EP1756893B1 - Composant comprenant un collecteur d'electrons et de la matiere active, et son utilisation en tant qu'electrode de batterie - Google Patents

Composant comprenant un collecteur d'electrons et de la matiere active, et son utilisation en tant qu'electrode de batterie Download PDF

Info

Publication number
EP1756893B1
EP1756893B1 EP05773269.5A EP05773269A EP1756893B1 EP 1756893 B1 EP1756893 B1 EP 1756893B1 EP 05773269 A EP05773269 A EP 05773269A EP 1756893 B1 EP1756893 B1 EP 1756893B1
Authority
EP
European Patent Office
Prior art keywords
component
transition metal
accumulator
nanoparticles
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05773269.5A
Other languages
German (de)
English (en)
Other versions
EP1756893A2 (fr
Inventor
Sylvie Grugeon
Stéphane LARUELLE
Jean-Marie Tarascon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
Original Assignee
Electricite de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite de France SA filed Critical Electricite de France SA
Publication of EP1756893A2 publication Critical patent/EP1756893A2/fr
Application granted granted Critical
Publication of EP1756893B1 publication Critical patent/EP1756893B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the invention relates to a component, which can be described as a "collector - electrode", comprising at least one electron collector and the active material.
  • the invention also relates to the method of manufacture and the use of such a component, most often as a battery electrode, in particular lithium.
  • Lithium metal or Li metal terminology generally defines the technology in which the anode or negative electrode comprises metal, the electrolyte contains lithium ions, and the cathode or positive electrode comprises at least one electrochemically reversible material with lithium.
  • the electrochemically reactive material reversibly with lithium is for example an insertion material, containing or not lithium.
  • the electrolyte generally contains lithium ions, whether the electrolyte is liquid or polymer loaded with lithium salt - in this case, it is generally said that the polymer is dry.
  • the lithium ion (Li ion) terminology generally defines the technology in which the cathode comprises an insertion material comprising lithium, the anode comprises at least one electrochemically reactive material reversibly with lithium, and the electrolyte contains ions.
  • the electrochemically reactive material reversibly with lithium is for example an insertion material, containing or not lithium, or carbon.
  • the electrolyte generally contains lithium ions, whether in liquid form or in the form of polymer impregnated with liquid - we then speak in the latter case usually plastic electrolyte.
  • Lithium metal technology as well as lithium ion technology, are likely to provide the desired flexibility, but remain at high prices given the nature of the materials used and a level of safety, in case of internal or external defect , insufficient.
  • the price and safety of lithium ion batteries remain major locks for their commercialization in the form of batteries of several kWh on the market of electric and hybrid vehicles.
  • the inventors have found that, thanks to a component based on active material and collector, playing the role of electrode essentially without the addition of secondary conductive material or binder-type compound, it is possible to produce accumulators with comparable performance. even increased in power and in mass energy compared to the accumulators of the prior art. This is especially true in the case of a lithium battery, whether for Li metal technology or Li ion technology.
  • the invention relates more particularly to the field of rechargeable batteries or secondary batteries or accumulators. But it can also concern the field of primary batteries or lithium batteries.
  • the component according to the invention is a component comprising at least one electron collector and electrochemically active material, said active ingredient containing at least one metal belonging to the group of transition metals of groups 4 to 12 of the Periodic Table of Elements, preferably belonging to the group consisting of nickel, cobalt, manganese, copper, chromium and iron, even more preferably chromium, the active ingredient at least partly, preferably substantially entirely, formed from the collector and the active material being at least partly, preferably substantially wholly, on the surface of the electron collector, and at least a portion of the material active compound comprising at least nanoparticles of at least one transition metal compound or agglomerates of said nanoparticles, the nanoparticles being of average size from 1 to 1000 nm, preferably from 10 to 300 nm, and the agglomerates of nanoparticles being of medium size from 1 to 10,000 nm, preferably from 10 to 3,000 nm.
  • collector or “electron collector” according to the invention is meant a piece which collects electrons.
  • active material or “electrochemically active material” is meant according to the invention a material, which may be conductive but not necessarily because it can conduct the electrons by tunneling effect, in which an electrochemical activity occurs (electrochemical reaction which involves exchanges of electrons and ions with the active substance) and / or electrocapacitive by accumulation of charges (electrons).
  • component according to the invention (also called “collector-electrode”) is meant according to the invention a component which performs both a collector function and a function of converting chemical energy into electrical energy by means of the active ingredient.
  • collector electrode is thus meant according to the invention an electron collector which generally has its own electrochemical activity in terms of capacity, that is to say which comprises electrochemically active material.
  • such a component according to the invention advantageously makes it possible to obtain a capacitance (in the electrochemical sense) by bathing it in an electrolyte and by cycling it, more particularly with respect to lithium.
