EP1777051B1 - Mousse de polyuréthane pour des tuyaux calorifuges - Google Patents

Mousse de polyuréthane pour des tuyaux calorifuges Download PDF

Info

Publication number
EP1777051B1
EP1777051B1 EP06121729A EP06121729A EP1777051B1 EP 1777051 B1 EP1777051 B1 EP 1777051B1 EP 06121729 A EP06121729 A EP 06121729A EP 06121729 A EP06121729 A EP 06121729A EP 1777051 B1 EP1777051 B1 EP 1777051B1
Authority
EP
European Patent Office
Prior art keywords
pipe
polyol mixture
medium
polyol
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06121729A
Other languages
German (de)
English (en)
Other versions
EP1777051A1 (fr
Inventor
Christof Grieser-Schmitz
Carsten Ellersiek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to PL06121729T priority Critical patent/PL1777051T3/pl
Publication of EP1777051A1 publication Critical patent/EP1777051A1/fr
Application granted granted Critical
Publication of EP1777051B1 publication Critical patent/EP1777051B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/385Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using manifolds or channels directing the flow in the mould
    • B29C44/386Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using manifolds or channels directing the flow in the mould using a movable, elongate nozzle, e.g. to reach deep into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1228Joining preformed parts by the expanding material
    • B29C44/1242Joining preformed parts by the expanding material the preformed parts being concentric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/482Mixtures of polyethers containing at least one polyether containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • C08G18/5027Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups directly linked to carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0058≥50 and <150kg/m3

