EP1764358A2 - Composés dérivés d`amides cycliques comme ligands des récepteurs vanilloides et leur utilisation pour le traitement de douleurs inflammatoire et neuropathique - Google Patents

Composés dérivés d`amides cycliques comme ligands des récepteurs vanilloides et leur utilisation pour le traitement de douleurs inflammatoire et neuropathique Download PDF

Info

Publication number
EP1764358A2
EP1764358A2 EP06010087A EP06010087A EP1764358A2 EP 1764358 A2 EP1764358 A2 EP 1764358A2 EP 06010087 A EP06010087 A EP 06010087A EP 06010087 A EP06010087 A EP 06010087A EP 1764358 A2 EP1764358 A2 EP 1764358A2
Authority
EP
European Patent Office
Prior art keywords
alkyl
alkylor
alkylnr
haloalkyl
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06010087A
Other languages
German (de)
English (en)
Other versions
EP1764358A3 (fr
Inventor
Yunxin Y. Bo
Partha P. Chakrabarti
Ning Chen
Elisabeth M. Doherty
Cristopher H. Fotsch
Ninanhe Han
Michael G. Kelly
Qingyian Liu
Mark Henry Norman
Vassil I. Ognyanov
Xianghong Wang
Jiawang Zhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amgen Inc
Original Assignee
Amgen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amgen Inc filed Critical Amgen Inc
Priority claimed from EP02799927A external-priority patent/EP1463714A4/fr
Publication of EP1764358A2 publication Critical patent/EP1764358A2/fr
Publication of EP1764358A3 publication Critical patent/EP1764358A3/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/04Antipruritics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/12Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/42Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/26Radicals substituted by halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • C07D213/6432-Phenoxypyridines; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/75Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/22Oxygen atoms attached in position 2 or 4
    • C07D215/227Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/02Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
    • C07D217/04Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines with hydrocarbon or substituted hydrocarbon radicals attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/38Nitrogen atoms
    • C07D231/40Acylated on said nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/54Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings condensed with carbocyclic rings or ring systems
    • C07D231/56Benzopyrazoles; Hydrogenated benzopyrazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/28Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/30Oxygen or sulfur atoms
    • C07D233/32One oxygen atom
    • C07D233/38One oxygen atom with acyl radicals or hetero atoms directly attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/02Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
    • C07D237/06Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D237/10Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D237/20Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/86Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
    • C07D239/88Oxygen atoms
    • C07D239/90Oxygen atoms with acyclic radicals attached in position 2 or 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • C07D241/40Benzopyrazines
    • C07D241/42Benzopyrazines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • C07D265/361,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/68Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D277/82Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/141,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems
    • C07D319/161,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D319/201,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems condensed with one six-membered ring with substituents attached to the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • VR1 vanilloid receptor 1
  • the vanilloid receptor 1 is the molecular target of capsaicin, the active ingredient in hot peppers. Julius et al. reported the molecular cloning of VR1 (Caterina et al., 1997).
  • VR1 is a non-selective cation channel which is activated or sensitized by a series of different stimuli including capsaicin and resiniferatoxin (exogenous activators), heat & acid stimulation and products of lipid bilayer metabolism, anandamide (Premkumar et al., 2000, Szabo et al., 2000, Gauldie et al., 2001, Olah et al., 2001) and lipoxygenase metabolites (Hwang et al., 2000).
  • VR1 is highly expressed in primary sensory neurons (Caterina et al., 1997) in rats, mice and humans (Onozawa et al., 2000, Mezey et al., 2000, Helliwell et al., 1998, Cortright et al., 2001). These sensory neurons innervate many visceral organs including the dermis, bones, bladder, gastrointestinal tract and lungs; VR1 is also expressed in other neuronal and non-neuronal tissues including but not limited to, CNS nuclei, kidney, stomach and T-cells (Nozawa et al., 2001, Yiangou et al., 2001, Birder et al., 2001). Presumably expression in these various cells and organs may contribute to their basic properties such as cellular signaling and cell division.
  • capsaicin Prior to the molecular cloning of VR1, experimentation with capsaicin indicated the presence of a capsaicin sensitive receptor, which could increase the activity of sensory neurons in humans, rats and mice (Holzer, 1991; Dray, 1992, Szallasi and Blumberg 1996, 1999). The results of acute activation by capsaicin in humans was pain at injection site and in other species increased behavioral sensitivity to sensory stimuli (Szallasi and Blumberg, 1999). Capsaicin application to the skin in humans causes a painful reaction characterized not only by the perception of heat and pain at the site of administration but also by a wider area of hyperalgesia and allodynia, two characteristic symptoms of the human condition of neuropathic pain (Holzer, 1991).
  • VR1 gene knockout mice have been shown to have reduced sensory sensitivity to thermal and acid stimuli (Caterina et al., 2000)). This supports the concept that VR1 contributes not only to generation of pain responses (i.e. via thermal, acid or capsaicin stimuli) but also to the maintenance of basal activity of sensory nerves. This evidence agrees with studies demonstrating capsaicin sensitive nerve involvement in disease. Primary sensory nerves in humans and other species can be made inactive by continued capsaicin stimulation. This paradigm causes receptor activation induced desensitization of the primary sensory nerve - such reduction in sensory nerve activity in vivo makes subjects less sensitive to subsequent painful stimuli.
  • capsaicin and resinferatoxin exogenous activators of VR1
  • capsaicin and resinferatoxin produce desensitization and they have been used for many proof of concept studies in in vivo models of disease (Holzer, 1991, Dray 1992, Szallasi and Blumberg 1999).
  • VR1 agonists or antagonists have use as analgesics for the treatment of pain of various genesis or aetiology, for example acute, inflammatory and neuropathic pain, dental pain and headache, particularly vascular headache such as migraine, cluster headache and mixed vascular syndromes as well as non-vascular, tension headache. They are also useful as anti-inflammatory agents for the treatment of inflammatory diseases or conditions, for example the treatment of arthritis and rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders (e.g. uvetis), inflammatory or unstable bladder disorders (e.g. cystitis and urinary incontinence), psoriasis and skin complaints with inflammatory components, as well as other chronic inflammatory conditions.
  • inflammatory diseases or conditions for example the treatment of arthritis and rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders (e.g. uvetis), inflammatory or unstable bladder disorders (e.g. cystitis and urinary incontinence), psoria
  • neuropathic pain and associated hyperalgesia and allodynia e.g. trigeminal or herpetic neuralgia, diabetic neuropathy pain, causalgia, sympathetically maintained pain and deafferentation syndromes such as brachial plexus avulsion.
  • neuropathic pain and associated hyperalgesia and allodynia e.g. trigeminal or herpetic neuralgia, diabetic neuropathy pain, causalgia, sympathetically maintained pain and deafferentation syndromes such as brachial plexus avulsion.
  • prophylactic or curative treatment of asthma of epithelial tissue damage or dysfunction, e.g. spontaneous lesions, of herpes simplex, and in the control of disturbances of visceral motility at respiratory, genitourinary, gastrointestinal or vascular e.g.
  • gastrointestinal disorders such as gastric ulceration, duodenal ulcers, inflammatory bowel disease and diarrhea, gastric lesions induced by necrotising agents, for example ethanol or chemotherapeutic agents, hair growth, for the treatment of vasomotor or allergic rhinitis and for the treatment of bronchial disorders or bladder disorders, such as bladder hyper-reflexia.
  • the present invention comprises a new class of compounds useful in the treatment of diseases, such as vanilloid-receptor-mediated diseases and other maladies, such as inflammatory or neuropathic pain and diseases involving sensory nerve function such as asthma, rheumatoid arthritis, osteoarthritis, inflammatory bowel disorders, urinary incontinence, migraine and psoriasis.