  • the active material is in an original way according to the invention formed from the collector, that is to say generated by treatment of the collector, for example by air treatment, as will be explained in the manufacturing process below. .
  • the transition metal from the collector is converted by treatment of transition metal compound, present mainly on the surface of the collector.
  • the active ingredient is not brought from the outside in the form of powder on a collector, by treatment with a binder or by deposition, as is known from the prior art.
  • the extremely strong technological originality of the invention is that the component according to the invention can provide particularly advantageously an electrode function without the addition of binder or secondary electronic conductor, as in the case of the prior art, even if such addition (s) remain (s) possible.
  • the component according to the invention is generally not a composite material as in the prior art, and generally does not comprise any organic compound.
  • the invention greatly simplifies the manufacture and implementation of electrodes supported according to the prior art, either by facilitating their manufacture or reducing their manufacturing cost, while maintaining or even improving their mechanical strength.
  • the nanoparticles are generally and preferably grouped or agglomerated at the surface of the collector, in agglomerates (nanoparticles) or particles, the agglomerates being of average size from 1 to 10,000 nm, preferably from 10 to 3,000 nm, as it has been shown by scanning microscopy.
  • the set of nanoparticles, agglomerated or not, can thus advantageously form what is called a "surface layer" according to the invention.
  • the surface layer preferably consists mainly of such nanoparticles and / or such agglomerates of nanoparticles, but, more generally, it may also comprise other constituents.
  • the nanoparticles advantageously help to substantially increase the active surface which is brought into contact with the electrolyte during cycling, when using the component according to the invention as an electrode.
  • Said particles are generally and particularly advantageously regularly distributed on the surface of the collector.
  • nanostructured is meant according to the invention a rough and porous surface comprising, preferably consisting mainly of nanoparticles or nanoparticle agglomerates such as previously defined.
  • the component according to the invention is most often nanostructured.
  • the transition metal compound is generally an inorganic transition metal compound.
  • the nanoparticles most often comprise, preferably consist essentially of, at least one compound chosen from inorganic compounds of transition metal, that is to say inorganic compounds comprising at least one transition metal, preferably as a cation.
  • said nanoparticles comprise, preferably consist of, at least one compound selected from transition metal chalcogenides and transition metal halides, more preferably selected from transition metal chalcogenides.
  • the inorganic compound of transition metal is a transition metal oxide.
  • chalcogenide is meant according to the invention an inorganic compound derived from a chalcogenic element, and “chalcogenous” means according to the invention an element selected from the group consisting of oxygen, sulfur, selenium and tellurium.
  • chalcogenides include oxides.
  • a chalcogenide is an oxide or a sulfide, and even more preferably according to the invention a chalcogenide is an oxide.
  • halide is usually meant and according to the invention a fluoride, a chloride, an iodide or bromide.
  • the valency of M is 2 or 3, preferably 3.
  • the valency of M ' is 3.
  • the compounds of formulas Fe x , Cr y , Mn z , O 4 include in particular the compounds of formula Fe x , Cr 1-x Cr 2 O 4 .
  • the component comprises at least partly, preferably entirely, a surface layer formed for the most part at least one compound, preferably an inorganic compound, of transition metal, the surface layer preferably comprising at least part of, preferably being mainly (ie generally at least 50% by weight) consisting of, nanoparticles or agglomerates of nanoparticles of at least one transition metal compound, the nanoparticles and agglomerates of nanoparticles being as defined above.
  • the "surface layer” has been defined previously.
  • said inorganic compound is, as previously indicated, a transition metal chalcogenide and / or a transition metal halide. Even more preferably, said inorganic compound is a transition metal oxide.
  • said surface layer is generally from 30 to 15000 nm thick, preferably from 30 to 12000 nm thick.
  • the collector comprises a metal alloy containing chromium, for example an alloy of iron and chromium.
  • the manifold comprises stainless steel, i.e. is generally composed of a single stainless steel or several stainless steels.
  • the collector may also include non-stainless steel.
  • An example of a collector is an AISI 304 type stainless steel, for example such as that marketed by Goodfellow, which comprises many constituents (including Mn at less than 2% by weight, C at less than 800 ppm by weight) and mostly Ni (8 to 11% weight), Cr (17 to 20% by weight) and iron (weight balance).
  • stainless steel used according to the invention a steel, that is to say a metal alloy comprising iron and carbon (less than 1.5% generally), said stainless steel generally comprising, and preferably according to the invention, chromium, with a chromium content generally greater than or equal to 10.5%. Said steel most often has a carbon content generally less than or equal to 1.2%.
  • a stainless steel may comprise other alloying constituents, and in particular nickel.
  • the component according to the invention essentially differs from the active constituents supported of known lithium accumulators (commercial or otherwise), which owe much to the open structure of the active electrode materials to allow the reversible insertion of ions during cycling. .
