EP1780293A2 - Procedure for manufacturing of steel starting material by warm deforming - Google Patents

Procedure for manufacturing of steel starting material by warm deforming Download PDF

Info

Publication number
EP1780293A2
EP1780293A2 EP06022284A EP06022284A EP1780293A2 EP 1780293 A2 EP1780293 A2 EP 1780293A2 EP 06022284 A EP06022284 A EP 06022284A EP 06022284 A EP06022284 A EP 06022284A EP 1780293 A2 EP1780293 A2 EP 1780293A2
Authority
EP
European Patent Office
Prior art keywords
steel
titanium
starting material
manganese
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06022284A
Other languages
German (de)
French (fr)
Other versions
EP1780293A3 (en
EP1780293B1 (en
EP1780293B2 (en
Inventor
Frauendorfer Robert
Kinsinger Dr. Volker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saarstahl AG
Original Assignee
Saarstahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37714952&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1780293(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Saarstahl AG filed Critical Saarstahl AG
Priority to PL06022284T priority Critical patent/PL1780293T3/en
Publication of EP1780293A2 publication Critical patent/EP1780293A2/en
Publication of EP1780293A3 publication Critical patent/EP1780293A3/en
Publication of EP1780293B1 publication Critical patent/EP1780293B1/en
Application granted granted Critical
Publication of EP1780293B2 publication Critical patent/EP1780293B2/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the invention relates to a method of producing a starting material from steel, for example for producing wire rod and bar steel with high strength and toughness by hot working.
  • the prior art knows a number of methods for producing steel components with high strength and high toughness. Starting from wire rod or bar steel cold forming and thermoforming processes are known.
  • the mechanical properties are set by cold work hardening during forming. To achieve high strength, high degrees of deformation are required. This is at the expense of toughness, so that the cold forming reaches its limits where the toughness of the component as a result of work hardening is no longer sufficient and thus results in an unfavorable strength-toughness ratio.
  • tempered steels according to DIN EN 10083 are used, in which, depending on the thickness of the component, it is possible, via the heat treatment, to set strengths of more than 1000 MPa for fracture constrictions of more than 45%.
  • the ratio of yield strength to strength can be at least 0.8.
  • manganese / silicon dual-phase steels are used to produce cold-formed components of high strength from rolled material State of the art.
  • these steels are not suitable for use with required strengths greater than 1000 MPa and high yield ratio above 0.8; They also require to set a certain initial strength and toughness in the starting material, a thermomechanical hot rolling and a parked on this initial strength cold work or strain hardening, so as to set a microstructure of a ferrite matrix with embedded Martensit and Perlitinseln.
  • High-strength steel components can be produced, starting from hot-rolled starting material, for example wire rod or bar steel, by cold forming and, if appropriate, tempering, also by hot forming.
  • thermoforming parts can be used after forming a heat treatment to adjust the mechanical properties. This is the classic application of tempered steels. However, since they require additional heat treatment, the already mentioned high cost and environmental impact arise. To avoid this heat treatment, hardening from forging heat is known. It eliminates heating to austenitizing temperature and quenching. However, low alloyed steels require a final tempering to provide the required performance properties, especially the necessary toughness.
  • Another material variant associated with forging heat is the so-called direct-hardening soft-martensitic steels with carbon contents of up to 0.1% and matched chromium, boron and manganese contents, which do not require tempering. These steels contain 0.05% carbon or even 0.10% carbon in the absence of chromium.
  • a disadvantage of these steels is that a high cooling rate is required for adjusting the martensitic microstructure. This requires additional facilities on the Umformaggregat for oil or water quenching, which eat up a part of the cost savings. Furthermore, the high cooling rate causes complex parts or those with large differences in wall thickness tend to delay and the structure and the mechanical properties can be inhomogeneous over the cross section.
  • AFP steels i. precipitation-hardening ferritic-pearlitic steels developed (for example according to DIN EN 10267). These obtain their mechanical properties through a controlled cooling from the thermoforming temperature and the excretion of carbonitrides of the elements titanium, vanadium and niobium. These steels are less prone to distortion than the blacksmiths site or bainite. Compared to tempered steels, however, they have a lower yield strength and lower toughness. At strengths of 800 to 1000 MPa only yield strengths of up to 600 MPa are achieved. For applications in the high load range, which require strengths around 1000 MPa at yield strengths above 750 MPa, the conventional AFP steels are therefore unsuitable.
  • European Patent Application 1 408 131 A1 a low carbon precipitation hardening ferritic-perlitic steel having 0.12 to 0.45% carbon, 0.10 to 1.00% silicon, 0.50 to 1.95% manganese, 0.005 to 0.060% sulfur, 0.004 to 0.050% aluminum, 0.004 to 0.050% titanium, to 0.60% chromium, to 0.60% niobium, 0.10 to 0.40% vanadium, and 0.015 to 0.040% nitrogen, balance including iron due to melting.
  • This steel needs to develop its mechanical properties only from its forming temperature of 950 to 1250 ° C with a cooling rate of at least 0.2 ° C / s, for example, to be cooled in still air.
  • the analysis specifications and defined parameters during heating to the forming temperature and during cooling must be strictly adhered to.
  • the invention is directed to a method with which a high strength and high toughness and a high ratio of yield strength to strength can be achieved without a heat treatment.
  • According to the invention can be in a steel with 0.08 to 0.25% carbon, up to 1% silicon, 0.5 to 2.5% manganese, up to 0.035% phosphorus, to 0.055% sulfur, 0.1 to 1.5 % Chromium, 0.1 to 0.5% molybdenum, 0.2 to 1.5% nickel, to 0.06% aluminum, 0.0010 to 0.006% boron, each to 0.04% vanadium, niobium and titanium, up to 0.5% copper and up to 0.010% nitrogen, the remainder being iron, including any impurities caused by melting, by adjusting a martensitic-bainitic structure by mere hot working and controlled cooling.
  • the said elements, preferably titanium, are required for the setting of nitrogen. This is necessary for the boron hardenability enhancing effect.
  • the alloy composition and the cooling rate adjust the mechanical properties.
  • a bainitic-martensitic mixed structure On cooling from the deformation temperature of about 1000 to 1300 ° C, a bainitic-martensitic mixed structure, the proportion of ferrite and perlite should not exceed 10% in total. Cooling from the forming heat with gas, water or oil is possible but not required; In order to adjust the bainitic-martensitic microstructure, cooling on or with air is sufficient. A cooling with moving air is to be preferred, as this ensures the preferred minimum cooling rate of 0.3 ° C / s.
  • the use of static or moving air is preferable to other refrigerants, since the environment is then not contaminated by vapors, no additional auxiliaries such as oil or gas and no disposal units such as filters, tanks and catch basins are required.
  • the cooling rate should be at least 0.3 ° C / s in the temperature range between about 1000 and 610 ° C.
  • the steel then has not only high toughness after cooling from the final temperature of hot working to room temperature, but also high strength. The ratio of yield strength to strength is also high.
  • the inventively cooled from the deformation heat starting material is readily suitable for cold forming.
  • strain hardening tensile strengths of more than 1200 MPa can be achieved at yield strengths above 1050 MPa.
  • the ratio of yield strength to strength is above 0.85.
  • the high toughness is evident in fracture necking values of above 40% and elongations at break above 12%.
  • the mechanical properties are therefore better than those of conventional steels or dual-phase steels.
  • the inventively cooled from the deformation heat starting material is also suitable in turn as a starting material for hot forming.
  • a starting material for hot forming In such - second - hot working again arise the original mechanical properties without the need for quenching in water or oil when the cooling conditions of the invention are met.
  • the tendency to warp is lower because of the milder deterrent conditions.
  • higher strengths and, in particular, significantly higher yield strengths result.
  • precipitation hardening by carbonitrides is not strength-determining for the primary material according to the invention, a larger window results in the setting of the analysis and in particular in the conditions of thermoforming in comparison to newer AFP steels.
  • a steel which contains at least 0.10% carbon, 0.3% silicon, 1% manganese, 0.2% chromium, 0.2% nickel, 0.2% molybdenum, 0.0015% is particularly suitable. Boron, 0.014% titanium, single or side by side.
  • the steel individually or next to each other - also in each case at most 0.24% carbon, 2% manganese, 0.020% phosphorus, 0.045% sulfur, 1.4% chromium, 1.4% nickel, 0.4% molybdenum, 0 , 05% aluminum, 0.038% titanium, 0.02% vanadium, 0.02% niobium, 0.3% copper, 0.005% boron and 0.010% nitrogen.
  • a steel refined by the LD process was hot rolled into 15 mm diameter wire, cooled from the rolling heat of accelerated air, and then cold drawn to a final diameter of 14 mm.
  • the steel was made 0.205% carbon 0.56% silicon 1.62% manganese 0.011% phosphorus 0.01% sulfur 0.54% chrome 0.32% molybdenum 0.22% nickel 0.03% aluminum 0.0038% boron 0.036% titanium 0.002% vanadium 0.002% niobium 0.0044% Nitrogen, rest iron including contaminants due to melting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

