EP1767273A1 - Procédé et appareil pour la concentration de matières à l'état de particules solides - Google Patents

Procédé et appareil pour la concentration de matières à l'état de particules solides Download PDF

Info

Publication number
EP1767273A1
EP1767273A1 EP05020997A EP05020997A EP1767273A1 EP 1767273 A1 EP1767273 A1 EP 1767273A1 EP 05020997 A EP05020997 A EP 05020997A EP 05020997 A EP05020997 A EP 05020997A EP 1767273 A1 EP1767273 A1 EP 1767273A1
Authority
EP
European Patent Office
Prior art keywords
pulp
chamber
fluid
fraction
peripheral wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05020997A
Other languages
German (de)
English (en)
Inventor
Pol Huart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GENIMIN
Original Assignee
Genimin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genimin filed Critical Genimin
Priority to EP05020997A priority Critical patent/EP1767273A1/fr
Priority to CN200680035899.4A priority patent/CN101326010B/zh
Priority to US12/088,417 priority patent/US8317033B2/en
Priority to CA002623875A priority patent/CA2623875A1/fr
Priority to ZA200803661A priority patent/ZA200803661B/xx
Priority to EP06804565A priority patent/EP1931476B1/fr
Priority to AU2006297017A priority patent/AU2006297017B2/en
Priority to PCT/BE2006/000106 priority patent/WO2007036006A1/fr
Priority to AT06804565T priority patent/ATE537904T1/de
Priority to EA200800934A priority patent/EA014356B1/ru
Publication of EP1767273A1 publication Critical patent/EP1767273A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • B03B5/30Washing granular, powdered or lumpy materials; Wet separating by sink-float separation using heavy liquids or suspensions
    • B03B5/32Washing granular, powdered or lumpy materials; Wet separating by sink-float separation using heavy liquids or suspensions using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/02Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation
    • B03B5/10Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation on jigs
    • B03B5/22Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation on jigs using pulses generated by liquid injection