  • diseases such as vanilloid-receptor-mediated diseases and other maladies, such as inflammatory or neuropathic pain and diseases involving sensory nerve function such as asthma, rheumatoid arthritis, osteoarthritis, inflammatory bowel disorders, urinary incontinence, migraine and psoriasis.
  • the compounds of the invention are useful for the treatment of acute, inflammatory and neuropathic pain, dental pain, general headache, migraine, cluster headache, mixed-vascular and non-vascular syndromes, tension headache, general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, inflammatory pain and associated hyperalgesia and allodynia, neuropathic pain and associated hyperalgesia and allodynia, diabetic neuropathy pain, causalgia, sympathetically maintained pain, deafferentation syndromes, asthma, epithelial tissue damage or dysfunction, herpes simplex, disturbances of visceral motility at respiratory, genitourinary, gastrointestinal or vascular regions, wounds, bums, allergic skin reactions, pruritis, vitiligo, general gastrointestinal disorders, gastric ulceration, duodenal ulcers, diarrhea, gastric lesions induced by necr
  • the invention also comprises pharmaceutical compositions comprising the compounds, methods for the treatment of vanilloid-receptor-mediated diseases, such as inflammatory or neuropathic pain, asthma, rheumatoid arthritis, osteoarthritis, inflammatory bowel disorders, urinary incontinence, migraine and psoriasis diseases, using the compounds and compositions of the invention, and intermediates and processes useful for the preparation of the compounds of the invention.
  • vanilloid-receptor-mediated diseases such as inflammatory or neuropathic pain, asthma, rheumatoid arthritis, osteoarthritis, inflammatory bowel disorders, urinary incontinence, migraine and psoriasis diseases.
  • the compounds of the invention are represented by the following general structure or a pharmaceutically acceptable salt thereof, wherein A, R 1 , R 2 , R 3 , R 4 , X and Y are defined below.
  • One aspect of the current invention relates to compounds having the general structure: wherein:
  • R 1 is or a naphthyl or saturated or unsaturated 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms independently selected from N, O and S, wherein no more than 2 of the ring members are O or S, wherein the heterocycle is optionally fused with a phenyl ring, and the naphthyl, heterocycle or fused phenyl ring is substituted by 0, 1, 2 or 3 substituents independently selected from R 5 , R 6 and R 7 ;
  • R 1 is
  • R 7 is independently, at each instance, C 2-9 alkyl or C 1-4 haloalkyl.
  • R 1 is a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms independently selected from N, O and S, wherein no more than 2 of the ring members are O or S, wherein the heterocycle is optionally fused with a phenyl ring, and the heterocycle or fused phenyl ring is substituted by 0, 1, 2 or 3 substituents independently selected from R 5 , R 6 and R 7 .
  • R 2 is a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms independently selected from N, O and S, wherein no more than 2 of the ring members are O or S, wherein the heterocycle is optionally fused with a phenyl ring, and the heterocycle or fused phenyl ring is substituted by 0, 1, 2 or 3 substituents independently selected from R 5 , R 6 and R 7 .
  • R 2 is or a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms independently selected from N, O and S, wherein no more than 2 of the ring members are O or S, wherein the heterocycle is optionally fused with a phenyl ring, and the heterocycle or fused phenyl ring is substituted by 0, 1, 2 or 3 substituents independently selected from R 5 , R 6 and R 7 .
  • R 2 is
  • R 2 is a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms independently selected from N, O and S, wherein no more than 2 of the ring members are O or S, wherein the heterocycle is optionally fused with a phenyl ring, and the heterocycle or fused phenyl ring is substituted by 0, 1, 2 or 3 substituents independently selected from R 5 , R 6 and R 7 .
  • R 4 is
  • R 4 is
  • R 4 is
  • R 4 is
  • R 4 is
  • R 4 is
  • R 4 is a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms independently selected from N, O and S, wherein no more than 2 of the ring members are O or S, wherein the heterocycle is optionally fused with a phenyl ring, and the heterocycle or fused phenyl ring is substituted by 0, 1, 2 or 3 substituents selected from halo, C 1-4 haloalkyl, -OR a and -NR a R a .
  • Another aspect of the invention relates to a compound having the structure: or any pharmaceutically-acceptable salt thereof, wherein:
  • R 16 is halo, -NH 2 , -NHC 1-3 alkyl, -N(C 1-3 alkyl)C 1-3 alkyl or C 1-3 alkyl.
  • R 1 is
  • R 7 is C 1-5 alkyl, halo or C 1-4 haloalkyl.
  • R 1 is naphthyl substituted by 0, 1, 2 or 3 substituents independently selected from R 5 .
  • R 1 is R e substituted by 0, 1, 2 or 3 substituents independently selected from R 5 .
  • R 1 is R e substituted by 1, 2 or 3 substituents independently selected from R 5 .
  • R 4 is
  • Another aspect of the invention relates to a compound having the structure: or any pharmaceutically-acceptable salt thereof, wherein:
  • Y is NH
  • Y is O.
  • Y is S.
  • R 1 is
  • R 7 is C 1-5 alkyl, halo or C 1-4 haloalkyl.
  • R 1 is a naphthyl substituted by 0, 1, 2 or 3 substituents independently selected from R 5 .
  • R 1 is R e substituted by 1, 2 or 3 substituents independently selected from R 5 ;
  • R 15 is -(CH 2 ) n phenyl substituted by 0, 1, 2 or 3 substituents independently selected from R 10 .
  • R 15 is a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms independently selected from N, O and S, wherein no more than 2 of the ring members are O or S, wherein the heterocycle is optionally fused with a phenyl ring, and the heterocycle or fused phenyl ring is substituted by 0, 1, 2 or 3 substituents independently selected from R 10 .
  • R 15 is C 1-8 alkyl substituted by 0, 1 or 2 substituents selected from R 10 .
  • R 16 is, independently, in each instance, halo, -NH 2 , -NHC 1-3 alkyl, -N(C 1-3 alkyl)C 1-3 alkyl or C 1-3 alkyl.
  • R 9 is H.
  • R 9 is a -(CR q R q ) o phenyl wherein the phenyl is substituted with 0, 1, 2, or 3 substituents independently selected from R 10 .
  • R 9 is -(CR q R q ) o Het wherein Het is a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1, 2 or 3 atoms selected from O, N and S substituted with 0, 1, 2, or 3 substituents independently selected from R 10 ; or R 9 is a saturated or unsaturated 4- or 5-membered ring heterocycle containing a single nitrogen atom, wherein the ring is substituted with 0, 1 or 2 substituents independently selected from halo, C 1-2 haloalkyl and C 1-3 alkyl.
  • Another aspect of the invention relates to a compound having the structure: or any pharmaceutically-acceptable salt thereof, wherein:
  • R 1 is
  • R 7 is C 2-6 alkyl or C 1-4 haloalkyl.
  • R 1 is a naphthyl substituted by 0, 1, 2 or 3 substituents independently selected from R 5 .
  • R 1 is R i substituted by 1, 2 or 3 substituents independently selected from R 5 .
  • R i is substituted by one substituent selected from halo, C 1-4 haloalkyl and C 1-5 alkyl, and additionally by 0, 1 or 2 substituents independently selected from R 5 .
  • R 15 is H.
  • R 16 is H
  • R 16 is halo, -NHC 1-3 alkyl, -N(C 1-3 alkyl)C 1-3 alkyl, -OC 1-3 alkyl, -C 1-2 haloalkyl, -OC 1-2 haloalkyl or C 1-3 alkyl.
  • R 4 is wherein at least one of R 10 , R 11 , R 12 , R 13 and R 14 is other than C 1-4 haloalkyl or halo.
  • At least one of R 10 , R 11 , R 12 , R 13 and R 14 is -OR h or -NR h R h .
  • R 6 and R 8 are each independently selected from H, C 1-5 alkyl, C 1-4 haloalkyl, halo, -OC 1-6 alkyl, -OC 1-4 haloalkyl, -OC 2-6 alkylNR h R h , -OC 2-6 alkylOR h , -NR h R h , -NR h C 1-4 haloalkyl, -NR h C 2-6 alkylNR h R h or -NR h C 2-6 alkylOR h , -C 1-8 alkylOR h , -C 1-6 alkylNR h R h and -S(C 1-6 alkyl).
  • R 7 is independently, at each instance, C 1-8 alkyl, C 1-4 haloalkyl, -OC 1-4 haloalkyl, -OC 2-6 alkylNR h R h , -OC 2-6 alkylOR h , -NR h R h , -NR h C 1-4 haloalkyl, -NR h C 2-6 alkylNR h R h , -NR h C 2-6 alkylOR h , -C 1-8 alkylOR h , -C 1-6 alkylNR h R h or -S(C 1-6 alkyl).
  • Y is O.
  • Y is S.
  • Another aspect of the invention relates to a compound having the structure: wherein:
  • R 7 is C 1-9 alkyl, C 1-4 haloalkyl, halo, -OC 1-6 alkyl, -O-C 1-4 haloalkyl, -NR m R m or -NR m -C 1-4 haloalkyl.
  • R 7 is C 1-5 alkyl, C 1-4 haloalkyl, I, Br or Cl.
  • R 7 is tert-butyl or trifluoromethyl.
  • is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2 or 3 atoms selected from N, O and S, so long as the combination of O and S atoms is not greater than 1, wherein the carbon atoms of the ring are substituted by 0, 1 or 2 oxo groups, wherein the ring is substituted by 0, 1, 2 or 3 substituents independently selected from R p .