Production of an initial material by thermal deformation involves subjecting a manganese-, chromium-, molybdenum-, nickel- and boron-containing steel (I), of specific composition, to controlled cooling from the thermal deformation temperature to give a martensitic-bainitic structure. Production of an initial material by thermal deformation involves subjecting a steel (I) to controlled cooling from the thermal deformation temperature to give a martensitic-bainitic structure. (I) contains (by weight, apart from iron and smelting impurities) 0.08-0.25% carbon, up to 1% silicon, 0.5-2.5% manganese, up to 0.035% phosphorus, up to 0.055% sulfur, 0.1-1.5% chromium, 0.1-0.5% molybdenum, 0.2-1.5% nickel, up to 0.06% aluminum, 0.0010-0.0060% boron, up to 0.040% titanium, up to 0.04% vanadium, up to 0.04% niobium, up to 0.5% copper and up to 0.010% nitrogen.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Herstellen von Vormaterial aus Stahl, beispielsweise zum Herstellen von Walzdraht und Stabstahl mit hoher Festigkeit und Zähigkeit durch Warmumformen.The invention relates to a method of producing a starting material from steel, for example for producing wire rod and bar steel with high strength and toughness by hot working.

Der Stand der Technik kennt eine Reihe von Verfahren zum Herstellen von Bauteilen aus Stahl mit hoher Festigkeit und hoher Zähigkeit. Ausgehend von Walzdraht oder Stabstahl sind kaltformgebende und warmformgebende Verfahren bekannt.The prior art knows a number of methods for producing steel components with high strength and high toughness. Starting from wire rod or bar steel cold forming and thermoforming processes are known.

Bei der Kaltformgebung werden die mechanischen Eigenschaften über eine Kaltverfestigung beim Umformen eingestellt. Um hohe Festigkeiten zu erzielen, sind hohe Umformgrade erforderlich. Dies geht stark zu Lasten der Zähigkeit, so daß die Kaltformgebung dort an Grenzen stößt, wo die Zähigkeit des Bauteils als Folge der Kaltverfestigung nicht mehr ausreichend ist und sich demgemäß ein ungünstiges Festigkeits-Zähigkeitsverhältnis ergibt.In the cold forming, the mechanical properties are set by cold work hardening during forming. To achieve high strength, high degrees of deformation are required. This is at the expense of toughness, so that the cold forming reaches its limits where the toughness of the component as a result of work hardening is no longer sufficient and thus results in an unfavorable strength-toughness ratio.

Um hohe Festigkeiten und hohe Zähigkeiten zu erzielen, schließt sich der Kaltformgebung daher häufig eine Vergütung, d.h. ein Erwärmen, Abschrecken und Anlassen an. Zum Einsatz kommen hier sogenannte Vergütungsstähle gemäß DIN EN 10083, bei denen sich über die Wärmebehandlung je nach Bauteildicke Festigkeiten über 1000 MPa bei Brucheinschnürungen über 45% einstellen lassen. Das Verhältnis von Streckgrenze zu Festigkeit kann dabei mindestens 0,8 betragen. Nachteilig an dieser Verfahrensweise sind die hohen Kosten für die Wärmebehandlung sowie die Belastung der Umwelt durch den Verbrauch von Energie und Hilfsstoffen.Thus, in order to achieve high strengths and high toughness, cold forming often involves compensation, i. heating, quenching and tempering. Here, so-called tempered steels according to DIN EN 10083 are used, in which, depending on the thickness of the component, it is possible, via the heat treatment, to set strengths of more than 1000 MPa for fracture constrictions of more than 45%. The ratio of yield strength to strength can be at least 0.8. A disadvantage of this procedure, the high cost of heat treatment and the burden on the environment through the consumption of energy and excipients.

Alternativ zu den Vergütungsstählen sind Dualphasenstähle auf der Basis Mangan/Silizium zur Erzeugung kaltverformter Bauteile hoher Festigkeit aus Walzmaterial Stand der Technik. Diese Stähle sind allerdings für einen Einsatz bei geforderten Festigkeiten größer 1000 MPa und hohem Streckgrenzenverhältnis über 0,8 nicht geeignet; sie erfordern zudem zum Einstellen einer bestimmten Ausgangsfestigkeit und Zähigkeit im Vormaterial ein thermomechanisches Warmwalzen und eine auf diese Ausgangsfestigkeit abgestellte Kaltverformung bzw. Kaltverfestigung, um so ein Gefüge aus einer Ferritmatrix mit eingelagerten Martensit- und Perlitinseln einzustellen.As an alternative to the tempered steels, manganese / silicon dual-phase steels are used to produce cold-formed components of high strength from rolled material State of the art. However, these steels are not suitable for use with required strengths greater than 1000 MPa and high yield ratio above 0.8; They also require to set a certain initial strength and toughness in the starting material, a thermomechanical hot rolling and a parked on this initial strength cold work or strain hardening, so as to set a microstructure of a ferrite matrix with embedded Martensit and Perlitinseln.

