C5)CC)=C5OC4=C(Cl)C3=NC1=C2 CGLVZFOCZLHKOH-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- XOSICEVNPWFYTA-UHFFFAOYSA-N C(CCCCCCCCCCCCCCCCC)S(=O)(=O)N.C(CCCCCCCCCCCCCCCCC)S(=O)(=O)N.C(CCCCCCCCCCCCCCCCC)S(=O)(=O)N.C(CCCCCCCCCCCCCCCCC)S(=O)(=O)N.[Cu] Chemical compound C(CCCCCCCCCCCCCCCCC)S(=O)(=O)N.C(CCCCCCCCCCCCCCCCC)S(=O)(=O)N.C(CCCCCCCCCCCCCCCCC)S(=O)(=O)N.C(CCCCCCCCCCCCCCCCC)S(=O)(=O)N.[Cu] XOSICEVNPWFYTA-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Chemical class OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical class OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- SHWNNYZBHZIQQV-UHFFFAOYSA-J EDTA monocalcium diisodium salt Chemical compound [Na+].[Na+].[Ca+2].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O SHWNNYZBHZIQQV-UHFFFAOYSA-J 0.000 description 1
- 229940120146 EDTMP Drugs 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 244000166124 Eucalyptus globulus Species 0.000 description 1
- VWFJDQUYCIWHTN-UHFFFAOYSA-N Farnesyl pyrophosphate Natural products CC(C)=CCCC(C)=CCCC(C)=CCOP(O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-UHFFFAOYSA-N 0.000 description 1
- 101000652226 Homo sapiens Suppressor of cytokine signaling 6 Proteins 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920005692 JONCRYL® Polymers 0.000 description 1
- VPWFPZBFBFHIIL-UHFFFAOYSA-L Lithol Rubine Chemical compound OC=1C(=CC2=CC=CC=C2C1N=NC1=C(C=C(C=C1)C)S(=O)(=O)[O-])C(=O)[O-].[Na+].[Na+] VPWFPZBFBFHIIL-UHFFFAOYSA-L 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- ADXYLNLKDOSEKQ-UHFFFAOYSA-N N-(4-chlorophenyl)-2,4-dimethoxy-3-oxo-4-phenyldiazenylbutanamide Chemical compound C1(=CC=CC=C1)N=NC(C(C(C(=O)NC1=CC=C(C=C1)Cl)OC)=O)OC ADXYLNLKDOSEKQ-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- FHNINJWBTRXEBC-UHFFFAOYSA-N Sudan III Chemical compound OC1=CC=C2C=CC=CC2=C1N=NC(C=C1)=CC=C1N=NC1=CC=CC=C1 FHNINJWBTRXEBC-UHFFFAOYSA-N 0.000 description 1
- RCTGMCJBQGBLKT-UHFFFAOYSA-N Sudan IV Chemical compound CC1=CC=CC=C1N=NC(C=C1C)=CC=C1N=NC1=C(O)C=CC2=CC=CC=C12 RCTGMCJBQGBLKT-UHFFFAOYSA-N 0.000 description 1
- 102100030530 Suppressor of cytokine signaling 6 Human genes 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 1
- DYRDKSSFIWVSNM-UHFFFAOYSA-N acetoacetanilide Chemical class CC(=O)CC(=O)NC1=CC=CC=C1 DYRDKSSFIWVSNM-UHFFFAOYSA-N 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000006177 alkyl benzyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229940077484 ammonium bromide Drugs 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000001000 anthraquinone dye Chemical class 0.000 description 1
- YYGRIGYJXSQDQB-UHFFFAOYSA-N anthrathrene Natural products C1=CC=CC2=CC=C3C4=CC5=CC=CC=C5C=C4C=CC3=C21 YYGRIGYJXSQDQB-UHFFFAOYSA-N 0.000 description 1
- QFFVPLLCYGOFPU-UHFFFAOYSA-N barium chromate Chemical compound [Ba+2].[O-][Cr]([O-])(=O)=O QFFVPLLCYGOFPU-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- WMLFGKCFDKMAKB-UHFFFAOYSA-M benzyl-diethyl-tetradecylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCC[N+](CC)(CC)CC1=CC=CC=C1 WMLFGKCFDKMAKB-UHFFFAOYSA-M 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M bisulphate group Chemical group S([O-])(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 229960001506 brilliant green Drugs 0.000 description 1
- HXCILVUBKWANLN-UHFFFAOYSA-N brilliant green cation Chemical compound C1=CC(N(CC)CC)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](CC)CC)C=C1 HXCILVUBKWANLN-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001201 calcium disodium ethylene diamine tetra-acetate Substances 0.000 description 1
- 235000011188 calcium disodium ethylene diamine tetraacetate Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical group 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- VDQQXEISLMTGAB-UHFFFAOYSA-N chloramine T Chemical compound [Na+].CC1=CC=C(S(=O)(=O)[N-]Cl)C=C1 VDQQXEISLMTGAB-UHFFFAOYSA-N 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- VVOLVFOSOPJKED-UHFFFAOYSA-N copper phthalocyanine Chemical compound [Cu].N=1C2=NC(C3=CC=CC=C33)=NC3=NC(C3=CC=CC=C33)=NC3=NC(C3=CC=CC=C33)=NC3=NC=1C1=CC=CC=C12 VVOLVFOSOPJKED-UHFFFAOYSA-N 0.000 description 1
- KYQODXQIAJFKPH-UHFFFAOYSA-N diazanium;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [NH4+].[NH4+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O KYQODXQIAJFKPH-UHFFFAOYSA-N 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229940090960 diethylenetriamine pentamethylene phosphonic acid Drugs 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 1
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010556 emulsion polymerization method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 229940071087 ethylenediamine disuccinate Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000000174 gluconic acid Chemical class 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229940071826 hydroxyethyl cellulose Drugs 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 235000010187 litholrubine BK Nutrition 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- YLGXILFCIXHCMC-JHGZEJCSSA-N methyl cellulose Chemical compound COC1C(OC)C(OC)C(COC)O[C@H]1O[C@H]1C(OC)C(OC)C(OC)OC1COC YLGXILFCIXHCMC-JHGZEJCSSA-N 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920002114 octoxynol-9 Polymers 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- MTZWHHIREPJPTG-UHFFFAOYSA-N phorone Chemical compound CC(C)=CC(=O)C=C(C)C MTZWHHIREPJPTG-UHFFFAOYSA-N 0.000 description 1
- 229940110337 pigment blue 1 Drugs 0.000 description 1
- 229940099800 pigment red 48 Drugs 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N protonated dimethyl amine Natural products CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 1
- 238000001448 refractive index detection Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229940080314 sodium bentonite Drugs 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- DZCAZXAJPZCSCU-UHFFFAOYSA-K sodium nitrilotriacetate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CC([O-])=O DZCAZXAJPZCSCU-UHFFFAOYSA-K 0.000 description 1
- 235000019830 sodium polyphosphate Nutrition 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 235000019794 sodium silicate Nutrition 0.000 description 1
- UGTZMIPZNRIWHX-UHFFFAOYSA-K sodium trimetaphosphate Chemical compound [Na+].[Na+].[Na+].[O-]P1(=O)OP([O-])(=O)OP([O-])(=O)O1 UGTZMIPZNRIWHX-UHFFFAOYSA-K 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229940033134 talc Drugs 0.000 description 1
- 239000011975 tartaric acid Chemical class 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- 229960002363 thiamine pyrophosphate Drugs 0.000 description 1
- 235000008170 thiamine pyrophosphate Nutrition 0.000 description 1
- 239000011678 thiamine pyrophosphate Substances 0.000 description 1
- YXVCLPJQTZXJLH-UHFFFAOYSA-N thiamine(1+) diphosphate chloride Chemical compound [Cl-].CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N YXVCLPJQTZXJLH-UHFFFAOYSA-N 0.000 description 1
- AISMNBXOJRHCIA-UHFFFAOYSA-N trimethylazanium;bromide Chemical class Br.CN(C)C AISMNBXOJRHCIA-UHFFFAOYSA-N 0.000 description 1
- WHNXAQZPEBNFBC-UHFFFAOYSA-K trisodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(2-hydroxyethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].OCCN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O WHNXAQZPEBNFBC-UHFFFAOYSA-K 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/06—Other polishing compositions
- C09G1/08—Other polishing compositions based on wax
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/04—Monomers containing three or four carbon atoms
- C08F10/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F6/00—Post-polymerisation treatments
- C08F6/04—Fractionation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08775—Natural macromolecular compounds or derivatives thereof
- G03G9/08782—Waxes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08795—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08797—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/04—Monomers containing three or four carbon atoms
- C08F110/06—Propene
Definitions
- the present disclosure is generally related to distilled or fractionated waxes referred to herein as wax or waxes that can be used in toners, and more specifically, to toners made by emulsion aggregation (EA) and coalescence processes.