  • is a saturated, partially-saturated or unsaturated 6-membered ring containing 0, 1, 2 or 3 N atoms, wherein the carbon atoms of the ring are substituted by 0, 1 or 2 oxo groups, wherein the ring is substituted by 0, 1, 2 or 3 substituents independently selected from R p .
  • Y is O.
  • Y is NH
  • R 1 is
  • R 7 is C 1-9 alkyl, C 1-4 haloalkyl, halo, -OC 1-6 alkyl, -O-C 1-4 haloalkyl, -NR m R m or -NR m -C 1-4 haloalkyl.
  • R 7 is C 1-5 alkyl, C 1-4 haloalkyl, I, Br or Cl.
  • R 7 is tert-butyl or trifluoromethyl.
  • is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2 or 3 atoms selected from N, O and S, so long as the combination of O and S atoms is not greater than 1, wherein the carbon atoms of the ring are substituted by 0, 1 or 2 oxo groups, wherein the ring is substituted by 0, 1, 2 or 3 substituents independently selected from R p .
  • is a saturated, partially-saturated or unsaturated 6-membered ring containing 0, 1, 2 or 3 N atoms, wherein the carbon atoms of the ring are substituted by 0, 1 or 2 oxo groups, wherein the ring is substituted by 0, 1,2 or 3 substituents independently selected from R p .
  • Y is O.
  • Y is NH
  • R 1 is
  • R 4 is a heterocycle selected from 6-indole, 7-indole, 6-3H-indole, 7-3H-indole, 6-benzo[b]furan, 7-benzo[b]furan, 6-benzothiophene, 7-benzothiophene, 6-1H-indazole, 7-1H-indazole, benzimidazole, benzthiazole, 1H-benzotriazole, 7-quinoline, 8-quinoline, 7-1,2,3,4-tetrahydroquinoline, 8-1,2,3,4-tetrahydroquinoline, isoquinolin-7-yl, isoquinolin-8-yl, 7-cinnoline, 8-cinnoline, phthalazine, 7-quinazoline, 8-quinazoline and quinoxaline, wherein the heterocycle is substituted by 0, 1, 2 or 3 substituents independently selected from C 1
  • R 9 is C 1-9 alkyl, C 1-4 haloalkyl, halo, nitro, cyano, -OC 1-6 alkyl, -O-C 1-4 haloalkyl, -O-C 1-6 alkylNR m R m , -O-C 1-6 alkylOR m , -NR m R m , -NR m -C 1-4 haloalkyl, -NR m -C 1-6 alkylNR m R m or -NR m -C 1-6 alkylOR m ,
  • R 9 is H.
  • Z is CR 8 .
  • Z is N.
  • R 7 is tert-butyl or trifluoromethyl.
  • R 1 is
  • R 7 is tert-butyl or trifluoromethyl.
  • R 9 is H.
  • Z is CR 8 .
  • Z is N.
  • R 1 is
  • Z is CR 8 .
  • Z is N.
  • Another aspect of the invention relates to a compound having the structure: wherein:
  • R 1 is
  • R 7 is C 1-9 alkyl, C 1-4 haloalkyl, halo, -OC 1-6 alkyl, -O-C 1-4 haloalkyl, -NR m R m or -NR m -C 1-4 haloalkyl.
  • R 7 is C 1-5 alkyl, C 1-4 haloalkyl, I, Br or Cl.
  • R 7 is tert-butyl or trifluoromethyl.
  • is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2 or 3 atoms selected from N, O and S, so long as the combination of O and S atoms is not greater than 1, wherein the carbon atoms of the ring are substituted by 0, 1 or 2 oxo groups, wherein the ring is substituted by 0, 1, 2 or 3 substituents independently selected from R p .
  • is a saturated, partially-saturated or unsaturated 6-membered ring containing 0, 1, 2 or 3 N atoms, wherein the carbon atoms of the ring are substituted by 0, 1 or 2 oxo groups, wherein the ring is substituted by 0, 1, 2 or 3 substituents independently selected from R p .
  • Y is O.
  • Y is NH
  • R 1 is
  • R 7 is C 1-9 alkyl, C 1-4 haloalkyl, halo, -OC 1-6 alkyl, -O-C 1-4 haloalkyl, -NR m R m or -NR m -C 1-4 haloalkyl.
  • R 7 is C 1-5 alkyl, C 1-4 haloalkyl, I, Br or Cl.
  • R 7 is tert-butyl or trifluoromethyl.
  • is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2 or 3 atoms selected from N, O and S, so long as the combination of O and S atoms is not greater than 1, wherein the carbon atoms of the ring are substituted by 0, 1 or 2 oxo groups, wherein the ring is substituted by 0, 1, 2 or 3 substituents independently selected from R P .
  • is a saturated, partially-saturated or unsaturated 6-membered ring containing 0, 1, 2 or 3 N atoms, wherein the carbon atoms of the ring are substituted by 0, 1 or 2 oxo groups, wherein the ring is substituted by 0, 1, 2 or 3 substituents independently selected from R p .
  • Y is O.
  • Y is NH
  • R 1 is
  • R 4 is a heterocycle selected from 6-indole, 7-indole, 6-3H-indole, 7-3H-indole, 6-benzo[b]furan, 7-benzo[b]furan, 6-benzothiophene, 7-benzothiophene, 6-1H-indazole, 7-1H-indazole, benzimidazole, benzthiazole, 1H-benzotriazole, 7-quinoline, 8-quinoline, 7-1,2,3,4-tetrahydroquinoline, 8-1,2,3,4-tetrahydroquinoline, isoquinolin-7-yl, isoquinolin-8-yl, 7-cinnoline, 8-cinnoline, phthalazine, 7-quinazoline, 8-quinazoline and quinoxaline, wherein the heterocycle is substituted by 0, 1, 2 or 3 substituents independently selected from C 1
  • R 9 is C 1-9 alkyl, C 1-4 haloalkyl, halo, nitro, cyano, -OC 1-6 alkyl, -O-C 1-4 haloalkyl, -O-C 1-6 alkylNR m R m , -O-C 1-6 alkylOR m , -NR m R m , -NR m -C 1-4 haloalkyl, -NR m -C 1-6 alkylNR m R m or -NR m -C 1-6 alkylOR m ,
  • R 9 is H.
  • Z is CR 8 .
  • Z is N.
  • R 7 is tert-butyl or trifluoromethyl.
  • R 1 is
  • R 7 is tert-butyl or trifluoromethyl.
  • R 9 is H.
  • Z is CR 8 .
  • Z is N.
  • R 1 is
  • Z is CR 8 .
  • Z is N.
  • Another aspect of the invention relates to a method of treating acute, inflammatory and neuropathic pain, dental pain, general headache, migraine, cluster headache, mixed-vascular and non-vascular syndromes, tension headache, general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, inflammatory pain and associated hyperalgesia and allodynia, neuropathic pain and associated hyperalgesia and allodynia, diabetic neuropathy pain, causalgia, sympathetically maintained pain, deafferentation syndromes, asthma, epithelial tissue damage or dysfunction, herpes simplex, disturbances of visceral motility at respiratory, genitourinary, gastrointestinal or vascular regions, wounds, bums, allergic skin reactions, pruritis, vitiligo, general gastrointestinal disorders, gastric ulceration, duodenal ulcers, diarrhea, gastric lesions induced by nec
  • R 1 is or a naphthyl or saturated or unsaturated 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms independently selected from N, O and S, wherein no more than 2 of the ring members are O or S, wherein the heterocycle is optionally fused with a phenyl ring, and the naphthyl, heterocycle or fused phenyl ring is substituted by 0, 1, 2 or 3 substituents independently selected from R 5 , R 6 and R 7 ;
  • R 1 is
  • R 7 is independently, at each instance, C 2-9 alkyl or C 1-4 haloalkyl.
  • R 1 is a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms independently selected from N, O and S, wherein no more than 2 of the ring members are O or S, wherein the heterocycle is optionally fused with a phenyl ring, and the heterocycle or fused phenyl ring is substituted by 0, 1, 2 or 3 substituents independently selected from R 5 , R 6 and R 7 .
  • R 2 is a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms independently selected from N, O and S, wherein no more than 2 of the ring members are O or S, wherein the heterocycle is optionally fused with a phenyl ring, and the heterocycle or fused phenyl ring is substituted by 0, 1, 2 or 3 substituents independently selected from R 5 , R 6 and R 7 .
  • R 2 is or a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms independently selected from N, O and S, wherein no more than 2 of the ring members are O or S, wherein the heterocycle is optionally fused with a phenyl ring, and the heterocycle or fused phenyl ring is substituted by 0, 1, 2 or 3 substituents independently selected from R 5 , R 6 and R 7 .
  • R 2 is
  • R 2 is a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms independently selected from N, O and S, wherein no more than 2 of the ring members are O or S, wherein the heterocycle is optionally fused with a phenyl ring, and the heterocycle or fused phenyl ring is substituted by 0, 1, 2 or 3 substituents independently selected from R 5 , R 6 and R 7 ,
  • R 1 and R 2 together are
  • R 1 and R 3 together are
  • R 4 is
  • R 4 is
  • R 4 is
  • R 4 is
  • R 4 is
  • R 4 is
  • R 4 is a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms independently selected from N, O and S, wherein no more than 2 of the ring members are O or S, wherein the heterocycle is optionally fused with a phenyl ring, and the heterocycle or fused phenyl ring is substituted by 0, 1, 2 or 3 substituents selected from halo, C 1-4 haloalkyl, -OR a and -NR a R a .
  • Another aspect of the invention relates to a method of treating acute, inflammatory and neuropathic pain, dental pain, general headache, migraine, cluster headache, mixed-vascular and non-vascular syndromes, tension headache, general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, inflammatory pain and associated hyperalgesia and allodynia, neuropathic pain and associated hyperalgesia and allodynia, diabetic neuropathy pain, causalgia, sympathetically maintained pain, deafferentation syndromes, asthma, epithelial tissue damage or dysfunction, herpes simplex, disturbances of visceral motility at respiratory, genitourinary, gastrointestinal or vascular regions, wounds, bums, allergic skin reactions, pruritis, vitiligo, general gastrointestinal disorders, gastric ulceration, duodenal ulcers, diarrhea, gastric lesions induced by nec