  • the components according to the invention exhibit electrochemical activity in the presence of Li with significant capacities.
  • the invention also relates to a method for manufacturing a component according to the invention, said method comprising at least one treatment of at least one material present in an electron collector, said material comprising at least one metal chosen from metals transition from Groups 4 to 12 of the Periodic Table of Elements.
  • said treatment is chosen from high temperature treatments under reducing, neutral or oxidizing atmosphere. Said treatments are conventional treatments, known to those skilled in the art, and generally operate in gaseous medium or medium of salt (s) melt (s).
  • the treatment may be a hydrogen treatment at a temperature generally from 500 to 1000 ° C, preferably from 600 to 800 ° C, for example about 700 ° C.
  • said treatment can also be a treatment under air at a temperature generally of 600 to 1200 ° C, preferably of 800 to 1150 ° C, for example of approximately 1000 ° C. These temperatures are only given as an indication. The skilled person is able to adapt the temperature and duration of treatment as appropriate.
  • the term "hydrogen treatment” or "treatment under air” means a treatment in the presence of at least one gaseous medium comprising hydrogen or air, the complement possibly being another gas such as nitrogen.
  • the treatment is carried out in a mixture comprising 90% nitrogen and 10% hydrogen or air (by volume).
  • the component according to the invention may be pretreated beforehand by at least one pretreatment which is generally at least one acid attack corrosion and / or at least one chemical or physical or electrochemical deposition and / or at least one mechanical treatment and / or at least one a treatment to modify the chemical composition and / or at least one treatment in order to modify the developed surface.
  • pretreatment is generally at least one acid attack corrosion and / or at least one chemical or physical or electrochemical deposition and / or at least one mechanical treatment and / or at least one a treatment to modify the chemical composition and / or at least one treatment in order to modify the developed surface.
  • the invention also relates to the use of at least one component, as described above, as an electrode.
  • the invention further relates to a supercapacitor comprising at least one component according to the invention or manufactured according to the invention.
  • Such a supercapacitor can be in any form of supercapacitors: hybrid, pseudocapacitor, or supercapacitor.
  • the invention further relates to an electrochemical accumulator comprising at least one positive electrode (or cathode), and at least one negative electrode (or anode), characterized in that it comprises at least one component according to the invention or manufactured according to the invention. 'invention.
  • such an electrochemical accumulator is a lithium battery.
  • Said component advantageously acts as an electrode, preferably anode.
  • lithium serves as a reference potential, so that which will serve as an anode in the industrial accumulator is tested as a cathode in the laboratory-type example.
  • Said accumulator generally comprises a separator, for example fiberglass, as is known to those skilled in the art.
  • said accumulator is a lithium metal accumulator.
  • said accumulator generally comprises at least one liquid electrolyte comprising at least one salt, the anode comprising lithium metal, and said accumulator is characterized in that the cathode comprises said component, the cathode preferably consisting mainly of said component .
  • said salt is a lithium and / or ammonium salt, preferably lithium salt.
  • the anode or negative electrode comprises lithium metal, and is preferably based on lithium metal, that is to say it mainly comprises lithium metal.
  • the negative electrode may comprise metallic lithium, or a lithium alloy as is known to those skilled in the art.
  • the liquid electrolyte generally comprises at least one salt as is known to those skilled in the art such as, for example, a lithium salt chosen from the group formed by LiCF 3 SO 3 , LicIO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiAsF 6 , LiSbF 6 , LiPF 6 , and LiBF 4 , and / or an ammonium salt such as (C 4 H 9 ) 4 NClO 4 .
  • a lithium salt chosen from the group formed by LiCF 3 SO 3 , LicIO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiAsF 6 , LiSbF 6 , LiPF 6 , and LiBF 4 , and / or an ammonium salt such as (C 4 H 9 ) 4 NClO 4 .
  • said salt is selected from the group consisting of LiCF 3 SO 3 , LiClO 4 , Li
  • said salt is dissolved in an anhydrous organic solvent, generally consisting of mixtures of varying proportions of propylene carbonate, dimethyl carbonate and ethylene carbonate.
  • said electrolyte generally comprises, as known to those skilled in the art, at least one carbonate, cyclic or acyclic, preferably cyclic according to the invention.
  • said electrolyte is LP30, a commercial compound of the company Merck comprising EC or carbon ethylene, DMC or Di methyl carbonate, and LiPF6 salt, the solution being 1 molar salt and 50% / 50% by weight in solvent.
  • said accumulator is a lithium ion type accumulator.
  • the electrolyte comprises at least one salt
  • the cathode or positive electrode comprises lithium most often as a source of lithium ions
  • said accumulator being characterized in that the anode comprises said component, the anode being preferably mainly constituted of said component.
  • said salt is a lithium and / or ammonium salt, preferably lithium salt.