Definitions

  • the invention relates to the concentration of solid particulate matter comprising several organic and / or inorganic components of different densities.
  • the invention relates more particularly to an improved process for the densimetric concentration of ultrafine particles of such materials, according to the principle of setzage or jiggage in a centrifuge chamber, and an apparatus for carrying out this improved process.
  • Setzage or jiggage is a well-known technique for the concentration of solids comprising substances of different densities or densities [eg an ore released from its constituents (naturally for alluvial and eluvial deposits or after crushing), the remediation of 'polluted land of hunting sinkholes, or any other mixture of different materials'.
  • the jiggage uses several physical principles to allow the segregation of particles according to their density by avoiding the phenomenon of equivalence which occurs during the free fall of these particles where a light and fat particle has the same rate of sedimentation as a heavy and fine particle.
  • the techniques of setzage or jiggage are divided into two great families: the techniques of jiggage under the action of gravity and the techniques of jiggage by centrifugation.
  • Techniques using the action of gravity generally exploit two segregation engines, one of which exploits the first physical principle stated above and the other exploits the other two physical principles. But as soon as the particle size decreases, the surface area increases and the surface forces (drag) become predominant with respect to the volumetric forces (weights) that compete in the jiggage phenomenon.
  • One way to solve this problem is to centrifuge the material to increase the volumetric forces.
  • Centrifugal jigging techniques seldom exploit the first segregation engine, since the means usually used to subject the solid particles to short acceleration are generally unsatisfactory and impede the proper functioning of the jigg.
  • a centrifugal jigging apparatus is described in which exploits the two segregation engines.
  • a pulp of a particulate material is subjected to centrifugation in a cylindrical chamber whose peripheral wall comprises a grid covered with a filter bed and, during centrifugation, the filter bed at pulsed centripetal displacements which have the effect of subjecting the pulp in the chamber to centripetal point forces.
  • the chamber, its gate and the cavities are driven at high speed to centrifuge the pulp and subject the flexible wall of the cavities to displacement at a defined frequency, to project the water they contain through the grid and submit the bed filtering at centripetal pulsations.
  • the pulse pulsed to the pulp is induced by a mechanical effect, which has the disadvantageous result of limiting the frequency of pulsations due to mechanical inertia problems.
  • a very high frequency is necessary to cause the very short accelerations necessary for the segregation of very fine particles. These accelerations must be even more short as the particles are fine. In fact, the finer they are, the greater the specific surface area, the greater the drag. Under these conditions, the duration of the acceleration during which we can neglect the drag effect is very short.
  • the invention aims to overcome the disadvantages of the known centrifugal device described above.
  • the invention aims more particularly at providing a new and improved process for the concentration, by the centrifugal jiggage technique, of solid particulate matter comprising several organic and / or inorganic constituents of different densities.
  • the object of the invention is especially to provide a process which makes it possible to achieve, in a simple and economical manner, a rapid and efficient concentration of ultrafine particles of such materials.
  • the invention also aims to provide an apparatus for the concentration of such materials by centrifugal jigging technique, said apparatus being of simple design, practical, economical and also with high reliability and high operating efficiency.
  • particulate matter refers to a solid material in the form of particles of various sizes and shapes, comprising at least two organic and / or inorganic solid constituents.
  • the particulate material may for example comprise an ore, the constituents of which include minerals.
  • useful substance refers to a solid or inorganic component that is to be extracted in the concentrated state of the particulate material and the term “sterile substance” refers to a solid or mineral waste component, which is sought to separate from the useful substance (s).
  • pulp refers to an aqueous dispersion or suspension of the aforementioned particulate material in water or other suitable liquid (organic or inorganic). The selected liquid must have a density lower than that of the particulate matter.
  • the invention relates to a method for concentrating a particulate material, comprising at least two components of different densities, in which a pulp of said particulate matter is subjected to centrifugation and centripetal pulsations in a chamber. centrifugation and a dense fraction of the pulp and a light fraction of the pulp are withdrawn from the centrifugation chamber, the method being characterized in that, to achieve the centripetal pulsations, a fluid is injected into the pulp in a direction which has a tangential component to centrifugation.
  • the function of the centrifugation is to subject the particles of the particulate material to a centrifugal acceleration and thereby to centrifugal forces which will radially classify the particles of the particulate matter as a function of their respective masses.
  • the centrifugation can be carried out by any suitable means, for example using a rotary centrifuge. Centrifugation is performed in a centrifuge chamber. This is normally a room of revolution. It may for example be cylindrical, conical or frustoconical. It is not critical for the definition of the invention and will be explained later.
  • the speed of the centrifugation will condition the centrifugal acceleration of the pulp and hence the centrifugal forces acting on the particles of the particulate matter. It is not critical for the definition of the invention. All other things being equal, it will condition the productivity of the process and the precision of the cutoff between the light fraction and the dense fraction of the particulate matter.
  • the optimum speed of centrifugation will depend on various parameters, among which are the density of the or each useful substance of the particulate material, the densities of the sterile substances, the particle size distribution of the particulate material and the dimensions of the chamber used. for centrifugation. These parameters must be determined in each particular case by those skilled in the art, by means of routine tests in the laboratory or work in the design office.
  • centripetal pulsations have the function of subjecting the centrifuged pulp to centripetal forces punctual, short durations, comparable to shocks, according to a defined frequency.
  • the centripetal pulsations are obtained by injecting a fluid into the pulp subjected to centrifugation, this fluid injection having a component tangential to the centrifugation.
  • the fluid can invariably be a gas or a liquid. It must be substantially inert vis-à-vis the constituents of the pulp. In the case of a liquid, it can not normally be a solvent for the constituents of the particulate matter. It can be indifferently an organic liquid or an aqueous liquid. Especially liquids that are miscible with the liquid of the pulp are recommended. The same liquid as that of the pulp is advantageously used, the water being preferred.
  • the fluid is injected into the pulp in the form of a localized jet, this jet having a component that is tangent to the direction of rotation of the pulp and the peripheral wall of the centrifuge chamber.
  • the injection can be strictly tangential to the peripheral wall of the centrifuge chamber. It is preferred that it be oblique, so as to also have a radial component.
  • the injection of the fluid is preferably operated continuously, with a substantially constant speed and / or a substantially constant flow rate. Continuous injection with a substantially constant injection rate is preferred.
  • the tangential injection of the fluid into the pulp generates therein local centripetal pulsations in front of the fluid injection zone.
  • Particles of particulate matter in the pulp are thus subjected to tangential and centripetal point accelerations, which are superimposed on the substantially constant centrifugal acceleration.
  • the frequency of the centripetal accelerations to which each particle of particulate material is subjected is a function of the speed of rotation of the pulp in the centrifuge chamber.
  • the combination of centrifugal acceleration and point centripetal accelerations provides a progressive stratification of particles of particulate matter in the pulp, as a function of their respective densities, the densest particles migrating to the periphery of the pulp vortex and the particles. less dense migrating in the opposite direction.
  • the quality of the stratification of the particles of particulate material in the pulp and, consequently, the efficiency of the concentration of the particulate matter will depend on various parameters among which are the dimensions of the centrifugation chamber, the flow rate of the pulp and its rate of introduction into the centrifuge chamber, as well as the rate and rate of injection of the fluid into the pulp.
  • the optimum values of these parameters will additionally depend on various factors, including the particulate matter treated, the respective densities of the useful substance and the sterile substances, the particle size distribution of the particulate material in the pulp and the concentration of the the pulp, as well as densities of the liquid of the pulp and the injected fluid. These optimum values must therefore be determined in each particular case by those skilled in the art, by means of routine laboratory tests.
  • a dense fraction of the pulp and a light fraction are withdrawn.
  • the dense fraction is normally withdrawn at the periphery of the centrifuged pulp vortex, generally in a direction tangential to this vortex.
  • the centrifugation chamber is cylindrical, the pulp is introduced with a defined speed, tangentially to the peripheral wall of the chamber and the dense fraction is drawn tangentially to said wall.
  • tangentially is meant to specify that the direction of introduction of the pulp into the chamber and the direction of withdrawal of the dense fraction each comprise a component tangential to the wall of the chamber. These directions can therefore be strictly tangential or oblique. It is preferred that it be strictly tangential or almost tangential.
  • the withdrawal of the dense fraction is normally carried out downstream of the introduction of the pulp into the centrifugation chamber, the expressions "upstream” and “downstream” being defined with respect to the direction of rotation of the vortex of pulp in the centrifuge chamber.
  • the light fraction of the pulp can be withdrawn axially from the centrifugation chamber. It is preferred that it be drawn tangentially to the aforementioned peripheral wall of said chamber, downstream of the withdrawal of the dense fraction.
  • the tangential velocity of introduction of the pulp in the chamber will condition its speed of rotation in the chamber and, consequently, the centrifugal acceleration.
  • the cylindrical chamber may be horizontal, oblique or vertical. It is preferred that the chamber be substantially vertical.
  • the fluid used to produce the centripetal pulses is injected through the aforesaid peripheral wall of the centrifugation chamber, substantially over the entire length of the centrifugation chamber. this.
  • At least one additional withdrawal of an additional fraction of pulp is carried out, this additional withdrawal being carried out downstream of the withdrawal of the dense fraction and upstream of the withdrawal of the light fraction.
  • the useful substance content of the additional fraction is intermediate between the respective contents of said useful substance in the dense fraction, on the one hand, and in the light fraction, on the other hand.