- the waxes herein are crystalline waxes, and have a degree of crystallization.
- the resulting toners can be selected for known electrophotographic, electrostatographic, xerographic, and like imaging processes, including copying, printing, faxing, scanning, and like machines, and including digital, image-on-image, color, lithography, and like processes.
- toners In reprographic technologies, such as xerographic and ionographic devices, it is desired to provide toners with high gloss. It is also desired to provide toners that can be used in an oil-less environment, and at low minimum fusing temperatures. It is further desired to provide toners that can be used in high-speed printing and/or copying and the like, machines.
- Toners in accordance with embodiments herein provide desired fusing characteristics including, for example, release characteristics such as a stripping force of less than about 30 to less than about 5 grams of force; blocking characteristics such as a high blocking temperature of about 45°C to about 65°C; document offset characteristics such as a document offset of about 2.0 to about 5.0; vinyl offset characteristics such as a vinyl offset of about 3.0 to about 5.0; and triboelectrical charging characteristics.
- release characteristics such as a stripping force of less than about 30 to less than about 5 grams of force
- blocking characteristics such as a high blocking temperature of about 45°C to about 65°C
- document offset characteristics such as a document offset of about 2.0 to about 5.0
- vinyl offset characteristics such as a vinyl offset of about 3.0 to about 5.0
- triboelectrical charging characteristics triboelectrical charging characteristics.
- toners in embodiments herein enable the use of lower minimum imaging fusing temperatures, such as from about 120°C to about 170°C, enable high speed printing such as for machines
- the present toners in embodiments, enable high image gloss, such as in an oil-less fuser system, while still retaining a high blocking temperature, high image gloss comprising of for example from about 30 to about 80 gloss units (GGU) as measured by the Gardner Gloss metering unit; for example on a coated paper, such as Xerox 120 gsm Digital Coated Gloss papers.
- GGU gloss units
- toner preparation processes comprising: (i) preparing, or providing a colorant dispersion; (ii) preparing, or providing a functionalized wax dispersion comprised of a functionalized wax contained in a dispersant mixture comprised of a nonionic surfactant, an ionic surfactant, or mixtures thereof; (iii) shearing the resulting mixture of the functionalized wax dispersion (ii) and the colorant dispersion (i) with a latex or emulsion blend comprised of resin contained in a mixture of an anionic surfactant and a nonionic surfactant; (iv) heating the resulting sheared blend of (iii) below about the glass transition temperature (Tg) of the resin particles; (v) optionally adding additional anionic surfactant to the resulting aggregated suspension of (iv) to prevent
- Emulsion/aggregation/coalescence processes for the preparation of toners are illustrated in a number of Xerox patents, the disclosures of each of which are totally incorporated herein by reference, such as U.S. Patent 5,290,654 , U.S. Patent 5,278,020 , U.S. Patent 5,308,734 , U.S. Patent 5,370,963 , U.S. Patent 5,344,738 , U.S. Patent 5,403,693 , U.S. Patent 5,418,108 , U.S. Patent 5,364,729 , and U.S. Patent 5,346,797 ; and also of interest may be U.S.
- U.S. Patent 5,922,501 describes a process for the preparation of toner comprising blending an aqueous colorant dispersion and a latex resin emulsion, and which latex resin is generated from a dimeric acrylic acid, an oligomer acrylic acid, or mixtures thereof and a monomer; heating the resulting mixture at a temperature about equal, or below about the glass transition temperature (Tg) of the latex resin to form aggregates; heating the resulting aggregates at a temperature about equal to, or above about the Tg of the latex resin to effect coalescence and fusing of the aggregates; and optionally isolating the toner product, washing, and drying.
- Tg glass transition temperature
- U.S. Patent 5,482,812 describes a process for the preparation of toner compositions or toner particles comprising (i) providing an aqueous pigment dispersion comprised of a pigment, an ionic surfactant, and optionally a charge control agent; (ii) providing a wax dispersion comprised of wax, a dispersant comprised of nonionic surfactant, ionic surfactant or mixtures thereof; (iii) shearing a mixture of the wax dispersion and the pigment dispersion with a latex or emulsion blend comprised of resin, a counterionic surfactant with a charge polarity of opposite sign to that of said ionic surfactant, and a nonionic surfactant; (iv) heating the above sheared blend below about the glass transition temperature (Tg) of the resin to form electrostatically bound toner size aggregates with a narrow particle size distribution; (v) adding additional ionic surfactant to the aggregated suspension of (iv) to ensure that no,
- U.S. Patent 5,622,806 describes a process, for example, for the preparation of toner compositions with controlled particle size comprising (i) preparing a pigment dispersion in water, which dispersion is comprised of a pigment, an ionic surfactant in amounts of from about 0.5 to about 10 percent by weight to water, and an optional charge control agent; (ii) shearing the pigment dispersion with a latex mixture comprised of a counterionic surfactant with a charge polarity of opposite sign to that of the ionic surfactant, a nonionic surfactant, and resin particles, thereby causing a flocculation or heterocoagulation of the formed particles of pigment, resin, and charge control agent; and (iii) stirring.
- U.S. Patent Application Publication 2004/0130054 A1 discloses waxes used in inks and toners.
- the waxes have a melting point of 50 to 120°C, and a melting range of 5 to about 65°C.
- Figure 1 is a DSC curve of heat flow versus temperature for a wax in accordance with an embodiment disclosed herein.
- Figure 2 is an x-ray diffraction of intensity versus 2-Theta (°) for a wax in accordance with an embodiment disclosed herein.
- Figure 3 is a graph of viscosity versus temperature and illustrates the useful coalescence temperature ranges and the slope provides a viscosity for a given temperature as defined by an equation in accordance with an embodiment disclosed herein.
- Figure 4 is a graph of weight percent versus carbon number for a wax in accordance with an embodiment disclosed herein.
- Embodiments include a distilled wax having from about 30 to about 62 carbon units, a degree of crystallinity as calculated by heat of melting and as measured by DSC of from about 55 to about 100 percent, a Mw of from about 500 to about 800, and a polydispersity (Mw/Mn) of from about 1 to about 1.05.
- Embodiments also include a crystalline wax having from about 30 to about 62 carbon units, a degree of crystallinity as calculated by heat of melting and as measured by DSC of from about 55 to about 100 percent, an Mw, Mn and Mp all in the range of from about 640 to about 725, and a polydispersity of from about 1 to about 1.05.
- embodiments include a distilled crystalline wax having from about 30 to about 62 carbon units, a viscosity of from about 100 to about 10,000 centipoise at 92°C, a degree of crystallinity as calculated by heat of melting and as measured by DSC of from about 55 to about 100 percent, an Mw, Mn and Mp all three in the range of from about 640 to about 725, and a polydispersity of from about 1 to about 1.05.
- a fractionated or distilled wax and more specifically, a crystalline wax, and a toner comprising the wax.