Hochfeste Bauteile aus Stahl lassen sich, ausgehend von warmgewalztem Vormaterial, beispielsweise Walzdraht oder Stabstahl, außer durch Kaltumformen und gegebenenfalls Vergüten, auch durch Warmformgebung herstellen.High-strength steel components can be produced, starting from hot-rolled starting material, for example wire rod or bar steel, by cold forming and, if appropriate, tempering, also by hot forming.

Auch warmformgebend hergestellte Teile können nach dem Umformen einer Wärmebehandlung zum Einstellen der mechanischen Eigenschaften. Dies ist das klassische Einsatzgebiet von Vergütungsstählen. Da sie jedoch eine zusätzliche Wärmebehandlung erfordern, ergeben sich die bereits angesprochenen hohen Kosten und die Umweltbelastung. Um diese Wärmebehandlung zu vermeiden, ist das Härten aus der Schmiedehitze bekannt. Es erspart das Erwärmen auf Austenitisierungstemperatur und Abschrecken. Niedrig legierte Stähle erfordern aber ein abschließendes Anlassen, um die geforderten Fertigkeits-Eigenschaften, insbesondere die notwendige Zähigkeit zu gewährleisten.Also thermoforming parts can be used after forming a heat treatment to adjust the mechanical properties. This is the classic application of tempered steels. However, since they require additional heat treatment, the already mentioned high cost and environmental impact arise. To avoid this heat treatment, hardening from forging heat is known. It eliminates heating to austenitizing temperature and quenching. However, low alloyed steels require a final tempering to provide the required performance properties, especially the necessary toughness.

Eine andere Werkstoffvariante, die mit einem Härten aus der Schmiedehitze einhergeht, sind die sogenannten direkthärtenden weichmartensitischen Stähle mit Kohlenstoffgehalten bis 0,1% und angepaßten Gehalten an Chrom, Bor und Mangan, die ohne ein Anlassen auskommen. Diese Stähle enthalten 0,05% Kohlenstoff oder auch in Abwesenheit von Chrom 0,10% Kohlenstoff. Nachteilig an diesen Stählen ist, daß zum Einstellen des martensitischen Gefüges eine hohe Abkühlungsgeschwindigkeit erforderlich ist. Dies erfordert zusätzliche Einrichtungen am Umformaggregat zum Öl- oder Wasserabschrecken, die einen Teil der Kostenersparnis aufzehren. Weiterhin führt die hohe Abkühlungsgeschwindigkeit dazu, daß komplexe Teile oder solche mit großen Wanddicken-Unterschieden zum Verzug neigen und das Gefüge sowie die mechanischen Eigenschaften über den Querschnitt inhomogen sein können.Another material variant associated with forging heat is the so-called direct-hardening soft-martensitic steels with carbon contents of up to 0.1% and matched chromium, boron and manganese contents, which do not require tempering. These steels contain 0.05% carbon or even 0.10% carbon in the absence of chromium. A disadvantage of these steels is that a high cooling rate is required for adjusting the martensitic microstructure. This requires additional facilities on the Umformaggregat for oil or water quenching, which eat up a part of the cost savings. Furthermore, the high cooling rate causes complex parts or those with large differences in wall thickness tend to delay and the structure and the mechanical properties can be inhomogeneous over the cross section.

Eine ähnliche Entwicklung ging in der Vergangenheit dahin, auch Bauteile mit bainitischem Gefüge direkt aus der Schmiedehitze herzustellen. Das bainitische Gefüge soll die Gefahr von Verzug und Härteunterschieden wie beim Einstellen eines weichmartensitischen Gefüges vermeiden, da für ein bainitisches Gefüge geringere Abkühlungsgeschwindigkeiten ausreichen. So beschreibt die deutsche Offenlegungsschrift 36 28 264 A1 ein Verfahren zum Herstellen von Bauteilen mit hoher Festigkeit und Zähigkeit, beispielsweise von LKW-Achsschenkeln unter Verwendung eines niedrig gekohlten Stahls mit einem Kohlenstoffgehalt unter 0,3%, bei dem die Bauteile, beispielsweise Schmiedeteile von der Verformungstemperatur auf ein bainitisches Gefüge abgekühlt werden. Der Nachteil dabei ist jedoch, daß die Abkühlungsgeschwindigkeit in Abhängigkeit vom im allgemeinen lokal unterschiedlichen Querschnitt des Bauteils gezielt gesteuert werden muß. Dafür sind aufwendige, dem jeweiligen Bauteil angepaßte Kühlvorrichtungen erforderlich. Problematisch ist zudem, daß diese Stähle zwar hohe Festigkeiten erreichen, aber nur eine niedrige Streckgrenze. Für Anwendungsfälle, die ein hohes Verhältnis von Streckgrenze zu Zugfestigkeit erfordern, sind diese Stähle daher nicht geeignet.A similar development has gone in the past, even produce components with bainitic structure directly from the forge heat. The bainitic structure should avoid the risk of distortion and hardness differences as when setting a weichmartensitischen structure, as for a bainitic structure lower cooling rates sufficient. That's how it describes German Offenlegungsschrift 36 28 264 A1 a method for producing high strength and toughness components, such as truck steering knuckles using a low carbon steel having a carbon content below 0.3%, in which the components, e.g. Forgings are cooled from the deformation temperature to a bainitic structure. The disadvantage of this, however, is that the cooling rate must be selectively controlled depending on the generally locally different cross section of the component. For this complex, the respective component adapted cooling devices are required. Another problem is that these steels achieve high strengths, but only a low yield strength. For applications which require a high yield strength to tensile strength ratio, these steels are therefore unsuitable.