Definitions

  • Pipe insulated with polyurethane foams are known in the art and, for example, in EP-A-865 893 and DE-A-197 42 012 described.
  • the majority of pre-insulated pipes that use PUR foam for insulation is produced by means of discontinuous pipe-in-pipe production.
  • the medium pipe usually steel
  • the outer sheath usually polyethylene
  • this annular gap is filled with polyurethane foam.
  • the slightly inclined double tube is provided with end caps, which are equipped with vent holes.
  • the liquid reaction mixture is filled in the annular gap by means of a polyurethane metering which flows down in still liquid form in the pipe gap until the reaction begins. From this time, the further distribution takes place by flowing the slowly rising in viscosity foam until the material is reacted.
  • the object of the invention was therefore to provide a polyurethane system which can be advantageously used in the production of insulated pipes and there leads to a polyurethane foam with very good compressive strength (> 0.3 N / mm 2 according to EN 253), with an excellent Centering of the steel pipe (medium pipe) is made possible.
  • the polyol mixture used in the reaction may usually contain (b1) polyols, (b2) catalysts and optionally (b3) chemical blowing agents, (b4) crosslinking agents, (b5) chain extenders and / or (b6) additives.
  • the polyol mixture consisting of (b1) polyols, (b2) catalysts and optionally (b3) chemical blowing agents, (b4) crosslinking agents, (b5) chain extenders and / or (b6) additives preferably has a viscosity of less than 3000 mPas, preferably less than 2400 mPas, more preferably less than 2200 mPas, measured according to DIN 53019 at 20 ° C, on.
  • This viscosity specification refers to polyol mixtures (b) which, as shown, contain no physical blowing agents. Values of 200 mPas, preferably 400 mPas, particularly preferably 600 mPas, measured according to DIN 53019 at 20 ° C., have proven to be useful as the lower limit of the viscosity.
  • the viscosity information of the polyol mixture (b) given above refers to the viscosity of the polyol mixture (b) without the addition of physical blowing agents.
  • the isocyanate component (a) used are the customary aliphatic, cycloaliphatic and in particular aromatic di- and / or polyisocyanates. Preferably used are tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI) and in particular mixtures of diphenylmethane diisocyanate and polyphenylene polymethylene polyisocyanates (crude MDI).
  • the isocyanates may also be modified, for example by incorporation of uretdione, carbamate, isocyanurate, carbodiimide, allophanate and in particular urethane groups.
  • the isocyanate component (a) can also be used in the form of polyisocyanate prepolymers.
  • prepolymers are known in the art.
  • the preparation is carried out in a manner known per se by reacting polyisocyanates (a) described above, for example at temperatures of about 80 ° C., with compounds containing isocyanate-reactive hydrogen atoms, preferably polyols, to form polyisocyanate prepolymers.
  • the polyol-polyisocyanate ratio is generally chosen so that the NCO content of the prepolymer 8 to 25 wt .-%, preferably 10 to 22 wt .-%, particularly preferably 13 to 20 wt .-% is.
  • the isocyanate component (a) is chosen to have a viscosity of less than 600 mPas, preferably from 100 to 450, especially preferably from 120 to 350, in particular from 180 to 320 mPas, measured according to DIN 53019 at 20 ° C having.
  • polyols in addition to the polyols according to the invention, polyols known in general for this purpose can be used.
  • polyols known in general for this purpose can be used.
  • compounds having at least two isocyanate-reactive groups, ie having at least two hydrogen atoms reactive with isocyanate groups are suitable.
  • examples include compounds with OH groups, SH groups, NH groups and / or NH 2 groups.
  • Preferred polyols are compounds based on polyesterols or polyetherols.
  • the functionality of the polyetherols and / or polyesterols is generally 1.9 to 8, preferably 2.4 to 7, particularly preferably 2.9 to 6.
  • the polyols (b1) preferably have a hydroxyl number of greater than 70 mg KOH / g, preferably greater than 100 mg KOH / g, more preferably greater than 120 mg KOH / g.
  • the upper limit of the hydroxyl number has generally proven to be 1000 mg KOH / g, preferably 900 mg KOH / g, especially 800 mg KOH / g.
  • Component (b1) preferably comprises polyetherpolyols prepared by known processes, for example by anionic polymerization with alkali metal hydroxides, such as sodium or potassium hydroxide or alkali metal alkoxides, such as sodium methylate, sodium or potassium ethylate or potassium isopropylate as catalysts and with the addition of at least one starter molecule 2 to 8, preferably contains 3 to 8 bonded reactive hydrogen atoms, or by cationic polymerization with Lewis acids, such as antimony pentachloride, boron fluoride etherate, inter alia or bleaching earth are prepared as catalysts from one or more alkylene oxides having 2 to 4 carbon atoms in the alkylene radical.
  • alkali metal hydroxides such as sodium or potassium hydroxide or alkali metal alkoxides, such as sodium methylate, sodium or potassium ethylate or potassium isopropylate
  • Lewis acids such as antimony pentachloride, boron fluoride etherate, inter alia