- the wax can be selected from, for example, a polyolefin wax, an alkylene wax, a polyethylene wax, a polypropylene wax, a paraffin wax, a Fischer Tropsch wax, microcrystalline wax, carnauba wax, jojoba wax, rice wax, beeswax, montanic acid ester wax, castor wax, or mixtures thereof.
- the wax is a polyethylene wax or a Fischer Tropsch wax, and in specific embodiments, fractionated, crystalline, and/or distilled polyethylene wax.
- the polyethylene wax in embodiments, is derived from ethylene polymerization.
- the wax can be prepared using different catalysts including Ziegler-Natta, Fischer Tropsch, metallocene, and like catalysts. Details of how the wax can be made can be found in U.S. Patent Application Publication No. US 20050130054 A1 and U.S. Patent 5,500,321 , the subject matter of which is hereby incorporated by reference in the entirety for both of these references.
- the number of carbon units for the wax ranges from about 30 to about 62 carbons, and the peak from about 42 to about 55. At 30 carbon units, the weight percent is at about 0.5 weight percent; while at 60 carbon units, the weight percent is at about 0.5 weight percent.
- the peak weight percent is less than or equal to 20 percent, or from about 1 to about 15 percent, as measured by a gas chromatograph.
- Figure 4 represents a schematic of the distribution as well as peak ranges of the repeating carbon units.
- the wax has a degree of crystallinity (Xc) as calculated by heat of melting or heat of fusion or enthalpy, and as measured by DSC, of from about 55 to about 100 percent, or from about 60 to about 98 percent, or from about 70 to about 95 percent, or from about 75 to about 90 percent.
- Xc degree of crystallinity
- the heating rate is about 10°C/min and the melting enthalpy is greater than about 150 J/g and measured during the second scan as shown in Figure 1.
- the percent crystallization is calculated from the following expression:
- the wax also has a degree of crystallinity as measured on the cooling cycle or heat of recrystallization, of from about 55 to about 100 percent, or from about 60 to about 98 percent, or from about 70 to about 95 percent, or from about 75 to about 90 percent.
- the crystallinity is measured using the heat of recrystallization, and wherein the degree of crystallinity is calculated using the following formula:
- the wax has a degree of crystallinity as measured by X-ray diffraction (Xc) of from about 55 to about 100 percent, or from about 60 to about 98 percent, or from about 70 to about 95 percent, or from about 75 to about 90 percent.
- the temperature is above the resin Tg. Therefore, the temperature range selected results in a viscosity that allows the wax to flow in the resin matrix, allowing for the wax domains to be formed.
- the wax domains can be larger (for example, from about 0.5 to about 2 microns) than the starting size (for example, from about 0.15 to about 0.8 microns).
- the useful temperature range for the coalescence/fusion step is from about 92 to about 100°C.
- Waxes that have the proper flow properties to form the desired wax domains have viscosities that vary as a function of temperature such that they meet the requirements of the following equation: ⁇ cp ⁇ 10 27 - 0.25 ⁇ T ⁇ where ⁇ 92 ⁇ °C T ⁇ 100 ⁇ °C
- This equation defines the upper bound to the viscosity of waxes, especially fractionated or distilled waxes, over the useful coalescence temperature range (see Figure 3).
- the wax has a viscosity versus temperature relationship that meets the requirements of the equation.
- the melt viscosity of the wax for example at 92°C is less than or about 10,000 centipose, or from about 10 to about 10,000 centipoise, and the viscosity at 100°C is less than or equal to 100 centipose, or from about 1 to about 100 centipoise, irrespective of the heating or the melting cycle.
- the useful temperature for coalescence/fusion step can be lower than 92°C, for example as low as 88°C when the peak carbon number is at less than or equal to 45. This should provide a melt viscosity ( ⁇ ) of less than or equal to 10,000 cps.
- the wax meets the criteria that fits the equation.
- the wax meets the enthalpy (Hc) or the recrystallization (Hrc).
- the wax has an onset temperature of from about 65 to about 70°C, and an offset temperature of from about 95 to about 100°C, during the heat up cycle (i.e., melting), as measured by a DSC when the heating rate is 10°C/min.
- the needle penetration point of the wax is from about 0.1 to about 10, or from about 0.5 to about 8, or from about 1 to about 5 dmm (decimillimeter).
- the needle penetration point can be measured in accordance with ASTM 1321, using K95500 Koehler Instruments digital penetrometer, or can be measured in other known ways.
- the wax in a toner material is present, for example, in an amount of about 6 to about 30 percent, or from about 7 to about 20 percent by weight based upon the total weight of the composition.
- waxes include those as illustrated herein, such as those of the aforementioned co-pending applications, polyolefins such as polypropylenes, polyethylenes, and the like, such as those commercially available from Allied Chemical and Baker Petrolite Corporation, wax emulsions available from Michaelman Inc. and the Daniels Products Company, Epolene N-15 TM commercially available from Eastman Chemical Products, Inc., Viscol 550-P TM , a low weight average molecular weight polypropylene available from Sanyo Kasei K.K., and similar materials.
- Examples of functionalized waxes include amines, amides, for example Aqua Superslip 6550 TM , Superslip 6530 TM available from Micro Powder Inc.; fluorinated waxes, for example Polyfluo 190 TM , Polyfluo 200 TM , Polyfluo 523XF TM , Aqua Polyfluo 411 TM , Aqua Polysilk 19 TM , Polysilk 14 TM available from Micro Powder Inc.; mixed fluorinated, amide waxes, for example Microspersion 19 TM also available from Micro Powder Inc.; imides, esters, quaternary amines, carboxylic acids or acrylic polymer emulsion, for example Joncryl 74 TM , 89 TM , 130 TM , 537 TM , and 538 TM , all available from SC Johnson Wax; chlorinated polypropylenes and polyethylenes available from Allied Chemical and Petrolite Corporation, and from SC Johnson Wax.
- Such waxes can optionally be fractionated or
- the wax comprises a wax in the form of a dispersion comprising, for example, a wax having a particle diameter of about 100 nanometers to about 500 nanometers or about 100 nanometers to about 300 nanometers, water, and an anionic surfactant or a polymeric stabilize, and optionally a nonionic surfactant.
- the wax comprises polyethylene wax particles, such as POLYWAX ® 655, POLYWAX ® 850, POLYWAX ® 725, POLYWAX ® 500 (the POLY-WAX ® waxes being commercially available from Baker Petrolite) and, for example, fractionated/distilled waxes which are cuts of commercial POLYWAX ® 655 designated here as X1214, X1240, X1242, X1244, and the like, but are not limited to POLYWAX ® 655 cuts. Waxes providing a specific cut, that meet the viscosity/temperature criteria, wherein the upper limit of viscosity is 10,000 cps and the temperature upper limit is 100°C can be used.
- the waxes can have a particle diameter in the range of from about 100 to about 500 nanometers, although not limited.
- Other examples include FT-100 waxes from Shell (SMDA), and FNP0092 from Nippon Seiro.
- the surfactant used to disperse the wax can be an anionic surfactant, although not limited thereto, such as, for example, Neogen RK ® commercially available from Daiichi Kogyo Seiyaku or TAYCAPOWER ® BN2060 commercially available from Tayca Corporation or Dowfax available from DuPont.
- the wax has an onset melt temperature of from about 65 to about 75°C, and an offset temperature of from about 95 to about 100°C.
- the wax has an Mn, Mw and Mp, and each and all may fall within the ranges of from about 500 to about 800, or from about 600 to about 750, or from about 640 to about 725.
- the wax has a polydispersity (Mw/Mn) of from about 1 to about 1.05.
- Toners herein can include resins.
- the resin particles can be, in embodiments, styrene acrylates, styrene butadienes, styrene methacrylates, or polyesters, present in various effective amounts, such as from about 70 weight percent to about 98 weight percent, and more specifically, about 80 weight percent to about 92 weight percent based upon the total weight percent of the toner.
- the resin can be of small average particle size, such as from about 0.01 micron to about 1 micron in average volume diameter as measured by the Brookhaven nanosize particle analyzer. Other effective amounts of resin can be selected.
