EP1772134A1 - Device and method for an automatic treadmill therapy - Google Patents
Device and method for an automatic treadmill therapy Download PDFInfo
- Publication number
- EP1772134A1 EP1772134A1 EP05405570A EP05405570A EP1772134A1 EP 1772134 A1 EP1772134 A1 EP 1772134A1 EP 05405570 A EP05405570 A EP 05405570A EP 05405570 A EP05405570 A EP 05405570A EP 1772134 A1 EP1772134 A1 EP 1772134A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- treadmill
- force
- person
- velocity
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000002560 therapeutic procedure Methods 0.000 title description 5
- 230000007246 mechanism Effects 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims 1
- 238000005096 rolling process Methods 0.000 claims 1
- 230000005484 gravity Effects 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 5
- 230000002747 voluntary effect Effects 0.000 description 5
- 238000011217 control strategy Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000005021 gait Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 206010033892 Paraplegia Diseases 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 210000004197 pelvis Anatomy 0.000 description 2
- 230000001020 rhythmical effect Effects 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 208000011644 Neurologic Gait disease Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 208000018360 neuromuscular disease Diseases 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/02—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/02—Stretching or bending or torsioning apparatus for exercising
- A61H1/0237—Stretching or bending or torsioning apparatus for exercising for the lower limbs
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/02—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
- A63B22/0235—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor
- A63B22/0242—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor with speed variation
- A63B22/025—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor with speed variation electrically, e.g. D.C. motors with variable speed control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/02—Stretching or bending or torsioning apparatus for exercising
- A61H2001/0211—Walking coordination of arms and legs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1602—Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
- A61H2201/1614—Shoulder, e.g. for neck stretching
- A61H2201/1616—Holding means therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1602—Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
- A61H2201/1619—Thorax
- A61H2201/1621—Holding means therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1602—Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
- A61H2201/1628—Pelvis
- A61H2201/163—Pelvis holding means therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1602—Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
- A61H2201/165—Wearable interfaces
- A61H2201/1652—Harness
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5061—Force sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
- A61H3/008—Appliances for aiding patients or disabled persons to walk about using suspension devices for supporting the body in an upright walking or standing position, e.g. harnesses
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/0015—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements
- A63B22/0023—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements the inclination of the main axis of the movement path being adjustable, e.g. the inclination of an endless band
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/02—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
- A63B22/0235—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/50—Force related parameters
- A63B2220/51—Force
Definitions
- the invention relates to a device for adjusting the speed of a treadmill, which is used for the therapy of paraplegic or hemiplegic patients and other neurological as well as orthopaedical patient groups as well as for the (fitness) training of healthy or elderly subjects.
- Treadmills are known by prior art for example from EP 0 002 188 .
- the speed of the treadmill varies according to the heart frequency of the patient. If the heart frequency reaches an upper limit, the speed of the treadmill decreases.
- the heart frequency is a parameter that is not applicable in the therapy of paraplegic patients, since the purpose of the therapy is the ability of a proper motion sequence and the heart frequency does not change in a manner that is usable for this purpose.
- US 5,707,319 discloses a treadmill with two lever to pull in order to adjust the belt speed. For patients this is not usable because the patient has to concentrate on the motion sequence.
- US 6,179,754 discloses a treadmill equipped with detectors in order to detect the positi.on of the feet of the runner. According to the measured position, the running belt will be accelerated or decelerated. This device cannot be used, when the runner does not move relatively to the treadmill, e.g. when a patient is fixed to the surrounding for therapeutical reasons so that his horizontal position relatively to the treadmill does not change.
- An object of the present invention is to provide a method and a device, which gives a person the possibility for automatic treadmill training with variable treadmill speed.
- a method to control the velocity of a treadmill according to the walking velocity of the person that is using the treadmill The person's trunk is connected to the environment via a rigid mechanical frame (or an elastic band). A reaction force is measured within this frame (or band), which occurs when the person intends and tries to increase or decrease his walking velocity. A signal represents said reaction force. The signal is transmitted to a control unit, which is used to control the velocity of the treadmill.
- the component of the reaction force which is parallel to the surface of the treadmill and in running direction of the running belt of the treadmill has to be determined.
- the person is harnessed with a hip and possibly with a leg orthotic device.
- the reaction force is measured from force sensors that can be positioned in various positions.
- Fig. 1 shows a schematic view of a first device for measuring the reaction force, which occurs when a longitudinal repulsion force is created between a treadmill 2 and a person 1, wherein the person trains on the treadmill 2 according to one embodiment of the present invention.
- the device comprises at least a treadmill 2, measure means 3, a controller 5 and fixation means 10.
- the treadmill may be a treadmill as known from prior art i.e. WO 0028927 and comprises at least a running belt 80 and an adjustable motor.
- the surface of the treadmill comprises an essential horizontal base plane 6, on which the patient is walking.
- the running direction of the running belt 80 is designated as longitudinal direction and the direction that lies orthogonal to the horizontal base plane 6 is designated as vertical direction.
- the direction orthogonal to these two directions will be called transversal or lateral direction.
- a person 1 may be a patient who needs a therapy in order to relearn walking, walks on a treadmill and is rigidly connected to his surroundings especially by a pelvis or trunk harness.
- the treadmill is powered by an adjustable motor and initially runs with a treadmill velocity v.
- the velocity v can be adjusted continuously starting at 0 m/s.
- fixation means 10 The patient 1 is connected by fixation means 10 to mechanical rods 15, 16.
- Fixation means may be a harness that the patient 1 is wearing on his upper part of the body.
- the two mechanical rods 15, 16 are connected to a first end of a further rod 20.
- the second end of the rod 20 is connected to a bearing point 30 being in fixed relationship to the bearing of the treadmill. Since the bearing point 30 allows pivoting movements only, the movement of the patient 1 is restricted to vertical movements. Lateral (transversal) and longitudinal movements are not possible. Thus, the patient's position remains on the running belt 80 of the treadmill and especially at the same place. This makes it possible to provide a lesser length of the treadmill, e.g. only having a length being in the range of the step length of a person with a great body height.
- Rod 20 can be a rigid bar or an elastic rubber band or rubber bar.
- Force measure means 3 are arranged on the mechanical rods, in order to measure the reaction force.
- a force measure mean 3 may be a force sensor, for example based on a strain gauge measurement principle.
- the measured reaction force is processed in a controller 5 in order to adjust the velocity of the treadmill v to the intended walking-velocity of the patient 1. If the velocity adjustment is optimal, the patient will have the feeling that he is changing the treadmill speed with his own voluntary efforts. This method is also designated as force-based adjustment of the treadmill velocity. This principle also works if an orthosis such as in WO 0028927 is attached to the legs of the patient.
- the force component 100 is longitudinal, whereas longitudinal is horizontal.
- the force measure means 3 generate a signal according to the value of the reaction force.
- the signal is submitted to a controller 5 to provide input data for the control circuit.
- the control circuit will be explained by means of figure 7.
- Fig. 2 shows a second embodiment according to the present invention.
- the patient is fixed to a plate 43 by the fixation means 10 as already described.
- the two rods 40 are connected to the plate 43 with bearings 42.
- the plate 43 may provide the possibility to fix the orthosis.
- the two rods 40 are connected to the bearings 30.
- the distance from one bearing 30 to another bearing 30 is the same as the distance from one bearing 42 to the other bearing 42. Since the two rods 40 have the same length, a parallelogram is formed.
- the parallelogram lies with an angle ⁇ to the horizontal base plane 6.
- the angle ⁇ depends on the height of the patient 1 and it varies with the up and down movement of the patient 1.
- the bearings 30 are hinge bearings that allow only pivoting movements in the sagittal plane.
- the axial forces in rods 40 are measured by measure means 3, 4.