  • the cathode or positive electrode generally comprises lithiated insertion materials, sources of Li + ion, as is known to those skilled in the art.
  • said cathode comprises at least one lithium compound, such as LiCoO 2 , LiFePO 4 or a compound of LiMX 2 type.
  • the assembly of lithium metal accumulators is generally done for laboratory experimentation purposes in button cell type configurations.
  • the assembly of lithium ion accumulators is also generally for laboratory experimentation purposes in button cell type configurations.
  • the next stack is performed.
  • said component on which are successively deposited 1) a separator, of glass fiber separator type, soaked with electrolyte, 2) a plastic sheet (for example prepared according to Bellcore technology - as described in Example 4), containing a positive electrode material containing lithium, then 3) an untreated steel disc and 4) a metal spring.
  • a cover is added on the top of the button cell and everything is mechanically sealed, usually using a suitable crimper.
  • the lithium-ion accumulator assembly for industrial use is generally from the next stack.
  • a separator, of glass fiber separator type is deposited on said component successively 1) a plastic sheet (for example prepared according to Bellcore technology - such as that described in example 4), containing a positive electrode material containing lithium, 3) a sheet of aluminum, 4) a plastic sheet (for example prepared according to the Bellcore technology - as described in the example and then 5) a separator, fiberglass separator type.
  • the whole is wound on a specific length and then said component is introduced into a metal cup. Said component is in direct electrical contact with the metal cup.
  • the bucket lid is welded onto the aluminum strips.
  • the cup is then filled with liquid electrolyte under vacuum to impregnate the different films.
  • the lid is then crimped on the bucket.
  • the invention finally relates to the use of an accumulator as described above for hybrid vehicle, electric vehicle, stationary application (ie electrical backup or energy storage for renewable energy) or portable equipment.
  • the Hybrid vehicle is a vehicle that combines an electric motor and a heat engine.
  • the figure 1 represents a schematic section of a component according to the invention.
  • a component 200 comprises a collector 100, typically disk-shaped seen on its edge, from which were formed nanoparticles 101 of active material (which are magnified and indicated arbitrarily as being of identical size, to simplify the schematic representation of the figure 1 ).
  • the set 102 of the nanoparticles 101 forms a layer 102 of maximum thickness CS on a surface 100a of the collector 100.
  • the collector 100 is typically made of stainless steel.
  • No external material has been added, such as a secondary electronic conductor or binder.
  • the component 200 as such can serve as an electrode in an accumulator or a supercapacitor.
  • the figure 2 represents a schematic section of a battery 4 according to the invention of lithium metal type.
  • the accumulator 4 comprises an anode or negative electrode 3 (active part) which is based on lithium metal, for example which comprises on its entire surface facing the electrolyte a Li metal layer, a part 2 which is a separator for example fiberglass impregnated with liquid electrolyte which consists for example LP30, and a positive electrode 1 consisting of a component 1 according to the invention placed in such a way that the nanoparticles face part 2.
  • the parts 1, 2 and 3 are discs seen in section.
  • the assembly is crimped into a container 5 for example of the button cell type, which has a lid (not shown here).
  • the figure 3 schematically represents, in perspective view, one of the elements of the figure 2 which is the circular-shaped component according to the invention.
  • the figure 7 represents a schematic section of an accumulator 6 according to the invention of the lithium ion type.
  • the accumulator 6 comprises an anode or negative electrode 10 (active part) consisting of a collector 10 according to the invention, a part 9 which is a separator for example of fiberglass impregnated with liquid electrolyte which consists for example of LP30, a collector 7 of positive electrode current, for example aluminum, and a cathode 8 or positive electrode containing a lithium ion insertion material, for example LiFePO 4 .
  • Anode 10 is placed in such a way that the nanoparticles face part 9. Parts 7, 8, 9 and 10 are discs seen in section.
  • the assembly is crimped into a container 11, for example of the button cell type.
  • This disc polished then treated therefore had in surface layer a nanostructured film consisting essentially of Cr 2 O 3 and Fe x Cr 1-x Cr 2 O 4 (0 x x 1 1 ), said film resting on a surface of stainless steel AISI 304.
  • This disk has been included in a battery 4 as shown in FIG. figure 2 .
  • Said accumulator 4 contained, in a receptacle 5, a polished and then treated disk 1, which acted as a positive electrode or cathode 1, an electrolyte portion 2 which was LP30 impregnated in a fiberglass separator in the form of disk, and a negative electrode or lithium anode 3 in disk form.
  • the figure 4 represents, for such an accumulator according to the invention of the figure 2 , the potential V (in volts) relative to that of the Li / Li + pair as a function of the capacity of said accumulator (C in mAh / cm 2 ) at 55 ° C. So we see the electrochemical behavior of such disc at 55 ° C cycled with LP30 between 0.02 and 3V at a current density of 0.16 mA / cm 2.