- a non-crosslinked resin is a resin that is substantially free of crosslinking, for example, a resin having substantially about zero percent cross linking to about 0.2 percent crosslinking, or a resin having less than about 0.1 percent crosslinking.
- a crosslinked resin refers for example, to a crosslinked resin or gel comprising, for example, about 0.3 to about 20 percent crosslinking.
- the resin selected can be a non-crosslinked resin such as, for example, a non-crosslinked resin comprising styrene:butylacrylate:beta-carboxyethyl acrylate, although not limited to these monomers, wherein, for example, the non-crosslinked resin monomers are present in an amount of from about 40 to about 95 percent styrene, from about 5 to about 60 percent butylacrylate, and about 0.05 parts per hundred to about 10 parts per hundred beta-carboxyethyl acrylate; or from about 60 to about 85 percent styrene, from about 15 to about 40 percent butylacrylate, and about 1 part per hundred to about 5 parts per hundred beta-carboxyethyl acrylate, by weight based upon the total weight of the monomers.
- a non-crosslinked resin such as, for example, a non-crosslinked resin comprising styrene:butylacrylate:beta-carboxyethyl acrylate,
- the resin may be selected to contain a carboxylic acid group selected, for example, from the group consisting of acrylic acid, methacrylic acid, itaconic acid, beta carboxy ethyl acrylate (beta CEA), fumaric acid, maleic acid, and cinnamic acid, and wherein, for example, a carboxylic acid is selected in an amount of from about 0.1 to about 10 weight percent of the total weight of the resin.
- a carboxylic acid group selected, for example, from the group consisting of acrylic acid, methacrylic acid, itaconic acid, beta carboxy ethyl acrylate (beta CEA), fumaric acid, maleic acid, and cinnamic acid, and wherein, for example, a carboxylic acid is selected in an amount of from about 0.1 to about 10 weight percent of the total weight of the resin.
- a second latex can be a high glass transition temperature (high Tg) resin comprising from about 40 to about 95 percent styrene, from about 5 to about 60 percent butylacrylate, and from about 0.05 parts per hundred to about 10 parts per hundred beta-carboxyethyl acrylate; or from about 65 to about 90 percent styrene, from about 10 to about 35 percent butyl acrylate, and from about 1 part per hundred to about 5 parts per hundred beta-carboxyethyl acrylate by weight based upon the total weight of the monomers.
- high Tg high glass transition temperature
- the process provides a first resin (resin A) comprising a non-crosslinked resin having a first Tg of about 46°C to about 56°C, about 48°C to about 54°C, or about 51°C, and a second non-crosslinked resin (resin B) having a high Tg (high Tg being for example a glass transition temperature that is from about 5°C to about 10°C higher than the Tg of the first resin) of for example, at Tg of about 54°C to about 65°C, about 56°C to about 64°C, or about 59°C.
- first resin comprising a non-crosslinked resin having a first Tg of about 46°C to about 56°C, about 48°C to about 54°C, or about 51°C
- a second non-crosslinked resin (resin B) having a high Tg high Tg being for example a glass transition temperature that is from about 5°C to about 10°C higher than the Tg of the first resin
- latex polymer or resin particles include known polymers selected from the group consisting of styrene acrylates, styrene methacrylates, butadienes, isoprene, acrylonitrile, acrylic acid, methacrylic acid, beta-carboxy ethyl acrylate, polyesters, poly(styrene-butadiene), poly(methyl styrene-butadiene), poly(methyl methacrylate-butadiene), poly(ethyl methacrylate-butadiene), poly(propyl methacrylate-butadiene), poly(butyl methacrylate-butadiene), poly(methyl acrylate-butadiene), poly(ethyl acrylate-butadiene), poly(propyl acrylate-butadiene), poly(butyl acrylate-butadiene), poly(styrene-isoprene), poly(methyl styrene-is
- the resin particles selected can be prepared by, for example, emulsion polymerization techniques, including semicontinuous emulsion polymerization methods, and the monomers used in such processes can be selected from, for example, styrene, acrylates, methacrylates, butadiene, isoprene, and optionally acid or basic olefinic monomers, such as acrylic acid, methacrylic acid, acrylamide, methacrylamide, quaternary ammonium halide of dialkyl or trialkyl acrylamides or methacrylamide, vinylpyridine, vinylpyrrolidone, vinyl-N-methylpyridinium chloride, and the like.
- emulsion polymerization techniques including semicontinuous emulsion polymerization methods
- the monomers used in such processes can be selected from, for example, styrene, acrylates, methacrylates, butadiene, isoprene, and optionally acid or basic olefinic monomers, such as acrylic acid, methacryl
- the presence of acid or basic groups in the monomer or polymer resin is optional, and such groups can be present in various amounts of from about 0.1 to about 10 percent by weight of the polymer resin.
- Chain transfer agents such as dodecanethiol or carbon tetrabromide, can also be selected when preparing resin particles by emulsion polymerization.
- Other processes of obtaining resin particles of from about 0.01 micron to about 1 micron can be selected from polymer microsuspension process, such as illustrated in U.S. Patent 3,674,736 , the disclosure of which is totally incorporated herein by reference, polymer solution microsuspension process, such as disclosed in U.S. Patent 5,290,654 , the disclosure of which is totally incorporated herein by reference, mechanical grinding process, or other known processes.
- the toner processes disclosed herein comprise preparing a non-crosslinked latex resin (resin A) comprising, for example, styrene:butylacrylate:beta-carboxyethyl acrylate (monomers A, B, and C), by emulsion polymerization, in the presence of an initiator, a chain transfer agent, and surfactant.
- resin A non-crosslinked latex resin
- monomers A, B, and C styrene:butylacrylate:beta-carboxyethyl acrylate
- the amount and composition of the resin monomers comprise, for example, from about 70 to about 90 percent styrene, from about 10 to about 30 percent butyl acrylate, and from about 0.5 to about 10 parts per hundred beta-carboxyethyl acrylate, or from about 76.5 percent styrene, 23.5 percent butyl acrylate, and 3 parts per hundred beta-carboxyethyl acrylate.
- the amounts of initiator such as for example, sodium persulfate, potassium persulfate, or ammonium persulfate, can be selected in the range of from about 0.5 to about 5.0 percent by weight of the monomers.
- the amount of chain transfer agent used can be selected in the range of from about 0.5 to about 5.0 percent by weight of the monomers A and B.
- the surfactant can be an anionic surfactant, and can be selected in the range of from about 0.7 to about 5.0 percent by weight of the aqueous phase.
- the monomers are polymerized under starve fed conditions as referred to in Xerox patents such as U.S. Patent 6,447,974 , U.S. Patent 6,576,389 , U.S. Patent 6,617,092 , and U.S. Patent 6,664,017 , which are hereby totally incorporated by reference herein, to provide latex resin particles having a diameter in the range of from about 100 to about 300 nanometers.
- the molecular weight of the latex resin A can be, for example, about 30,000 to about 37,000, although not limited.
- the onset glass transition temperature (Tg) of the resin A is from about 46°C to about 56°C, from about 48°C to about 54°C, or about 51 °C.
- the amount of carboxylic acid groups can be selected at from about 0.05 to about 5.0 parts per hundred of the resin monomers A and B.
- the molecular weight of the resin A obtained is about 34,000, and the molecular number is about 11,000, providing a non-crosslinked latex resin A having a pH of about 2.0.
- a high Tg non-crosslinked latex resin (resin B) can be selected comprising styrene:butylacrylate:beta-carboxyethyl acrylate, again termed herein monomers A, B, and C, by an emulsion polymerization, in the presence of initiator, a chain transfer agent, and surfactant.
- the composition of the monomers A:B:C can be selected as comprising from about 70 to about 90 percent styrene, from about 10 to about 30 percent butylacrylate, and from about 0.05 parts per hundred to about 10 parts per hundred beta-carboxyethyl acrylate, or about 81.7 % styrene, about 18.3% butyl acrylate, and about 3.0 parts per hundred beta-carboxyethyl acrylate.