- the vertical load 102 results from gravitation but also from inertial effects. As this force act in both rods 40 with the same strength but different directions, above-mentioned equation automatically compensates for the vertical force in such way that only the horizontal component 100 remains after correcting the term F 1 -F 2 with factor cos ⁇ .
- the measure means 3, 4 Due to forces that act also in the transversal (lateral) direction, the measure means 3, 4 have to be chosen accordingly in order to avoid erroneous force sensor output. In particular, this requires a sensor that is able to detect a force in one direction only, which is in that case the direction of the rod. Another possibility is the use of a sensor that measures in two directions, which are in that case in the rod direction and in the transversal (lateral) direction. Note that there is no force acting in the third direction orthogonal to the rods, when assuming that bearings 30 and 42 are frictionless hinge joints.
- the angle ⁇ can be measured by an angle measurement device as it is known or it can be determined by height measurements of the plate 43 over the base plane 6.
- Figure 3 shows a further third embodiment according to the present invention.
- the patient 1 is connected to the mechanical rod system as described in figure 1.
- the rod 20 as introduced in figure 1 is now replaced by rod 51 which is one of the horizontal rods of a linkage 50.
- the linkage 50 comprises two horizontal rods 51 and two vertical rods 52 that are arranged in a rectangle.
- the horizontal rod 51 is longer than the other horizontal rod 51' and both are arranged in a way that one end protrudes the vertical rod 52.
- a diagonal rod 58 connects a first corner 53 of the parallelogram to a second corner 54 of the parallelogram.
- the diagonal rod 52 is equipped with a force sensor 55.
- the horizontal rod 51' and the linker rod 56 are rigidly connected to each other, for example welded. Via the horizontal rod 51' and a linker rod 56 the linkage 50 is connected to main rods 57.
- the two main rods 57 are supported by the bearings 30.
- the vertical force components 102 are carried by the vertical rods 52. Therefore the force sensor 55 measures only the horizontal component 100 of the reaction force (in longitudinal direction).
- the rod 51 and the rod 51' have an equal length. Therefore the welding point which connects the horizontal rod 51' and the linker rod 56 is located on one the edge of the linkage 50
- Figure 4 shows a fourth embodiment similar to the embodiment of figure 1.
- a driven orthotic device 60 provides aid to the patient in order to learn a proper motion sequence.
- the orthotic device 60 may be according to the device as described in WO 0028927 , which may also be designated as gait-robot or lokomat.
- the orthotic device 60 is connected via a plate 61 to the rod system as already described.
- Force measure means 3 measure a reaction force that occurs due to the longitudinal repulsion force.
- the patient may be supported by a relieve mechanism 80.
- a suspended weight 81 is arranged on one end of a cable 83.
- the cable 83 is diverted over two pulleys 82.
- the cable 83 is attached to the harness 10 of the patient 1. Due to the weight 81 on one end the patient 1 will be relieved from a part of his own weight.
- the mass of the weight 81 has to be chosen in accordance of the weight of the patient 1 and in view of his physical condition. An adjustment of the length of the cable 83 is also necessary, but not shown in the drawings.
- Figure 5 shows schematically a top view of a preferred embodiment to determine the longitudinal component 100 of the resulting force 101 produced by the patient explicitly, when the patient is fixed in an orthosis. Thereby sensors 70,71 are arranged in an asymmetric arrangement. Arrow 110 indicates the walking direction of the patient.
- the mechanical system as shown in figure 5 may be a door-like frame, that is pivoting around a vertical axis.
- the door-like frame is arranged at the back of the patient 1.
- One side of the door-like frame is connected to a bearing point 75, the other side is blocked by a sensor 70 and a rod 78 to a bearing point 77.
- transversal (lateral) movements of the pelvis are blocked.
- the restriction of this degree of freedom results in a lateral force 103, orthogonal to the measure direction and in a bending moment in the frame.
- Due to the asymmetric arrangement with only one sensor 71 on only one side of the door-like frame the bending moment resulting from lateral forces appears also in the force signal of sensor 71. Therefore, an additional sensor 70 is arranged to measure lateral forces, in order to compensate the influences of the bending moment.
- the force 101 is applied to the rod system.
- the patient 1 is connected via the harness 10 to a cropped rod 73.
- the cropped rod 73 is connected to a longitudinal rod 74.
- a sensor 70 is mounted on the cropped rod 73, this sensor measures the lateral (transversal) component 103 of the force 101, also designated as F 2 .
- a longitudinal rod 74 is connected to a transversal rod 72.
- On one end the transversal rod 72 is connected to a bearing 75, whereas on the other end a sensor rod 78, which lies in longitudinal direction, leads to a further bearing 77.
- the sensor rod 78 is equipped with a force sensor 71 to measure the horizontal force, also designated as F 1 .
- the longitudinal force 100 is determined with the aid of F 1 and F 2 :
- F longitudinal - F 1 ⁇ a + b + F 2 ⁇ l b
- the algebraic sign is chosen in such way that pressure forces on the fixation system (patient decelerates) result in negative and tractive forces (patient accelerates) result in positive signals. If the lateral forces measured by sensor 70 are unaccounted for the horizontal and longitudinal force 100, the lateral (transversal) component of the reaction force would be wrongly considered as the longitudinal force 100.
- Figure 6 shows a further top view of an asymmetric arrangement, provided to determine the longitudinal force 100.
- a linker rod 79 connects one end of the transversal rod 72 to the bearing point 75.
- the transversal rod 72 is connected to a further linker rod 91 by a joint 90.
- the linker rod 91 is connected to a bearing point 92.
- This newly built degree of freedom is compensated by the sensor rod 78.
- the sensor rod 78 is orthogonally connected to the linker rod 91. However the sensors may be placed at any of the rods 72, 79 and 91. With such a rod arrangement, the sensor measures only the horizontal and longitudinal force 100.
- FIG 7 shows a control circuit according to the present invention.
- the controller 5 (see figures 1, 2, and 4) comprises a control circuit, that integrates the physical determination of the velocity from the longitudinal component of the reaction force.
- the control circuit is preferably an admittance control circuit, but also an impedance control circuit may be used.
- the reaction force that occurs due to the mechanical fixation of the patient 1 is measured by a sensor 201.
- An electrical signal that may be linear or non-linear to the reaction force is provided by the sensor 201.
- the measured force will then be divided by a mass. This is conducted by a divider 202. After the divider a signal ⁇ 1 results.
- the value of the mass may be chosen according to the patient's physical condition. When the patient's physical condition is good, the parameter is equal to the body mass in order to provide a realistic situation and walking feeling for the patient. If the patient's motor system is weakened, for example after a surgery, injury or neuromuscular disease, a mass with a value lower than the body mass may be chosen. This will make it easier for the patient, because the force that is required to accelerate and walk will be smaller.
- the present invention is used for endurance training or rehabilitation of professional athletes it is possible to adjust the mass in an other range.
- a value will be used that is between 1 and 1.5 and especially between 1.2 and 1.5 of the body mass. This relieves the joints of the patient, namely the joints in the persons under part of the body, compared to the training method of fixing additional weights on the person's body.
- ⁇ 1 is integrated by an integrator 203 and a velocity input signal ⁇ 1 results.
- the actual velocity of the treadmill 2 is x ⁇ .
- x ⁇ 1 - x ⁇ is fed into a PD velocity controller 204 that controls the treadmill 2 to provide equal velocities.
- a PID controller or any other control law may also be used.
- the force-based velocity adjustment of the treadmill can be used together with an orthotic device such as the gait-robot according to WO 0028927 .
- a curve 308 shows velocity characteristics of the center of gravity of a human body when walking with a certain velocity.
- the patient accelerates, this is designated as the development phase 300.