  • This variant embodiment of the invention thus cleaves the particulate matter in several fractions with different enrichment rates of useful substance.
  • the aforementioned additional racking will be designated “intermediate withdrawal” and the corresponding additional fraction will be designated “intermediate fraction”.
  • the yield of the useful substance concentration can be substantially improved by recycling the intermediate fraction into the pulp which is introduced into the centrifugation chamber.
  • the dense fraction constitutes the useful fraction (concentrated as useful substance) or a by-product (enriched in sterile substances of the particulate matter), depending on whether the density of the useful substance is greater than or less than that of sterile substances.
  • the process according to the invention is especially adapted to the concentration of particulates of small particle size, especially in the state of particles with a diameter of less than 800 ⁇ m, generally between 1 and 500 ⁇ m, the diameter of a particle being, for example, definition, the diameter of a sphere of the same volume as the particle.
  • the centrifugation is regulated to subject the pulp to a centrifugal acceleration greater than 3000 m / s 2 and the injection of the fluid is regulated. so that the centripetal pulsations have an acceleration substantially between 1 and 5 times the centrifugal acceleration aforesaid.
  • the invention also relates to an apparatus for implementing the method according to the invention, said apparatus comprising a centrifugation chamber, a device for admitting a pulp of the particulate material into the centrifugation chamber, a device for generating centripetal pulsations in the pulp in the centrifugation chamber, a device for drawing a centrifugation dense fraction of the pulp and a device for withdrawing a light fraction of the pulp;
  • the device for generating centripetal pulsations in the pulp comprises a conduit which opens into the aforesaid chamber, through a peripheral wall thereof, and which is in communication with an injection member of a fluid.
  • the peripheral wall of the centrifugation chamber is of revolution.
  • She can have any suitable profile. It may for example be a cylindrical wall, a conical wall or a frustoconical wall. Cylindrical walls are preferred.
  • the peripheral wall of revolution can be horizontal, vertical or oblique. It is preferred that the wall be substantially vertical.
  • the device for feeding the centrifugation chamber with the pulp comprises a duct that opens into the chamber through its peripheral wall, this duct being further in communication with a continuous injection member of the pulp.
  • the pulp introduction duct is arranged tangentially or obliquely with respect to the peripheral wall. It is preferred that it be substantially tangential with respect to this wall.
  • the conduit for the injection of the fluid for generating the pulsations opens obliquely or tangentially through the peripheral wall of the centrifuge chamber. It includes a tangential component which preferably has the same meaning as the tangential component of the pulp introduction conduit.
  • the fluid injection member is advantageously designed so that the fluid injection is continuous and flow rate and / or substantially constant speed.
  • the device for withdrawing the dense fraction advantageously comprises a conduit which passes through the peripheral wall of the centrifugation chamber and which is oriented so as to have a tangential component in the same direction as the tangential component of the pulp introduction conduit.
  • the device for withdrawing the light fraction preferably comprises a conduit which passes through the peripheral wall of the centrifugation chamber, downstream of the withdrawal conduit of the dense fraction and which is oriented so as to have a tangential component in the same direction as the tangential component of the introduction conduit of the pulp.
  • the centrifugation chamber comprises at least one additional device for withdrawing a fraction of the pulp, said additional withdrawal device comprising a conduit which passes through the peripheral wall of the centrifugation chamber, between the withdrawal ducts of the dense fraction and the light fraction.
  • the additional withdrawal duct is advantageously similar to the withdrawal ducts of the dense and light fractions.
  • the additional withdrawal conduit may be connected to the supply device of said chamber to recycle the fraction withdrawn.
  • the conduit for injection fluid for generating the pulsations comprises a slot which is formed through the peripheral wall of the centrifuge chamber over a substantial length thereof.
  • the expression "over a substantial length of the wall of the chamber” means a length greater than half the total length of the chamber, generally at least 75% (preferably 80%) of the total length of the chamber. bedroom.
  • the total length of the chamber is the length of the chamber, from the pulp supply device to the withdrawal device of the light fraction.
  • the apparatus normally comprises a device for discharging the fluid used to generate centripetal pulsations in the pulp.
  • This evacuation device normally comprises a conduit which opens through the peripheral wall of the centrifugation chamber, downstream of the withdrawal device of the light fraction.
  • it may comprise a duct which passes axially through the downstream end of the centrifugation chamber.
  • the method and the apparatus according to the invention have various applications. They find in particular an application for the concentration of land or ores occurring naturally in the granular or powdery state, such as alluvial products.
  • the process and the apparatus according to the invention are especially adapted to the enrichment treatment of ultrafine ores, in particular the recovery of fine grinding residues and the treatment of ores collected from alluvial and eluvial deposits or after grinding.
  • the method and the apparatus according to the invention find an application particular for the concentration of ores, diamonds and any other mineral of value, density differentiated with respect to the environment (cassiterite, wolframite, coltan, tourmaline, garnets, chrysoberyl, spinel, zircon, rhodonite, ruby, sapphire, ).
  • the method and the apparatus according to the invention also find an application for the treatment of polluted land, for example for the treatment of dredging sludge of rivers, polluted by heavy metals, the cleaning up of soil polluted by shot pellets, the remediation of industrial sites polluted by organic and / or inorganic solids.
  • the apparatus shown in FIG. 1 comprises a centrifugation chamber 11 delimited by a vertical cylindrical lateral wall 2.
  • Two ducts 3 open into the bottom of the chamber 11, tangentially to the cylindrical wall 2, at both ends of the same diameter.
  • the ducts 3 serve to introduce a pulp of particulate material into the chamber 11 to be rotated in the direction of the arrow X ( Figure 2).
  • the chamber 11 is in communication with a narrow vertical duct 4, which passes through the wall 2 over approximately its entire height and whose orientation is approximately tangential to it.
  • the duct 4 is oriented to introduce a fluid in the direction of the arrow X in the chamber 11. The function of the duct 4 will be explained later.
  • the chamber 11 is further in communication with a conduit 5 near its upper end and with a conduit 6 in an intermediate zone. These two ducts are used to draw fractions of the treated pulp into the chamber 11.
  • the ducts 3, 4, 5 and 6 are oriented so as to open into the chamber 11, tangentially with respect to its wall 2.
  • the apparatus of FIG. 1 is intended for implementing the method according to the invention.
  • particulate matter in the form of ultrafine particles is dispersed in water to form a pulp.
  • the pulp is introduced into the ducts 3 with a uniform speed over time and controlled to subject the pulp to a rotary circulation in the chamber 11.
  • Water is also injected under pressure into the pulp layer in the chamber 11. via the conduit 4.
  • the injection of the water is continuous and at a substantially constant rate, which causes pulsations in the pulp, opposite the conduit 4. Under the action of these pulsations, the particles of the particulate matter are subjected to tangential acceleration tangential and centripetal when they pass in line with the duct 4, in the chamber 11.
  • FIG. 2 schematically shows the combined action of the continuous centrifugal acceleration and the centripetal accelerations. point.
  • the lines 7 schematize the circular flow lines of the pulp subjected to centrifugation in the chamber 11 and the lines 8 schematize the streamlines of the water introduced into the chamber 11 by the 4.
  • the densest particles (9) migrate to the periphery of the chamber 11, while the light particles (10) migrate to the center of the chamber.
  • the dense particles are withdrawn with liquid from the pulp via the conduit 6 and the light particles are withdrawn with liquid from the pulp, via the conduit 5.
  • the fraction of pulp withdrawn from the chamber 11 through the conduit 6 is the useful fraction, enriched in useful substance, while the fraction withdrawn through the conduit 5 contains a majority of sterile substances.
  • the conduit 4 is to be oriented so that the flow of water entering the chamber 11 has a radial component.
  • Figures 3, 4, 5 and 6 show various arrangements of the conduit 4, which perform this technical function.
  • the duct 4 enters the chamber 11 tangentially to its peripheral wall 2.
  • the chamber widens downstream of the duct 4.
  • the duct 4 penetrates obliquely in the cylindrical chamber 11 and the diameter thereof is uniform.
  • the conduit 4 penetrates obliquely in the chamber 11 and the latter narrows downstream of the duct 4.
  • the cylindrical chamber 11 contains a cylinder 12 with a perforated wall (FIG. 9), the axis of which coincides with that of the chamber 11.
  • the cylinder 12 is mounted on bearings 13, so as to be able to freely rotate in the chamber 11, to reduce the pressure losses in the rotating pulp.
  • the cylinder 12 may be driven by an electric motor (not shown).
  • the cylinder 12 is extended by a neck 14 which opens outwards, after passing through a corresponding neck 19 of the chamber 11.
  • the pulp 15 is introduced into the chamber 11 via the conduit 3, so that it undergoes centrifugation in said chamber 11.
  • the pulp is distributed in a layer 21 against the wall 2 of the chamber 11.
  • Through the conduit 4 (FIG.
  • water 16 (FIG. 9) is injected continuously into the pulp layer. .
  • the water which has passed through the layer of pulp passes through the perforated wall of the cylinder 12 and is discharged from the apparatus via the neck 14.
  • the light fraction 17 of pulp is collected via the annular opening 5 situated downstream of the apparatus , the dense fraction is collected via the opening 6 and intermediate density fractions are withdrawn through openings 6 ', 6 "and 6"' located between the opening 6 and the opening 5.
  • the apparatus shown schematically in FIG. 10 differs from the apparatus of FIGS. 8 and 9 by the presence of two annular thresholds 18 and 22 on the wall 2, in the chamber 11.
  • the two thresholds 18 and 22 are arranged between the duct 3 (Not visible) of the admission of the pulp 15 and the duct 5 (not visible) for the removal of the light fraction 17. They form between them an annular cavity 23 into which the duct 4 (not shown, serving injection of water 16 for pulsations) and the conduit 6 (not shown, serving for the evacuation of the dense fraction 20).
  • the dense fraction 20 of the pulp is withdrawn from the annular cavity 23 and the light fraction 17 exceeds the threshold 18.
  • the apparatus of FIG. achieves a more precise cut between the light particles and the dense particles of the pulp.
  • the chamber 11 comprises a hydrocyclone 24 upstream of the threshold 22.
  • the inlet duct 3 of the pulp 15 opens into During the operation of the apparatus, the pulp passes through the hydrocyclone 24 and migrates to the annular cavity 23.
  • the cyclone 24 serves to separate the fine particles from the particulate material, which are discharged through the axial stack 25.