  • Suitable alkylene oxides are, for example, tetrahydrofuran, 1,3-propylene oxide, 1,2- or 2,3-butylene oxide, styrene oxide and preferably ethylene oxide and 1,2-propylene oxide.
  • the alkylene oxides can be used individually, alternately in succession or as mixtures.
  • starter molecules are alcohols, such as glycerol, trimethylolpropane (TMP), pentaerythritol, sucrose, sorbitol, and amines such as methylamine, ethylamine, isopropylamine, butylamine, benzylamine, aniline, toluidine, toluene diamine (TDA), naphthylamine, ethylenediamine, Diethylenetriamine, 4,4'-methylenedianiline, 1,3-propanediamine, 1,6-hexanediamine, ethanolamine, diethanolamine, triethanolamine and the like.
  • TMP trimethylolpropane
  • pentaerythritol sucrose
  • sorbitol amines
  • amines such as methylamine, ethylamine, isopropylamine, butylamine, benzylamine, aniline, toluidine, toluene diamine (TDA), naphthylamine,
  • condensation products of formaldehyde, phenol and diethanolamine or ethanolamine, formaldehyde, alkylphenols and diethanolamine or ethanolamine, formaldehyde, bisphenol A and diethanolamine or ethanolamine, formaldehyde, aniline and diethanolamine or ethanolamine, formaldehyde, cresol and diethanolamine or Ethanolamine, formaldehyde, toluidine and diethanolamine or ethanolamine and formaldehyde, toluene diamine (TDA) and diethanolamine or ethanolamine and the like can be used.
  • Diethylene glycol, glycerol and pentaerythritol are preferably used as the starter molecule.
  • the polyol mixture may optionally contain catalysts as component (b2).
  • the catalysts (b2) used are usually compounds which accelerate the PUR and / or PIR reaction.
  • organic tin compounds such as tin (II) salts of organic carboxylic acids, and / or basic amine compounds, preferably tertiary amines, such as triethylamine, and / or 1,4-diaza-bicyclo- (2,2,2 ) octane.
  • the catalysts are generally used in an amount of 0.001 to 5 wt .-%, in particular from 0.05 to 3.5 wt .-% catalyst, based on the weight of component (b).
  • Particularly preferred before the reaction of the isocyanate component (a) with the polyol mixture (b) is between 0.01 and 3.5 wt .-% N, N ', N "-Tris (dimethylaminopropyl) hexahydrotriazine (CAS number 15875-13 5) in the polyol mixture (b), wherein the weights are based on the total weight of the polyol mixture (b) containing N, N ', N "-Tris (dimethylamino-propyl) hexahydrotriazine.
  • N - ((2-hydroxy-5-nonylphenyl) methyl) -N-methyl-monosodium salt (CAS number 56968-08-2) as catalyst (b2) also dimethylcyclohexylamine (CAS number 98-94-2).
  • N - ((2-hydroxy-5-nonylphenyl) methyl) -N-methyl-monosodium salt (CAS number 56968-08-2) as catalyst (b2) also methylbis (2-dimethylaminoethyl) amine (CAS number 3030-47-5) and / or N, N, N ', N'-tetramethyl-2,2'oxybis (ethylamine) (CAS number 3033-62-3).
  • the polyol mixture may further optionally contain as component (b3) chemical blowing agents.
  • chemical blowing agents water or carboxylic acids, especially formic acid, are preferred as the chemical blowing agent.
  • the chemical blowing agent is generally used in an amount of 0.1 to 5 wt .-%, in particular from 0.5 to 3.0 wt .-%, based on the weight of component (b).
  • the polyol mixture may contain physical blowing agent.
  • This refers to compounds which are dissolved or emulsified in the starting materials of polyurethane production and evaporate under the conditions of polyurethane formation. These are, for example, hydrocarbons, halogenated hydrocarbons, and other compounds, such as perfluorinated alkanes, such as perfluorohexane, chlorofluorocarbons, and ethers, esters, ketones and / or acetals. These are usually used in an amount of 1 to 30 wt .-%, preferably 2 to 25 wt .-%, particularly preferably 3 to 20 wt .-%, based on the total weight of components b).
  • the polyol mixture (b) contains crosslinker as component (b4).
  • Crosslinkers are understood as meaning compounds which have a molecular weight of 60 to less than 400 g / mol and have at least 3 isocyanate-reactive hydrogen atoms. An example of this is glycerin.
  • the crosslinkers are generally used in an amount of from 1 to 10% by weight, preferably from 2 to 6% by weight, based on the total weight of the polyol mixture (b) (but without physical blowing agents).
  • the polyol mixture (b) contains, as constituent (b5), chain extenders which serve to increase the crosslinking density.
  • Chain extenders are understood as meaning compounds which have a molecular weight of 60 to less than 400 g / mol and have 2 isocyanate-reactive hydrogen atoms. Examples of these are butanediol, diethylene glycol, dipropylene glycol and ethylene glycol.
  • the chain extenders are generally used in an amount of from 2 to 20% by weight, preferably from 4 to 15% by weight, based on the total weight of the polyol mixture (b) (but without physical blowing agents).
  • the components (b4) and (b5) can be used in the polyol mixture individually or in combination.
  • the polyurethane foams according to the invention are obtainable by reacting the polyurethane system according to the invention.
  • the polyisocyanates (a) and the polyol mixture (b) are generally reacted in amounts such that the isocyanate index of the foam is 90 to 250, preferably 100 to 200.
  • the components (a) and (b) of the polyurethane system are chosen so that the resulting foam a compressive strength (density 60 kg / m 3 ) of greater than 0.25 N / mm 2 , preferably greater than 0.28 N / mm 2 , more preferably greater than 0.30 N / mm 2 , measured according to DIN 53421.