  • the first discharge is characterized by a potential drop up to 0.4V. After this fall, the potential / capacitance curve begins to be materialized by a small plateau then evolves towards a slow downward potential curve.
  • the polished and treated AISI 304 disc according to the invention therefore had a large free surface for the electrolyte. This surface played the role of catalyst for the degradation of the electrolyte which can partly explain the extra capacity. When the electrolyte is completely consumed or there is poisoning of the electrode with the degradation products, the capacity drops to practically zero.
  • the figure 5 represents, for the same accumulator according to the invention as that studied above at the figure 4 , the capacity of said accumulator (C in mAh / cm 2 ), as well as the capacity of a comparative accumulator (comprising the disc AISI 304 (P) polished then untreated), as a function of the number of cycles (N) at 55 ° vs.
  • Said polished and untreated AISI 304 (P) disk was integrated in a so-called comparative battery in the same way as was the polished and then treated disk (T) according to the invention.
  • the figure 5 underlines the evolution of the capacitance as a function of the number of cycles of an accumulator comprising the polished and then treated AISI 304 disc (T), according to the invention, as well as that of the comparative accumulator.
  • the capacity of the accumulator according to the invention comprising the polished disc then treated (T) has steadily increased to about 400 cycles, then decreased to about 600 cycles, while the capacity of the comparative accumulator showed only a slight evolution during cycling.
  • Such an unpolished and then treated disk therefore had a nanostructured film consisting essentially of Cr 2 O 3 and Fe x Cr 1-x Cr 2 O 4 (0 x x 1 1 ) as a surface layer, said film resting on a surface of This disk has been included in a battery 4 as shown in FIG. figure 2 .
  • Said accumulator 4 had a disk 1 which played the role of positive electrode or cathode 1, an electrolyte 2 which was LP30, and a negative electrode or anode 3 lithium.
  • the figure 6 represents, for said accumulator according to the invention of the figure 2 different from the one studied figures 4 and 5 , the load capacity (T1) and the discharge capacity (T2) of the said accumulator (C in mAh / cm 2 ), as well as the capacity of a comparative accumulator (NT) (comprising an unpolished and untreated disk), according to the number of cycles (N).
  • NT comparative accumulator
  • Said unpolished and untreated AISI 304 (NT) disk was integrated into a so-called comparative battery in the same way as was the unpolished and then treated disk (T1 or T2) according to the invention.
  • FIG. 6 It shows the electrochemical behavior of an accumulator comprising an unpolished and treated (T1 or T2) AISI 304 disk according to the invention at 55 ° C cycled with LP30 between 0.02 and 3V at a current density of 0, 16 mA / cm2.
  • the figure 6 shows the evolution of the capacity as a function of the number of cycles of the accumulator according to the invention compared with that of the comparative accumulator (NT) obtained for said cycling.
  • the capacities increased to about 0.45 mAh / cm 2 after about 400 cycles.
  • a Li-ion electrochemical accumulator was assembled into a button cell so as to produce a button-type accumulator, comprising an unpolished AISI 304 disk then treated according to the procedure described in Example 2, as a negative electrode, a fiber-optic separator. glass impregnated with LP30, and an electrode made of LiFePO4 and carbon materials mixed in a polymer matrix as a positive electrode (case of a positive plastic electrode).
  • the positive electrode was consisting of 72.4% by weight of LiFePO 4 , 7.85% by weight of carbon and 19.75% by weight of a binder polymer which was PVDF-HFP (for Poly Vinyl DI Fluoride - Hexa Fluoro Propylene).
  • PVDF-HFP for Poly Vinyl DI Fluoride - Hexa Fluoro Propylene
  • the figure 8 represents, for such an accumulator according to the invention of lithium ion type, different from that studied at figures 4 and 5 , the capacity of said accumulator (C in mAh / cm 2 ) cycled between 0.01 and 3.43V at 55 ° C, at a current density of 0.16 mA / cm 2 as a function of the number of cycles (N).
  • the surface of the disk before treatment was found to be approximately flat while that of the disk heat-treated in air exhibited particles of octahedral (or rhombic) shape, of heterogeneous size up to 2000 nm, as well as platelet-shaped particles about 10,000 nm in diameter and 500 nm thick.
  • the composition of two types of particles was determined by transmission electron microscopy coupled with EDS elemental analyzer: the octahedral particles were characterized by a spinel structure phase composition close to 0.96 Mn, Fe 0, 03 Cr 2 O 4 whereas the particles in platelet form corresponded to the crystallized phase Cr 2 O 3 .
  • Such an unpolished stainless steel disc then treated in air at 800 ° C. thus contained in a surface layer a film consisting essentially of oxides mainly based on chromium such as Cr 2 O 3 and Mn 0.96 , Fe 0 , 03 Cr 2 O 4 .