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Centrifugal Separators (AREA)
  • Cyclones (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Procédé et appareil pour la concentration d'une matière particulaire, comprenant au moins deux constituants de masses volumiques différentes, dans lesquels on soumet une pulpe (15) de la matière particulaire à une centrifugation dans une chambre de centrifugation (11), on injecte tangentiellement un fluide (16) dans la pulpe pour y engendrer des pulsations centripètes et on soutire de la chambre une fraction dense (20) et une fraction légère (17).

Description

    Domaine de l'invention
  • L'invention se rapporte à la concentration de matières à l'état de particules solides, comprenant plusieurs constituants organiques et/ou inorganiques de masses volumiques différentes.
  • L'invention concerne plus particulièrement un procédé perfectionné pour la concentration densimétrique d'ultrafines particules de telles matières, selon le principe du setzage ou jiggage dans une chambre de centrifugation, ainsi qu'un appareil pour la mise en oeuvre de ce procédé perfectionné.
  • Etat de la technique
  • Le setzage ou jiggage est une technique bien connue pour la concentration de matières solides comprenant des substances de densités ou masses volumiques différentes [par exemple un minerai libéré de ses constituants (naturellement pour les gisements alluvionnaires et éluvionnaires ou après broyage), l'assainissement d'une terre polluée de plombs de chasse, ou tout autre mélange de matières différentes].
  • Le jiggage fait intervenir plusieurs principes physiques pour permettre la ségrégation des particules en fonction de leur densité en évitant le phénomène d'équivalence qui se produit lors de la chute libre de ces particules où une particule légère et grosse présente la même vitesse de sédimentation qu'une particule lourde et fine.
  • Ces principes physiques sont les suivants :
    • o le déplacement des particules lors d'une courte accélération n'est fonction que de la densité des particules ;
    • o la vitesse libre de sédimentation favorise la sédimentation des particules les plus grosses ;
    • o la sédimentation entravée (les particules se gênent et s'entrechoquent mutuellement pendant la sédimentation) favorise la sédimentation des particules les plus fines. Ce phénomène se passe surtout en fin de sédimentation. Il a tendance à compenser le second qui favorise les grosses particules.
  • Les techniques du setzage ou jiggage se répartissent en deux grandes familles : les techniques du jiggage sous l'action de la pesanteur et les techniques du jiggage par centrifugation. Les techniques utilisant l'action de la pesanteur exploitent généralement deux moteurs de ségrégation dont l'un exploite le premier principe physique énoncé plus haut et dont l'autre exploite les deux autres principes physiques. Mais, dès que la granulométrie diminue, la surface spécifique augmente et les forces surfaciques (traînée) deviennent prépondérantes vis-à-vis des forces volumiques (poids) qui sont en compétition dans le phénomène de jiggage. Une manière de résoudre ce problème est de centrifuger la matière pour augmenter les forces volumiques. Les techniques de jiggage par centrifugation exploitent rarement le premier moteur de ségrégation, car les moyens habituellement utilisés pour soumettre les particules solides à de courtes accélérations ne donnent généralement pas satisfaction et entravent le bon fonctionnement du jigg. Dans le document WO-90/00090 , on décrit un appareil de jiggage par centrifugation, dans lequel on exploite les deux moteurs de ségrégation. A cet effet, dans cet appareil connu, on soumet une pulpe d'une matière particulaire à concentrer, à une centrifugation dans une chambre cylindrique dont la paroi périphérique comprend une grille recouverte d'un lit filtrant et, pendant la centrifugation, on soumet le lit filtrant à des déplacements centripètes pulsés qui ont pour effet de soumettre la pulpe dans la chambre à des forces ponctuelles centripètes. L'action combinée de ces forces centripètes ponctuelles et de la force centrifuge permanente sur la pulpe engendre progressivement une stratification radiale des particules de la matière dans la chambre de centrifugation, en fonction de leurs masses volumiques respectives, cette stratification étant sensiblement indépendante des dimensions des particules ou peu influencée par celle-ci. Les particules denses se rassemblent dans une zone périphérique de la pulpe et les particules moins denses se concentrent dans une zone centrale de celle-ci. Dans l'appareil du document WO-90/00090 , une série de cavités à paroi souple, alimentées avec de l'eau, entourent la grille précitée de la chambre. La chambre, sa grille et les cavités sont entraînées à grande vitesse pour centrifuger la pulpe et on soumet la paroi souple des cavités à des déplacements selon une fréquence définie, pour projeter l'eau qu'elles contiennent à travers la grille et soumettre le lit filtrant aux pulsations centripètes. Dans cette appareil connu, la pulsation imprimée à la pulpe est induite par un effet mécanique, ce qui a pour résultat désavantageux de limiter la fréquence des pulsations à cause de problèmes d'inertie mécanique. Hors, une fréquence très élevée est nécessaire pour provoquer les très courtes accélérations nécessaires à la ségrégation de très fines particules. Ces accélérations doivent être d'autant plus courtes que les particules sont fines. En effet, plus elles sont fines, plus la surface spécifique est grande, plus la traînées est grande. Dans ces conditions, la durée de l'accélération durant laquelle on peut négliger l'effet de traînée est très courte. Donc, plus la fréquence des accélérations successives est grande, plus l'influence de la traînée est faible.
    L'appareil connu du document WO-90/00090 présente le désavantage supplémentaire d'être de construction compliquée. En particulier, la réalisation de son étanchéité pose de sérieuses difficultés. En outre, la nécessité d'un lit filtrant sur la grille de la centrifugeuse constitue une autre difficulté, particulièrement la réalisation pratique d'une grille à ouvertures ultrafines. Il en résulte une construction onéreuse et une exploitation difficile.
  • Résumé de l'invention
  • L'invention vise à remédier aux inconvénients de l'appareil centrifuge connu décrit plus haut.
  • L'invention vise plus particulièrement à fournir un procédé nouveau et perfectionné pour la concentration, par la technique du jiggage centrifuge, de matières à l'état de particules solides, comprenant plusieurs constituants organiques et/ou inorganiques de masses volumiques différentes.
  • L'invention vise tout spécialement à fournir un procédé qui permette de réaliser, de manière simple et économique, une concentration rapide et efficace d'ultrafines particules de telles matières.
  • L'invention a aussi pour objectif de fournir un appareil pour la concentration de telles matières par la technique du jiggage centrifuge, ledit appareil étant de conception simple, pratique, économique et présentant par ailleurs une grande fiabilité et un haut rendement d'exploitation.
  • Par convention, dans la suite du présent mémoire, l'expression « matière particulaire » désigne une matière solide à l'état de particules de dimensions et de forme diverses, comprenant au moins deux constituants organiques et/ou inorganiques solides. La matière particulaire peut par exemple comprendre un minerai, dont les constituants comprennent des minéraux. L'expression « substance utile » désigne un composant solide ou minéral que l'on cherche à extraire à l'état concentré de la matière particulaire et l'expression « substance stérile » désigne un composant solide ou minéral résiduaire, que l'on cherche à séparer de la (ou des) substance(s) utile(s).
    Le vocable « pulpe » désigne une dispersion ou suspension aqueuse de la matière particulaire susdite dans de l'eau ou un autre liquide (organique ou inorganique) adéquat. Le liquide sélectionné doit avoir une masse volumique inférieure à celle de la matière particulaire.
  • En conséquence, l'invention concerne un procédé pour la concentration d'une matière particulaire, comprenant au moins deux constituants de masses volumiques différentes, dans lequel on soumet une pulpe de ladite matière particulaire à une centrifugation et à des pulsations centripètes dans une chambre de centrifugation et on soutire de la chambre de centrifugation, une fraction dense de la pulpe et une fraction légère de la pulpe, le procédé se caractérisant en ce que, pour réaliser les pulsations centripètes, on injecte un fluide dans la pulpe, dans une direction qui présente une composante tangentielle à la centrifugation.
  • Dans le procédé selon l'invention, la centrifugation a pour fonction de soumettre les particules de la matière particulaire à une accélération centrifuge et, de ce fait, à des forces centrifuges qui vont opérer un classement radial des particules de la matière particulaire en fonction de leurs masses respectives. La centrifugation peut être opérée par tout moyen adéquat, par exemple à l'aide d'une centrifugeuse rotative. La centrifugation est exécutée dans une chambre de centrifugation. Celle-ci est normalement une chambre de révolution. Elle peut par exemple être cylindrique, conique ou tronconique. Elle n'est pas critique pour la définition de l'invention et sera explicitée plus loin.
  • La vitesse de la centrifugation va conditionner l'accélération centrifuge de la pulpe et, dès lors, les forces centrifuges agissant sur les particules de la matière particulaire. Elle n'est pas critique pour la définition de l'invention. Toutes autres choses étant égales par ailleurs, elle va conditionner la productivité du procédé et la précision de la coupure entre la fraction légère et la fraction dense de la matière particulaire. La vitesse optimum de centrifugation va dépendre de divers paramètres, parmi lesquels figurent la masse volumique de la ou de chaque substance utile de la matière particulaire, les masses volumiques des substances stériles, la distribution granulométrique de la matière particulaire et les dimensions de la chambre utilisée pour la centrifugation. Ces paramètres doivent être déterminés dans chaque cas particulier par l'homme du métier, au moyen d'essais de routine au laboratoire ou de travaux au bureau d'études.
  • Les pulsations centripètes ont pour fonction de soumettre la pulpe centrifugée, à des forces centripètes ponctuelles, de courtes durées, assimilables à des chocs, selon une fréquence définie.
    Conformément à l'invention, les pulsations centripètes sont obtenues en injectant un fluide dans la pulpe soumise à la centrifugation, cette injection de fluide comportant une composante tangentielle à la centrifugation.
    Le fluide peut être invariablement un gaz ou un liquide. Il doit être sensiblement inerte vis-à-vis des constituants de la pulpe. Dans le cas d'un liquide, celui-ci ne peut normalement pas être un dissolvant des constituants de la matière particulaire. Il peut être indifféremment un liquide organique ou un liquide aqueux. On recommande spécialement les liquides qui sont miscibles avec le liquide de la pulpe. On utilise avantageusement le même liquide que celui de la pulpe, l'eau ayant la préférence.