  • additives (b6) can also be incorporated into the polyurethane system according to the invention.
  • Additives (b6) are understood to be the auxiliaries and additives known and customary in the prior art, but without physical blowing agents. Mention may be made, for example, of surface-active substances, foam stabilizers, cell regulators, fillers, dyes, pigments, flame retardants, antistatic agents, hydrolysis protectants and / or fungistatic and bacteriostatic agents Substances. It should be noted that the preferred viscosity ranges of component (b) given above relate to a polyol mixture (b) including any added additives (b6) (but excluding any added physical blowing agent).
  • the polyurethane systems according to the invention are preferably used for producing insulated pipes, for example district heating pipes.
  • the invention thus relates to the use of the polyurethane system according to the invention for the production of insulated pipes.
  • the polyurethane system according to the invention for the production of insulated composite jacketed pipes for buried district heating networks according to DIN EN 253 is used.
  • the medium pipe (i) is generally a steel pipe having an outer diameter of 1 to 120 cm, preferably 4 to 110 cm and a length of 1 to 24 meters, preferably 6 to 16 meters.
  • a layer of insulating material (ii) containing the polyurethane foam according to the invention Arranged on the outside of the medium pipe is a layer of insulating material (ii) containing the polyurethane foam according to the invention.
  • This layer generally has a thickness of 1 to 20 cm, preferably 2 to 10 cm.
  • the layer of insulating material has a total apparent density of 55 to 100 kg / m 3 , preferably from 60 to 75 kg / m 3 , particularly preferably from 60 to 67 kg / m 3 .
  • Total gross density refers here to the raw density distribution over the pipe cross-section and the pipe length.
  • Compression is the quotient of the total filling density of the pipe gap divided by the free-blown core raw density determined on an uncompressed foam body.
  • This densification can be achieved by adjusting the reaction profile of the foam so that the fresh foam compresses the already filled foam. In other words, the foam compresses from the inside out.
  • This compaction offers the advantage that higher compressive strengths and improved centering of the carrier pipe can be achieved.
  • the layer of insulating material (ii) containing the polyurethane foam of the invention has a thermal conductivity of less than 27 mW / mK, preferably from 20 to 26.0, particularly preferably 20 to 24 measured according to EN ISO 8497.
  • the jacket tube (iii) surrounds the layer of insulating material and is generally made of plastic, such as polyethylene, and usually has a thickness of 1 to 30 mm.
  • the inner diameter of the jacket tube is generally 6 to 140 cm, preferably 10 to 120 cm.
  • the jacket tube (iii) may optionally consist of several layers, which are merged during the extrusion process.
  • An example of this is the introduction of multilayer films between PUR foam and PE sheath, wherein the film contains at least one metallic layer to improve the barrier effect.
  • Suitable jacket tubes of this type are in EP-A-960 723 described.
  • the insulated pipe is an insulated composite casing pipe for buried district heating networks, which meets the requirements of DIN EN 253.
  • the isocyanate component (a) and the polyol mixture (b) by means of a mixing head, which is moved axially between the casing pipe and medium pipe, enter.
  • the mixing head preferably serves as a spacer between carrier pipe and casing pipe.
  • a guide ring is pushed with the mixing head between the medium pipe (usually steel) and the outer jacket tube (usually polyethylene), which is axially movable and also serves as a spacer between the carrier pipe and casing pipe.
  • the annular gap between medium pipe and casing pipe is filled with polyurethane foam due to its good insulating properties.
  • the filling in the annular gap is preferably carried out by means of a polyurethane metering machine, which enters the liquid reaction mixture via the mixing head in still liquid form.
  • Compressive strengths can be achieved which are above 0.25 N / mm 2 .
  • tubes are produced which have compressive strengths> 0.3 N / mm 2 and correspond to EN 253.
  • insulated pipes can be achieved with a centering of the carrier pipe, which meet the requirements of Table 7 - Coaxiality tolerance depending on the nominal outside diameter, EN 253: 2003
  • the inventive polyol A (Examples 1 and 3) has a clearly positive effect.
  • the limit of EN 253 of 0.3 N / mm 2 could be skipped.
  • the centering of the medium pipe can also be significantly improved by the polyol and is in the tested pipe dimension of 60.3 / 125mm below the limit of 3mm.
  • the addition of the preferred catalyst (Curithane 52, Examples 1 and 2) leads to a significant improvement in the compressive strength compared to the standard formulation and a centering, which is improved, but the EN 253 barely reached. Both characteristics together lead to improved properties of the insulated pipe and thus to clear advantages and safe exceeding of the limit values of EN 235: 2003.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Insulation (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Claims (8)