  • This disk has been included in a battery 4 as shown in FIG. figure 1 .
  • Said accumulator 4 had a disk 1 which played the role of positive electrode or cathode 1, an electrolyte 2 which was LP30 and a negative electrode or anode 3 in lithium.
  • the figure 9 represents for such an accumulator according to the invention the potential V (in Volts) with respect to that of the Li / Li + pair as a function of the capacitance of said capacitor accumulator (C in mAh / cm 2 ) at 55 ° C.
  • the cycling was carried out with LP30, between 0.02 and 3V at a current density of 0.15 mAh / cm 2 .
  • the first discharge is characterized by a potential drop up to about 0.15V then the potential curve is materialized by a pseudo plateau falling slowly to reach a capacity of about 0.96 mAh / cm 2 .
  • the electroactivity has been multiplied by a factor slightly greater than 3 for a nearly identical applied current density.
  • the figure 10 represents the capacitance C (mAh / cm 2 ) of such an accumulator according to the invention, as a function of the number of cycles (N), as well as the capacities of three other accumulators according to the invention identical to the preceding one with the exception of that the temperatures of the heat treatment in air of stainless steel disks have been modified, namely: 600 ° C, 700 ° C and 750 ° C instead of 800 ° C.
  • the temperatures of the heat treatment in air of stainless steel disks have been modified, namely: 600 ° C, 700 ° C and 750 ° C instead of 800 ° C.
  • a SUS316L type stainless steel disc marketed by HOHSEN Corporation, having a diameter of 1.6 cm and a thickness of 0.5 mm, was chemically pre-treated in order to increase the porosity of the surface and thus the electrochemically active surface. .
  • the pretreatment took place in three stages: 1) cleaning in the THF (Tetra Hydro Furane), 2) an activation step of 5 minutes in a sulfuric acid solution (5% by volume), and 3) a chemical oxidation in a suitable acid solution at 60 ° C.
  • the bath was composed of sulfuric acid (0.93M), Na 2 S 2 O 3 (0.0006M) and propargyl alcohol C 3 H 4 O (0.05M).
  • the stainless steel discs marked A and B chemically treated then thermally treated under a stream of nitrogen / hydrogen mixture at 700 ° C., had, in a surface layer, a film consisting essentially of oxides mainly based on chromium such as Cr 2 O 3. and Fe x Cr 1-x Cr 2 O 4 (0 x x 1 1 ).
  • Each of these disks has been included in an accumulator 4 as shown in FIG. figure 1 .
  • Said accumulator 4 had a disk 1 which played the role of positive electrode or cathode 1, an electrolyte 2 which was LP30 and a negative electrode or anode 3 in lithium.
  • the figure 11 represents the capacity (mAh / cm 2 ) of accumulators containing discs A or B as a function of the number of cycles (N), as well as, for comparison, the capacity of an accumulator whose disc SUS316L has not undergone any chemical treatment before heat treatment under nitrogen / hydrogen mixture stream at 700 ° C. Cycling was performed with LP30 at 55 ° C between 0.02 and 3V at a current density of 0.15 mAh / cm 2 .
  • a chemical pretreatment allowed to multiply the capacities by a factor of about 5.
  • the figure 11 also emphasizes the influence of the duration of the third stage of chemical pretreatment: was increased from 0.8 to 1.1 amH / cm 2 by increasing the duration of this treatment from 5 to 20 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

  • L'invention concerne un composant, que l'on peut qualifier de « collecteur - électrode », comprenant au moins un collecteur d'électrons et de la matière active. L'invention concerne aussi le procédé de fabrication et l'utilisation d'un tel composant, le plus souvent en tant qu'électrode de batterie en particulier au lithium.
  • L'extraordinaire essor du marché des appareils électroniques portables suscite en amont une émulation de plus en plus importante dans le domaine des batteries rechargeables ou accumulateurs. Outre le téléphone mobile qui connaît un développement fulgurant, les ventes des ordinateurs portables, avec une progression de 20% par an, impliquent de nouvelles exigences quant aux performances de leurs alimentations. A cela s'ajoute aussi l'expansion du marché des caméscopes, des appareils photos numériques, des baladeurs CD, des outils sans fils et de nombreux jouets qui requièrent de plus en plus souvent des batteries rechargeables. Enfin, il est probable que le XXIème siècle verra un développement considérable du véhicule électrique et des véhicules hybrides, dont l'émergence résulte de la réglementation internationale de plus en plus sévère quant aux émissions polluantes et à effet de serre des moteurs thermique.