  • Another aspect of the invention involves a method of treating acute, inflammatory and neuropathic pain, dental pain, general headache, migraine, cluster headache, mixed-vascular and non-vascular syndromes, tension headache, general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, inflammatory pain and associated hyperalgesia and allodynia, neuropathic pain and associated hyperalgesia and allodynia, diabetic neuropathy pain, causalgia, sympathetically maintained pain, deafferentation syndromes, asthma, epithelial tissue damage or dysfunction, herpes simplex, disturbances of visceral motility at respiratory, genitourinary, gastrointestinal or vascular regions, wounds, bums, allergic skin reactions, pruritis, vitiligo, general gastrointestinal disorders, gastric ulceration, duodenal ulcers, diarrhea, gastric lesions induced by necrotising
  • Another aspect of the invention involves a method of treating acute, inflammatory and neuropathic pain, dental pain, general headache, migraine, cluster headache, mixed-vascular and non-vascular syndromes, tension headache, general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, inflammatory pain and associated hyperalgesia and allodynia, neuropathic pain and associated hyperalgesia and allodynia, diabetic neuropathy pain, causalgia, sympathetically maintained pain, deafferentation syndromes, asthma, epithelial tissue damage or dysfunction, herpes simplex, disturbances of visceral motility at respiratory, genitourinary, gastrointestinal or vascular regions, wounds, bums, allergic skin reactions, pruritis, vitiligo, general gastrointestinal disorders, gastric ulceration, duodenal ulcers, diarrhea, gastric lesions induced by necrotising
  • Another aspect of the invention involves a pharmaceutical composition
  • a pharmaceutical composition comprising a compound according to any of the above embodiments and a pharmaceutically-acceptable diluent or carrier.
  • Another aspect of the invention involves the use of any of the above compound embodiments as a medicament.
  • Another aspect of the invention relates to the use of a compound according the any one of the above embodiments in the manufacture of a medicament for the treatment of acute, inflammatory and neuropathic pain, dental pain, general headache, migraine, cluster headache, mixed-vascular and non-vascular syndromes, tension headache, general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, inflammatory pain and associated hyperalgesia and allodynia, neuropathic pain and associated hyperalgesia and allodynia, diabetic neuropathy pain, causalgia, sympathetically maintained pain, deafferentation syndromes, asthma, epithelial tissue damage or dysfunction, herpes simplex, disturbances of visceral motility at respiratory, genitourinary, gastrointestinal or vascular regions, wounds, bums, allergic skin reactions, pruritis, vitiligo, general gastrointestinal disorders, gas
  • Another aspect of the invention relates to the manufacture of a medicament for the treatment of acute, inflammatory and neuropathic pain, dental pain, general headache, migraine, cluster headache, mixed-vascular and non-vascular syndromes, tension headache, general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, inflammatory pain and associated hyperalgesia and allodynia, neuropathic pain and associated hyperalgesia and allodynia, diabetic neuropathy pain, causalgia, sympathetically maintained pain, deafferentation syndromes, asthma, epithelial tissue damage or dysfunction, herpes simplex, disturbances of visceral motility at respiratory, genitourinary, gastrointestinal or vascular regions, wounds, bums, allergic skin reactions, pruritis, vitiligo, general gastrointestinal disorders, gastric ulceration, duodenal ulcers, diarrhea, gastric les
  • Another aspect of the invention relates to the manufacture of a medicament for the treatment of acute, inflammatory and neuropathic pain, dental pain, general headache, migraine, cluster headache, mixed-vascular and non-vascular syndromes, tension headache, general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, inflammatory pain and associated hyperalgesia and allodynia, neuropathic pain and associated hyperalgesia and allodynia, diabetic neuropathy pain, causalgia, sympathetically maintained pain, deafferentation syndromes, asthma, epithelial tissue damage or dysfunction, herpes simplex, disturbances of visceral motility at respiratory, genitourinary, gastrointestinal or vascular regions, wounds, bums, allergic skin reactions, pruritis, vitiligo, general gastrointestinal disorders, gastric ulceration, duodenal ulcers, diarrhea, gastric les
  • the compounds of this invention may have in general several asymmetric centers and are typically depicted in the form of racemic mixtures. This invention is intended to encompass racemic mixtures, partially racemic mixtures and separate enantiomers and diasteromers.
  • Silyl protecting groups are silicon atoms optionally substituted by one or more alkyl, aryl and aralkyl groups. Suitable silyl protecting groups include, but are not limited to, trimethylsilyl, triethylsilyl, tri-isopropylsilyl, tert- butyldimethylsilyl, dimethylphenylsilyl, 1,2-bis(dimethylsilyl)benzene, 1,2-bis(dimethylsilyl)ethane and diphenylmethylsilyl. Silylation of an amino groups provide mono- or di-silylamino groups. Silylation of aminoalcohol compounds can lead to a N,N,O-tri-silyl derivative.
  • silyl function from a silyl ether function is readily accomplished by treatment with, for example, a metal hydroxide or ammonium fluoride reagent, either as a discrete reaction step or in situ during a reaction with the alcohol group.
  • Suitable silylating agents are, for example, trimethylsilyl chloride, tert-butyl-dimethylsilyl chloride, phenyldimethylsilyl chloride, diphenylmethyl silyl chloride or their combination products with imidazole or DMF.
  • Methods for silylation of amines and removal of silyl protecting groups are well known to those skilled in the art.
  • Methods of preparation of these amine derivatives from corresponding amino acids, amino acid amides or amino acid esters are also well known to those skilled in the art of organic chemistry including amino acid/amino acid ester or aminoalcohol chemistry.
  • Protecting groups are removed under conditions which will not affect the remaining portion of the molecule. These methods are well known in the art and include acid hydrolysis, hydrogenolysis and the like. A preferred method involves removal of a protecting group, such as removal of a benzyloxycarbonyl group by hydrogenolysis utilizing palladium on carbon in a suitable solvent system such as an alcohol, acetic acid, and the like or mixtures thereof. A t-butoxycarbonyl protecting group can be removed utilizing an inorganic or organic acid, such as HCl or trifluoroacetic acid, in a suitable solvent system, such as dioxane or methylene chloride. The resulting amino salt can readily be neutralized to yield the free amine.
  • a protecting group such as removal of a benzyloxycarbonyl group by hydrogenolysis utilizing palladium on carbon in a suitable solvent system such as an alcohol, acetic acid, and the like or mixtures thereof.
  • a t-butoxycarbonyl protecting group can be removed utilizing an inorgan
  • Carboxy protecting group such as methyl, ethyl, benzyl, tert -butyl, 4-methoxyphenylmethyl and the like, can be removed under hydroylsis and hydrogenolysis conditions well known to those skilled in the art.
  • Prodrugs of the compounds of this invention are also contemplated by this invention.
  • a prodrug is an active or inactive compound that is modified chemically through in vivo physiological action, such as hydrolysis, metabolism and the like, into a compound of this invention following administration of the prodrug to a patient.
  • the suitability and techniques involved in making and using prodrugs are well known by those skilled in the art.
  • For a general discussion of prodrugs involving esters see Svensson and Tunek Drug Metabolism Reviews 165 (1988 ) and Bundgaard Design of Prodrugs, Elsevier (1985 ).
  • Examples of a masked carboxylate anion include a variety of esters, such as alkyl (for example, methyl, ethyl), cycloalkyl (for example, cyclohexyl), aralkyl (for example, benzyl, p-methoxybenzyl), and alkylcarbonyloxyalkyl (for example, pivaloyloxymethyl).
  • esters such as alkyl (for example, methyl, ethyl), cycloalkyl (for example, cyclohexyl), aralkyl (for example, benzyl, p-methoxybenzyl), and alkylcarbonyloxyalkyl (for example, pivaloyloxymethyl).
  • Amines have been masked as arylcarbonyloxymethyl substituted derivatives which are cleaved by esterases in vivo releasing the free drug and formaldehyde ( Bungaard J. Med. Chem. 2503 (1989
  • drugs containing an acidic NH group such as imidazole, imide, indole and the like, have been masked with N-acyloxymethyl groups ( Bundgaard Design of Prodrugs, Elsevier (1985 )). Hydroxy groups have been masked as esters and ethers.
  • EP 039,051 (Sloan and Little , 4/11/81 ) discloses Mannich-base hydroxamic acid prodrugs, their preparation and use.
  • Example 2 Analogous to the procedure used to prepare Example 1 , 4- tert -butyl- trans -cinnamic acid (200 mg, 1.0 mmol, EMKA-Chemie) and the crude aniline, after purification by silica gel chromatography (85:15 CH 2 Cl 2 :EtOAc), provided the title product as a pale yellow solid. MP 186-188 °C. MS (ESI, pos. ion) m / z : 337 (M+1).