Um die Vergütungsstähle und die damit verbundene Wärmebehandlung zu ersetzen, wurden die sogenannten AFP-Stähle, d.h. ausscheidungshärtenden ferritisch-perlitischen Stähle entwickelt (beispielsweise nach DIN EN 10267). Diese erhalten ihre mechanischen Eigenschaften durch ein geregeltes Abkühlen aus der Warmformtemperatur und die Ausscheidung von Karbonitriden der Elemente Titan, Vanadium und Niob. Diese Stähle neigen weniger zu Verzug als die Schmiedemartensite oder -bainite. Im Vergleich zu den Vergütungsstählen besitzen sie aber eine niedrigere Streckgrenze und geringere Zähigkeit. Bei Festigkeiten von 800 bis 1000 MPa werden lediglich Streckgrenzen von maximal 600 MPa erreicht. Für die Anwendung im Bereich hoher Belastungen, die Festigkeiten um 1000 MPa bei Streckgrenzen über 750 MPa erfordern, sind die konventionellen AFP-Stähle daher ungeeignet.In order to replace the tempered steels and associated heat treatment, the so-called AFP steels, i. precipitation-hardening ferritic-pearlitic steels developed (for example according to DIN EN 10267). These obtain their mechanical properties through a controlled cooling from the thermoforming temperature and the excretion of carbonitrides of the elements titanium, vanadium and niobium. These steels are less prone to distortion than the blacksmiths site or bainite. Compared to tempered steels, however, they have a lower yield strength and lower toughness. At strengths of 800 to 1000 MPa only yield strengths of up to 600 MPa are achieved. For applications in the high load range, which require strengths around 1000 MPa at yield strengths above 750 MPa, the conventional AFP steels are therefore unsuitable.

Eine Weiterentwicklung der AFP-Stähle geht in Richtung Vergütungsstähle mit höherer Festigkeit und höherer Streckgrenze bei guter Zähigkeit. Aktuell sind heute verbesserte Legierungskonzepte im Hinblick auf eine optimale Ausscheidung von Karbonitriden nach Größe und Zusammensetzung.A further development of the AFP steels is in the direction of tempered steels with higher strength and higher yield strength with good toughness. Today, improved alloying concepts are currently in view of optimum precipitation of carbonitrides by size and composition.

So beschreibt die europäische Offenlegungsschrift 1 408 131 A1 einen niedrig gekohlten ausscheidungsgehärtenden ferritisch-perlitischen Stahl mit 0,12 bis 0,45% Kohlenstoff, 0,10 bis 1,00% Silizium 0,50 bis 1,95% Mangan, 0,005 bis 0,060% Schwefel, 0,004 bis 0,050% Aluminium, 0,004 bis 0.050% Titan, bis 0,60% Chrom, bis 0,60% Niob, 0,10 bis 0,40% Vanadium und 0,015 bis 0,040% Stickstoff, Rest einschließlich erschmelzungsbedingter Verunreinigungen Eisen. Dieser Stahl braucht zur Entwicklung seiner mechanischen Eigenschaften lediglich von seiner Umformtemperatur von 950 bis 1250°C mit einer Abkühlungsgeschwindigkeit von mindestens 0,2°C/s, beispielsweise an ruhender Luft abgekühlt zu werden. Um die Ausscheidung der Karbonitride optimal zu steuern, sind jedoch die Analysenvorgaben sowie definierte Parameter beim Aufheizen auf die Umformtemperatur und bei der Abkühlung genau einzuhalten.That's how it describes European Patent Application 1 408 131 A1 a low carbon precipitation hardening ferritic-perlitic steel having 0.12 to 0.45% carbon, 0.10 to 1.00% silicon, 0.50 to 1.95% manganese, 0.005 to 0.060% sulfur, 0.004 to 0.050% aluminum, 0.004 to 0.050% titanium, to 0.60% chromium, to 0.60% niobium, 0.10 to 0.40% vanadium, and 0.015 to 0.040% nitrogen, balance including iron due to melting. This steel needs to develop its mechanical properties only from its forming temperature of 950 to 1250 ° C with a cooling rate of at least 0.2 ° C / s, for example, to be cooled in still air. In order to optimally control the precipitation of the carbonitrides, however, the analysis specifications and defined parameters during heating to the forming temperature and during cooling must be strictly adhered to.

Die Erfindung ist auf ein Verfahren gerichtet, mit dem sich ohne eine Wärmebehandlung eine hohe Festigkeit bei gleichzeitig hoher Zähigkeit sowie ein hohes Verhältnis von Streckgrenze zu Festigkeit erreichen läßt.The invention is directed to a method with which a high strength and high toughness and a high ratio of yield strength to strength can be achieved without a heat treatment.

Erfindungsgemäß läßt sich das bei einem Stahl mit 0,08 bis 0,25% Kohlenstoff, bis 1% Silizium, 0,5 bis 2,5% Mangan, bis 0,035% Phosphor, bis 0,055% Schwefel, 0,1 bis 1,5% Chrom, 0,1 bis 0,5% Molybdän, 0,2 bis 1,5% Nickel, bis 0,06% Aluminium, 0,0010 bis 0,006% Bor, jeweils bis 0,04% Vanadium, Niob und Titan, bis 0,5% Kupfer und bis 0,010% Stickstoff, Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen durch Einstellen eines martensitisch-bainitischen Gefüges durch bloßes Warmverformen und gesteuerte Abkühlung erreichen.According to the invention can be in a steel with 0.08 to 0.25% carbon, up to 1% silicon, 0.5 to 2.5% manganese, up to 0.035% phosphorus, to 0.055% sulfur, 0.1 to 1.5 % Chromium, 0.1 to 0.5% molybdenum, 0.2 to 1.5% nickel, to 0.06% aluminum, 0.0010 to 0.006% boron, each to 0.04% vanadium, niobium and titanium, up to 0.5% copper and up to 0.010% nitrogen, the remainder being iron, including any impurities caused by melting, by adjusting a martensitic-bainitic structure by mere hot working and controlled cooling.

Dabei sollten die Gehalte an Titan, Vanadium und Niob der Bedingung ( % Ti ) + % V + % Nb = 0 , 001 bis 0 , 2 %

Figure imgb0001

genügen. Die genannten Elemente, vorzugsweise Titan, werden zum Abbinden von Stickstoff genötigt. Dies ist erforderlich, damit das Bor härtbarkeitssteigernd wirksam ist.The contents of titanium, vanadium and niobium should be the condition ( % Ti ) + % V + % Nb = 0 . 001 to 0 . 2 %
Figure imgb0001

suffice. The said elements, preferably titanium, are required for the setting of nitrogen. This is necessary for the boron hardenability enhancing effect.