  1. Tuyau isolé, constitué de :
    i) un tuyau central,
    ii) de la mousse de polyuréthanne obtenue par réaction d'un composant isocyanate (a) avec un mélange de polyol (b), et
    iii) un tuyau-gaine,
    caractérisé en ce que le mélange de polyol (b) contient au moins un polyétherpolyalcool (b1i) qu'on peut obtenir par alcoxylation de saccharose et de diéthylèneglycol ainsi qu'éventuellement pentaérythrite et/ou glycérine avec de l'oxyde d'éthylène et/ou de l'oxyde de propylène et qui présente une fonctionnalité par rapport aux isocyanates supérieure à 3, un indice hydroxyle supérieur à 300 mg de KOH/g et une viscosité inférieure à 2500 mPas, mesurée selon la norme DIN 53019 à 25 °C.
  2. Procédé de fabrication de tuyaux isolés, comprenant les étapes suivantes :
    1) procurer un tuyau central et le tuyau-gaine, le tuyau central étant disposé à l'intérieur du tuyau-gaine,
    2) fabrication d'une mousse de polyuréthanne par réaction d'un composant isocyanate (a) avec un mélange de polyol (b), entre le tuyau central et le tuyau-gaine,
    caractérisé en ce que le mélange de polyol (b) contient au moins un polyétherpolyalcool (b1i) qu'on peut obtenir par alcoxylation de saccharose et de diéthylèneglycol ainsi qu'éventuellement pentaérythrite et/ou glycérine avec de l'oxyde d'éthylène et/ou de l'oxyde de propylène et qui présente une fonctionnalité par rapport aux isocyanates supérieure à 3, un indice hydroxyle supérieur à 300 mg de KOH/g et une viscosité inférieure à 2500 mPas, mesurée selon la norme DIN 53019 à 25 °C.
  3. Procédé selon la revendication 2, caractérisé en ce que le mélange de polyol contient (b1) des polyols, (b2) des catalyseurs ainsi qu'éventuellement (b3) des agents moussants chimiques, (b4) des agents de réticulation, (b5) des agents élongateurs de chaîne et/ou (b6) des additifs.
  4. Procédé selon la revendication 2, caractérisé en ce que le mélange de polyol constitué (b1) de polyols, (b2) de catalyseurs ainsi qu'éventuellement (b3) d'agents moussants chimiques, (b4) d'agents de réticulation, (b5) d'agents élongateurs de chaîne et/ou (b6) d'additifs, présente une viscosité inférieure à 3000 mPas, mesurée selon la norme DIN 53019 à 20 °C.
  5. Procédé selon la revendication 2, caractérisé en ce qu'on opère la réaction à une compression supérieure à 1,1.
  6. Procédé selon la revendication 2, caractérisé en ce qu'on opère la réaction à un indice entre 100 et 200.
  7. Procédé selon la revendication 2, caractérisé en ce qu'on incorpore le composant isocyanate (a) et le mélange de polyol (b) au moyen d'une tête de mélange dont le mouvement axial se situe entre le tuyau-gaine et le tuyau central.
  8. Procédé selon la revendication 7, caractérisé en ce que la tête de mélange pendant le processus de moussage sert d'écarteur entre le tuyau central et le tuyau-gaine.
EP06121729A 2005-10-19 2006-10-04 Mousse de polyuréthane pour des tuyaux calorifuges Active EP1777051B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06121729T PL1777051T3 (pl) 2005-10-19 2006-10-04 Poliuretanowe tworzywa piankowe do izolacji rur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005050413A DE102005050413A1 (de) 2005-10-19 2005-10-19 Polyurethanschaumstoffe zur Rohrdämmung