  • Example 11(b) Analogous to the procedure used for the preparation of Example 10, 7-amino-4-methyl-2H-benzo[e]1,4-oxazaperhydroin-3-one, Example 11(b), (180 mg, 1.0 mmol) and 4- tert -butyl- trans -cinnamic acid (200 mg, 1.0 mmol, EMKA-Chemie) provided, after purification by silica gel chromatography (85:15 CH 2 Cl 2 :EtOAc), the title product as a pale yellow solid. MP 232-233 °C. MS (ESI, pos. ion) m / z : 351 (M+1).
  • Example 15 Analogous to the procedure described for Example 15 , the title product was prepared starting from 2-hydroxy-4-nitrobenzaldehyde, Example 17(c), (R)-glycidyl tosylate (Aldrich) and 4- tert -butyl- trans -cinnamic acid (EMKA Chemie). MP 169-170 °C. MS (ESI, pos. ion) m / z : 368 (M+1).
  • (2E)-3-[4-(tert-Butyl)phenyl]-N-[3-(2-hydroxyethoxy)phenyl]prop-2-enamide was added (2E)-3-[4-( tert -butyl)phenyl]-N-(3-hydroxyphenyl)prop-2-enamide, Example 23 , (200 mg, 0.68 mmol), THF (10 mL), 2-bromoethanol (200 uL, 2.80 mmol, Aldrich) and 5 N NaOH (10 mL). The reaction mixture was stirred at reflux for 5 h.
  • Example 53 Analogous to the procedure used to prepare Example 53, starting from 3-methylbutylzinc bromide (Aldrich), ethyl (2Z)-3-[4-( tert -butyl)phenyl]-3-iodoprop-2-enoate, Example 52(b), and 1,4-benzodioxan-6-amine (Aldrich), the title product was obtained as an off-white solid. MP 123 °C. MS (ESI, pos. ion) m / z : 394 (M+1).
  • Example 55(b) (0.34 g, 1.0 mmol) was dissolved in anhydrous EtOAc (50 mL) in a 100 mL round-bottomed flask equipped with reflux condenser and magnetic stirring under dry nitrogen atmosphere.
  • Example 161 Analogous to the procedure used to prepare Example 70 , 2-bromoethyl methyl ether (140 mg, 1.0 mmol, Aldrich) and (2E)-3-[4-( tert -butyl)phenyl]-N-indol-5-ylprop-2-enamide, Example 161, (320 mg, .01 mmol) provided, after purification by silica gel chromatography (65:35 hexane:EtOAc), the title compound as a pale yellow solid. MP 138 °C. MS (ESI, pos. ion) m / z : 377 (M+1).
  • Example 75(c) Analogous to the procedure used to prepare Example 1, (2E)-3-[6-( tert -butyl)-2-methyl(3-pyridyl)]prop-2-enoic acid, Example 75(c) , (220 mg, 1.0 mmol) and 6-aminobenzothiazole (150 mg, 1.0 mmol, Lancaster) provided, after purification by silica gel chromatography (55:45 hexane:EtOAc), the title compound as a pale yellow amorphous solid. MS (ESI, pos. ion) m / z : 352 (M+1).
  • Example 75(c) Analogous to the procedure used to prepare Example 1, (2E)-3-[6-( tert -butyl)-2-methyl(3-pyridyl)]prop-2-enoic acid, Example 75(c), (0.88 g, 4.0 mmol) and 5-aminoindole (0.53 g, 4.0 mmol, Lancaster) provided, after purification by silica gel chromatography (55:45 hexane:EtOAc), the title compound as a yellow amorphous solid. MS (ESI, pos. ion) m / z : 334 (M+1).
  • Example 75(c) (2E)-3-[6-(tert-butyl)-2-methyl(3-pyridyl)]prop-2-enoic acid, Example 75(c), (110 mg, 0.50 mmol) and (5-aminoindol-2-yl)methan-1-ol, Example 74(b), (81, 0.50 mmol) provided, after purification by silica gel chromatography (25:75 hexane:EtOAc), the title compound as a pale yellow solid. MP 213 °C. MS (ESI, pos. ion) m / z : 364 (M+1).
  • Example 44(b) Analogous to the procedure used to prepare Example 1, (2E)-3-[6-( tert -butyl)(3-pyridyl)]prop-2-enoic acid, Example 44(b), (41 mg, 0.20 mmol) and (5-aminoindol-2-yl)methan-1-ol, Example 74(b), (32 mg, 0.20 mmol) provided, after purification by silica gel chromatography (20:80 hexane:EtOAc), the title compound as a yellow amorphous solid. MS (ESI, pos. ion) m / z : 350 (M+1).
  • Example 82(b) Analogous to the procedure used to prepare Example 1, (2E)-3-[2-methyl-6-(trifluoromethyl)(3-pyridyl)]prop-2-enoic acid, Example 82(b), (120 mg, 0.50 mmol) and 5-aminoindole (66 mg, 0.50 mmol, Aldrich) provided, after purification by silica gel chromatography (55:45 hexane:EtOAc), the title compound as a yellow solid. MP 231 °C. MS (ESI, pos. ion) m / z : 346 (M+1).
  • Example 82(b) Analogous to the procedure used to prepare Example 1, (2E)-3-[2-methyl-6-(trifluoromethyl)(3-pyridyl)]prop-2-enoic acid, Example 82(b), (120 mg, 0.50 mmol) and 6-aminobenzothiazole (75 mg, 0.50 mmol, Lancaster) provided, after purification by silica gel chromatography (55:45 hexane:EtOAc), the title compound as a white solid. MP 196 °C. MS (ESI, pos. ion) m / z : 364 (M+1).
  • Example 82(b) Analogous to the procedure used to prepare Example 1, (2E)-3-[2-methyl-6-(trifluoromethyl)(3-pyridyl)]prop-2-enoic acid, Example 82(b), (120 mg, 0.50 mmol) and 1,4-benzodioxan-6-amine (76 mg, 0.50 mmol, Aldrich) provided, after purification by silica gel chromatography (55:45 hexane:EtOAc), the title compound as a yellow solid. MP 186 °C. MS (ESI, pos. ion) m / z : 365 (M+1).
  • Example 55 (0.23 g, 0.50 mmol) provided, after purification by silica gel chromatography (gradient: 30%-35% EtOAc/hexane), the title product as an amorphous white solid.
  • the mixture was purged with a stream of carbon monoxide, then treated with palladium acetate (22 mg, 0.10 mmol, Aldrich), and stirred under a balloon of carbon monoxide in a 70 °C oil bath for 3 h.
  • the reaction mixture was allowed to cool to 25 °C and partitioned between EtOAc (50 mL) and water (20 mL).
  • the organic phase was washed with water (10 mL), satd NaCl (10 mL), dried over MgSO 4 , filtered and concentrated in vacuo.
  • Example 97 Analogous to the procedure used to prepare Example 1, (2E)-3-[2-bromo-4-(trifluoromethyl)phenyl]prop-2-enoic acid, Example 97(e), (140 mg, 0.47 mmol) and 6-aminobenzothiazole (86 mg, 0.57 mmol, Lancaster) provided, after purification by silica gel chromatography (gradient: 0-30 % EtOAc in hexane), the title product as an off-white solid. MP 214-215 °C. MS (ESI, pos. ion) m / z : 427 (M+1).
  • Example 97 Analogous to the procedure used to prepare Example 1 , (2E)-3-[2-bromo-4-(trifluoromethyl)phenyl]prop-2-enoic acid, Example 97(e) , (140 mg, 0.47 mmol) and 1,4-benzodioxan-6-amine (86 mg, 0.57 mmol, Aldrich) provided, after purification by silica gel chromatography (gradient: 0-18 %EtOAc in hexane), the title product as an off-white solid. MP 212-213 °C. MS (ESI, pos. ion) m / z : 428 (M+1).
  • Example 97 (120 mg, 0.29 mmol) and pyridine-4-boronic acid (72 mg, 0.59 mmol, Frontier Scientific) provided, after purification by silica gel chromatography (gradient: 0-60 %EtOAc in hexane), the title product as a yellow solid. MP 229-234 °C. MS (ESI, pos. ion) m / z : 408 (M+1).
  • Example 97 (120 mg, 0.29 mmol) and pyridine-3-boronic acid (58 mg, 0.47 mmol, Frontier Scientific) provided, after purification by silica gel chromatography (gradient: 0-20 %EtOAc in hexane), the title product as a yellow solid. MP 196-197 °C. MS (ESI, pos. ion) m / z : 408 (M+1).
  • Example 97 Analogous to the procedure used to prepare Example 100, (2E)-3-[2-bromo-4-(trifluoromethyl)phenyl]-N-indol-5-ylprop-2-enamide, Example 97, (100 mg, 0.24 mmol) and 4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3,6-dihydro-2H-pyridine-1-carboxylic acid tert -butyl ester (130 mg, 0.42 mmol, prepared according to the procedures of Wustrow, D. J. et al, Synthesis 1991, 993 and Ishiyama, T. et al, J. Org. Chem.
  • Example 97 Analogous to the procedure used to prepare Example 100, (2E)-3-[2-bromo-4-(trifluoromethyl)phenyl]-N-indol-5-ylprop-2-enamide, Example 97, (100 mg, 0.24 mmol) and 2-tributylstannylthiazole (155 mg, 0.42 mmol, Frontier Scientific) provided, after purification by silica gel chromatography (gradient: 0-35 %EtOAc in hexane), the title product as an orange solid. MP 203-204 °C. MS (ESI, pos. ion) m / z: 414 (M+1).
  • Example 106(b) Analogous to the procedure used to prepare Example 1, (2E)-3-[2-(3-pyridyl)-4-(trifluoromethyl)phenyl]prop-2-enoic acid, Example 106(b), (185 mg) and 6-aminoindole (59 mg, 0.44 mmol, Aldrich) provided, after purification by silica gel chromatography (gradient: 0-50% EtOAc in hexane), the title compound as an amorphous orange solid. MS (ESI, pos. ion) m / z : 408 (M+1).
  • Example 401 (b) the mixture of (2,3-dihydro-benzo[1,4]dioxin-6-yl)-(4-iodo-pyridin-2-yl)-amine (Example 401 (b), 75 mg, 0.2 mmol), tetrakis (triphenylphosphine) palladium (0) (Aldrich Chemical Company) (12 mg, 0.011 mmol), 4-fluorobenzeneboronic acid (Avocado Chemical Company) (35 mg, 0.25 mmol) and 1,2-dimethoxyethane (2 mL) gave, after heated in the Microwave Smith Synthesizer at 150 °C for 10 min and purification on a Biotage 40S column (3:1 hexane:EtOAc), the title compound as an off-white solid. MS (ESI, pos. ion) m / z : 323 (M+1). Mp: 134.5-135.0 °C.
  • Example 401 (b) the mixture of (2,3-dihydro-benzo[1,4]dioxin-6-yl)-(4-iodo-pyridin-2-yl)-amine (Example 401 (b), 75 mg, 0.2 mmol), tetrakis (triphenylphosphine) palladium (0) (Aldrich Chemical Company) (12 mg, 0.011 mmol), 3-(trifluoromethyl)phenylboronic acid (Aldrich Chemical Company) (47 mg, 0.25 mmol) and 1,2-dimethoxyethane (2 mL) gave, after heated in the Microwave Smith Synthesizer at 150 °C for 10 min and purification on a Biotage 40S column (4:1 hexane:EtOAc), the title compound as a light-yellow solid. MS (ESI, pos. ion) m / z : 373 (M+1). Mp: 138.9-14