  • Bien que le marché des accumulateurs soit de nos jours très attractif, il est cependant important de faire le bon choix afin de pouvoir se positionner pour la nouvelle génération d'appareils électroniques. En réalité, ce sont les progrès de l'électronique qui dictent le cahier des charges pour les accumulateurs de demain. Aux demandes d'accumulateurs plus autonomes s'est ajouté ces dernières années, en raison de la miniaturisation, le désir d'avoir des accumulateurs plus minces et flexibles.
  • La terminologie lithium métal (ou Li métal) définit généralement la technologie dans laquelle l'anode ou électrode négative comprend du métal, l'électrolyte contient des ions lithium, et la cathode ou électrode positive comprend au moins un matériau réagissant électrochimiquement de façon réversible avec le lithium. Le matériau réagissant électrochimiquement de façon réversible avec le lithium est par exemple un matériau d'insertion, contenant ou non du lithium. L'électrolyte contient généralement des ions lithium, que l'électrolyte soit liquide ou polymère chargé en sel de lithium - on parle alors dans ce dernier cas généralement de polymère sec.
  • La terminologie lithium ion (Li ion) définit généralement la technologie dans laquelle la cathode comprend un matériau d'insertion comprenant du lithium, l'anode comprend au moins un matériau réagissant électrochimiquement de façon réversible avec le lithium, et l'électrolyte contient des ions lithium. Le matériau réagissant électrochimiquement de façon réversible avec le lithium est par exemple un matériau d'insertion, contenant ou non du lithium, ou du carbone. L'électrolyte contient généralement des ions lithium, que ce soit sous forme liquide ou sous forme de polymère imprégné de liquide - on parle alors dans ce dernier cas généralement d'électrolyte plastique.
  • La technologie lithium métal, ainsi que la technologie lithium ion, sont susceptibles d'apporter la flexibilité recherchée, mais restent à des prix élevés compte tenu de la nature des matériaux employés et d'un niveau de sécurité, en cas de défaut interne ou externe, insuffisant. Par ailleurs, le prix et la sécurité des accumulateurs lithium ion restent des verrous majeurs pour leur commercialisation sous la forme de batteries de plusieurs kWh sur le marché des véhicules électriques et hybrides.
  • Les inventeurs ont trouvé que, grâce à un composant à base de matière active et de collecteur, jouant le rôle d'électrode essentiellement sans ajout de matière conductrice secondaire ni de composé de type liant, il est possible de réaliser des accumulateurs possédant des performances comparables voire accrues en puissance et en énergie massique par rapport aux accumulateurs de l'art antérieur. Ceci est plus particulièrement vrai dans le cas d'un accumulateur au lithium, que ce soit pour une technologie Li métal ou une technologie Li ion.
  • L'invention concerne plus particulièrement le domaine des batteries rechargeables ou batteries secondaires ou accumulateurs. Mais elle peut aussi concerner le domaine des batteries primaires ou piles au Lithium.
  • Le composant selon l'invention est un composant comprenant au moins un collecteur d'électrons et de la matière électrochimiquement active, ladite matière active contenant au moins un métal appartenant au groupe des métaux de transition des groupes 4 à 12 de la Classification Périodique des Eléments, de préférence appartenant au groupe constitué du nickel, du cobalt, du manganèse, du cuivre, du chrome et du fer, de façon encore plus préférée du chrome, la matière active ayant au moins en partie, de préférence pratiquement en totalité, été formée à partir du collecteur et la matière active étant au moins en partie, de préférence pratiquement en totalité, en surface du collecteur d'électrons, et au moins une partie de la matière active comprenant au moins des nanoparticules d'au moins un composé du métal de transition ou des agglomérats desdites nanoparticules, les nanoparticules étant de taille moyenne de 1 à 1000 nm de préférence de 10 à 300 nm, et les agglomérats de nanoparticules étant de taille moyenne de 1 à 10000 nm de préférence de 10 à 3000 nm.
  • Par « collecteur » ou « collecteur d'électrons » selon l'invention, on entend une pièce qui collecte des électrons. Par « matière active » ou « matière électrochimiquement active », on entend selon l'invention une matière, qui peut être conductrice mais pas nécessairement car elle peut conduire les électrons par effet tunnel, dans laquelle se produit une activité électrochimique (réaction électrochimique qui implique des échanges d'électrons et d'ions avec la matière active) et/ou électrocapacitive par accumulation de charges (électrons). Par « composant » selon l'invention (appelé aussi « collecteur - électrode »), on entend selon l'invention un composant qui exerce à la fois une fonction de collecteur et une fonction de conversion d'énergie chimique en énergie électrique grâce à de la matière active. Par « collecteur - électrode », on entend ainsi selon l'invention un collecteur d'électrons qui a généralement sa propre activité électrochimique en terme de capacité, c'est-à-dire qui comprend de la matière électrochimiquement active.
  • Ainsi, un tel composant selon l'invention permet avantageusement d'obtenir une capacité (au sens électrochimique) en le baignant dans un électrolyte et en le cyclant, plus particulièrement vis-à-vis du lithium.