Durch die Legierungszusammensetzung und die Abkühlungsgeschwindigkeit werden die mechanischen Eigenschaften eingestellt. Beim Abkühlen von der Verformungstemperatur von etwa 1000 bis 1300°C stellt sich ein bainitisch-martensitisches Mischgefüge, dessen Anteil an Ferrit und Perlit insgesamt 10% nicht übersteigen sollte. Ein Abkühlen aus der Umformhitze mit Gas, Wasser oder Öl ist möglich, aber nicht erforderlich; um das bainitisch-martensitische Gefüge einzustellen, genügt ein Abkühlen an bzw. mit Luft. Einer Abkühlung mit bewegter Luft ist dabei der Vorzug zu geben, da dies die bevorzugte Mindestabkühlgeschwindigkeit von 0,3°C/s gewährleistet. Die Verwendung von ruhender oder bewegter Luft ist anderen Kühlmitteln vorzuziehen, da die Umwelt dann nicht durch Dämpfe belastet wird, keine zusätzlichen Hilfsstoffe wie Öl oder Gas und keine Entsorgungsaggregate wie Filter, Tanks und Auffangbecken erforderlich sind. Die Abkühlungsgeschwindigkeit sollte im Temperaturbereich zwischen etwa 1000 und 610°C mindestens 0,3°C/s betragen. Der Stahl besitzt dann nach dem Abkühlen von der Endtemperatur des Warmverformens auf Raumtemperatur nicht nur eine hohe Zähigkeit, sondern auch eine hohe Festigkeit. Das Verhältnis von Streckgrenze zu Festigkeit ist ebenfalls hoch.The alloy composition and the cooling rate adjust the mechanical properties. On cooling from the deformation temperature of about 1000 to 1300 ° C, a bainitic-martensitic mixed structure, the proportion of ferrite and perlite should not exceed 10% in total. Cooling from the forming heat with gas, water or oil is possible but not required; In order to adjust the bainitic-martensitic microstructure, cooling on or with air is sufficient. A cooling with moving air is to be preferred, as this ensures the preferred minimum cooling rate of 0.3 ° C / s. The use of static or moving air is preferable to other refrigerants, since the environment is then not contaminated by vapors, no additional auxiliaries such as oil or gas and no disposal units such as filters, tanks and catch basins are required. The cooling rate should be at least 0.3 ° C / s in the temperature range between about 1000 and 610 ° C. The steel then has not only high toughness after cooling from the final temperature of hot working to room temperature, but also high strength. The ratio of yield strength to strength is also high.

Das erfindungsgemäß aus der Verformungshitze abgekühlte Vormaterial ist ohne weiteres für eine Kaltformgebung geeignet. Durch Kaltverfestigung lassen sich Zugfestigkeiten über 1200 MPa bei Streckgrenzen über 1050 MPa erreichen. Das Verhältnis von Streckgrenze zu Festigkeit liegt über 0,85. Die hohe Zähigkeit zeigt sich in Brucheinschnürungswerten von Ober 40% und Bruchdehnungen über 12%. Die mechanischen Eigenschaften sind also besser als die aus üblichen Stählen oder Dualphasenstählen.The inventively cooled from the deformation heat starting material is readily suitable for cold forming. By strain hardening, tensile strengths of more than 1200 MPa can be achieved at yield strengths above 1050 MPa. The ratio of yield strength to strength is above 0.85. The high toughness is evident in fracture necking values of above 40% and elongations at break above 12%. The mechanical properties are therefore better than those of conventional steels or dual-phase steels.

So ergeben sich nahezu die Eigenschaften der Vergütungsstähle, ohne die Notwendigkeit einer kostenintensiven Wärmebehandlung.This results in almost the properties of tempered steels, without the need for costly heat treatment.

Das erfindungsgemäß aus der Verformungshitze abgekühlte Vormaterial ist auch wiederum als Vormaterial für eine Warmformgebung geeignet. Bei einem solchen - zweiten - Warmverformen ergeben sich wiederum die originären mechanischen Eigenschaften ohne die Notwendigkeit eines Abschreckens in Wasser oder Öl, wenn die erfindungsgemäßen Abkühlungsbedingungen eingehalten werden. Im Vergleich zu den Schmiedemartensiten ist die Neigung zum Verzug wegen der milderen Abschreckungsbedingungen geringer. Im Vergleich zu den bainitischen Stählen und den üblichen AFP-Stählen ergeben sich höhere Festigkeiten und insbesondere wesentlich höhere Streckgrenzen. Da dem erfindungsgemäßen Vormaterial eine Ausscheidungshärtung durch Karbonitride nicht festigkeitsbestimmend ist, ergibt sich ein größeres Fenster bei der Einstellung der Analyse und insbesondere bei den Bedingungen der Warmformgebung im Vergleich zu neueren AFP-Stählen.The inventively cooled from the deformation heat starting material is also suitable in turn as a starting material for hot forming. In such - second - hot working again arise the original mechanical properties without the need for quenching in water or oil when the cooling conditions of the invention are met. Compared to forged martensite, the tendency to warp is lower because of the milder deterrent conditions. In comparison to the bainitic steels and the usual AFP steels, higher strengths and, in particular, significantly higher yield strengths result. Since precipitation hardening by carbonitrides is not strength-determining for the primary material according to the invention, a larger window results in the setting of the analysis and in particular in the conditions of thermoforming in comparison to newer AFP steels.

Für das erfindungsgemäße Verfahren eignet sich besonders ein Stahl, der mindestens 0,10% Kohlenstoff, 0,3% Silizium, 1% Mangan, 0,2% Chrom, 0,2% Nickel, 0,2% Molybdän, 0,0015% Bor, 0,014% Titan einzeln oder nebeneinander enthält.For the method according to the invention, a steel which contains at least 0.10% carbon, 0.3% silicon, 1% manganese, 0.2% chromium, 0.2% nickel, 0.2% molybdenum, 0.0015% is particularly suitable. Boron, 0.014% titanium, single or side by side.

Des weiteren kann der Stahl - einzeln oder nebeneinander - auch jeweils höchstens 0,24% Kohlenstoff, 2% Mangan, 0,020% Phosphor, 0,045% Schwefel, 1,4% Chrom, 1,4% Nickel, 0,4% Molybdän, 0,05% Aluminium, 0,038% Titan, 0,02% Vanadium, 0,02% Niob, 0,3% Kupfer, 0,005% Bor und 0,010% Stickstoff enthalten.Furthermore, the steel - individually or next to each other - also in each case at most 0.24% carbon, 2% manganese, 0.020% phosphorus, 0.045% sulfur, 1.4% chromium, 1.4% nickel, 0.4% molybdenum, 0 , 05% aluminum, 0.038% titanium, 0.02% vanadium, 0.02% niobium, 0.3% copper, 0.005% boron and 0.010% nitrogen.

Im Rahmen eines Ausführungsbeispiels wurde ein nach dem LD-Verfahren gefrischter Stahl zu Draht mit einem Durchmesser von 15 mm warmgewalzt, aus der Walzhitze an beschleunigter Luft abgekühlt und anschließend auf einen Enddurchmesser von 14 mm kaltgezogen.In one embodiment, a steel refined by the LD process was hot rolled into 15 mm diameter wire, cooled from the rolling heat of accelerated air, and then cold drawn to a final diameter of 14 mm.

Der Stahl bestand aus 0,205% Kohlenstoff 0,56% Silizium 1,62% Mangan 0,011% Phosphor 0,01% Schwefel 0,54% Chrom 0,32% Molybdän 0,22% Nickel 0,03% Aluminium 0,0038% Bor 0,036% Titan 0,002% Vanadium 0,002% Niob 0,0044% Stickstoff, Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen.The steel was made 0.205% carbon 0.56% silicon 1.62% manganese 0.011% phosphorus 0.01% sulfur 0.54% chrome 0.32% molybdenum 0.22% nickel 0.03% aluminum 0.0038% boron 0.036% titanium 0.002% vanadium 0.002% niobium 0.0044% Nitrogen, rest iron including contaminants due to melting.