  • Example 40 1(b) the mixture of (2,3-dihydro-benzo[1,4]dioxin-6-yl)-(4-iodo-pyridin-2-yl)-amine (Example 40 1(b), 75 mg, 0.2 mmol), tetrakis (triphenylphosphine) palladium (0) (Aldrich Chemical Company) (12 mg, 0.011 mmol), benzothiophene-2-boronic acid (Frontier Scientific, Inc.) (45 mg, 0.25 mmol) and 1,2-dimethoxyethane (2 mL) gave, after heated in the Microwave Smith Synthesizer at 150 °C for 10 min and purification on a Biotage 40S column (4:1 hexane:EtOAc), the title compound as a light-yellow solid. MS (ESI, pos. ion) m / z : 361 (M+1). Mp: 154.0-154.1 °C
  • Example 401 (b) the mixture of (2,3-dihydro-benzo[1,4]dioxin-6-yl)-(4-iodo-pyridin-2-yl)-amine (Example 401 (b), 0.73 g, 2.1 mmol), tetrakis (triphenylphosphine) palladium (0) (Aldrich Chemical Company) (0.12 g, 0.11 mmol), 4-actylphenylboronic acid (Aldrich Chemical Company) (0.41 g, 2.5 mmol) and 1,2-dimethoxyethane (20 mL) gave, after heated at 90 °C overnight and purification on a Biotage 40M column (3:1 hexane:EtOAc), the title compound as a light-orange solid. MS (ESI, pos. ion) m / z : 347 (M+1). Mp: 178.0-180.5 °C.
  • Example 401 (b) the mixture of (2,3-dihydro-benzo[1,4]dioxin-6-yl)-(4-iodo-pyridin-2-yl)-amine (Example 401 (b), 75 mg, 0.2 mmol), tetrakis (triphenylphosphine) palladium (0) (Aldrich Chemical Company) (12 mg, 0.011 mmol), 3,5-bis(trifluoromethyl)phenylboronic acid (Aldrich Chemical Company) (64 mg, 0.25 mmol) and 1,2-dimethoxyethane (2 mL) gave, after heated in the Microwave Smith Synthesizer at 150 °C for 10 min and purification on a Biotage 40S column (4:1 hexane:EtOAc), the title compound as a light-yellow solid. MS (ESI, pos. ion) m / z : 441 (M+1). Mp: 130.0-13
  • Example 401 (b) the mixture of (2,3-dihydro-benzo[1,4]dioxin-6-yl)-(4-iodo-pyridin-2-yl)-amine (Example 401 (b), 75 mg, 0.2 mmol), tetrakis (triphenylphosphine) palladium (0) (Aldrich Chemical Company) (12 mg, 0.011 mmol), 4-(trifluoromethoxy)phenylboronic acid (Lancaster Synthesis Ltd.) (51 mg, 0.25 mmol) and 1,2-dimethoxyethane (2 mL) gave, after heated in the Microwave Smith Synthesizer at 150 °C for 10 min and purification on a Biotage 40S column (4:1 hexane:EtOAc), the title compound as an orange glass. MS (ESI, pos. ion) m / z : 389 (M+1).
  • DRG dorsal root ganglia
  • the dissociated cells were pelleted at 200 x g for 5 min and re-suspended in EBSS containing 1 mg/ml ovomucoid inhibitor, 1 mg/ml ovalbumin and 0.005% DNase.
  • Cell suspension was centrifuged through a gradient solution containing 10 mg/ml ovomucoid inhibitor, 10 mg/ml ovalbumin at 200 x g for 6 min to remove cell debris; and filtered through a 88- ⁇ m nylon mesh (Fisher Scientific, Pittsburgh, PA) to remove any clumps.
  • Cell number was determined with a hemocytometer and cells were seeded into poly-ornithine 100 ⁇ g/ml (Sigma) and mouse laminin 1 ⁇ g/ml (Life Technologies)-coated 96-well plates at 10 x 10 3 cells/well in complete medium.
  • the complete medium consists of minimal essential medium (MEM) and Ham's F12, 1:1, penicillin (100 U/ml), and streptomycin (100 ⁇ g/ml), and nerve growth factor (10ng/ml), 10% heat inactivated horse serum (Life Technologies). The cultures were kept at 37 °C, 5% CO 2 and 100% humidity.
  • Capsaicin Antagonist Assay E-19 DRG cells at 3 days in culture are incubated with serial concentrations of VR1 antagonists, in HBSS (Hanks buffered saline solution supplemented with BSA 0.1mg/ml and 1 mM Hepes at pH 7.4) for 15 min, room temperature. Cells are then challenged with a VR1 agonist, capsaicin (500 nM), in activation buffer containing 0.1mg/ml BSA, 15 mM Hepes, pH 7.4, and 10 ⁇ Ci/ml 45 Ca 2+ (Amersham CES3-2mCi) in Ham's F12 for 2 min at room temperature.
  • HBSS Hors buffered saline solution supplemented with BSA 0.1mg/ml and 1 mM Hepes at pH 7.4
  • Acid Antagonist Assay Compounds are pre-incubated with E-19 DRG cells at room temperature for 2 minutes prior to addition of 45 Ca 2+ in 30mM Hepes/Mes buffer (Final Assay pH 5) and then left for an additional 2 minutes prior to compound washout. Final concentration of 45 Ca 2+ (Amersham CES3-2mCi) is 10 ⁇ Ci/mL.
  • Agonist Assay Compounds are incubated with E-19 DRG cells at room temperature for 2 minutes in the presence of 45 Ca 2+ prior to compound washout. Final 45 Ca 2+ (Amersham CES3-2mCi) at 10 ⁇ Ci/mL.
  • Compounds may be assayed using Chinese Hamster Ovary cell lines stably expressing either human VR1 or rat VR1 under a CMV promoter. Cells could be cultured in a Growth Medium, routinely passaged at 70% confluency using trypsin and plated in an assay plate 24 hours prior to compound evaluation.
  • Capsaicin Antagonist Assay Compounds may be pre-incubated with cells (expressing either human or rat VR1) at room temperature for 2 minutes prior to addition of 45 Ca 2+ and Capsaicin and then left for an additional 2 minutes prior to compound washout. Capsaicin (200nM) can be added in HAM's F12, 0.1 mg/mL BSA, 15 mM Hepes at pH 7.4.
  • Acid Antagonist Assay Compounds can be pre-incubated with cells (expressing either human or rat VR1) for 2 minutes prior to addition of 45 Ca 2+ in 30mM Hepes/Mes buffer (Final Assay pH 5) and then left for an additional 2 minutes prior to compound washout.
  • Final 45 Ca 2+ (Amersham CES3-2mCi) added could be 10 ⁇ Ci/mL.
  • Agonist Assay Compounds can be incubated with cells (expressing either human or rat VR1) for 2 minutes in the presence of 45 Ca 2+ prior to compound washout.
  • nucleic acid sequences and proteins may be found in U.S. Patent Nos. 6,335,180 , 6, 406,908 and 6,239,267 , herein incorporated by reference in their entirety.
  • vanilloid-receptor-diseases such as acute, inflammatory and neuropathic pain, dental pain, general headache, migraine, cluster headache, mixed-vascular and non-vascular syndromes, tension headache, general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, inflammatory pain and associated hyperalgesia and allodynia, neuropathic pain and associated hyperalgesia and allodynia, diabetic neuropathy pain, causalgia, sympathetically maintained pain, deafferentation syndromes, asthma, epithelial tissue damage or dysfunction, herpes simplex, disturbances of visceral motility at respiratory, genitourinary, gastrointestinal or vascular regions, wounds, bums, allergic skin reactions, pruritis, vitiligo, general gastrointestinal disorders, gastric ulceration, duodenal ulcers, diarrhea, gastric les
  • Treatment of diseases and disorders herein is intended to also include the prophylactic administration of a compound of the invention, a pharmaceutical salt thereof, or a pharmaceutical composition of either to a subject (i.e., an animal, preferably a mammal, most preferably a human) believed to be in need of preventative treatment, such as, for example, pain, inflammation and the like.
  • a subject i.e., an animal, preferably a mammal, most preferably a human
  • preventative treatment such as, for example, pain, inflammation and the like.
  • the dosage regimen for treating vanilloid-receptor-mediated diseases, cancer, and/or hyperglycemia with the compounds of this invention and/or compositions of this invention is based on a variety of factors, including the type of disease, the age, weight, sex, medical condition of the patient, the severity of the condition, the route of administration, and the particular compound employed. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods. Dosage levels of the order from about 0.01 mg to 30 mg per kilogram of body weight per day, preferably from about 0.1 mg to 10 mg/kg, more preferably from about 0.25 mg to 1 mg/kg are useful for all methods of use disclosed herein.
  • the pharmaceutically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals.
  • the pharmaceutical composition may be in the form of, for example, a capsule, a tablet, a suspension, or liquid.
  • the pharmaceutical composition is preferably made in the form of a dosage unit containing a given amount of the active ingredient.
  • these may contain an amount of active ingredient from about 1 to 2000 mg, preferably from about 1 to 500 mg, more preferably from about 5 to 150 mg.
  • a suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.
  • the active ingredient may also be administered by injection as a composition with suitable carriers including saline, dextrose, or water.
  • suitable carriers including saline, dextrose, or water.
  • the daily parenteral dosage regimen will be from about 0.1 to about 30 mg/kg of total body weight, preferably from about 0.1 to about 10 mg/kg, and more preferably from about 0.25 mg to 1 mg/kg.
  • Injectable preparations such as sterile injectable aqueous or oleaginous suspensions, may be formulated according to the known are using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butanediol.
  • a non-toxic parenterally acceptable diluent or solvent for example as a solution in 1,3-butanediol.
  • the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed, including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid find use in the preparation of injectables.
  • Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
  • a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