- the first bend 303 in the development phase 300 shows the first step of the patient.
- the second bend 304 shows the second step of the patient.
- the patient reaches his average speed, which is indicated by a horizontal line 305, since the patient walks with a constant velocity. But even when patient walks with a constant velocity, the velocity of the center of gravity of the body oscillates around that line 305. With each step the center of gravity is accelerated and decelerated respectively, this is shown by the rhythmic phase 301.
- the control unit 5 can anticipate the "oscillating" reaction force and discern this intra-step movement form voluntary accelerations or decelerations.
- the decay phase 302 represents the end of the treadmill training session. The patient decelerates slowly, until the velocity reaches 0 m/s. Bends 310 and 311 show the last two steps. All the controllers as described in that application are able to control such a velocity characteristic.
- the force-based treadmill speed adjustment can also be applied, when the gait-robot according to WO 0028927 is being used in socalled patient-cooperative modes.
- voluntary intentions and muscular efforts of the patient are detected within the gait-robot system in order to adjust the gait-robot assistance to the patient.
- walking pattern and speed are controlled by the patient. Therefore, patient-cooperative strategies require the possibility to automatically adjust the treadmill speed to the patient effort or intention.
- Treadmill speed adjustment must occur in real-time with minimal delay times.
- the three strategies comprise, first, impedance control methods that make the gait-robot soft and compliant, second, adaptive control methods that adjust the reference trajectory and/or controller to the individual subject, and, third, a motion reinforcement strategy that supports patient-induced movements.
- FIG 8 shows schematically a block diagram of a general impedance controller in order to allow a patient-cooperative motion strategy.
- Impedance controllers are well established in the field of robotics and human-system interaction.
- the basic idea of the impedance control strategy applied to robot-aided treadmill training is to allow a variable deviation from a given leg trajectory rather than imposing a rigid gait pattern. The deviation depends on the patient's effort and behaviour.
- An adjustable moment is applied at each joint in order to keep the leg within a defined range along the trajectory. The moment can be described as a zero order (stiffness), or higher order (usually first or second order) function of angular position and its derivatives. This moment is more generally called mechanical impedance.
- the deviations from the desired trajectory results in variations of the gait speed, which requires the treadmill to be adjustable.
- Figure 9 shows the idea of a Patient-Driven Motion Reinforcement (PDMR) strategy for the control of patient-induced walking movements.
- PDMR Patient-Driven Motion Reinforcement
- Figure 10 shows a block diagram of an adaptive control strategy.
- the main disadvantage of the impedance control strategy presented above is that it is based on a fixed reference trajectory.
- the adaptive controller changes its reference trajectory as function of the patient efforts. In this way the desired trajectory adapts to the individual patient. Therefore, not only gait pattern but also gait speed are changing, thus, requiring an online treadmill speed adjustment function.
- the PDMR controller enables the subjects to walk with their own walking speeds and patterns.
- the device according to WO 0028927 as well as the treadmill speed adapts to the human muscle efforts and supports the movement of the subject's leg, e.g. by compensating for the gravity and velocity dependent effects.
- Prerequisite for this controller is that the subject has sufficient voluntary force to induce the robot-supported movement.
- control unit anticipates these delays within the frame of the control of the drives of the running belt 80.
- Fig. 12 shows the control circuit that may be used to control the velocity of a treadmill according to the present invention, when walking on an incline is simulated.
- the main parts of the control circuit according to Fig. 12 are similar to the circuit according to Fig. 7.
- the reaction force that occurs due to the mechanical fixation of the patient 1 is measured by a sensor 201.
- This reaction force F patient is submitted to an adder 210.
- An additional offset force F offset corresponding to the virtual inclination of the virtual slope is added within this adder 210, being dependent on the weight of the person 1 and the inclination to be simulated.
- the sum force will then be divided by a mass by a divider 202.
- the value of the mass may - as within the embodiment shown in Fig. 7 - be chosen according to the patient's physical condition.
- the resulting value ⁇ 1 is integrated by an integrator 203 and a velocity input signal ⁇ 1 results.
- the velocity input signal ⁇ 1 can be passed through a saturation block 211, which limits ⁇ 1 to positive values. This prevents the treadmill form running in negative running direction when the situation of walking uphill is simulated but the person does not generate any longitudinal force.
- the actual velocity of the treadmill 2 being ⁇ 1 , the difference value of x ⁇ 1 ⁇ S - x ⁇ is fed into a PD velocity controller 204.
- a PID controller or any other control law may also be used.
- Fig. 13 A&B show schematically the force relations for a person leaning forward as for walking up a hill.
- Fig. 13A shows a person 1 going uphill, the hill having an inclination of ⁇ .
- Fig. 13B shows the person 1 according to Fig. 13A going virtually uphill and positioned in an harness with a longitudinal rod 20, a force sensor 3 and a bearing 30.
- the relative angle ⁇ between the surface of the treadmill and the person is defined as arctan(l/h).
Landscapes
- Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Rehabilitation Therapy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pain & Pain Management (AREA)
- Epidemiology (AREA)
- Rehabilitation Tools (AREA)
Abstract
A method to control the velocity of a treadmill according to the walking velocity of the person that is using the treadmill. A reaction force is measured, which occurs when a longitudinal repulsion force is created between the treadmill (2) and the person (1). A signal representation for said reaction force is transmitted to a control unit. The control unit is used to control the velocity of the treadmill.
Description
- The invention relates to a device for adjusting the speed of a treadmill, which is used for the therapy of paraplegic or hemiplegic patients and other neurological as well as orthopaedical patient groups as well as for the (fitness) training of healthy or elderly subjects.
- Treadmills are known by prior art for example from
EP 0 002 188 . The speed of the treadmill varies according to the heart frequency of the patient. If the heart frequency reaches an upper limit, the speed of the treadmill decreases. The heart frequency is a parameter that is not applicable in the therapy of paraplegic patients, since the purpose of the therapy is the ability of a proper motion sequence and the heart frequency does not change in a manner that is usable for this purpose. -
US 5,707,319 discloses a treadmill with two lever to pull in order to adjust the belt speed. For patients this is not usable because the patient has to concentrate on the motion sequence. -
US 6,179,754 discloses a treadmill equipped with detectors in order to detect the positi.on of the feet of the runner. According to the measured position, the running belt will be accelerated or decelerated. This device cannot be used, when the runner does not move relatively to the treadmill, e.g. when a patient is fixed to the surrounding for therapeutical reasons so that his horizontal position relatively to the treadmill does not change. - Another attempt in order to control the velocity of the treadmill is to detect the load of the motor, as disclosed in
US 6,416,444 . The disturbance variables such as frictional influences are rather big. Due to this inaccuracy it is difficult to use this device for therapeutical purposes with variable treadmill speed. - An object of the present invention is to provide a method and a device, which gives a person the possibility for automatic treadmill training with variable treadmill speed.
- According to the invention there is provided a method to control the velocity of a treadmill according to the walking velocity of the person that is using the treadmill. The person's trunk is connected to the environment via a rigid mechanical frame (or an elastic band). A reaction force is measured within this frame (or band), which occurs when the person intends and tries to increase or decrease his walking velocity. A signal represents said reaction force. The signal is transmitted to a control unit, which is used to control the velocity of the treadmill.
- This will provide realistic conditions for a person who relearns walking with such a method.
- In order to control the velocity of the treadmill the component of the reaction force, which is parallel to the surface of the treadmill and in running direction of the running belt of the treadmill has to be determined.
- The person is harnessed with a hip and possibly with a leg orthotic device. The reaction force is measured from force sensors that can be positioned in various positions.