Das Gefüge und die mechanischen Eigenschaften des Drahts nach dem Abkühlen aus der Walzhitze mit einer Abkühlungsgeschwindigkeit von 2°C/s unter Verwendung von beschleunigter Luft sowie nach dem Kaltziehen ergeben sich aus der nachfolgenden Tabelle. Eigenschaften Walzhart Gezogen Zugfestigkeit Rm [MPa] 1180 1230 Streckgrenze Rp 0.2 [MPa] 805 1070 Brucheinschnürung Z [%] 53,6 42 Bruchdehnung A5 [%] 14 14 Streckgrenzenverhältnis 0,72 0,86 Gefügeanteile [%] Rand Kern Martensit 35 bis 50 30 bis 55 Bainit Rest Rest The structure and the mechanical properties of the wire after cooling from the rolling heat at a cooling rate of 2 ° C / s using accelerated air and after cold drawing are shown in the table below. properties As rolled Drawn Tensile strength R m [MPa] 1180 1230 Yield strength R p 0.2 [MPa] 805 1070 Fracture Z [%] 53.6 42 Elongation at break A5 [%] 14 14 Yield ratio 0.72 0.86 Structure shares [%] edge core martensite 35 to 50 30 to 55 bainit rest rest

Die vorstehenden Daten zeigen, daß das erfindungsgemäße Verfahren ein Material ergibt, das sich sowohl im warmverformten als auch im kaltverformten Zustand durch eine hohe Festigkeit und Zähigkeit sowie ein hohes Streckgrenzenverhältnis auszeichnet und sich wegen des Wegfalls einer Wärmebehandlung kostengünstig und umweltfreundlich herstellen läßt.The above data show that the inventive method results in a material that is characterized both in hot-formed and cold-worked state by a high strength and toughness and a high yield ratio and can be produced inexpensively and environmentally friendly because of the elimination of a heat treatment.

Claims (9)

Verfahren zum Herstellen von Vormaterial durch Warmverformen, bei dem ein Stahl mit folgenden Bestandteilen in Gewichtsprozent 0,08 bis 0,25% Kohlenstoff bis 1% Silizium 0,5 bis 2,5% Mangan bis 0.035% Phosphor bis 0,055% Schwefel 0,1 bis 1,5% Chrom 0,1 bis 0,5% Molybdän 0,2 bis 1,5% Nickel bis 0,06% Aluminium 0,0010 bis 0, 0060% Bor bis 0,040% Titan bis 0,04% Vanadium bis 0,04% Niob bis 0,5% Kupfer bis 0,010% Stickstoff
Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen von der Verformungstemperatur durch eine gesteuerte Abkühlung auf ein martensitisch-bainitisches Gefüge eingestellt wird.
Process for the production of semi-finished material by hot-forming, in which a steel comprising the following constituents in percent by weight 0.08 to 0.25% carbon up to 1% silicon 0.5 to 2.5% manganese up to 0.035% phosphorus up to 0.055% sulfur 0.1 to 1.5% chrome 0.1 to 0.5% molybdenum 0.2 to 1.5% nickel up to 0.06% aluminum 0.0010 to 0.0060% boron up to 0.040% titanium up to 0.04% vanadium up to 0.04% niobium up to 0.5% copper up to 0.010% nitrogen
Residual iron, including any contaminants due to melting, is adjusted from the deformation temperature by a controlled cooling to a martensitic-bainitic structure.
Verfahren nach Anspruch 1, gekennzeichnet durch die Verwendung eines Stahls mit jeweils höchstens 0,24% Kohlenstoff, 2% Mangan, 0,020% Phosphor, 0,045% Schwefel, 1,4% Chrom, 1,4% Nickel, 0,4% Molybdän, 0,05% Aluminium, 0,038% Titan, 0,02% Vanadium, 0,02°% Niob, 0,3% Kupfer, 0,005% Bor und 0,010% Stickstoff einzeln oder nebeneinander.A method according to claim 1, characterized by the use of a steel with in each case at most 0.24% carbon, 2% manganese, 0.020% phosphorus, 0.045% sulfur, 1.4% chromium, 1.4% nickel, 0.4% molybdenum, 0.05% aluminum, 0.038% titanium, 0.02% vanadium, 0.02% niobium, 0.3% copper, 0.005% boron and 0.010% nitrogen, singly or side by side. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch die Verwendung eines Stahls mit mindestens 0,10% Kohlenstoff, 0,3% Silizium, 1,0% Mangan, 0.2% Chrom, 0,2% Molybdän, 0.2% Nickel, 0.0015% Bor, 0.014% Titan einzeln oder nebeneinander.A method according to claim 1 or 2, characterized by the use of a steel having at least 0.10% carbon, 0.3% silicon, 1.0% manganese, 0.2% chromium, 0.2% molybdenum, 0.2% nickel, 0.0015% boron , 0.014% titanium individually or next to each other. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Gehalte des Stahls an Titan, Vanadium und Niob der Bedingung ( % Ti ) + % V + % Nb = 0 , 001 bis 0 , 2 %
Figure imgb0002

genügen.
Method according to one of claims 1 to 3, characterized in that the contents of the steel of titanium, vanadium and niobium of the condition ( % Ti ) + % V + % Nb = 0 . 001 to 0 . 2 %
Figure imgb0002

suffice.
Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Stahl beim Abkühlen auf ein martensitisch-bainitisches Gefüge mit höchstens 10% Ferrit und Perlit eingestellt wird.Method according to one of claims 1 to 4, characterized in that the steel is set on cooling to a martensitic-bainitic structure with at most 10% ferrite and perlite. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Stahl im Bereich zwischen der Umformtemperatur und 610°C mit mindestens 0,3°C/s abgekühlt wird.Method according to one of claims 1 to 5, characterized in that the steel is cooled in the range between the forming temperature and 610 ° C with at least 0.3 ° C / s. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Vormaterial kaltverformt wird.Method according to one of claims 1 to 6, characterized in that the starting material is cold worked. Verwendung eines Vormaterials nach den Ansprüchen 1 bis 7 zum Herstellen von hochfestem Draht, Kfz-Fahrgestellteilen und -fahrwerken, Radträgern, Querlenkern, Lenk- und Radzapfen, von Kurbelwellen, Pleuelstangen, Lagern, Stabilisatoren und Verbindungselementen.Use of a starting material according to claims 1 to 7 for the manufacture of high-strength wire, automotive chassis parts and suspensions, wheel carriers, wishbones, steering and wheel journal, crankshafts, connecting rods, bearings, stabilizers and connecting elements. Verwendung eines Vormaterials nach den Verfahren der Ansprüche 1 bis 8 zum Herstellen von Schmiedeteilen.Use of a starting material according to the methods of claims 1 to 8 for the manufacture of forgings.
EP06022284.1A 2005-10-28 2006-10-25 Procedure for manufacturing of steel starting material by warm deforming Not-in-force EP1780293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06022284T PL1780293T3 (en) 2005-10-28 2006-10-25 Procedure for manufacturing of steel starting material by warm deforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005052069.3A DE102005052069B4 (en) 2005-10-28 2005-10-28 Process for the production of semi-finished steel by hot working