  • a suitable topical dose of active ingredient of a compound of the invention is 0.1 mg to 150 mg administered one to four, preferably one or two times daily.
  • the active ingredient may comprise from 0.00 1 % to 10% w/w, e . g ., from 1% to 2% by weight of the formulation, although it may comprise as much as 10% w/w, but preferably not more than 5% w/w, and more preferably from 0.1% to 1% of the formulation.
  • Formulations suitable for topical administration include liquid or semiliquid preparations suitable for penetration through the skin (e.g., liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose.
  • liquid or semiliquid preparations suitable for penetration through the skin e.g., liniments, lotions, ointments, creams, or pastes
  • drops suitable for administration to the eye, ear, or nose e.g., liniments, lotions, ointments, creams, or pastes
  • the compounds of this invention are ordinarily combined with one or more adjuvants appropriate for the indicated route of administration.
  • the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, stearic acid, talc, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, acacia, gelatin, sodium alginate, polyvinyl-pyrrolidine, and/or polyvinyl alcohol, and tableted or encapsulated for conventional administration.
  • the compounds of this invention may be dissolved in saline, water, polyethylene glycol, propylene glycol, ethanol, corn oil, peanut oil, cottonseed oil, sesame oil, tragacanth gum, and/or various buffers.
  • Other adjuvants and modes of administration are well known in the pharmaceutical art.
  • the carrier or diluent may include time delay material, such as glyceryl monostearate or glyceryl distearate alone or with a wax, or other materials well known in the art.
  • the pharmaceutical compositions may be made up in a solid form (including granules, powders or suppositories) or in a liquid form (e.g., solutions, suspensions, or emulsions).
  • the pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc.
  • Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules.
  • the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch.
  • Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate.
  • the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
  • Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting, sweetening, flavoring, and perfuming agents.
  • optical isomers can be obtained by resolution of the racemic mixtures according to conventional processes, e.g., by formation of diastereoisomeric salts, by treatment with an optically active acid or base.
  • appropriate acids are tartaric, diacetyltartaric, dibenzoyltartaric, ditoluoyltartaric, and camphorsulfonic acid and then separation of the mixture of diastereoisomers by crystallization followed by liberation of the optically active bases from these salts.
  • a different process for separation of optical isomers involves the use of a chiral chromatography column optimally chosen to maximize the separation of the enantiomers.
  • Still another available method involves synthesis of covalent diastereoisomeric molecules by reacting compounds of the invention with an optically pure acid in an activated form or an optically pure isocyanate.
  • the synthesized diastereoisomers can be separated by conventional means such as chromatography, distillation, crystallization or sublimation, and then hydrolyzed to deliver the enantiomerically pure compound.
  • the optically active compounds of the invention can likewise be obtained by using active starting materials. These isomers may be in the form of a free acid, a free base, an ester or a salt.
  • the compounds of this invention may exist as isomers, that is compounds of the same molecular formula but in which the atoms, relative to one another, are arranged differently.
  • the alkylene substituents of the compounds of this invention are normally and preferably arranged and inserted into the molecules as indicated in the definitions for each of these groups, being read from left to right.
  • substituents are reversed in orientation relative to the other atoms in the molecule. That is, the substituent to be inserted may be the same as that noted above except that it is inserted into the molecule in the reverse orientation.
  • these isomeric forms of the compounds of this invention are to be construed as encompassed within the scope of the present invention.
  • the compounds of the present invention can be used in the form of salts derived from inorganic or organic acids.
  • the salts include, but are not limited to, the following: acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, cyclopentanepropionate, dodecylsulfate, ethanesulfonate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methansulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, palmoate, pectinate, persulfate, 2-
  • the basic nitrogen-containing groups can be quatemized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides, and others. Water or oil-soluble or dispersible products are thereby obtained.
  • lower alkyl halides such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides
  • dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates
  • long chain halides such as de
  • organic acids such as oxalic acid, maleic acid, succinic acid and citric acid.
  • Other examples include salts with alkali metals or alkaline earth metals, such as sodium, potassium, calcium or magnesium or with organic bases.
  • esters of a carboxylic acid or hydroxyl containing group including a metabolically labile ester or a prodrug form of a compound of this invention.
  • a metabolically labile ester is one which may produce, for example, an increase in blood levels and prolong the efficacy of the corresponding non-esterified form of the compound.
  • a prodrug form is one that is not in an active form of the molecule as administered but which becomes therapeutically active after some in vivo activity or biotransformation, such as metabolism, for example, enzymatic or hydrolytic cleavage.
  • esters for example, methyl, ethyl
  • cycloalkyl for example, cyclohexyl
  • aralkyl for example, benzyl, p-methoxybenzyl
  • alkylcarbonyloxyalkyl for example, pivaloyloxymethyl
  • Amines have been masked as arylcarbonyloxymethyl substituted derivatives which are cleaved by esterases in vivo releasing the free drug and formaldehyde ( Bungaard J. Med. Chem. 2503 (1989 )). Also, drugs containing an acidic NH group, such as imidazole, imide, indole and the like, have been masked with N-acyloxymethyl groups ( Bundgaard Design of Prodrugs, Elsevier (1985 )). Hydroxy groups have been masked as esters and ethers.
  • EP 039,051 (Sloan and Little , 4/11/81 ) discloses Mannich-base hydroxamic acid prodrugs, their preparation and use.
  • Esters of a compound of this invention may include, for example, the methyl, ethyl, propyl, and butyl esters, as well as other suitable esters formed between an acidic moiety and a hydroxyl containing moiety.
  • Metabolically labile esters may include, for example, methoxymethyl, ethoxymethyl, iso-propoxymethyl, ⁇ -methoxyethyl, groups such as ⁇ -((C 1 -C 4 )alkyloxy)ethyl, for example, methoxyethyl, ethoxyethyl, propoxyethyl, iso-propoxyethyl, etc.; 2-oxo-1,3-dioxolen-4-ylmethyl groups, such as 5-methyl-2-oxo-1,3,dioxolen-4-ylmethyl, etc.; C 1 -C 3 alkylthiomethyl groups, for example, methylthiomethyl, ethylthiomethyl,
  • the compounds of the invention may exist as crystalline solids which can be crystallized from common solvents such as ethanol, N,N-dimethylformamide, water, or the like.
  • crystalline forms of the compounds of the invention may exist as polymorphs, solvates and/or hydrates of the parent compounds or their pharmaceutically acceptable salts. All of such forms likewise are to be construed as falling within the scope of the invention.
  • the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more compounds of the invention or other agents.
  • the therapeutic agents can be formulated as separate compositions that are given at the same time or different times, or the therapeutic agents can be given as a single composition.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Dermatology (AREA)
  • Diabetes (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Pain & Pain Management (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Rheumatology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Obesity (AREA)
  • Cardiology (AREA)
  • Virology (AREA)
  • Endocrinology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Emergency Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Otolaryngology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
EP06010087A 2001-12-10 2002-12-10 Composés dérivés d`amides cycliques comme ligands des récepteurs vanilloides et leur utilisation pour le traitement de douleurs inflammatoire et neuropathique Withdrawn EP1764358A3 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US33916101P 2001-12-10 2001-12-10
US34473701P 2001-12-21 2001-12-21
US38333102P 2002-05-22 2002-05-22
US40242202P 2002-08-08 2002-08-08
EP02799927A EP1463714A4 (fr) 2001-12-10 2002-12-10 Ligands de recepteur vanilloide et utilisation de ceux-ci dans des traitements