- The drawings will be explained in greater detail by means of a description of an exemplary embodiment, with reference to the following figures:
- Fig. 1
- shows a schematic arrangement of a first device according to the present invention
- Fig. 2
- shows a further schematic arrangement of a second device according to the present invention
- Fig. 3
- shows another schematic arrangement of a third device according to the present invention
- Fig. 4
- shows another schematic arrangement of a fourth device according to the present invention in combination with an orthotic device.
- Fig. 5
- shows a mechanical arrangement to determine a horizontal and longitudinal force.
- Fig. 6
- shows a further mechanical arrangement to determine a horizontal and longitudinal force.
- Fig. 7
- shows the control circuit that may be used to control the velocity of a treadmill according to the present invention.
- Fig. 8
- shows schematically a block diagram of a general impedance controller in order to allow a patient-cooperative motion strategy.
- Fig. 9
- shows a block diagram of an adaptive control strategy.
- Fig. 10
- shows the idea of Patient-Driven Motion Reinforcement.
- Fig. 11
- shows the velocity characteristics of the center of gravity of a human body when starting walking, walking and stopping with certain velocities.
- Fig. 12
- shows the control circuit that may be used to control the velocity of a treadmill according to the present invention, when a training person is walking on inclines.
- Fig. 13
- shows schematically the force relations for a person leaning forward as for walking up a hill.
- Fig. 1 shows a schematic view of a first device for measuring the reaction force, which occurs when a longitudinal repulsion force is created between a
treadmill 2 and aperson 1, wherein the person trains on thetreadmill 2 according to one embodiment of the present invention. - The device comprises at least a
treadmill 2, measure means 3, acontroller 5 and fixation means 10. The treadmill may be a treadmill as known from prior art i.e.WO 0028927 running belt 80 and an adjustable motor. The surface of the treadmill comprises an essentialhorizontal base plane 6, on which the patient is walking. For definition reasons: the running direction of therunning belt 80 is designated as longitudinal direction and the direction that lies orthogonal to thehorizontal base plane 6 is designated as vertical direction. The direction orthogonal to these two directions will be called transversal or lateral direction. - A
person 1 may be a patient who needs a therapy in order to relearn walking, walks on a treadmill and is rigidly connected to his surroundings especially by a pelvis or trunk harness. The treadmill is powered by an adjustable motor and initially runs with a treadmill velocity v. The velocity v can be adjusted continuously starting at 0 m/s. - The
patient 1 is connected by fixation means 10 tomechanical rods patient 1 is wearing on his upper part of the body. The twomechanical rods further rod 20. The second end of therod 20 is connected to abearing point 30 being in fixed relationship to the bearing of the treadmill. Since thebearing point 30 allows pivoting movements only, the movement of thepatient 1 is restricted to vertical movements. Lateral (transversal) and longitudinal movements are not possible. Thus, the patient's position remains on the runningbelt 80 of the treadmill and especially at the same place. This makes it possible to provide a lesser length of the treadmill, e.g. only having a length being in the range of the step length of a person with a great body height. -
Rod 20 can be a rigid bar or an elastic rubber band or rubber bar. In case of an elastic connection the patient's position can vary also in lateral (=transversal) and longitudinal directions. However, elastic forces are acting in such way that the patient remains on the treadmill. - When the
patient 1 wants to accelerate or decelerate his body in order to change the walking-velocity v, he will produce a longitudinal force in backward or forward direction, respectively. Due to the rigid mechanical connection of the patient to the surrounding, this force results in a mechanical reaction force acting onto themechanical rods controller 5 in order to adjust the velocity of the treadmill v to the intended walking-velocity of thepatient 1. If the velocity adjustment is optimal, the patient will have the feeling that he is changing the treadmill speed with his own voluntary efforts. This method is also designated as force-based adjustment of the treadmill velocity. This principle also works if an orthosis such as inWO 0028927 - For the force-based adjustment of the treadmill velocity, only a
force component 100 has to be considered in thecontroller 5. Theforce component 100 is longitudinal, whereas longitudinal is horizontal. Several different concepts are possible to measure thatforce component 100 and are described by means of the following figures. - The force measure means 3 generate a signal according to the value of the reaction force. The signal is submitted to a
controller 5 to provide input data for the control circuit. The control circuit will be explained by means of figure 7. - Fig. 2 shows a second embodiment according to the present invention. The patient is fixed to a
plate 43 by the fixation means 10 as already described. On one end, the tworods 40 are connected to theplate 43 withbearings 42. Theplate 43 may provide the possibility to fix the orthosis. On the other end the tworods 40 are connected to thebearings 30. The distance from onebearing 30 to anotherbearing 30 is the same as the distance from onebearing 42 to theother bearing 42. Since the tworods 40 have the same length, a parallelogram is formed. The parallelogram lies with an angle β to thehorizontal base plane 6. The angle β depends on the height of thepatient 1 and it varies with the up and down movement of thepatient 1. Thebearings 30 are hinge bearings that allow only pivoting movements in the sagittal plane. - The axial forces in
rods 40 are measured by measure means 3, 4. - This arrangement of rods, bearings, and force sensors allows an easy determination of the
longitudinal forces 100, whereas it remains independent from thevertical force 102. Thehorizontal force 100 in walking direction can be computed by the two forces F1 and F2 from thesensors - The
vertical load 102 results from gravitation but also from inertial effects. As this force act in bothrods 40 with the same strength but different directions, above-mentioned equation automatically compensates for the vertical force in such way that only thehorizontal component 100 remains after correcting the term F1-F2 with factor cosβ. - Due to forces that act also in the transversal (lateral) direction, the measure means 3, 4 have to be chosen accordingly in order to avoid erroneous force sensor output. In particular, this requires a sensor that is able to detect a force in one direction only, which is in that case the direction of the rod. Another possibility is the use of a sensor that measures in two directions, which are in that case in the rod direction and in the transversal (lateral) direction. Note that there is no force acting in the third direction orthogonal to the rods, when assuming that
bearings - The angle β can be measured by an angle measurement device as it is known or it can be determined by height measurements of the
plate 43 over thebase plane 6. - Figure 3 shows a further third embodiment according to the present invention. The
patient 1 is connected to the mechanical rod system as described in figure 1. Therod 20 as introduced in figure 1 is now replaced byrod 51 which is one of the horizontal rods of alinkage 50. Thelinkage 50 comprises twohorizontal rods 51 and twovertical rods 52 that are arranged in a rectangle. Thehorizontal rod 51 is longer than the other horizontal rod 51' and both are arranged in a way that one end protrudes thevertical rod 52. A diagonal rod 58 connects afirst corner 53 of the parallelogram to asecond corner 54 of the parallelogram. Thediagonal rod 52 is equipped with aforce sensor 55. The horizontal rod 51' and thelinker rod 56 are rigidly connected to each other, for example welded. Via the horizontal rod 51' and alinker rod 56 thelinkage 50 is connected tomain rods 57. The twomain rods 57 are supported by thebearings 30. - Due to the arrangement of the linkage, the
vertical force components 102 are carried by thevertical rods 52. Therefore theforce sensor 55 measures only thehorizontal component 100 of the reaction force (in longitudinal direction). - In a further arrangement it may be possible that the
rod 51 and the rod 51' have an equal length. Therefore the welding point which connects the horizontal rod 51' and thelinker rod 56 is located on one the edge of thelinkage 50 - Figure 4 shows a fourth embodiment similar to the embodiment of figure 1. Additionally to figure 1 a driven
orthotic device 60 provides aid to the patient in order to learn a proper motion sequence. Theorthotic device 60 may be according to the device as described inWO 0028927 orthotic device 60 is connected via aplate 61 to the rod system as already described. - During the training a repulsion force between the
treadmill 2 and theperson 1 occurs. Force measure means 3 measure a reaction force that occurs due to the longitudinal repulsion force. - Additionally to the