- the amounts of initiator such as sodium or ammonium persulfate, can be selected, for example, in the range of from about 0.5 to about 3.0 percent by weight of the monomers.
- the amount of chain transfer agent used can be selected, for example, in the range of from about 0.5 to about 3.0 percent by weight based upon the weight of the monomers A and B.
- the surfactant used can be an anionic surfactant, and can be selected in the range of from about 0.7 to about 5.0 percent by weight of the aqueous phase.
- the emulsion polymerization is conducted under a starve fed polymerization as referenced, for example, in the Xerox patents referred to above, to provide latex resin particles which are selected in the size range of from about 100 nanometers to about 300 nanometers volume average particle diameter.
- the molecular weight of the latex resin B is from about 30,000 to about 40,000, or from about 34,000, the molecular number is about 11,000, providing a non-crosslinked latex resin B having a pH of about 2.0.
- the onset Tg of the high Tg resin B is from about 5°C to about 10°C higher than the Tg of resin A, or alternately, from about 54°C to about 65°C, from about 56°C to about 64°C, or about 59°C.
- the amount of carboxylic acid groups can be selected at from about 0.05 to about 5.0 parts per hundred of the resin monomers A and B.
- anionic surfactants suitable for use in the resin latex dispersion can include, for example, sodium dodecylsulfate (SDS), sodium dodecylbenzene sulfonate, sodium dodecylnaphthalene sulfate, dialkyl benzenealkyl, sulfates and sulfonates, adipic acid, available from Aldrich, NEOGEN RK TM , NEOGEN SC TM from Daiichi Kogyo Seiyaku or TAYCAPOWER BN2060 commercially available from Tayca Corporation or Dowfax available from DuPont and the like.
- An effective concentration of the anionic surfactant generally employed can be, for example, from about 0.01 to about 10 percent by weight, and more specifically, from about 0.1 to about 5 percent by weight of monomers used to prepare the toner polymer resin.
- nonionic surfactants that can be included in the resin latex dispersion include, for example, polyvinyl alcohol, polyacrylic acid, methalose, methyl cellulose, ethyl cellulose, propyl cellulose, hydroxy ethyl cellulose, carboxy methyl cellulose, polyoxyethylene cetyl ether, polyoxyethylene lauryl ether, polyoxyethylene octyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene oleyl ether, polyoxyethylene sorbitan monolaurate, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, dialkylphenoxypoly(ethyleneoxy) ethanol, available from Rhodia as IGEPAL CA-210 TM , IGEPAL CA-520 TM , IGEPAL CA-720 TM , IGEPAL CO-890 TM , IGEPAL CO-720 TM , IGEPAL CO-290 TM , IGEPAL CA-210 TM ,
- a suitable concentration of the nonionic surfactant can be, for example, from about 0.01 to about 10 percent by weight, or from about 0.1 to about 5 percent by weight of monomers used to prepare the toner polymer resin.
- the pigment dispersion can comprise pigment particles dispersed in an aqueous medium with a nonionic dispersant/surfactant.
- a dispersant having the same polarity as that of the resin latex dispersion can also be used.
- additional surfactants which may be added optionally to the aggregate suspension prior to or during the coalescence to, for example, prevent the aggregates from growing in size, or for stabilizing the aggregate size, with increasing temperature
- anionic surfactants such as sodium dodecylbenzene sulfonate, sodium dodecylnaphthalene sulfate, dialkyl benzenealkyl, sulfates and sulfonates, adipic acid, available from Aldrich, NEOGEN R TM , NEOGEN SC TM available from Daiichi Kogyo Seiyaku, and the like, among others.
- acids examples include, for example, nitric acid, sulfuric acid, hydrochloric acid, acetic acid, citric acid, trifluro acetic acid, succinic acid, salicylic acid and the like, and which acids are in embodiments utilized in a diluted form in the range of from about 0.5 to about 10 weight percent by weight of water, or in the range of from about 0.7 to about 5 weight percent by weight of water.
- Introducing the sequestering or complexing component comprises in embodiments, introducing an organic complexing component selected from the group consisting of ethylenediaminetetraacetic acid, gluconal, sodium gluconate, potassium citrate, sodium citrate, nitrotriacetate salt, humic acid, and fulvic acid; salts of ethylenediaminetetraacetic acid, gluconal, sodium gluconate, potassium citrate, sodium citrate, nitrotriacetate salt, humic acid, and fulvic acid, alkali metal salts of ethylenediaminetetraacetic acid, gluconal, sodium gluconate, potassium citrate, sodium citrate, nitrotriacetate salt, humic acid, and fulvic acid; sodium salts of ethylenediaminetetraacetic acid, gluconal, sodium gluconate, tartaric acid, gluconic acid, oxalic acid, polyacrylates, sugar acrylates, citric acid, potassium citrate, sodium citrate,
- Inorganic complexing components can be selected from the group consisting of sodium silicate, potassium silicate, magnesium sulfate silicate, sodium hexameta phosphate, sodium polyphosphate, sodium tripolyphosphate, sodium trimeta phosphate, sodium pyrophosphate, bentonite, and talc, and the like.
- Organic and inorganic complexing components can be selected in an amount of about 0.01 weight percent to about 10.0 weight percent, or from about 0.4 weight percent to about 4.0 weight percent based upon the total weight of the toner.
- coagulants include cationic surfactant, for example, dialkyl benzenealkyl ammonium chloride, lauryl trimethyl ammonium chloride, alkylbenzyl methyl ammonium chloride, alkyl benzyl dimethyl ammonium bromide, benzalkonium chloride, cetyl pyridinium bromide, C12, C15, C17 trimethyl ammonium bromides, halide salts of quaternized polyoxyethylalkylamines, dodecylbenzyl triethyl ammonium chloride, MIRAPOL and ALKAQUAT available from Alkaril Chemical Company, SANIZOL B (benzalkonium chloride), available from Kao Chemicals, and the like, and mixtures thereof.
- cationic surfactant for example, dialkyl benzenealkyl ammonium chloride, lauryl trimethyl ammonium chloride, alkylbenzyl methyl ammonium chloride, alkyl benzyl
- Inorganic cationic coagulants include, for example, poly-aluminum chloride (PAC), poly-aluminum sufosilicate, aluminum sulfate, zinc sulfate, magnesium sulfate, chlorides of magnesium, calcium, zinc, beryllium, aluminum, sodium, other metal halides including monovalant and divalent halides.
- the coagulant can be present in an aqueous medium in an amount of from, for example, from about 0.05 to about 10 percent by weight, or from about 0.075 to about 5.0 percent by weight of total solids in the toner.
- the coagulant may also contain minor amounts of other components, for example nitric acid.
- the coagulant may comprise a mixture of both an inorganic and an organic coagulant including, for example, PAC and SANIZOL B, aluminum sulfate and SANIZOL B, etc.
- Such mixtures of coagulants are also preferably used in an aqueous medium, each present in an amount of from, for example, from about 0.05 to about 5.0 percent by weight of total solids in the toner.
- a colorant dispersion is selected, for example, comprising a cyan, magenta, yellow, or black pigment dispersion of each color in an anionic surfactant or optionally a non-ionic dispersion to provide, for example, pigment particles having a volume average particle diameter size selected of from about 50 nanometers to about 500 nanometers.
- the surfactant used to disperse each colorant can be, for example, an anionic surfactant such as Neogen RK TM .
- An Ultimaizer equipment can be used to provide the pigment dispersion, although media mill or other means can be utilized.
- the toner can also comprise a colorant.
- Suitable colorants include pigments, dyes, mixtures of pigments and dyes, mixtures of pigments, mixtures of dyes, and the like.
- the colorant comprises carbon black, magnetite, black, cyan, magenta, yellow, red, green, blue, brown, mixtures thereof, selected for example, in an amount of from about 1 to about 25 percent by weight based upon the total weight of the composition.