Publications (2)

Publication Number Publication Date
EP1777051A1 EP1777051A1 (fr) 2007-04-25
EP1777051B1 true EP1777051B1 (fr) 2008-07-16

Family

ID=37649351

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06121729A Active EP1777051B1 (fr) 2005-10-19 2006-10-04 Mousse de polyuréthane pour des tuyaux calorifuges

Country Status (5)

Country Link
EP (1) EP1777051B1 (fr)
AT (1) ATE401181T1 (fr)
DE (2) DE102005050413A1 (fr)
DK (1) DK1777051T3 (fr)
PL (1) PL1777051T3 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014012877A1 (fr) 2012-07-17 2014-01-23 Basf Se Procédé de production en continu de produit mousse dans des conduites
WO2020201312A1 (fr) 2019-04-02 2020-10-08 Basf Se Tube isolé contenant de la mousse de polyuréthane gonflé avec un agent gonflant écologique présentant une faible fragilité
US11472152B2 (en) 2017-05-30 2022-10-18 Basf Se Method for producing insulated pipes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986801B2 (en) 2011-01-27 2015-03-24 Basf Se Polyurethane having improved insulating properties
CN110421774B (zh) * 2018-05-06 2023-11-10 内蒙古君诚兴业管道有限责任公司 一种在线自动同心度穿管封堵装置及自动发泡生产线
CN112646121A (zh) * 2020-12-11 2021-04-13 淄博汇德聚氨酯制品股份有限公司 一种聚氨酯硬泡保温材料及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522578A (en) * 1980-12-08 1985-06-11 J-M Manufacturing Co., Inc. Apparatus for introducing a foamable plastic insulation into the space defined by an inner core pipe and an outer casing pipe while maintaining the spacing of the pipes
DE19711068A1 (de) * 1997-03-17 1998-09-24 Basf Ag Verfahren und Vorrichtungen zur Herstellung von mit Schaumstoffen gedämmten Rohren
DE19817507A1 (de) * 1998-04-20 1999-10-21 Basf Ag Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen mit einer verminderten Wärmeleitfähigkeit und ihre Verwendung
DE19924771A1 (de) * 1999-05-29 2000-12-21 Buna Sow Leuna Olefinverb Gmbh Verfahren zur Herstellung von Polyetherpolyolen aus Polysaccariden und deren Verwendung für die Herstellung von PUR-Schäumen
DK1545855T3 (da) * 2002-09-11 2007-09-17 Star Pipe As Fremgangsmåde og anlæg til fremstilling af præisolerede rörstykker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014012877A1 (fr) 2012-07-17 2014-01-23 Basf Se Procédé de production en continu de produit mousse dans des conduites
US11472152B2 (en) 2017-05-30 2022-10-18 Basf Se Method for producing insulated pipes
WO2020201312A1 (fr) 2019-04-02 2020-10-08 Basf Se Tube isolé contenant de la mousse de polyuréthane gonflé avec un agent gonflant écologique présentant une faible fragilité
US11982395B2 (en) 2019-04-02 2024-05-14 Basf Se Insulated pipe containing polyurethane foam which is foamed by an environmentally friendly foaming agent and has a low degree of brittleness