orthotic device 60 the patient may be supported by arelieve mechanism 80. A suspendedweight 81 is arranged on one end of acable 83. Thecable 83 is diverted over twopulleys 82. On the other end thecable 83 is attached to theharness 10 of thepatient 1. Due to theweight 81 on one end thepatient 1 will be relieved from a part of his own weight. The mass of theweight 81 has to be chosen in accordance of the weight of thepatient 1 and in view of his physical condition. An adjustment of the length of thecable 83 is also necessary, but not shown in the drawings. - Figure 5 shows schematically a top view of a preferred embodiment to determine the
longitudinal component 100 of the resultingforce 101 produced by the patient explicitly, when the patient is fixed in an orthosis. Therebysensors Arrow 110 indicates the walking direction of the patient. - The mechanical system as shown in figure 5 may be a door-like frame, that is pivoting around a vertical axis. The door-like frame is arranged at the back of the
patient 1. One side of the door-like frame is connected to abearing point 75, the other side is blocked by asensor 70 and arod 78 to abearing point 77. In this arrangement transversal (lateral) movements of the pelvis are blocked. The restriction of this degree of freedom results in alateral force 103, orthogonal to the measure direction and in a bending moment in the frame. Due to the asymmetric arrangement with only onesensor 71 on only one side of the door-like frame, the bending moment resulting from lateral forces appears also in the force signal ofsensor 71. Therefore, anadditional sensor 70 is arranged to measure lateral forces, in order to compensate the influences of the bending moment. - The
force 101 is applied to the rod system. Thepatient 1 is connected via theharness 10 to a croppedrod 73. The croppedrod 73 is connected to alongitudinal rod 74. Asensor 70 is mounted on the croppedrod 73, this sensor measures the lateral (transversal)component 103 of theforce 101, also designated as F2. Alongitudinal rod 74 is connected to atransversal rod 72. On one end thetransversal rod 72 is connected to abearing 75, whereas on the other end asensor rod 78, which lies in longitudinal direction, leads to afurther bearing 77. Thesensor rod 78 is equipped with aforce sensor 71 to measure the horizontal force, also designated as F1. Thelongitudinal force 100 is determined with the aid of F1 and F2: - The algebraic sign is chosen in such way that pressure forces on the fixation system (patient decelerates) result in negative and tractive forces (patient accelerates) result in positive signals. If the lateral forces measured by
sensor 70 are unaccounted for the horizontal andlongitudinal force 100, the lateral (transversal) component of the reaction force would be wrongly considered as thelongitudinal force 100. - Figure 6 shows a further top view of an asymmetric arrangement, provided to determine the
longitudinal force 100. Alinker rod 79 connects one end of thetransversal rod 72 to thebearing point 75. At the other end, thetransversal rod 72 is connected to afurther linker rod 91 by a joint 90. Thelinker rod 91 is connected to abearing point 92. This newly built degree of freedom is compensated by thesensor rod 78. Thesensor rod 78 is orthogonally connected to thelinker rod 91. However the sensors may be placed at any of therods longitudinal force 100. - Figure 7 shows a control circuit according to the present invention. The controller 5 (see figures 1, 2, and 4) comprises a control circuit, that integrates the physical determination of the velocity from the longitudinal component of the reaction force. The control circuit is preferably an admittance control circuit, but also an impedance control circuit may be used.
- The reaction force that occurs due to the mechanical fixation of the
patient 1 is measured by asensor 201. An electrical signal that may be linear or non-linear to the reaction force is provided by thesensor 201. - The measured force will then be divided by a mass. This is conducted by a
divider 202. After the divider a signal ẍ 1results. The value of the mass may be chosen according to the patient's physical condition. When the patient's physical condition is good, the parameter is equal to the body mass in order to provide a realistic situation and walking feeling for the patient. If the patient's motor system is weakened, for example after a surgery, injury or neuromuscular disease, a mass with a value lower than the body mass may be chosen. This will make it easier for the patient, because the force that is required to accelerate and walk will be smaller. - However, if the present invention is used for endurance training or rehabilitation of professional athletes it is possible to adjust the mass in an other range. Preferably a value will be used that is between 1 and 1.5 and especially between 1.2 and 1.5 of the body mass. This relieves the joints of the patient, namely the joints in the persons under part of the body, compared to the training method of fixing additional weights on the person's body.
-
- The force-based velocity adjustment of the treadmill can be used together with an orthotic device such as the gait-robot according to
WO 0028927 - In the most cases the device according to
WO 0028927 swing phase 301, this speed deviation is not a problem. However, during the stance phase, when one foot or both feet are touching the treadmill, the speed differences result in mechanical stress acting between treadmill and lokomat onto the legs and feet of the patient. As this stress acts as a horizontal force in longitudinal direction, the force is measured by the sensor arrangements presented and the speed of the treadmill is adjusted in such a way that the force and, thus, the stress acting on the patient's legs and feet is minimized. - The velocity characteristics as shown in Figure 11 will now be explained in greater detail. A
curve 308 shows velocity characteristics of the center of gravity of a human body when walking with a certain velocity. In a first section of the movement, the patient accelerates, this is designated as thedevelopment phase 300. Thefirst bend 303 in thedevelopment phase 300 shows the first step of the patient. Thesecond bend 304 shows the second step of the patient. After another step, the patient reaches his average speed, which is indicated by ahorizontal line 305, since the patient walks with a constant velocity. But even when patient walks with a constant velocity, the velocity of the center of gravity of the body oscillates around thatline 305. With each step the center of gravity is accelerated and decelerated respectively, this is shown by therhythmic phase 301. If the patient accelerates or decelerates theline 305 changes the slope. Acceleration is indicated byline 306, deceleration is indicated byline 307. However the oscillation of the center of gravity will be similar as if the patient walks at a constant velocity. During treadmill training the acceleration and deceleration is recognizable in an orthogonal plane of the walking direction as an alternating relative movement. While a device e.g. according toWO 0028927 control unit 5 can anticipate the "oscillating" reaction force and discern this intra-step movement form voluntary accelerations or decelerations. Thedecay phase 302 represents the end of the treadmill training session. The patient decelerates slowly, until the velocity reaches 0 m/s.Bends - It is noted that the force acting on the patient positioned within his harness is not coming from the harness as such, staying at the same place, but through the movement of the treadmill belt.
- The force-based treadmill speed adjustment can also be applied, when the gait-robot according to
WO 0028927 - In Figures 8, 9, and 10 patient-cooperative strategies are presented that record the patient's movement efforts in order to make the robot behavior flexible and adaptive. Three different technical concepts are presented, which were applied to the gait-robot according to
WO 0028927 - The three strategies comprise, first, impedance control methods that make the gait-robot soft and compliant, second, adaptive control methods that adjust the reference trajectory and/or controller to the individual subject, and, third, a motion reinforcement strategy that supports patient-induced movements.
- Figure 8 shows schematically a block diagram of a general impedance controller in order to allow a patient-cooperative motion strategy. Impedance controllers are well established in the field of robotics and human-system interaction. The basic idea of the impedance control strategy applied to robot-aided treadmill training is to allow a variable deviation from a given leg trajectory rather than imposing a rigid gait pattern. The deviation depends on the patient's effort and behaviour. An adjustable moment is applied at each joint in order to keep the leg within a defined range along the trajectory. The moment can be described as a zero order (stiffness), or higher order (usually first or second order) function of angular position and its derivatives. This moment is more generally called mechanical impedance. The deviations from the desired trajectory results in variations of the gait speed, which requires the treadmill to be adjustable.
- Figure 9 shows the idea of a Patient-Driven Motion Reinforcement (PDMR) strategy for the control of patient-induced walking movements. Here, the actual movement initiated by the patient is recorded and fed into an inverse dynamic model of the patient in order to determine the robot moment contribution that maintains the movement induced by the patient. This means that the patient has to apply some own voluntary efforts in order to obtain a movement at all. This movement is then supported by the robot. A scaling factor K can be introduced in order to vary the supporting moment.