  • Le fluide est injecté dans la pulpe sous la forme d'un jet localisé, ce jet présentant une composante qui est tangente au sens de rotation de la pulpe et à la paroi périphérique de la chambre de centrifugation. L'injection peut être rigoureusement tangentielle à la paroi périphérique de la chambre de centrifugation. On préfère qu'elle soit oblique, de manière à présenter aussi une composante radiale.
    L'injection du fluide est de préférence opérée de manière continue, avec une vitesse sensiblement constante et/ou un débit sensiblement constant. On préfère une injection continue avec une vitesse d'injection sensiblement constante. L'injection tangentielle du fluide dans la pulpe génère dans celle-ci des pulsations centripètes locales en face de la zone d'injection du fluide. Les particules de matière particulaire dans la pulpe sont ainsi soumises à des accélérations ponctuelles tangentielles et centripètes, qui se superposent à l'accélération centrifuge sensiblement constante. La fréquence des accélérations centripètes auxquelles chaque particule de matière particulaire est soumise est fonction de la vitesse de rotation de la pulpe dans la chambre de centrifugation. La combinaison de l'accélération centrifuge et des accélérations centripètes ponctuelles réalise une stratification progressive des particules de la matière particulaire dans la pulpe, en fonction de leurs masses volumiques respectives, les particules les plus denses migrant vers la périphérie du tourbillon de pulpe et les particules moins denses migrant en sens inverse.
    La qualité de la stratification des particules de matière particulaire dans la pulpe et, par voie de conséquence, le rendement de la concentration de la matière particulaire vont dépendre de divers paramètres parmi lesquels figurent les dimensions de la chambre de centrifugation, le débit de la pulpe et sa vitesse d'introduction dans la chambre de centrifugation, ainsi que le débit et la vitesse d'injection du fluide dans la pulpe. Les valeurs optimum de ces paramètres vont en outre dépendre de divers facteurs, notamment de la matière particulaire traité, des masses volumiques respectives de la substance utile et des substances stériles, de la distribution granulométrique de la matière particulaire dans la pulpe et de la concentration de la pulpe, ainsi que des masses volumiques du liquide de la pulpe et du fluide injecté. Ces valeurs optimum doivent dès lors être déterminées dans chaque cas particulier par l'homme du métier, au moyen d'essais de routine au laboratoire.
  • Dans le procédé selon l'invention, on soutire une fraction dense de la pulpe et une fraction légère. La fraction dense est normalement soutirée à la périphérie du tourbillon de pulpe centrifugée, généralement dans une direction tangentielle à ce tourbillon.
  • Dans une forme d'exécution particulière du procédé selon l'invention, la chambre de centrifugation est cylindrique, on y introduit la pulpe avec une vitesse définie, tangentiellement à la paroi périphérique de la chambre et on soutire la fraction dense tangentiellement à ladite paroi.
    Par le vocable « tangentiellement », on entend spécifier que la direction d'introduction de la pulpe dans la chambre et la direction du soutirage de la fraction dense comprennent chacune une composante tangentielle à la paroi de la chambre. Ces directions peuvent par conséquent être rigoureusement tangentielles ou être obliques. On préfère qu'elle soient rigoureusement tangentielles ou quasi tangentielles.
    Le soutirage de la fraction dense est normalement effectué en aval de l'introduction de la pulpe dans la chambre de centrifugation, les expressions « en amont » et « en aval » étant définies par rapport au sens de la rotation du tourbillon de pulpe dans la chambre de centrifugation.
    Dans la forme de réalisation particulière qui vient d'être décrite, la fraction légère de la pulpe peut être soutirée axialement de la chambre de centrifugation. On préfère qu'elle soit soutirée tangentiellement à la paroi périphérique précitée de ladite chambre, en aval du soutirage de la fraction dense.
    Dans la forme de réalisation particulière qui vient d'être décrite, la vitesse tangentielle d'introduction de la pulpe dans la chambre va conditionner sa vitesse de rotation dans la chambre et, par voie de conséquence, l'accélération centrifuge.
    Dans cette forme de réalisation particulière, la chambre cylindrique peut être horizontale, oblique ou verticale. On préfère que la chambre soit sensiblement verticale.
  • Dans l'exécution du procédé selon l'invention, il est nécessaire d'évacuer de la chambre, le fluide qui a servi à engendrer les pulsations centripètes dans la pulpe. Cette évacuation peut être opérée par tout moyen adéquat, généralement en aval du soutirage de la fraction légère.
  • Dans une mode de réalisation avantageux de la forme d'exécution particulière qui vient d'être décrite, le fluide servant à produire les pulsations centripètes est injecté à travers la paroi périphérique susdite de la chambre de centrifugation, sensiblement sur toute la longueur de celle-ci.
  • Dans une variante de réalisation de la forme d'exécution décrite plus haut, on opère au moins un soutirage additionnel d'une fraction additionnelle de pulpe, ce soutirage additionnel étant opéré en aval du soutirage de la fraction dense et en amont du soutirage de la fraction légère. Dans cette variante de réalisation de l'invention, la teneur en substance utile de la fraction additionnelle est intermédiaire entre les teneurs respectives en ladite substance utile dans la fraction dense, d'une part, et dans la fraction légère, d'autre part. Cette variante de réalisation de l'invention réalise ainsi une coupure de la matière particulaire en plusieurs fractions à taux d'enrichissement différents en substance utile. Dans la suite du présent mémoire, le soutirage additionnel susdit sera désigné « soutirage intermédiaire » et la fraction additionnelle correspondante sera désignée « fraction intermédiaire ».
    Dans la variante de réalisation de l'invention qui vient d'être décrite, on peut améliorer de manière substantielle le rendement de la concentration en substance utile, en recyclant la fraction intermédiaire dans la pulpe que l'on introduit dans la chambre de centrifugation.
  • Dans le procédé selon l'invention et ses formes de réalisation particulières, le fraction dense constitue la fraction utile (concentrée en substance utile) ou un sous-produit (enrichi en substances stériles de la matière particulaire), selon que la masse volumique de la substance utile est supérieure à celles des substances stériles ou inférieure à celles-ci.
  • Le procédé selon l'invention est spécialement adapté à la concentration de matières particulaires de faible granulométrie, notamment à l'état de particules de diamètre inférieur à 800 µm, généralement compris entre 1 et 500 µm, le diamètre d'une particule étant, par définition, le diamètre d'une sphère de même volume que la particule.
    Dans une forme d'exécution particulière du procédé selon l'invention, spécialement bien adaptée à de tels matières particulaires, on règle la centrifugation pour soumettre la pulpe à une accélération centrifuge supérieure à 3000 m/s2 et on règle l'injection du fluide pour que les pulsations centripètes aient une accélération sensiblement comprise entre 1 et 5 fois l'accélération centrifuge susdite.
  • L'invention concerne également un appareil pour la mise en oeuvre du procédé selon l'invention, ledit appareil comprenant une chambre de centrifugation, un dispositif pour l'admission d'une pulpe de la matière particulaire dans la chambre de centrifugation, un dispositif pour engendrer des pulsations centripètes dans la pulpe dans la chambre de centrifugation, un dispositif de soutirage d'une fraction dense de la pulpe et un dispositif de soutirage d'une fraction légère de la pulpe ; conformément à l'invention, le dispositif pour engendrer des pulsations centripètes dans la pulpe comprend un conduit qui débouche dans la chambre susdite, à travers une paroi périphérique de celle-ci, et qui est en communication avec un organe d'injection d'un fluide.
  • Dans l'appareil selon l'invention, la paroi périphérique de la chambre de centrifugation est de révolution. Elle peut avoir tout profil approprié. Elle peut par exemple être une paroi cylindrique, une paroi conique ou une paroi tronconique. Les parois cylindriques sont préférées. La paroi périphérique de révolution peut être horizontale, verticale ou oblique. On préfère que la paroi soit sensiblement verticale.
    Le dispositif pour alimenter la chambre de centrifugation avec la pulpe comprend un conduit qui débouche dans la chambre, à travers sa paroi périphérique, ce conduit étant en outre en communication avec un organe d'injection continue de la pulpe. Le conduit d'introduction de pulpe est disposé tangentiellement ou obliquement par rapport à la paroi périphérique. On préfère qu'il soit sensiblement tangentiel par rapport à cette paroi.
    Le conduit pour l'injection du fluide servant à engendrer les pulsations débouche obliquement ou tangentiellement à travers la paroi périphérique de la chambre de centrifugation. Il comprend une composante tangentielle qui a de préférence le même sens que la composante tangentielle du conduit d'introduction de la pulpe. L'organe d'injection du fluide est avantageusement conçu pour que l'injection du fluide soit continue et à débit et/ou vitesse sensiblement constant.
    Le dispositif de soutirage de la fraction dense comprend avantageusement un conduit qui traverse la paroi périphérique de la chambre de centrifugation et qui est orienté de manière à présenter une composante tangentielle de même sens que la composante tangentielle du conduit d'introduction de la pulpe.
    Le dispositif de soutirage de la fraction légère comprend de préférence un conduit qui traverse la paroi périphérique de la chambre de centrifugation, en aval du conduit de soutirage de la fraction dense et qui est orienté de manière à présenter une composante tangentielle de même sens que la composante tangentielle du conduit d'introduction de la pulpe.
  • Dans une forme de réalisation particulière de l'appareil selon l'invention, la chambre de centrifugation comprend au moins un dispositif additionnel de soutirage d'une fraction de la pulpe, ledit dispositif additionnel de soutirage comprenant un conduit qui traverse la paroi périphérique de la chambre de centrifugation, entre les conduits de soutirage de la fraction dense et de la fraction légère. Le conduit de soutirage additionnel est avantageusement similaire aux conduits de soutirage des fractions dense et légère. En variante, le conduit de soutirage additionnel peut être raccordé au dispositif d'alimentation de ladite chambre pour y recycler la fraction soutirée.
  • Dans une forme de réalisation avantageuse de l'appareil selon l'invention, le conduit pour l'injection du fluide destiné à engendrer les pulsations comprend une fente qui est ménagée à travers la paroi périphérique de la chambre de centrifugation, sur une longueur substantielle de celle-ci. On entend par l'expression « sur une longueur substantielle de la paroi de la chambre » une longueur supérieure à la moitié de la longueur totale de la chambre, généralement au moins égale à 75 % (de préférence 80 %) de la longueur totale de la chambre. Par définition, la longueur totale de la chambre est la longueur de la chambre, depuis le dispositif d'alimentation en pulpe jusqu'au dispositif de soutirage de la fraction légère.