Also Published As

Publication number Publication date
DE502006001116D1 (de) 2008-08-28
DK1777051T3 (da) 2008-11-10
EP1777051A1 (fr) 2007-04-25
DE102005050413A1 (de) 2007-04-26
PL1777051T3 (pl) 2008-12-31
ATE401181T1 (de) 2008-08-15

Similar Documents

Publication Publication Date Title
EP2134762B1 (fr) Tubes isolés
EP1799736B1 (fr) Procede de production de mousses de polyurethanne rigides
EP2870188B1 (fr) Préparation de matériaux expansés à propriétés améliorées
EP3350242B1 (fr) Procede de fabrication d&#39;une mousse dure de polyurethane-polyisocyanurate
EP1777051B1 (fr) Mousse de polyuréthane pour des tuyaux calorifuges
EP2526333B1 (fr) Enveloppe de mousse de polyuréthane rigide pour l&#39;assemblage de tubes
EP2786059B1 (fr) Procédé de fabrication de tubes extérieurs isolés dans un processus de fabrication en continu
EP1777242B1 (fr) Mousse de polyuréthane pour des tuyaux calorifuges
EP3368584B1 (fr) Polyéther-ester et son utilisation pour la fabrication de mousses rigides de polyuréthane
EP1783152A2 (fr) Tuyaux isolés
EP2111423B2 (fr) Mousse dure de polyuréthane
EP1777244A1 (fr) Mousse de polyuréthane pour des tuyaux calorifuges
EP2931773B1 (fr) Polyuréthane stable pendant l&#39;hydrolyse destiné à revêtir des éléments dans les applications maritimes
DE102004001317A1 (de) Polyurethanschaumstoffe zur Rohrdämmung
EP1595904A2 (fr) Tuyau insulé contenant une polyuréthane préparé à partir d&#39;acide formique
EP3947501B1 (fr) Tube isolé contenant de la mousse de polyuréthane peu fragile expansée à l&#39;aide d&#39;un agent d&#39;expansion respectueux de l&#39;environnement
EP2751157B1 (fr) Procédé de fabrication de tuyaux isolés à propriétés améliorées
EP2668237B1 (fr) Polyuréthane présentant des propriétés d&#39;isolation améliorées
EP0875528A1 (fr) Procédé de préparation de mousses rigides de polyuréthane
WO2014012877A1 (fr) Procédé de production en continu de produit mousse dans des conduites
EP3720892B1 (fr) Procédé de fabrication de groupes d&#39;uréthane et de groupes d&#39;isocyanure contenant des matières de caoutchouc dur à alvéoles ouvertes
EP2768650B1 (fr) Procédé pour améliorer les propriétés physiques lors de la fabrication de tube de gainage en plastique
EP3578582A1 (fr) Mousses dures en polyuréthanne à durcissement thermique amélioré
WO2008025660A1 (fr) Raccords de conduites revêtues

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071025

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502006001116

Country of ref document: DE

Date of ref document: 20080828

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081016

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081216

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081027

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: BASF SE

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

26N No opposition filed

Effective date: 20090417

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E004998

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081004

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081017

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101004

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230911

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231023

Year of fee payment: 18

Ref country code: IT

Payment date: 20231024

Year of fee payment: 18

Ref country code: HU

Payment date: 20230914

Year of fee payment: 18

Ref country code: FR

Payment date: 20231026

Year of fee payment: 18

Ref country code: FI

Payment date: 20231026

Year of fee payment: 18

Ref country code: DK

Payment date: 20231023

Year of fee payment: 18

Ref country code: DE

Payment date: 20231027

Year of fee payment: 18

Ref country code: AT

Payment date: 20231018

Year of fee payment: 18