- Figure 10 shows a block diagram of an adaptive control strategy. The main disadvantage of the impedance control strategy presented above is that it is based on a fixed reference trajectory. In comparison, the adaptive controller changes its reference trajectory as function of the patient efforts. In this way the desired trajectory adapts to the individual patient. Therefore, not only gait pattern but also gait speed are changing, thus, requiring an online treadmill speed adjustment function.
- The PDMR controller enables the subjects to walk with their own walking speeds and patterns. The device according to
WO 0028927 - It has to be anticipated, that running belts are usually reacting with a time delay. Therefore the control unit anticipates these delays within the frame of the control of the drives of the running
belt 80. - Due to controlling the treadmill in the way as described above, it is possible to provide a very realistic sensation of walking as the forces that occur during acceleration and deceleration as well as during the decay phase are similar to the forces that occur when the person walks on a fixed ground. The person has to overcome the inertia when changing speed on fixed ground. This inertia does not occur, if the person is not fixed and the treadmill is not controlled as shown in fig. 7, because it is the running belt and not the person's center of mass that changes speed.
- Fig. 12 shows the control circuit that may be used to control the velocity of a treadmill according to the present invention, when walking on an incline is simulated. The main parts of the control circuit according to Fig. 12 are similar to the circuit according to Fig. 7. The reaction force that occurs due to the mechanical fixation of the
patient 1 is measured by asensor 201. This reaction force Fpatient is submitted to anadder 210. An additional offset force Foffset corresponding to the virtual inclination of the virtual slope is added within thisadder 210, being dependent on the weight of theperson 1 and the inclination to be simulated. - The sum force will then be divided by a mass by a
divider 202. The value of the mass may - as within the embodiment shown in Fig. 7 - be chosen according to the patient's physical condition. The resulting value ẍ 1 is integrated by anintegrator 203 and a velocity input signal ẋ 1 results. For safety reasons the velocity input signal ẋ 1 can be passed through asaturation block 211, which limits ẋ 1 to positive values. This prevents the treadmill form running in negative running direction when the situation of walking uphill is simulated but the person does not generate any longitudinal force. -
- Fig. 13 A&B show schematically the force relations for a person leaning forward as for walking up a hill. Fig. 13A shows a
person 1 going uphill, the hill having an inclination of α. The person's mass force G, the normal force N and the friction force FR are depicted, wherein FR = G · sinα. - Fig. 13B shows the
person 1 according to Fig. 13A going virtually uphill and positioned in an harness with alongitudinal rod 20, aforce sensor 3 and abearing 30. The relative angle β between the surface of the treadmill and the person is defined as arctan(l/h). h is the vertical distance between the running belt and the person's center of mass and 1 is the longitudinal distance between the line of action of G and N for the static loading case of FR = Foffset. The friction force for a person positioned on a running belt is therefore -
- 1
- Patient
- 2
- Treadmill
- 3
- Force sensor
- 4
- Force sensor
- 5
- Controller
- 6
- Base plane
- 10
- Fixation means
- 15
- Rod
- 16
- Rod
- 20
- Rod
- 30
- Bearing
- 40
- Rod
- 41
- Angle of parallelogram
- 42
- Bearing
- 43
- Plate
- 50
- Linkage
- 51
- Horizontal rod
- 52
- Vertical rod
- 53
- First corner
- 54
- Second corner
- 55
- Force sensor
- 57
- Main rod
- 58
- Diagonal rod
- 60
- Orthotic device
- 70
- Force sensor
- 71
- Force sensor
- 72
- Transverse rod
- 73
- Cropped rod
- 74
- Longitudinal rod
- 75
- Bearing point
- 77
- Bearing point
- 78
- Sensor rod
- 79
- Linker rod
- 80
- Relieve mechanism
- 81
- Weight
- 82
- Pulley
- 83
- Cable
- 90
- Joint
- 91
- Linker rod
- 92
- Bearing point
- 100
- Longitudinal force
- 101
- Force generated by patient
- 102
- Vertical force
- 103
- Lateral (transversal) force
- 110
- Walking direction
- 201
- Force sensor
- 202
- Divider
- 203
- Integrator
- 204
- PD-Controller
- 210
- Adder
- 211
- Saturation block
- 300
- Development phase
- 301
- Rhythmic phase
- 302
- Decay phase
- 303
- First step
- 304
- Second step
- 305
- Average velocity
- 306
- Acceleration
- 307
- Deceleration
- 308
- Velocity characteristic
- 310
- Penultimate step
- 311
- Ultimate step
Claims (13)
- A method to control a treadmill according to the walking velocity of a person that is using the treadmill (2), characterized in that a reaction force is measured (3), which occurs when a longitudinal repulsion force is created between the treadmill (2) and the person (1), and in that a signal representation for said reaction force is transmitted to a control unit (5), which is used to control the velocity of the treadmill (2).
- Method to control a treadmill according to claim 1 characterized in that the reaction force of a person (1) harnessed in an orthotic device is measured wherein a signal representation for said orthotic reaction force is transmitted to the control unit (5), which is used to control the orthotic device.
- Method to control a treadmill according to the walking velocity of the person that is using the treadmill (2), characterized in that a reaction force is measured (3), which occurs when a person (1) harnessed in an orthotic device walks with a different velocity than the running belt of the treadmill (2) is moving, and in that a signal representation for said reaction force is transmitted to a control unit (5), which is used to control the orthotic device or optionally the treadmill.
- The method as claimed in claims 1 to 3, characterized in that the signal representative for said reaction force only comprises the component of the force, which is parallel to the surface of the treadmill (2) and in running direction of the running belt (80).
- Method as claimed in claims 1 to 4, characterized in that the person (1) is harnessed with a body or hip device and optionally a leg orthotic device, wherein the signal representative for said reaction force is taken from a force sensor or from force sensors positioned:- on a single rod (20), or- on two rods (40), which are arranged in a parallelogram, or- on a diagonal rod (58) of a linkage (50);
all above mentioned rods oriented in the direction of the running belt (80) attached to the harness of the person and fixing the person (1) in view of the running belt, or- on a door-like rod arrangement, or- within a hip or leg orthesis. - Method as claimed in one of claims 1 to 5, characterized in that the velocity of the treadmill is adjusted to a natural motion, when a foot executes a rolling motion on the running belt (80).
- Method as claimed in one of claims 1 to 6, characterized in that an offset force is added to the measured patient force to simulate a virtual slope.
- A device to control a treadmill according to the walking velocity of the person that is using the treadmill, characterized in that it comprises at least:- a treadmill (2) with an adjustable motor to drive the running belt,- a mechanical system to fix the person (1) against movements in longitudinal direction above and or on the running belt,- force measure means (3,4) arranged between the mechanical systems and the treadmill in order to measure a reaction force,- a control circuit to analyse the signals provided by the force measure means and to control the velocity of the treadmill (2) and/or the movement of an orthotic device.
- A device according to claim 8, wherein the mechanical system to fix the person comprises a harness (10) and a rod system (20, 40, 50, 51, 52 , 56, 57, 58).
- A device according to claim 8, characterized in that measured horizontal and longitudinal force is represented by an electrical signal that is used as a basic parameter to control the rotational speed of the motors of the treadmill (2) and/or the actuators of an orthotic device.
- A device according to claim 10, characterized in that the control circuit comprises an impedance or an admittance control circuit.
- A device according to claim 8, characterized in that the device comprises additional supporting means (60, 80) for the person (1).