- Colorants can be selected in the form of a pigment dispersion comprising pigments particles having a size in the range of from about 50 to about 500 nanometers, water, and an anionic surfactant or polymeric stabilizer.
- pigments are available in the wet cake or concentrated form containing water, and can be easily dispersed utilizing a homogenizer, or simply by stirring, ball milling, attrition, or media milling.
- pigments are available only in a dry form, whereby dispersion in water is effected by microfluidizing using, for example, a M-110 microfluidizer or an Ultimaizer and passing the pigment dispersion from about 1 to about 10 times through the chamber, or by sonication, such as using a Branson 700 sonicator, or a homogenizer, ball milling, attrition, or media milling with the optional addition of dispersing agents such as the aforementioned ionic or nonionic surfactants.
- the above techniques can also be applied in the presence of a surfactant.
- Specific colorants that may be used include, Paliogen Violet 5100 and 5890 (BASF), Normandy Magenta RD-2400 (Paul Ulrich), Permanent Violet VT2645 (Paul Ulrich), Heliogen Green L8730 (BASF), Argyle Green XP-111-S (Paul Ulrich), Brilliant Green Toner GR 0991 (Paul Ulrich), Lithol Scarlet D3700 (BASF), Toluidine Red (Aldrich), Scarlet for Thermoplast NSD Red (Aldrich), Lithol Rubine Toner (Paul Ulrich), Lithol Scarlet 4440, NBD 3700 (BASF), Bon Red C (Dominion Color), Royal Brilliant Red RD-8192 (Paul Ulrich), Oracet Pink RF (Ciba Geigy), Paliogen Red 3340 and 3871 K (BASF), Lithol Fast Scarlet L4300 (BASF), Heliogen Blue D6840, D7080, K7090, K6910 and L7020 (BASF), Sudan Blue OS (BASF), Neopen Blue
- Additional useful colorants include pigments in water-based dispersions such as those commercially available from Sun Chemical, for example SUNSPERSE BHD 6011 (Blue 15 Type), SUNSPERSE BHD 9312 (Pigment Blue 15), SUNSPERSE BHD 6000 (Pigment Blue 15:3 74160), SUNSPERSE GHD 9600 and GHD 6004 (Pigment Green 7 74260), SUNSPERSE QHD 6040 (Pigment Red 122), SUNSPERSE RHD 9668 (Pigment Red 185), SUNSPERSE RHD 9365 and 9504 (Pigment Red 57, SUNSPERSE YHD 6005 (Pigment Yellow 83), FLEXIVERSE YFD 4249 (Pigment Yellow 17), SUNSPERSE YHD 6020 and 6045 (Pigment Yellow 74), SUNSPERSE YHD 600 and 9604 (Pigment Yellow 14), FLEXIVERSE LFD 4343
- HOSTAFINE Yellow GR HOSTAFINE Black T and Black TS
- HOSTAFINE Blue B2G HOSTAFINE Rubine F6B
- magenta dry pigment such as Toner Magenta 6BVP2213 and Toner Magenta E02 which can be dispersed in water and/or surfactant prior to use.
- magnetites such as Mobay magnetites MO8029, M08960; Columbian magnetites, MAPICO BLACKS and surface treated magnetites; Pfizer magnetites CB4799, CB5300, CB5600, MCX6369; Bayer magnetites, BAYFERROX 8600, 8610; Northern Pigments magnetites, NP-604, NP-608; Magnox magnetites TMB-100 or TMB-104; and the like or mixtures thereof.
- pigments include phthalocyanine HELIOGEN BLUE L6900, D6840, D7080, D7020, PYLAM OIL BLUE, PYLAM OIL YELLOW, PIGMENT BLUE 1 available from Paul Ulrich & Company, Inc., PIGMENT VIOLET 1, PIGMENT RED 48, LEMON CHROME YELLOW DCC 1026, E.D. TOLUIDINE RED and BON RED C available from Dominion Color Corporation, Ltd., Toronto, Ontario, NOVAPERM YELLOW FGL, HOSTAPERM PINK E from Hoechst, and CINQUASIA MAGENTA available from E.I. DuPont de Nemours & Company, and the like.
- magentas examples include, for example, 2,9-dimethyl substituted quinacridone and anthraquinone dye identified in the Color Index as CI 60710, CI Dispersed Red 15, diazo dye identified in the Color Index as CI 26050, CI Solvent Red 19, and the like or mixtures thereof.
- cyans include copper tetra(octadecyl sulfonamide) phthalocyanine, x-copper phthalocyanine pigment listed in the Color Index as CI74160, CI Pigment Blue, and Anthrathrene Blue identified in the Color Index as DI 69810, Special Blue X-2137, and the like or mixtures thereof.
- yellows that may be selected include diarylide yellow 3,3-dichlorobenzidene acetoacetanilides, a monoazo pigment identified in the Color Index as Cl 12700, Cl Solvent Yellow 16, a nitrophenyl amine sulfonamide identified in the Color Index as Foron Yellow SE/GLN, CI Dispersed Yellow 33 2,5-dimethoxy-4-sulfonanilide phenylazo-4'-chloro-2,4-dimethoxy acetoacetanilide, and Permanent Yellow FGL.
- Colored magnetites such as mixtures of MAPICO BLACK and cyan components may also be selected as pigments.
- the toner may also include known charge additives in effective amounts such as, from about 0.1 to about 5 weight percent, such as alkyl pyridinium halides, bisulfates, the charge control additives of U.S. Patents 3,944,493 ; 4,007,293 ; 4,079,014 ; 4,394,430 and 4,560,635 , the disclosures of which are totally incorporated herein by reference, and the like.
- charge additives in effective amounts such as, from about 0.1 to about 5 weight percent, such as alkyl pyridinium halides, bisulfates, the charge control additives of U.S. Patents 3,944,493 ; 4,007,293 ; 4,079,014 ; 4,394,430 and 4,560,635 , the disclosures of which are totally incorporated herein by reference, and the like.
- suitable additives include zinc stearate and AEROSIL R972 ® available from Degussa in amounts of from about 0.1 to about 2 percent which can be added during the aggregation process or blended into the formed toner product.
- developer and imaging processes including a process for preparing a developer comprising preparing a toner composition with the toner processes illustrated herein and mixing the resulting toner composition with a carrier.
- Developer compositions can be prepared by mixing the toners obtained with the processes of the present disclosure with known carrier particles, including coated carriers, such as steel, ferrites, and the like, reference U.S. Pat. Nos. 4,937,166 and 4,935,326 , the disclosures of which are totally incorporated herein by reference, using, for example from about 2 to about 8 percent toner concentration.
- the carriers selected may also contain dispersed in the polymer coating a conductive compound, such as a conductive carbon black and which conductive compound is present in various suitable amounts, such as from about 15 to about 65, or from about 20 to about 45 weight percent by weight of total solids.
- a conductive compound such as a conductive carbon black and which conductive compound is present in various suitable amounts, such as from about 15 to about 65, or from about 20 to about 45 weight percent by weight of total solids.
- Imaging processes comprise, for example, preparing an image with an electrophotographic or xerographic device comprising a charging component, an imaging component, a photoconductive component, a developing component, a transfer component, and a fusing component; and wherein the development component comprises a developer prepared by mixing a carrier with a toner composition prepared with the toner processes illustrated herein; an imaging process comprising preparing an image with an electrophotographic or xerographic device comprising a charging component, an imaging component, a photoconductive component, a developing component, a transfer component, and a fusing component; wherein the development component comprises a developer prepared by mixing a carrier with a toner composition prepared with the toner processes illustrated herein; and wherein the electrophotographic or xerographic device comprises a high speed printer, a black and white high speed printer
- the size of the toner particles can be, for example, from about 1 to about 25 microns, from about 3 microns to about 9 microns, more specifically, from about 4 microns to about 6 microns or about 5 microns.
- the fractionated and/or distilled wax also was determined to have a degree of crystallinity as measured on the cooling cycle of from about 100 to about 55°C. These measurements were under the conditions wherein the cooling rate was 2°C/min (first scan).