  • L'appareil selon l'invention comprend normalement un dispositif d'évacuation du fluide ayant servi à engendrer des pulsations centripètes dans la pulpe. Ce dispositif d'évacuation comprend normalement un conduit qui débouche à travers la paroi périphérique de la chambre de centrifugation, en aval du dispositif de soutirage de la fraction légère. En variante, il peut comprendre un conduit qui traverse axialement l'extrémité d'aval de la chambre de centrifugation.
  • Le procédé et l'appareil selon l'invention trouvent diverses applications. Ils trouvent notamment une application pour la concentration de terres ou de minerais se présentant naturellement à l'état granulaire ou pulvérulent, comme par exemple des produits alluvionnaires. Le procédé et l'appareil selon l'invention sont spécialement adaptés au traitement d'enrichissement de minerais ultrafins, notamment à la récupération de résidus fins de broyage et au traitement de minerais recueillis de gisements alluvionnaires et éluvionnaires ou après broyage. Le procédé et l'appareil selon l'invention trouvent une application toute particulière pour la concentration de minerais d'or, de diamant et de tout autre minéral de valeur, de densité différenciée par rapport à l'environnement (cassitérite, wolframite, coltan, tourmaline, grenats, chrysobéryl, spinelle, zircon, rhodonite, rubis, saphir, ...). Le procédé et l'appareil selon l'invention trouvent également une application pour le traitement de terres polluées, par exemple pour le traitement de boues de draguage de cours d'eau, polluées par des métaux lourds, l'assainissement de terres polluées par des plombs de chasse, l'assainissement de terrains industriels pollués par des matières solides organiques et/ou inorganiques.
  • Brève description des figures
  • Des particularités et détails de l'invention vont apparaître au cours de la description suivante des figures annexées, qui représentent quelques formes de réalisation particulières de l'invention.
    • La figure 1 montre en perspective une première forme de réalisation particulière de l'appareil selon l'invention ;
    • La figure 2 montre schématiquement un détail de l'appareil de la figure 1, en section transversale selon le plan II-II de la figure 1 ;
    • Les figures 3, 4, 5 et 6 sont des schémas analogues à celui de la figure 2, de quatre variantes du détail de la figure 2 ;
    • La figure 7 est un schéma analogue à celui de la figure 2, d'une variante supplémentaire du détail de la figure 2 ;
    • La figure 8 montre en perspective, une autre forme de réalisation de l'appareil selon l'invention ;
    • La figure 9 montre l'appareil de la figure 8 en section axiale ;
    • La figure 10 montre en section axiale, une forme de réalisation supplémentaire de l'appareil selon l'invention ; et
    • La figure 11 montre en section axiale, une forme de réalisation modifiée de l'appareil de la figure 10.
    • Dans ces figures, des mêmes notations de référence désignent généralement des mêmes éléments.
  • Les figures ne sont pas dessinées à l'échelle. Description détaillée de modes de réalisation particuliers
  • L'appareil représenté à la figure 1 comprend une chambre de centrifugation 11, délimitée par une paroi latérale cylindrique verticale 2.
  • Deux conduits 3 débouchent dans le bas de la chambre 11, tangentiellement à la paroi cylindrique 2, aux deux extrémités d'un même diamètre. Les conduits 3 servent à l'introduction d'une pulpe de matière particulaire dans la chambre 11 pour l'y soumettre à une rotation dans le sens de la flèche X (Figure 2).
  • La chambre 11 est en communication avec un conduit vertical étroit 4, qui traverse la paroi 2 sur approximativement toute sa hauteur et dont l'orientation est approximativement tangentielle par rapport à celle-ci. Le conduit 4 est orienté pour introduire un fluide dans le sens de la flèche X dans la chambre 11. La fonction du conduit 4 sera explicitée plus loin.
  • La chambre 11 se trouve en outre en communication avec un conduit 5 près de son extrémité supérieure et avec un conduit 6 dans une zone intermédiaire. Ces deux conduits servent au soutirage de fractions de la pulpe traitée dans la chambre 11.
  • Les conduits 3, 4, 5 et 6 sont orientés de manière à déboucher dans la chambre 11, tangentiellement par rapport à sa paroi 2.
  • L'appareil de la figure 1 est destiné à la mise en oeuvre du procédé selon l'invention. A cet effet, une matière particulaire à l'état de particules ultrafines est dispersée dans de l'eau de manière à former un pulpe. On introduit la pulpe dans les conduits 3 avec une vitesse uniforme au cours du temps et contrôlée pour soumettre ladite pulpe à une circulation rotatoire dans la chambre 11. On injecte par ailleurs de l'eau sous pression dans la couche de pulpe dans la chambre 11, via le conduit 4. L'injection de l'eau est continue et à débit sensiblement constant, ce qui provoque des pulsations dans la pulpe, en regard du conduit 4. Sous l'action de ces pulsations, les particules de la matière particulaire sont soumises à des accélérations ponctuelles tangentielles et centripètes lorsqu'elles passent en regard du conduit 4, dans la chambre 11. Ces accélérations centripètes ponctuelles se superposent à l'accélération centrifuge continue et sensiblement constante. La grandeur des accélérations centripètes est déterminée par un choix approprié du débit, de la pression et de la vitesse de l'eau injectée dans le conduit 4. La figure 2 montre schématiquement l'action combinée de l'accélération centrifuge continue et des accélérations centripètes ponctuelles. Dans cette figure, les lignes 7 schématisent les lignes de courant circulaire de la pulpe soumise à la centrifugation dans la chambre 11 et les lignes 8 schématisent les lignes de courant de l'eau introduite dans la chambre 11 par le conduit 4. Sous l'effet combiné de l'accélération centrifuge continue et des accélérations centripètes ponctuelles, il s'opère une classification radiale des particules de matière solide dans la chambre 11, en fonction de leurs masses volumiques respectives : les particules les plus denses (9) migrent vers la périphérie de la chambre 11, tandis que les particules légères (10) migrent vers le centre de la chambre. Les particules denses sont soutirées avec du liquide de la pulpe via le conduit 6 et les particules légères sont soutirées avec du liquide de la pulpe, via le conduit 5. Dans le cas où la substance utile de la matière particulaire serait plus dense que les substances stériles de la matière particulaire, la fraction de pulpe soutirée de la chambre 11 par le conduit 6 est la fraction utile, enrichie en substance utile, tandis que la fraction soutirée par le conduit 5 contient une majorité de substances stériles.
  • Dans l'appareil des figures 1 et 2, le conduit 4 doit être orienté de manière que le flux d'eau qui pénètrent dans la chambre 11 possède une composante radiale.
  • Les figures 3, 4, 5 et 6 montrent diverses dispositions du conduit 4, qui réalisent cette fonction technique.
    Dans la disposition de la figure 3, le conduit 4 pénètre dans la chambre 11 tangentiellement à sa paroi périphérique 2. La chambre s'élargit en aval du conduit 4.
    Dans les dispositions des figures 4 et 5, le conduit 4 pénètre obliquement dans la chambre cylindrique 11 et le diamètre de celle-ci est uniforme.
    Dans la disposition de la figure 6, le conduit 4 pénètre obliquement dans la chambre 11 et celle-ci se rétrécit en aval du conduit 4.
  • Dans l'appareil schématisé à la figure 7, plusieurs conduits 6, 6', 6" débouchent dans la chambre 11, à travers sa paroi 2. Les conduits 6, 6', 6" sont décalés angulairement. Ils servent au soutirage de fractions de la pulpe, qui diffèrent par la masse volumique des substances solides qu'elles contiennent. Compte tenu du sens de rotation X de la pulpe dans la chambre 11, la masse volumique des fractions soutirées décroît depuis le conduit 6 (qui est le plus proche du conduit d'admission d'eau 4) jusqu'au conduit 6" (qui est le plus éloigné du conduit 4). Cette forme de réalisation de l'invention permet de scinder la matière particulaire en plusieurs fractions de concentrations différentes en substance utile. Les fractions peuvent être recueillies séparément. En variante, la fraction la plus légère 6" (ou chaque fraction 6' et 6") peut être recyclée telle quelle dans les conduits d'admission 3.
    Dans l'appareil représenté aux figures 8 et 9, la chambre cylindrique 11 contient un cylindre 12 à paroi ajourée (figure 9), dont l'axe coïncide avec celui de la chambre 11. Le cylindre 12 est monté sur des paliers 13, de manière à pouvoir tourner librement dans la chambre 11, pour réduire les pertes de charge dans la pulpe en rotation. En variante le cylindre 12 peut être entraîné par un moteur électrique (non représenté). Le cylindre 12 est prolongé par un goulot 14 qui débouche à l'extérieur, après avoir traversé un goulot correspondant 19 de la chambre 11.
    Pendant l'exploitation de l'appareil des figures 8 et 9, on introduit la pulpe 15 dans la chambre 11 via le conduit 3, de manière qu'elle subisse une centrifugation dans ladite chambre 11. La pulpe se répartit en une couche 21 contre la paroi 2 de la chambre 11. Par le conduit 4 (figure 8), on injecte de l'eau 16 (figure 9) de manière continue dans la couche de pulpe. L'eau qui a traversé la couche de pulpe traverse la paroi ajourée du cylindre 12 et est évacuée de l'appareil par le goulot 14. La fraction légère 17 de pulpe est recueillie via l'ouverture annulaire 5 située en aval de l'appareil, la fraction dense est recueillie via l'ouverture 6 et des fractions de masses volumiques intermédiaires sont soutirées par des ouvertures 6', 6" et 6"' situées entre l'ouverture 6 et l'ouverture 5.
  • L'appareil schématisé à la figure 10 diffère de l'appareil des figures 8 et 9 par la présence de deux seuils annulaires 18 et 22 sur la paroi 2, dans la chambre 11. Les deux seuils 18 et 22 sont disposés entre le conduit 3 (non visible) d'admission de la pulpe 15 et le conduit 5 (non visible) d'évacuation de la fraction légère 17. Ils forment entre eux une cavité annulaire 23, dans laquelle débouche le conduit 4 (non représenté, servant à l'injection de l'eau 16 destinée aux pulsations) et le conduit 6 (non représenté, servant à l'évacuation de la fraction dense 20).
    Pendant le fonctionnent de l'appareil de la figure 10, la fraction dense 20 de la pulpe est soutirée de la cavité annulaire 23 et la fraction légère 17 déborde le seuil 18. Toutes autres choses égales par ailleurs, l'appareil de la figure 10 réalise une coupure plus précise entre les particules légères et les particules denses de la pulpe.
  • Dans l'appareil de la figure 11, la chambre 11 comprend un hydrocyclone 24 en amont du seuil 22. Le conduit 3 d'admission de la pulpe 15 débouche dans l'hydrocyclone 24. Pendant le fonctionnement de l'appareil, la pulpe traverse l'hydrocyclone 24 et migre vers la cavité annulaire 23. Le cyclone 24 sert à séparer les particules trop fines de la matière particulaire, qui sont évacuées par la cheminée axiale 25.