- A device according to claim 12, whereas additional supporting means are a relief mechanism (80) to relieve the person (1) from its own weight or a driven orthotic device (60) to provide guidance of the motion sequence.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05405570A EP1772134A1 (en) | 2005-10-05 | 2005-10-05 | Device and method for an automatic treadmill therapy |
PCT/CH2006/000526 WO2007038888A1 (en) | 2005-10-05 | 2006-09-29 | Device and method for an automatic treadmill therapy |
EP06790917A EP1931299A1 (en) | 2005-10-05 | 2006-09-29 | Device and method for an automatic treadmill therapy |
US12/083,164 US20090215588A1 (en) | 2005-10-05 | 2006-09-29 | Device and Method for an Automatic Treadmill Therapy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05405570A EP1772134A1 (en) | 2005-10-05 | 2005-10-05 | Device and method for an automatic treadmill therapy |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1772134A1 true EP1772134A1 (en) | 2007-04-11 |
Family
ID=35822624
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05405570A Withdrawn EP1772134A1 (en) | 2005-10-05 | 2005-10-05 | Device and method for an automatic treadmill therapy |
EP06790917A Withdrawn EP1931299A1 (en) | 2005-10-05 | 2006-09-29 | Device and method for an automatic treadmill therapy |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06790917A Withdrawn EP1931299A1 (en) | 2005-10-05 | 2006-09-29 | Device and method for an automatic treadmill therapy |
Country Status (3)
Country | Link |
---|---|
US (1) | US20090215588A1 (en) |
EP (2) | EP1772134A1 (en) |
WO (1) | WO2007038888A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008029572A1 (en) * | 2008-06-21 | 2009-12-24 | Medica-Medizintechnik Gmbh | Training device for building the muscles of the foot apparatus |
ITMI20090435A1 (en) * | 2009-03-20 | 2010-09-21 | Piero Dinon | ROBOT MOTOR REHABILITATION DEVICE |
WO2012062283A3 (en) * | 2010-11-12 | 2012-07-26 | Franz Harrer | Treadmill ergometer having adapted pulling and measuring units for therapeutic applications and for gait training and running training |
CZ304313B6 (en) * | 2012-05-10 | 2014-02-26 | Michael Nikolaus KrĂĽsselin | Suspension device for transportation and lightening of patients, especially for dynamic alleviation or static suspension of patients with various types of damage of locomotory system |
CN104474668A (en) * | 2014-12-16 | 2015-04-01 | 东南大学 | Lower limb gait rehabilitation training self-adaption weight reducing mechanism and control method thereof |
IT202200019959A1 (en) | 2022-09-28 | 2024-03-28 | Guido Belforte | Suspension and weight relief system for walking on the ground and for leg rehabilitation exercises |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5787518B2 (en) | 2007-10-15 | 2015-09-30 | アルターグ, インコーポレイテッド | System, method, and apparatus for air differential pressure device |
WO2014153201A1 (en) | 2013-03-14 | 2014-09-25 | Alterg, Inc. | Method of gait evaluation and training with differential pressure system |
US20120238921A1 (en) | 2011-03-18 | 2012-09-20 | Eric Richard Kuehne | Differential air pressure systems and methods of using and calibrating such systems for mobility impaired users |
US10342461B2 (en) | 2007-10-15 | 2019-07-09 | Alterg, Inc. | Method of gait evaluation and training with differential pressure system |
US8152699B1 (en) * | 2008-06-19 | 2012-04-10 | Arrowhead Center, Inc. | Apparatus and method for reduced-gravity simulation |
US8353199B1 (en) * | 2009-04-17 | 2013-01-15 | Arrowhead Center, Inc. | Multi-degree-of-freedom test stand for unmanned air vehicles |
US9228917B1 (en) | 2009-04-17 | 2016-01-05 | Arrowhead Center, Inc. | Six degrees of freedom free-motion test apparatus |
JP5745506B2 (en) | 2009-05-15 | 2015-07-08 | アルターグ, インコーポレイテッド | Differential pneumatic system |
US20140058299A1 (en) * | 2011-03-02 | 2014-02-27 | Yoshiyuki Sankai | Gait training device and gait training system |
NZ710129A (en) * | 2013-01-22 | 2017-12-22 | Gorbel Inc | Medical rehab lift system and method with horizontal and vertical force sensing and motion control |
US10478371B2 (en) | 2013-01-22 | 2019-11-19 | Gorbel, Inc. | Medical rehab body weight support system and method with horizontal and vertical force sensing and motion control |
US9914003B2 (en) | 2013-03-05 | 2018-03-13 | Alterg, Inc. | Monocolumn unweighting systems |
US10265565B2 (en) | 2013-03-14 | 2019-04-23 | Alterg, Inc. | Support frame and related unweighting system |
PL2968052T3 (en) | 2013-03-14 | 2022-02-07 | Ekso Bionics, Inc. | Powered orthotic system for cooperative overground rehabilitation |
WO2014153016A1 (en) | 2013-03-14 | 2014-09-25 | Alterg, Inc. | Cantilevered unweighting systems |
US10456624B2 (en) * | 2014-08-25 | 2019-10-29 | The Uab Research Foundation | System and method for performing exercise testing and training |
KR20160067337A (en) * | 2014-12-04 | 2016-06-14 | 한국산업기술대학교산학협력단 | Human muscular strength amplification robot driven by user' intention and driving method thereof |
US10398618B2 (en) | 2015-06-19 | 2019-09-03 | Gorbel, Inc. | Body harness |
JP6323419B2 (en) * | 2015-09-09 | 2018-05-16 | トヨタ自動車株式会社 | Walking training device |
US10094055B2 (en) * | 2016-03-14 | 2018-10-09 | Abm International, Inc. | Method, apparatus and computer-readable medium for moving |
EP3222332A1 (en) * | 2016-03-24 | 2017-09-27 | Hocoma AG | Suspension device for balancing a weight |
US10987544B2 (en) * | 2016-05-02 | 2021-04-27 | Southern Research Institute | Force profile control for the application of horizontal resistive force |
WO2018042442A1 (en) * | 2016-09-01 | 2018-03-08 | Newton Vr Ltd. | Immersive multisensory simulation system |
WO2018075563A1 (en) | 2016-10-19 | 2018-04-26 | Board Of Regents Of The University Of Nebraska | User-paced exercise equipment |
USD1010028S1 (en) | 2017-06-22 | 2024-01-02 | Boost Treadmills, LLC | Unweighting exercise treadmill |
US11957954B2 (en) | 2017-10-18 | 2024-04-16 | Alterg, Inc. | Gait data collection and analytics system and methods for operating unweighting training systems |
WO2019089850A1 (en) | 2017-10-31 | 2019-05-09 | Alterg, Inc. | System for unweighting a user related methods of exercise |
JP7287238B2 (en) * | 2019-10-16 | 2023-06-06 | トヨタ自動車株式会社 | Gait training system and method of operation |
JP7294052B2 (en) * | 2019-10-16 | 2023-06-20 | トヨタ自動車株式会社 | Gait training system and method of operation |
US11872433B2 (en) | 2020-12-01 | 2024-01-16 | Boost Treadmills, LLC | Unweighting enclosure, system and method for an exercise device |
CN113058208B (en) * | 2021-04-08 | 2023-05-26 | 上海厘成智能科技有限公司 | Control method of omnidirectional virtual reality running machine |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0002188A1 (en) | 1977-12-05 | 1979-06-13 | Willi Schönenberger | Treadmill for the therapy and rehabilitation of persons hampered in walking |
US5242339A (en) * | 1991-10-15 | 1993-09-07 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration | Apparatus and method for measuring subject work rate on an exercise device |
US5707319A (en) | 1996-08-21 | 1998-01-13 | Riley; Ronald J. | Treadmill adaptive speed control |
WO2000028927A1 (en) | 1998-11-13 | 2000-05-25 | Hocoma Ag | Device and method for automating treadmill therapy |