Publications (4)

Publication Number Publication Date
EP1780293A2 true EP1780293A2 (en) 2007-05-02
EP1780293A3 EP1780293A3 (en) 2007-05-30
EP1780293B1 EP1780293B1 (en) 2013-09-18
EP1780293B2 EP1780293B2 (en) 2017-11-08

Family

ID=37714952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06022284.1A Not-in-force EP1780293B2 (en) 2005-10-28 2006-10-25 Procedure for manufacturing of steel starting material by warm deforming

Country Status (4)

Country Link
EP (1) EP1780293B2 (en)
DE (1) DE102005052069B4 (en)
ES (1) ES2439900T3 (en)
PL (1) PL1780293T3 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026881A1 (en) 2007-08-27 2009-03-05 Georgsmarienhütte Gmbh Steel for producing machine components formed from solid stock
EP2199422A1 (en) 2008-12-15 2010-06-23 Swiss Steel AG Low-carbon precipitation-strengthened steel for cold heading applications
EP3168312A1 (en) * 2015-11-16 2017-05-17 Deutsche Edelstahlwerke GmbH Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part
CN112553530A (en) * 2020-12-04 2021-03-26 安阳钢铁股份有限公司 Low-yield-ratio 700MPa high-strength bridge steel and manufacturing method thereof
WO2022253912A1 (en) 2021-06-02 2022-12-08 Ascometal France Holding Sas Hot-formed steel part and manufacturing method
WO2023014332A1 (en) * 2021-08-04 2023-02-09 Ti̇rsan Kardan Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ High-strength micro-alloyed steel
EP4296393A1 (en) * 2022-06-23 2023-12-27 Saarstahl Aktiengesellschaft Boron-containing steel, in particular heat-treatable steel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008004371A1 (en) * 2008-01-15 2009-07-16 Robert Bosch Gmbh Component, in particular a motor vehicle component, made of a dual-phase steel
EP2103704B1 (en) 2008-03-10 2012-07-11 Swiss Steel AG Hot-rolled long product and method for its manufacture
CN103725954B (en) * 2013-12-16 2017-01-04 泰州俊宇不锈钢材料有限公司 A kind of High-strength corrosion-resistancesteel steel wire and manufacturing process thereof
CN113699452B (en) * 2021-08-30 2023-03-10 宝武集团马钢轨交材料科技有限公司 Steel for tramcar elastic wheel rim and heat treatment method and production method thereof
DE102022110466A1 (en) 2022-04-29 2023-11-02 Hirschvogel Holding GmbH Method for producing a solid-forming component and solid-forming component produced using such a method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812182A (en) 1987-07-31 1989-03-14 Hongsheng Fang Air-cooling low-carbon bainitic steel
JPH09263884A (en) 1996-03-28 1997-10-07 Kobe Steel Ltd High strength hot rolled steel plate excellent in pitting corrosion resistance and crushing resistance, high strength galvanized steel plate, and their production
CN1451776A (en) 2003-04-30 2003-10-29 清华大学 Mn-Si-Cr air-cooled granular bainite/ferrite polyphase steel
CN1477226A (en) 2003-08-01 2004-02-25 清华大学 Medium-low carbon manganese system self-hardening bainite steel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3628264A1 (en) * 1986-08-20 1988-02-25 Man Nutzfahrzeuge Gmbh Process for the manufacture of components from steel of high strength with at the same time high toughness, which retain these properties even after hot-forming
FR2741632B1 (en) 1995-11-27 1997-12-26 Ascometal Sa STEEL FOR MANUFACTURING A FORGED PART HAVING A BATH STRUCTURE AND METHOD FOR MANUFACTURING A PART
JP3374644B2 (en) * 1996-03-28 2003-02-10 株式会社神戸製鋼所 High-strength hot-rolled steel sheet, high-strength galvanized steel sheet excellent in pitting corrosion resistance and workability, and methods for producing them
FR2757877B1 (en) * 1996-12-31 1999-02-05 Ascometal Sa STEEL AND PROCESS FOR THE MANUFACTURE OF A SHAPED STEEL PART BY COLD PLASTIC DEFORMATION
DE19911287C1 (en) * 1999-03-13 2000-08-31 Thyssenkrupp Stahl Ag Process for producing a hot strip
DE10242731B4 (en) * 2002-09-13 2004-09-16 Federal-Mogul Friedberg Gmbh Mechanical seal
EP1408131A1 (en) * 2002-09-27 2004-04-14 CARL DAN. PEDDINGHAUS GMBH & CO. KG Steel composition and forged workpieces made thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812182A (en) 1987-07-31 1989-03-14 Hongsheng Fang Air-cooling low-carbon bainitic steel
JPH09263884A (en) 1996-03-28 1997-10-07 Kobe Steel Ltd High strength hot rolled steel plate excellent in pitting corrosion resistance and crushing resistance, high strength galvanized steel plate, and their production
CN1451776A (en) 2003-04-30 2003-10-29 清华大学 Mn-Si-Cr air-cooled granular bainite/ferrite polyphase steel
CN1477226A (en) 2003-08-01 2004-02-25 清华大学 Medium-low carbon manganese system self-hardening bainite steel

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026881A1 (en) 2007-08-27 2009-03-05 Georgsmarienhütte Gmbh Steel for producing machine components formed from solid stock
EA017741B1 (en) * 2007-08-27 2013-02-28 Георгсмариенхютте Гмбх Steel for producing machine components formed from solid stock
EP2199422A1 (en) 2008-12-15 2010-06-23 Swiss Steel AG Low-carbon precipitation-strengthened steel for cold heading applications
EP3168312A1 (en) * 2015-11-16 2017-05-17 Deutsche Edelstahlwerke GmbH Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part
WO2017085072A1 (en) * 2015-11-16 2017-05-26 Deutsche Edelstahlwerke Gmbh High-grade structural steel with bainitic structure, forged part produced therefrom and method for producing a forged part
KR20180071357A (en) * 2015-11-16 2018-06-27 도이체 에델스탈베르케 스페시알티 스틸 게엠베하 운트 코. 카게 Forging and forgings manufactured from high-grade structural steel of bainite structure, high-grade structural steel of bainite structure
CN112553530A (en) * 2020-12-04 2021-03-26 安阳钢铁股份有限公司 Low-yield-ratio 700MPa high-strength bridge steel and manufacturing method thereof
CN112553530B (en) * 2020-12-04 2022-03-11 安阳钢铁股份有限公司 Low-yield-ratio 700MPa high-strength bridge steel and manufacturing method thereof
WO2022253912A1 (en) 2021-06-02 2022-12-08 Ascometal France Holding Sas Hot-formed steel part and manufacturing method
FR3123659A1 (en) 2021-06-02 2022-12-09 Ascometal France Holding Sas Hot-formed steel part and method of manufacture
WO2023014332A1 (en) * 2021-08-04 2023-02-09 Ti̇rsan Kardan Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ High-strength micro-alloyed steel
EP4296393A1 (en) * 2022-06-23 2023-12-27 Saarstahl Aktiengesellschaft Boron-containing steel, in particular heat-treatable steel
WO2023247214A1 (en) * 2022-06-23 2023-12-28 Saarstahl Aktiengesellschaft Boron-alloyed steel, in particular heat-treated steel