Claims (19)

  1. Procédé pour la concentration d'une matière particulaire, comprenant au moins deux constituants de masses volumiques différentes, dans lequel on soumet une pulpe de ladite matière particulaire à une centrifugation et à des pulsations centripètes dans une chambre de centrifugation (11) et on soutire de la chambre de centrifugation, une fraction dense (20) de la pulpe et une fraction légère (17) de la pulpe, caractérisé en ce que, pour réaliser les pulsations centripètes, on injecte un fluide (16) dans la pulpe, dans une direction qui présente une composante tangentielle à la centrifugation.
  2. Procédé selon la revendication 1, caractérisé en ce que le fluide (16) est injecté de manière sensiblement continue dans la pulpe.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on introduit la pulpe (15) dans la chambre (11), tangentiellement à une paroi périphérique (2) de ladite chambre et on soutire la fraction dense tangentiellement à ladite paroi.
  4. Procédé selon la revendication 3, caractérisé en ce qu'on opère au moins un soutirage additionnel d'une fraction additionnelle de pulpe, en aval du soutirage de la fraction dense (20) et en amont du soutirage de la fraction légère (17).
  5. Procédé selon la revendication 3 ou 5, caractérisé en ce qu'on injecte le fluide (16) à travers la paroi périphérique susdite (2), sensiblement sur toute la longueur de la chambre (11).
  6. Procédé selon l'une quelconque des revendications 2 à 5, caractérisé en ce que la direction précitée d'injection du fluide (16) dans la pulpe présente une composante radiale.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le fluide (16) est le liquide de la pulpe (15).
  8. Procédé selon la revendication 7, caractérisé en ce que le fluide (16) comprend de l'eau.
  9. Procédé selon l'une quelconque des revendications 2 à 8, caractérisé en ce qu'on règle la centrifugation pour soumettre la pulpe à une accélération centrifuge supérieure à 3000 m/s2 et on règle le débit de l'injection continue du fluide (16) pour que les pulsations centripètes aient une accélération sensiblement comprise entre 1 et 5 fois l'accélération centrifuge susdite.
  10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la matière particulaire est à l'état de particules dont le diamètre est sensiblement compris entre 1 et 500 µm.
  11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la matière particulaire comprend un minerai.
  12. Appareil pour la concentration d'une matière particulaire, comprenant au moins deux constituants de masses volumiques différentes, ledit appareil comprenant une chambre de centrifugation, un dispositif pour l'admission d'une pulpe de ladite matière particulaire dans la chambre de centrifugation, un dispositif pour engendrer des pulsations centripètes dans la pulpe dans la chambre de centrifugation, un dispositif de soutirage d'une fraction dense de la pulpe et un dispositif de soutirage d'une fraction légère de la pulpe, caractérisé en ce le dispositif pour engendrer des pulsations centripètes dans la pulpe comprend un conduit (4) qui débouche dans la chambre de centrifugation (11), à travers une paroi périphérique (2) de celle-ci, et qui est en communication avec un organe d'injection d'un fluide.
  13. Appareil selon la revendication 12, caractérisé en ce que l'organe d'injection du fluide est conçu pour que l'injection du fluide soit continue et à débit et/ou vitesse sensiblement constant.
  14. Appareil selon la revendication 12 ou 13, caractérisé en ce que le conduit (4) précité débouche dans la chambre (11), tangentiellement ou obliquement par rapport à la paroi périphérique (2).
  15. Appareil selon l'une quelconque des revendications 12 à 14, caractérisé en ce que le dispositif d'admission de la pulpe comprend un conduit (3) qui débouche dans la chambre susdite (11), tangentiellement à la paroi périphérique (2) et qui est en communication avec un organe d'injection continue de la pulpe.
  16. Appareil selon la revendication 15, caractérisé en ce que le conduit (4) qui est en communication avec un organe d'injection,d'un fluide s'étend sur sensiblement toute la longueur de la paroi périphérique (2) de la chambre (11), en aval du conduit (3) d'admission de la pulpe.
  17. Appareil selon l'une quelconque des revendications 12 à 16, caractérisé en ce que la paroi périphérique (2) de la chambre de centrifugation (11) est cylindrique.
  18. Appareil selon l'une quelconque des revendications 12 à 17, caractérisé en ce que la paroi périphérique (2) de la chambre (11) comprend deux seuils annulaires (18, 22) entre le conduit d'admission (3) de la pulpe (15) et le conduit de soutirage (5) de la fraction légère (17), les deux seuils définissant entre eux une cavité annulaire (23) dans laquelle débouchent respectivement le conduit (4) d'admission du fluide (16) et le conduit de soutirage (6) de la fraction dense (20).
  19. Appareil selon l'une quelconque des revendications 12 à 18, caractérisé en ce que la chambre de centrifugation (11) comprend un hydrocyclone dans lequel débouche le conduit d'admission (3) de la pulpe (15).
EP05020997A 2005-09-27 2005-09-27 Procédé et appareil pour la concentration de matières à l'état de particules solides Withdrawn EP1767273A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP05020997A EP1767273A1 (fr) 2005-09-27 2005-09-27 Procédé et appareil pour la concentration de matières à l'état de particules solides
CN200680035899.4A CN101326010B (zh) 2005-09-27 2006-09-27 汰选固体颗粒态物质的方法及设备
US12/088,417 US8317033B2 (en) 2005-09-27 2006-09-27 Method and device for concentrating substances in solid particle state
CA002623875A CA2623875A1 (fr) 2005-09-27 2006-09-27 Procede et appareil pour la concentration de matieres a l'etat de particules solides
ZA200803661A ZA200803661B (en) 2005-09-27 2006-09-27 Method and device for concentrating substances in solid particle state
EP06804565A EP1931476B1 (fr) 2005-09-27 2006-09-27 Procédé et appareil pour la concentration de matières à l'état de particules solides
AU2006297017A AU2006297017B2 (en) 2005-09-27 2006-09-27 Method and device for concentrating substances in solid particle state
PCT/BE2006/000106 WO2007036006A1 (fr) 2005-09-27 2006-09-27 Procédé et appareil pour la concentration de matières à l'état de particules solides
AT06804565T ATE537904T1 (de) 2005-09-27 2006-09-27 Verfahren und vorrichtung zur konzentration von stoffen in einem feststoffpartikelzustand
EA200800934A EA014356B1 (ru) 2005-09-27 2006-09-27 Способ и устройство для обогащения материалов, находящихся в виде твердых частиц