US6162151A (en) * | 1996-09-30 | 2000-12-19 | Hitachi, Ltd. | Ambulatory exercise machine and ambulatory exercise system |
US6179754B1 (en) | 1999-02-10 | 2001-01-30 | Leao Wang | Sports treadmill |
WO2001014018A1 (en) * | 1999-08-20 | 2001-03-01 | The Regents Of The University Of California | Method, apparatus and system for automation of body weight support training (bwst) of biped locomotion over a treadmill using a programmable stepper device (psd) operating like an exoskeleton drive system from a fixed base |
WO2002015819A2 (en) * | 2000-08-25 | 2002-02-28 | Healthsouth Corporation | Powered gait orthosis and method of utilizing same |
US6416444B1 (en) | 2000-01-20 | 2002-07-09 | Jung Soo Lim | Treadmill having a walking belt whose running speed is automatically adjusted |
US20040116253A1 (en) * | 1998-06-09 | 2004-06-17 | Radow Scott B. | Bipedal locomotion training and performance evaluation device and method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7331906B2 (en) * | 2003-10-22 | 2008-02-19 | Arizona Board Of Regents | Apparatus and method for repetitive motion therapy |
US7544155B2 (en) * | 2005-04-25 | 2009-06-09 | University Of Delaware | Gravity balanced orthosis apparatus |
EP1908442A1 (en) * | 2006-10-05 | 2008-04-09 | Hocoma AG | Device for adjusting the prestress of an elastic means around a predetermined tension or position |
-
2005
- 2005-10-05 EP EP05405570A patent/EP1772134A1/en not_active Withdrawn
-
2006
- 2006-09-29 US US12/083,164 patent/US20090215588A1/en not_active Abandoned
- 2006-09-29 EP EP06790917A patent/EP1931299A1/en not_active Withdrawn
- 2006-09-29 WO PCT/CH2006/000526 patent/WO2007038888A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0002188A1 (en) | 1977-12-05 | 1979-06-13 | Willi Schönenberger | Treadmill for the therapy and rehabilitation of persons hampered in walking |
US5242339A (en) * | 1991-10-15 | 1993-09-07 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration | Apparatus and method for measuring subject work rate on an exercise device |
US5707319A (en) | 1996-08-21 | 1998-01-13 | Riley; Ronald J. | Treadmill adaptive speed control |
US6162151A (en) * | 1996-09-30 | 2000-12-19 | Hitachi, Ltd. | Ambulatory exercise machine and ambulatory exercise system |
US20040116253A1 (en) * | 1998-06-09 | 2004-06-17 | Radow Scott B. | Bipedal locomotion training and performance evaluation device and method |
WO2000028927A1 (en) | 1998-11-13 | 2000-05-25 | Hocoma Ag | Device and method for automating treadmill therapy |
US6821233B1 (en) * | 1998-11-13 | 2004-11-23 | Hocoma Ag | Device and method for automating treadmill therapy |
US6179754B1 (en) | 1999-02-10 | 2001-01-30 | Leao Wang | Sports treadmill |
WO2001014018A1 (en) * | 1999-08-20 | 2001-03-01 | The Regents Of The University Of California | Method, apparatus and system for automation of body weight support training (bwst) of biped locomotion over a treadmill using a programmable stepper device (psd) operating like an exoskeleton drive system from a fixed base |
US6416444B1 (en) | 2000-01-20 | 2002-07-09 | Jung Soo Lim | Treadmill having a walking belt whose running speed is automatically adjusted |
WO2002015819A2 (en) * | 2000-08-25 | 2002-02-28 | Healthsouth Corporation | Powered gait orthosis and method of utilizing same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008029572A1 (en) * | 2008-06-21 | 2009-12-24 | Medica-Medizintechnik Gmbh | Training device for building the muscles of the foot apparatus |
DE102008029572B4 (en) * | 2008-06-21 | 2011-03-24 | Medica-Medizintechnik Gmbh | Training device for building the muscles of the foot apparatus |
ITMI20090435A1 (en) * | 2009-03-20 | 2010-09-21 | Piero Dinon | ROBOT MOTOR REHABILITATION DEVICE |
WO2010105773A1 (en) * | 2009-03-20 | 2010-09-23 | M.P.D. Costruzioni Meccaniche S.R.L. | Robot motor rehabilitation device |
WO2012062283A3 (en) * | 2010-11-12 | 2012-07-26 | Franz Harrer | Treadmill ergometer having adapted pulling and measuring units for therapeutic applications and for gait training and running training |
US9737760B2 (en) | 2010-11-12 | 2017-08-22 | Franz Harrer | Treadmill ergometer having adapted pulling and measuring units for therapeutic applications and for gait training and running training |
CZ304313B6 (en) * | 2012-05-10 | 2014-02-26 | Michael Nikolaus KrĂĽsselin | Suspension device for transportation and lightening of patients, especially for dynamic alleviation or static suspension of patients with various types of damage of locomotory system |
CN104474668A (en) * | 2014-12-16 | 2015-04-01 | 东南大学 | Lower limb gait rehabilitation training self-adaption weight reducing mechanism and control method thereof |
IT202200019959A1 (en) | 2022-09-28 | 2024-03-28 | Guido Belforte | Suspension and weight relief system for walking on the ground and for leg rehabilitation exercises |
EP4344692A1 (en) | 2022-09-28 | 2024-04-03 | Guido Belforte | Suspension and weight relief system for walking on the ground and for leg rehabilitation exercises |
Also Published As
Publication number | Publication date |
---|---|
WO2007038888A1 (en) | 2007-04-12 |
US20090215588A1 (en) | 2009-08-27 |
EP1931299A1 (en) | 2008-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1772134A1 (en) | Device and method for an automatic treadmill therapy | |
US8932241B2 (en) | Wearable action-assist device and control program | |
Frey et al. | A novel mechatronic body weight support system | |
US6796926B2 (en) | Mechanism for manipulating and measuring legs during stepping | |
US8147436B2 (en) | Powered orthosis | |
KR101602728B1 (en) | Legs rehabilitation robot capable of movable gait training and stationary gait training | |
US8622747B2 (en) | Training system and method using a dynamic perturbation platform | |
US11766376B2 (en) | Assisted rehabilitation system | |
US9005145B2 (en) | Muscle and/or joint exercise apparatus | |
US20140213951A1 (en) | Robotic gait rehabilitation training system with orthopedic lower body exoskeleton for torque transfer to control rotation of pelvis during gait | |
US20060052728A1 (en) | Dynamic oscillating gait-training system | |
US20100152629A1 (en) | Integrated system to assist in the rehabilitation and/or exercising of a single leg after stroke or other unilateral injury | |
Zanotto et al. | ALEX III: A novel robotic platform with 12 DOFs for human gait training | |
Pennycott et al. | Effects of added inertia and body weight support on lateral balance control during walking | |
JP2002301124A (en) | Walking assisting device | |
EP1586291A1 (en) | Device and process for adjusting the height of and the relief force acting on a weight | |
JP2021536329A (en) | Wearable active auxiliary device | |
WO2004035147A1 (en) | Balance training device | |
Munawar et al. | AssistOn-Gait: An overground gait trainer with an active pelvis-hip exoskeleton | |
JP2005211086A (en) | Walking training apparatus | |
JP2001037908A (en) | Walking trainer | |
CN113693882A (en) | Series-parallel system for gait and balance rehabilitation training | |
JP4247727B2 (en) | Limb body drive device | |
KR102675179B1 (en) | Exoskeleton apparatus having level acquisition module | |
JPH08141027A (en) | Walk training device and its control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
AKX | Designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20071012 |