- the heat of recrystallization (Hrc) in J/g during cooling was equal to or greater than 150 J/g (see Figure 1).
- the wax also was determined to have a degree of crystallinity as measured on the cooling cycle of from about 60 to about 100°C. These measurements were under the conditions wherein the heating rate was 10°C/min (second scan). The heat of enthalpy (Hm) in J/g during heating was equal to or greater than 150 J/g (see Figure 1). The percent crystallinity was then calculated from the following expression:
- Figure 1 demonstrates the results of testing of BP X1214 from Baker Petrolite.
- the waxes were tested for degree of crystallinity using X-ray diffraction.
- the samples were Polywax 655, X1214 and X1242 (all three are crystalline polyethylene waxes from Baker Petrolite).
- the waxes had a degree of crystallinity as measured by X-ray diffraction (Xc) of from about 55 to about 100 percent crystallinity using a Rigaku Miniflex instrument, manufactured by Rigaku Corporation.
- the instrument was fitted with a Cu-target and operated at a tube voltage of 3KV with a tube current output of 30 mA. The measurement range was between 5 ° 2-theta to about 35 ° 2-theta.
- the viscosity of the wax was measured using a temperature sweep conducted at 2°C/min, as measured on a Rheometric Scientific RFS 3 fluids spectrometer equipped with a Peltier cell and using the cone and plate geometry at a nominal gap of 53 microns and a 0.04 radians, 50 mm cone.
- the viscosity - temperature relationship can be represented by: ⁇ cp ⁇ 10 27 - 0.25 ⁇ T ⁇ where ⁇ 92 ⁇ °C T ⁇ 100 ⁇ °C
- Figure 3 represents the useful coalescence temperature ranges as well as the viscosity ranges.
- the experimental procedure was a Dynamic Temperature Steps test. The test was started at an initial temperature of 100°C followed by a decrease in temperature to 84°C and back to 100°C in 2°C steps. The soak time between each temperature step was 150 seconds to allow for temperature equilibration. The strain amplitude was varied to maintain the data within the operating limits of the transducer.
- the equation defines the slope and what the viscosity of the wax for a given coalescence temperature should be. For example, if the coalescence temperature was 94°C, then using the above equation, viscosity (cp) of the wax is calculated to be ⁇ 103.5. And hence the fit of the slope.
- Solutions of wax were prepared by dissolving from about 40 to about 60 mG of wax into 15 mL of warm (80°C) toluene. This solution was injected warm (80°C) using a hot syringe. Alkane distribution identification was obtained by injecting alkane mixes of C13, 15, 20, and 36.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Physics & Mathematics (AREA)
- Developing Agents For Electrophotography (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/273,798 US7686939B2 (en) | 2005-11-14 | 2005-11-14 | Crystalline wax |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1785773A1 true EP1785773A1 (de) | 2007-05-16 |
EP1785773B1 EP1785773B1 (de) | 2010-02-10 |
Family
ID=37667151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06123677A Active EP1785773B1 (de) | 2005-11-14 | 2006-11-08 | Kristallines Wachs |
Country Status (8)
Country | Link |
---|---|
US (1) | US7686939B2 (de) |
EP (1) | EP1785773B1 (de) |
JP (1) | JP2007138167A (de) |
KR (1) | KR101320906B1 (de) |
CN (1) | CN1966622B (de) |
BR (1) | BRPI0604756B1 (de) |
CA (1) | CA2567262C (de) |
DE (1) | DE602006012150D1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2015142A3 (de) * | 2007-07-12 | 2010-08-25 | Xerox Corporation | Tonerzusammensetzungen |
EP2306968B1 (de) * | 2008-06-25 | 2016-12-07 | Chanel Parfums Beauté | Ein silikonacrylat und ein polyesterwachs enthaltende kosmetische zusammensetzung |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7749670B2 (en) | 2005-11-14 | 2010-07-06 | Xerox Corporation | Toner having crystalline wax |
JP4572952B2 (ja) * | 2008-05-01 | 2010-11-04 | 富士ゼロックス株式会社 | 静電荷像現像用トナー及びその製造方法、静電荷像現像剤、画像形成方法、並びに、画像形成装置 |
WO2010054197A2 (en) | 2008-11-07 | 2010-05-14 | H R D Corporation | High shear process for producing micronized waxes |
GB201317300D0 (en) * | 2013-09-30 | 2013-11-13 | Remet Uk Ltd | Casting Wax |
EP3784640A1 (de) * | 2018-04-25 | 2021-03-03 | OMS Investments, Inc. | Düngemittel mit stickstoffverbindungen mit langsamer freisetzung und verfahren zu ihrer herstellung |
MX2022011569A (es) * | 2020-03-20 | 2023-01-04 | Oms Invest Inc | Composiciones de fertilizantes que tienen compuestos de nitrogeno de liberacion lenta y metodos para formar los mismos. |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0276147A2 (de) * | 1987-01-20 | 1988-07-27 | Xerox Corporation | Toner und Entwicklerzusammensetzungen mit Wachsen von langkettigen Alcoholen |
US5482812A (en) | 1994-11-23 | 1996-01-09 | Xerox Corporation | Wax Containing toner aggregation processes |
US5622806A (en) | 1995-12-21 | 1997-04-22 | Xerox Corporation | Toner aggregation processes |
US5840459A (en) * | 1995-06-15 | 1998-11-24 | Canon Kabushiki Kaisha | Toner for developing electrostatic images and process for production thereof |
US20050130054A1 (en) * | 2003-11-25 | 2005-06-16 | Baker Hughes Incorporated | Toners and inks prepared using polyolefin waxes |
EP1688799A1 (de) * | 2005-02-03 | 2006-08-09 | Konica Minolta Business Technologies, Inc. | Elektrofotografischer Toner |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4418108A (en) | 1982-02-08 | 1983-11-29 | Owens-Corning Fiberglas Corporation | Composite roofing panel |
US5290654A (en) | 1992-07-29 | 1994-03-01 | Xerox Corporation | Microsuspension processes for toner compositions |
JP3413426B2 (ja) * | 1992-08-25 | 2003-06-03 | キヤノン株式会社 | 静電荷像現像用トナー |
EP0587540B1 (de) * | 1992-08-25 | 1999-10-13 | Canon Kabushiki Kaisha | Toner zur Entwicklung elektrostatischer Bilder und Bilderzeugungsverfahren |
JP2992918B2 (ja) * | 1992-08-25 | 1999-12-20 | キヤノン株式会社 | 静電荷像現像用トナー |
US5278020A (en) | 1992-08-28 | 1994-01-11 | Xerox Corporation | Toner composition and processes thereof |
US6632577B2 (en) * | 1992-10-15 | 2003-10-14 | Canon Kabushiki Kaisha | Image forming method |
US5308734A (en) | 1992-12-14 | 1994-05-03 | Xerox Corporation | Toner processes |
US5346797A (en) | 1993-02-25 | 1994-09-13 | Xerox Corporation | Toner processes |
US5348832A (en) | 1993-06-01 | 1994-09-20 | Xerox Corporation | Toner compositions |
US5344738A (en) | 1993-06-25 | 1994-09-06 | Xerox Corporation | Process of making toner compositions |
US5370963A (en) | 1993-06-25 | 1994-12-06 | Xerox Corporation | Toner emulsion aggregation processes |
US5403693A (en) | 1993-06-25 | 1995-04-04 | Xerox Corporation | Toner aggregation and coalescence processes |
US5364729A (en) | 1993-06-25 | 1994-11-15 | Xerox Corporation | Toner aggregation processes |