Also Published As

Publication number Publication date
PL1780293T3 (en) 2014-03-31
EP1780293A3 (en) 2007-05-30
EP1780293B1 (en) 2013-09-18
EP1780293B2 (en) 2017-11-08
DE102005052069B4 (en) 2015-07-09
DE102005052069A1 (en) 2007-05-03
ES2439900T3 (en) 2014-01-27

Similar Documents

Publication Publication Date Title
EP1780293B1 (en) Procedure for manufacturing of steel starting material by warm deforming
EP2383353B1 (en) High tensile steel containing Mn, steel surface product made from such steel and method for producing same
EP1309734B2 (en) Highly stable, steel and steel strips or steel sheets cold-formed, method for the production of steel strips and uses of said steel
DE60016369T2 (en) COLD WORKABLE STEEL WIRE OR STEEL STICK AND METHOD
DE102008051992B4 (en) Method for producing a workpiece, workpiece and use of a workpiece
EP3168312B1 (en) Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part
EP2905348B1 (en) High strength flat steel product with bainitic-martensitic structure and method for manufacturing such a flat steel product
EP3535431B1 (en) Steel product with an intermediate manganese content for low temperature application and production method thereof
EP0576107B1 (en) Use of a steel for the manufacture of constructiontubes
EP1546426B1 (en) Steel composition and parts forged by a forging die
EP2749659A1 (en) Method for manufacturing a motor vehicle component and motor vehicle component
WO2009090228A1 (en) Parts made of high-strength, ductile cast steel having a high manganese content, method for the production thereof, and use thereof
EP2009120B1 (en) Use of an extremely resistant steel alloy for producing steel pipes with high resistance and good plasticity
EP2111475A1 (en) Components made of steels with an ultrahigh carbon content and with a reduced density and high scaling resistance
DE102008040689B4 (en) Ball studs and sleeves made of high manganese steel
DE102017131247A1 (en) Method for producing metallic components with adapted component properties
DE112019005950T5 (en) HOT-ROLLED STEEL PLATE WITH HIGH SURFACE CONDITIONS, LOW YIELD RATIO AND HIGH STRENGTH AND METHOD OF MANUFACTURING THE SAME
EP2414552B1 (en) Ball pins made of bainitic steels for passenger car and light commercial vehicle
DE112008001181B4 (en) Use of a steel alloy for axle tubes and axle tube
EP0315576B1 (en) Procedure for the fabrication of cladstell plates
DE69816948T2 (en) UNHARDENED STEEL FOR MECHANICAL STRUCTURES
EP2255021B1 (en) Steel alloy for a low alloy steel for producing high-tensile seamless steel tubing
WO2020038883A1 (en) Hot-rolled non-heat-treated and hot-rolled heat-treated flat steel product and method for the production thereof
DE112017006053T5 (en) HIGH-TEN AND HIGH-TIMING TUBE FOR A PERFORIER PISTOL AND METHOD OF MANUFACTURING THEREOF
DE3507124C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 9/46 20060101ALI20070424BHEP

Ipc: C22C 38/00 20060101ALI20070424BHEP

Ipc: C22C 38/14 20060101ALI20070424BHEP

Ipc: C21D 1/00 20060101AFI20070215BHEP

Ipc: C21D 1/20 20060101ALI20070424BHEP

Ipc: C21D 8/02 20060101ALI20070424BHEP

Ipc: C22C 38/54 20060101ALI20070424BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VOLKER, KINSINGER DR.

Inventor name: ROBERT, FRAUENDORFER

17P Request for examination filed

Effective date: 20070823

17Q First examination report despatched

Effective date: 20071108

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

TPAC Observations by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502006013204

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0001000000

Ipc: C22C0038020000

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/50 20060101ALI20130313BHEP

Ipc: C21D 8/02 20060101ALI20130313BHEP

Ipc: C22C 38/06 20060101ALI20130313BHEP

Ipc: C22C 38/04 20060101ALI20130313BHEP

Ipc: C22C 38/54 20060101ALI20130313BHEP

Ipc: C21D 1/20 20060101ALI20130313BHEP

Ipc: C21D 1/00 20060101ALI20130313BHEP

Ipc: C22C 38/46 20060101ALI20130313BHEP

Ipc: C22C 38/44 20060101ALI20130313BHEP

Ipc: C22C 38/48 20060101ALI20130313BHEP

Ipc: C21D 9/46 20060101ALI20130313BHEP

Ipc: C22C 38/00 20060101ALI20130313BHEP

Ipc: C22C 38/02 20060101AFI20130313BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130422

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 632858

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006013204

Country of ref document: DE

Effective date: 20131114

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2439900

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140118

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140120

26 Opposition filed

Opponent name: TATA STEEL UK LTD

Effective date: 20140611

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502006013204

Country of ref document: DE

Effective date: 20140611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131025

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20141017

Year of fee payment: 9

Ref country code: FI

Payment date: 20141022

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20141016

Year of fee payment: 9

Ref country code: NL

Payment date: 20141023

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20061025

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131025

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20151101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151101

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161025

Year of fee payment: 11

Ref country code: FR

Payment date: 20161025

Year of fee payment: 11

Ref country code: CZ

Payment date: 20161018

Year of fee payment: 11

Ref country code: CH

Payment date: 20161025

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20161024

Year of fee payment: 11

Ref country code: BE

Payment date: 20161025

Year of fee payment: 11

Ref country code: ES

Payment date: 20161025

Year of fee payment: 11

Ref country code: IT

Payment date: 20161025

Year of fee payment: 11

Ref country code: SE

Payment date: 20161025

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151025

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20171108

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502006013204

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

REG Reference to a national code

Ref country code: SE

Ref legal event code: NAV

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 632858

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171025

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171025

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171025

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171025

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181122

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171026

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006013204

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501