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05020997A EP1767273A1 (fr) 2005-09-27 2005-09-27 Procédé et appareil pour la concentration de matières à l'état de particules solides

Publications (1)

Publication Number Publication Date
EP1767273A1 true EP1767273A1 (fr) 2007-03-28

Family

ID=36463333

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05020997A Withdrawn EP1767273A1 (fr) 2005-09-27 2005-09-27 Procédé et appareil pour la concentration de matières à l'état de particules solides
EP06804565A Not-in-force EP1931476B1 (fr) 2005-09-27 2006-09-27 Procédé et appareil pour la concentration de matières à l'état de particules solides

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06804565A Not-in-force EP1931476B1 (fr) 2005-09-27 2006-09-27 Procédé et appareil pour la concentration de matières à l'état de particules solides

Country Status (9)

Country Link
US (1) US8317033B2 (fr)
EP (2) EP1767273A1 (fr)
CN (1) CN101326010B (fr)
AT (1) ATE537904T1 (fr)
AU (1) AU2006297017B2 (fr)
CA (1) CA2623875A1 (fr)
EA (1) EA014356B1 (fr)
WO (1) WO2007036006A1 (fr)
ZA (1) ZA200803661B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11737912B2 (en) 2018-01-08 2023-08-29 Vivonics, Inc. System and method for cooling the brain of a human subject

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342150B1 (ko) 2012-01-05 2013-12-13 국립대학법인 울산과학기술대학교 산학협력단 공기 중의 입자 분리기
US9826913B2 (en) * 2013-07-11 2017-11-28 Vivonics, Inc. Non-invasive intracranial pressure monitoring system and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071440A (en) * 1975-07-28 1978-01-31 Centralny Osrodek Projektowokonstrukcyjny Maszyn Gorniczych "Komag" Method and apparatus of stratification with tangential feed
US4279741A (en) * 1979-05-07 1981-07-21 Intercontinental Development Corporation Method and apparatus for centrifugally separating a heavy fraction from a light weight fraction within a pulp material
US4574046A (en) * 1984-09-21 1986-03-04 Sprow Earnest A Centrifugal jig for ore beneficiation

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557956A (en) * 1970-01-28 1971-01-26 Bergstrom Paper Co Method for de-inking and removal of certain contaminants from reclaimed paper stock
GB1516135A (en) * 1975-05-23 1978-06-28 Cross D Mineral jigs
SE410276B (sv) * 1976-10-20 1979-10-08 Sala International Ab Dynamisk suspensionsanrikningsseparator
US4341352A (en) * 1979-08-06 1982-07-27 Liller Delbert I Method of coal washing at low speed pumping
US4399027A (en) * 1979-11-15 1983-08-16 University Of Utah Research Foundation Flotation apparatus and method for achieving flotation in a centrifugal field
AR240262A1 (es) * 1985-01-25 1990-03-30 Lowan Management Pty Criba hidraulica centrifuga.
CN87104484A (zh) * 1987-05-18 1988-11-30 扎布热采煤联合公司扎布热-别尔舒维采硬煤煤矿 处理原矿石特别是硬煤的跳汰机
IN174814B (fr) 1988-07-01 1995-03-18 Lowan Man Pty Ltd
US4997549A (en) * 1989-09-19 1991-03-05 Advanced Processing Technologies, Inc. Air-sparged hydrocyclone separator
US4998986A (en) * 1990-01-25 1991-03-12 Trans Mar, Inc. Centrifugal jig pulsing system
US5192423A (en) * 1992-01-06 1993-03-09 Hydro Processing & Mining Ltd. Apparatus and method for separation of wet particles
US5436384A (en) * 1993-10-18 1995-07-25 Westinghouse Elec. Corp. Process for the remediation of contaminated particulate material
US5616245A (en) * 1994-06-07 1997-04-01 Hjs Clem Ag High gravity separator
CA2142747C (fr) * 1995-02-17 2000-05-16 Michael H. Kuryluk Separateur de minerais
US5938043A (en) * 1997-05-23 1999-08-17 Fine Gold Recovery Systems, Inc. Centrifugal jig
AUPO869197A0 (en) * 1997-08-20 1997-09-11 Lowan (Management) Pty Limited Hutch chamber for jig
AUPP554698A0 (en) * 1998-08-28 1998-09-17 University Of Queensland, The Cyclone separation apparatus
US6244446B1 (en) * 1999-10-08 2001-06-12 Richard L. Schmittel Method and apparatus for continuously separating a more dense fraction from a less dense fraction of a pulp material
WO2003089158A1 (fr) * 2002-04-17 2003-10-30 Cytonome, Inc. Procede et appareil de tri de particules
UA77830C2 (en) * 2002-08-19 2007-01-15 Dynamic separator
TWI376354B (en) * 2003-12-03 2012-11-11 Miike Tekkosho Kk An apparatus for smashing organic substance particles
US7479231B2 (en) * 2005-05-04 2009-01-20 Bernard Robert H Method and apparatus for separating fluids having different densities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071440A (en) * 1975-07-28 1978-01-31 Centralny Osrodek Projektowokonstrukcyjny Maszyn Gorniczych "Komag" Method and apparatus of stratification with tangential feed
US4279741A (en) * 1979-05-07 1981-07-21 Intercontinental Development Corporation Method and apparatus for centrifugally separating a heavy fraction from a light weight fraction within a pulp material
US4574046A (en) * 1984-09-21 1986-03-04 Sprow Earnest A Centrifugal jig for ore beneficiation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11737912B2 (en) 2018-01-08 2023-08-29 Vivonics, Inc. System and method for cooling the brain of a human subject

Also Published As

Publication number Publication date
WO2007036006A1 (fr) 2007-04-05
EA200800934A1 (ru) 2008-12-30
EP1931476B1 (fr) 2011-12-21
ZA200803661B (en) 2009-10-28
AU2006297017B2 (en) 2011-09-08
US20090014365A1 (en) 2009-01-15
CA2623875A1 (fr) 2007-04-05
EP1931476A1 (fr) 2008-06-18
AU2006297017A1 (en) 2007-04-05
CN101326010B (zh) 2013-05-29
US8317033B2 (en) 2012-11-27
EA014356B1 (ru) 2010-10-29
ATE537904T1 (de) 2012-01-15
CN101326010A (zh) 2008-12-17

Similar Documents

Publication Publication Date Title
CA2044902C (fr) Procede et dispositif de separation entre une phase fluide continue et une phase dispersee, et application
US5771601A (en) Process for the dewatering of coal and mineral slurries
JPS63252559A (ja) 遠心選別機
EP1931476B1 (fr) Procédé et appareil pour la concentration de matières à l'état de particules solides
FR2478489A1 (fr) Procede et dispositif pour la separation de particules dans un fluide, notamment pour l'epuration de suspensions papetieres
US20190060914A1 (en) Method and apparatus for centrifugal concentration using vibratory surfaces and rotor bowl for use therein
EP2866944B1 (fr) Separateur centrifuge a flux laminaire
FR2532198A1 (fr) Centrifugeuse a recuperation d'energie
US5956858A (en) Apparatus for the dewatering of coal and mineral slurries
RU2648759C1 (ru) Способ центробежного разделения смесей и устройство для его осуществления
FR2614221A1 (fr) Classificateur a force centrifuge pour la separation d'un materiau finement disperse.
FR2635475A1 (en) Method and apparatus for sorting particulate materials by friction
RU2676111C1 (ru) Способ центробежного разделения смесей
RU2196004C2 (ru) Центробежный концентратор
FR2602438A1 (fr) Classificateur a air de materiaux pulverulents
RU2066565C1 (ru) Сепаратор центробежно-вибрационный
JPS6059018B2 (ja) 遠心機及びそれを作動させる方法
Song et al. Effect of viscosity on surface acoustic wave driven collective particle dynamics in sessile droplets: nebula, black holes and white dwarfs
EP3928871A1 (fr) Buse de centrifugeuse décanteuse
CN202667010U (zh) 一种动态水力旋流器
RU2758129C1 (ru) Способ разделения сыпучего материала по плотности
FR3058074A1 (fr) Dispositif de separation de particules solides en suspension dans un liquide et/ou de liquides de densites differentes, comprenant chacun au moins un moyen de creation et de maintien de vortex
RU2201805C2 (ru) Устройство для обогащения шламов
AU727307B2 (en) A process and apparatus for dewatering of coal and mineral slurries
BE699730A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid
RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20071128

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENIMIN

R17P Request for examination filed (corrected)

Effective date: 20071128

17Q First examination report despatched

Effective date: 20080711

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081122