US5405728A (en) | 1993-06-25 | 1995-04-11 | Xerox Corporation | Toner aggregation processes |
JPH0736218A (ja) * | 1993-07-16 | 1995-02-07 | Hoechst Japan Ltd | 加熱ローラー定着型静電荷像現像用トナー |
US5366841A (en) | 1993-09-30 | 1994-11-22 | Xerox Corporation | Toner aggregation processes |
JPH08114942A (ja) * | 1994-10-17 | 1996-05-07 | Sharp Corp | 電子写真用現像剤 |
EP0716344A1 (de) | 1994-12-05 | 1996-06-12 | Konica Corporation | Lichtempfindliche Zusammensetzung und lithographische Druckplatte |
US5501935A (en) | 1995-01-17 | 1996-03-26 | Xerox Corporation | Toner aggregation processes |
US5977210A (en) | 1995-01-30 | 1999-11-02 | Xerox Corporation | Modified emulsion aggregation processes |
US5527658A (en) | 1995-03-13 | 1996-06-18 | Xerox Corporation | Toner aggregation processes using water insoluble transition metal containing powder |
US5496676A (en) | 1995-03-27 | 1996-03-05 | Xerox Corporation | Toner aggregation processes |
US5565296A (en) | 1995-07-03 | 1996-10-15 | Xerox Corporation | Coated carriers by aggregation processes |
US5585215A (en) | 1996-06-13 | 1996-12-17 | Xerox Corporation | Toner compositions |
US5650255A (en) | 1996-09-03 | 1997-07-22 | Xerox Corporation | Low shear toner aggregation processes |
US5723252A (en) | 1996-09-03 | 1998-03-03 | Xerox Corporation | Toner processes |
US5683848A (en) | 1996-10-02 | 1997-11-04 | Xerox Corporation | Acrylonitrile-modified toner composition and processes |
US5650256A (en) | 1996-10-02 | 1997-07-22 | Xerox Corporation | Toner processes |
US5763133A (en) | 1997-03-28 | 1998-06-09 | Xerox Corporation | Toner compositions and processes |
US5827633A (en) | 1997-07-31 | 1998-10-27 | Xerox Corporation | Toner processes |
US5766818A (en) | 1997-10-29 | 1998-06-16 | Xerox Corporation | Toner processes with hydrolyzable surfactant |
US6371318B1 (en) | 1997-12-24 | 2002-04-16 | Owens-Illinois Closure Inc. | Plastic closure with compression molded sealing/barrier liner |
US5869215A (en) | 1998-01-13 | 1999-02-09 | Xerox Corporation | Toner compositions and processes thereof |
US5919595A (en) | 1998-01-13 | 1999-07-06 | Xerox Corporation | Toner process with cationic salts |
US5840462A (en) | 1998-01-13 | 1998-11-24 | Xerox Corporation | Toner processes |
US5916725A (en) | 1998-01-13 | 1999-06-29 | Xerox Corporation | Surfactant free toner processes |
US5853944A (en) | 1998-01-13 | 1998-12-29 | Xerox Corporation | Toner processes |
US5910387A (en) | 1998-01-13 | 1999-06-08 | Xerox Corporation | Toner compositions with acrylonitrile and processes |
US5994020A (en) | 1998-04-13 | 1999-11-30 | Xerox Corporation | Wax containing colorants |
US5863698A (en) | 1998-04-13 | 1999-01-26 | Xerox Corporation | Toner processes |
US6130021A (en) | 1998-04-13 | 2000-10-10 | Xerox Corporation | Toner processes |
JPH11323286A (ja) * | 1998-05-08 | 1999-11-26 | Sekisui Chem Co Ltd | ホットメルト接着剤組成物 |
US5922501A (en) | 1998-12-10 | 1999-07-13 | Xerox Corporation | Toner processes |
US6020101A (en) | 1999-04-21 | 2000-02-01 | Xerox Corporation | Toner composition and process thereof |
US6120967A (en) | 2000-01-19 | 2000-09-19 | Xerox Corporation | Sequenced addition of coagulant in toner aggregation process |
US6628102B2 (en) | 2001-04-06 | 2003-09-30 | Microchip Technology Inc. | Current measuring terminal assembly for a battery |
JP4114068B2 (ja) * | 2003-08-22 | 2008-07-09 | リコープリンティングシステムズ株式会社 | 静電荷像現像用トナー、同トナーの製造方法及び画像作製装置 |
US7749670B2 (en) * | 2005-11-14 | 2010-07-06 | Xerox Corporation | Toner having crystalline wax |
-
2005
- 2005-11-14 US US11/273,798 patent/US7686939B2/en active Active
-
2006
- 2006-11-07 CA CA2567262A patent/CA2567262C/en active Active
- 2006-11-08 DE DE602006012150T patent/DE602006012150D1/de active Active
- 2006-11-08 EP EP06123677A patent/EP1785773B1/de active Active
- 2006-11-13 JP JP2006307197A patent/JP2007138167A/ja active Pending
- 2006-11-14 CN CN2006101484163A patent/CN1966622B/zh active Active
- 2006-11-14 KR KR1020060112133A patent/KR101320906B1/ko active IP Right Grant
- 2006-11-14 BR BRPI0604756-4A patent/BRPI0604756B1/pt active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0276147A2 (de) * | 1987-01-20 | 1988-07-27 | Xerox Corporation | Toner und Entwicklerzusammensetzungen mit Wachsen von langkettigen Alcoholen |
US5482812A (en) | 1994-11-23 | 1996-01-09 | Xerox Corporation | Wax Containing toner aggregation processes |
US5840459A (en) * | 1995-06-15 | 1998-11-24 | Canon Kabushiki Kaisha | Toner for developing electrostatic images and process for production thereof |
US5622806A (en) | 1995-12-21 | 1997-04-22 | Xerox Corporation | Toner aggregation processes |
US20050130054A1 (en) * | 2003-11-25 | 2005-06-16 | Baker Hughes Incorporated | Toners and inks prepared using polyolefin waxes |
EP1688799A1 (de) * | 2005-02-03 | 2006-08-09 | Konica Minolta Business Technologies, Inc. | Elektrofotografischer Toner |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2015142A3 (de) * | 2007-07-12 | 2010-08-25 | Xerox Corporation | Tonerzusammensetzungen |
US7910276B2 (en) | 2007-07-12 | 2011-03-22 | Xerox Corporation | Toner compositions |
EP2306968B1 (de) * | 2008-06-25 | 2016-12-07 | Chanel Parfums Beauté | Ein silikonacrylat und ein polyesterwachs enthaltende kosmetische zusammensetzung |
Also Published As
Publication number | Publication date |
---|---|
CA2567262C (en) | 2010-08-31 |
US7686939B2 (en) | 2010-03-30 |
CA2567262A1 (en) | 2007-05-14 |
KR101320906B1 (ko) | 2013-10-21 |
BRPI0604756B1 (pt) | 2020-12-22 |
BRPI0604756A (pt) | 2007-08-28 |
CN1966622A (zh) | 2007-05-23 |
CN1966622B (zh) | 2012-09-19 |
KR20070051727A (ko) | 2007-05-18 |
DE602006012150D1 (de) | 2010-03-25 |
EP1785773B1 (de) | 2010-02-10 |
JP2007138167A (ja) | 2007-06-07 |
US20070131580A1 (en) | 2007-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1788453B1 (de) | Toner mit kristallinem Wachs | |
US7910275B2 (en) | Toner having crystalline wax | |
EP1785773B1 (de) | Kristallines Wachs | |
EP1785772B1 (de) | Toner mit kristallinem Wachs | |
CA2567261C (en) | Crystalline wax | |
MXPA06013021A (en) | Toner having crystalline wax | |
MXPA06013018A (es) | Cera cristalina | |
MXPA06013017A (en) | Toner having crystalline wax | |
MXPA06013019A (es) | Cera cristalina | |
MXPA06013020A (es) | Pigmento organico que tiene cera cristalina |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20070724 |
|
17Q | First examination report despatched |
Effective date: 20070910 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602006012150 Country of ref document: DE Date of ref document: 20100325 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20101111 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231019 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231020 Year of fee payment: 18 Ref country code: DE Payment date: 20231019 Year of fee payment: 18 |