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP02799927A Division EP1463714A4 (fr) 2001-12-10 2002-12-10 Ligands de recepteur vanilloide et utilisation de ceux-ci dans des traitements

Publications (2)

Publication Number Publication Date
EP1764358A2 true EP1764358A2 (fr) 2007-03-21
EP1764358A3 EP1764358A3 (fr) 2007-03-28

Family

ID=37733940

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06010095A Withdrawn EP1780196A3 (fr) 2001-12-10 2002-12-10 Dérivés de pyridine utiles comme des ligands des récepteurs vanilloides
EP06010087A Withdrawn EP1764358A3 (fr) 2001-12-10 2002-12-10 Composés dérivés d`amides cycliques comme ligands des récepteurs vanilloides et leur utilisation pour le traitement de douleurs inflammatoire et neuropathique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06010095A Withdrawn EP1780196A3 (fr) 2001-12-10 2002-12-10 Dérivés de pyridine utiles comme des ligands des récepteurs vanilloides

Country Status (1)

Country Link
EP (2) EP1780196A3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107573275A (zh) * 2012-12-28 2018-01-12 日本脏器制药株式会社 肉桂酰胺衍生物

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068652A1 (fr) * 2000-03-17 2001-09-20 Novo Nordisk A/S Imidazoles condenses en tant que ligands de recepteur d'histamine h3

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029979A (ja) * 1996-04-12 1998-02-03 Ajinomoto Co Inc 新規ピリジン誘導体
WO2002079197A1 (fr) * 2001-03-29 2002-10-10 Vertex Pharmaceuticals Incorporated Inhibiteurs de kinases n-terminales c-jun (jnk) et autres proteineskinases

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068652A1 (fr) * 2000-03-17 2001-09-20 Novo Nordisk A/S Imidazoles condenses en tant que ligands de recepteur d'histamine h3

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
DATABASE BEILSTEIN [Online] BEILSTEIN INSTITUT ZUR FÖRDERUNG DER CHEMISCHEN WISSENSCHAFTEN; 1948, XP002419278 Database accession no. 3427347 & HARDMAN: J. AM. CHEM. SOC., vol. 70, 1948, page 2119, *
DATABASE BEILSTEIN [Online] BEILSTEIN INSTITUT ZUR FÖRDERUNG DER CHEMISCHEN WISSENSCHAFTEN; 1956, XP002419276 Database accession no. 289629, 312851 & RENZI ET AL.: GAZZ. CHIM. ITAL., vol. 86, 1956, pages 1362-1364, & DATABASE BEILSTEIN *
DATABASE BEILSTEIN [Online] BEILSTEIN INSTITUT ZUR FÖRDERUNG DER CHEMISCHEN WISSENSCHAFTEN; 1959, XP002419281 Database accession no. 196705 & WILDER SMITH: HELV. CHIM. ACTA, vol. 42, 1959, pages 1764-1770, *
DATABASE BEILSTEIN [Online] BEILSTEIN INSTITUT ZUR FÖRDERUNG DER CHEMISCHEN WISSENSCHAFTEN; 1960, XP002419280 Database accession no. 2754804 & KNUNJANZ ET AL.: BULL. ACAD. SCI. USSR DIV. CHEM. SCI. (ENGL. TRANSL.), 1960, page 494, *
DATABASE BEILSTEIN [Online] BEILSTEIN INSTITUT ZUR FÖRDERUNG DER CHEMISCHEN WISSENSCHAFTEN; 1973, XP002419277 Database accession no. 2148009, 2179923 & BIRD ET AL.: J. CHEM. SOC. PERKIN TRANS. 1, 1973, pages 2664-2667, *
DATABASE BEILSTEIN [Online] BEILSTEIN INSTITUT ZUR FÖRDERUNG DER CHEMISCHEN WISSENSCHAFTEN; 1984, XP002419279 Database accession no. 5744153 & GAIVORONSKAYA ET AL.: PHARM. CHEM. J. (ENGL. TRANSL.), vol. 18, no. 9, 1984, pages 615-618, *
ESSAWI, M.: "Synthesis and analgesic activity of N-aryl/arylalkyl 3-(1-pyrrolidinyl/piperidinyl)butyramides" PHARMAZIE, vol. 54, no. 8, 1999, page 575-579, XP001249130 *
FOUCHARD F ET AL: "SYNTHESIS AND PHARMACOLOGICAL EVALUATION OF (INDOL-3-YL)ALKYLAMIDES AS POTENT ANALGESIC AGENTS" ARZNEIMITTEL FORSCHUNG. DRUG RESEARCH, ECV EDITIO CANTOR VERLAG, AULENDORF, DE, vol. 51, no. II, 2001, pages 814-824, XP001179739 ISSN: 0004-4172 *
HYNES, J. B. ET AL.: "Synthesis and evaluation of 6-arylacetamido-2,4-diaminoquinazolines and related compounds as folic acid antagonists." J. MED. CHEM., vol. 18, no. 3, 1975, pages 263-265, XP002419269 *
KIBBLE, A. & DURRANCE, A.: "New drugs I" IDRUGS, vol. 4, no. 12, 2001, pages 1319-1323, XP002328082 *
MENCIU C ET AL: "New N-(pyridin-4-yl)-(indol-3-yl)acetamides and propanamides as antiallergic agents" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 42, no. 4, 25 February 1999 (1999-02-25), pages 638-648, XP002241897 ISSN: 0022-2623 *
PENG C-T ET AL: "THE SYNTHESIS OF SOME 6-N-SUBSTITUTED AMIDO DERIVATIVES OF 4,6-DIAMINOQUINALDINE AND A STUDY OF THEIR IN VITRO ANTIBACTERIAL ACTIVITY" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US, vol. 78, 1956, pages 3703-3708, XP002267257 ISSN: 0002-7863 *
WALPOLE C S J ET AL: "Analogues of Capsaicin with Agonist Activity as Novel Analgesic Agents; Structure-Activity Studies. 3. The Hydrophobic Side-Chain "C-Region"." JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 36, 1993, pages 2381-2389, XP002354678 ISSN: 0022-2623 *
YEUNG, J.M. ET AL.: "Synthesis of N-(carbonylamino)-1,2,3,6-tetrahydropyridi nes with analgesic, antiinflammatory and hyperglycemic activity." J. MED. CHEM., vol. 25, 1982, pages 191-195, XP002328084 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107573275A (zh) * 2012-12-28 2018-01-12 日本脏器制药株式会社 肉桂酰胺衍生物

Also Published As

Publication number Publication date
EP1764358A3 (fr) 2007-03-28
EP1780196A2 (fr) 2007-05-02
EP1780196A3 (fr) 2007-05-09

Similar Documents

Publication Publication Date Title
US7582657B2 (en) Vanilloid receptor ligands and their use in treatments
US7396831B2 (en) Vanilloid receptor ligands and their use in treatments
US7332511B2 (en) Vanilloid receptor ligands and their use in treatments
US8227469B2 (en) Vanilloid receptor ligands and their use in treatments
US7390907B2 (en) Vanilloid receptor ligands and their use in treatments
EP1764358A2 (fr) Composés dérivés d`amides cycliques comme ligands des récepteurs vanilloides et leur utilisation pour le traitement de douleurs inflammatoire et neuropathique
EP1780211A2 (fr) Ligands de recepteur vanilloide et utilisation de ceux-ci dans des traitements
AU2007200149A1 (en) Vanilloid receptor ligands and their use in treatments
EP1688408A2 (fr) Ligands du récepteur vanilloide et leur utilisation dans des traitements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AC Divisional application: reference to earlier application

Ref document number: 1463714

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20070515

17Q First examination report despatched

Effective date: 20070619

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AXX Extension fees paid

Extension state: RO

Payment date: 20060516

Extension state: MK

Payment date: 20060516

Extension state: LV

Payment date: 20060516

Extension state: LT

Payment date: 20060516

Extension state: AL

Payment date: 20060516

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080103