  • La matière active est de façon originale selon l'invention formée à partir du collecteur, c'est-à-dire générée par traitement du collecteur, par exemple par traitement sous air ainsi qu'il sera explicité dans le procédé de fabrication ci-après. Typiquement, le métal de transition issu du collecteur est transformé par traitement en composé de métal de transition, présent principalement en surface du collecteur.
  • Ainsi, selon l'invention, la matière active n'est pas apportée de l'extérieur sous forme de poudre sur un collecteur, par traitement avec un liant ou par dépôt, ainsi qu'il est connu de l'art antérieur. L'originalité technologique extrêmement forte de l'invention est que le composant selon l'invention peut assurer de façon particulièrement avantageuse une fonction d'électrode sans ajout de liant ou de conducteur électronique secondaire, comme dans le cas de l'art antérieur, même si de tel(s) ajout(s) reste(nt) possible(s). Ainsi, le composant selon l'invention n'est généralement pas un matériau composite comme dans l'art antérieur, et ne comprend généralement pas de composé organique.
  • L'invention simplifie donc énormément la fabrication et la mise en oeuvre d'électrodes supportées selon l'art antérieur, que ce soit en facilitant leur fabrication ou en réduisant leur coût de fabrication, tout en maintenant voire en améliorant leur tenue mécanique.
  • Les nanoparticules sont généralement et de préférence regroupées ou agglomérées en surface du collecteur, en agglomérats (de nanoparticules) ou particules, les agglomérats étant de taille moyenne de 1 à 10000 nm, de préférence de 10 à 3000 nm, ainsi qu'il a été montré par microscopie à balayage. L'ensemble des nanoparticules, agglomérées ou non, peut ainsi former avantageusement ce qu'on appelle une « couche de surface » selon l'invention. La couche de surface est de préférence principalement constituée de telles nanoparticules et/ou de tels agglomérats de nanoparticules, mais, plus généralement, elle peut aussi comporter d'autres constituants. Par suite, les nanoparticules aident avantageusement à augmenter de façon substantielle la surface active qui est mise en contact avec l'électrolyte durant le cyclage, lors d'une utilisation du composant selon l'invention en électrode. Lesdites particules sont généralement et de façon particulièrement avantageuse régulièrement distribuées à la surface du collecteur.
  • Par « nanostructuré », on qualifie selon l'invention une surface rugueuse et poreuse comportant des, de préférence constitué principalement de, nanoparticules ou agglomérats de nanoparticules tels que définis précédemment. Le composant selon l'invention est le plus souvent nanostructuré.
  • Le composé de métal de transition est généralement un composé inorganique de métal de transition. Ainsi, les nanoparticules comprennent le plus souvent, de préférence sont essentiellement constituées de, au moins un composé choisi parmi les composés inorganiques de métal de transition, c'est-à-dire les composés inorganiques comprenant au moins un métal de transition, de préférence en tant que cation.
  • De préférence, lesdites nanoparticules comprennent, de préférence consistent en, au moins un composé choisi parmi les chalcogénures de métal de transition et les halogénures de métal de transition, de façon encore plus préférée choisi parmi les chalcogénures de métal de transition. De préférence selon l'invention le composé inorganique de métal de transition est un oxyde de métal de transition.
  • Par « chalcogénure », on entend selon l'invention un composé inorganique dérivé d'un élément chalcogène, et par « chalcogène » on entend selon l'invention un élément choisi dans le groupe formé par l'oxygène, le soufre, le sélénium et le tellure. Ainsi les chalcogénures comprennent les oxydes. De préférence selon l'invention un chalcogénure est un oxyde ou un sulfure, et de façon encore plus préférée selon l'invention un chalcogénure est un oxyde. Par « halogénure », on entend usuellement et selon l'invention un fluorure, un chlorure, un iodure ou un bromure.
  • Dans un mode de réalisation de l'invention, le composé du métal de transition est de formule MxOy, dans lequel 1 ≤ x ≤ 3 et 1 ≤ y ≤ 5, de préférence 1 ≤ y ≤ 4, et M est au moins un métal de transition,
    le composé de métal de transition étant de préférence de formule choisie :
    • dans le groupe formé par les structures spinelles AB2O4, où A est au moins un métal de transition choisi dans le groupe formé par Fe, Mn, Cr, Ni, Co et Cu, et B est au moins un métal choisi dans le groupe formé par Fe, Cr et Mn, et/ou
    • dans le groupe formé par les sesquioxydes M'2O3, où M' est au moins un métal de transition choisi dans le groupe formé par Fe, Mn, Cr, Ni, Co et Cu,
    • le composé de métal de transition étant de façon encore plus préférée de formule

              Fex, Cry, Mnz, O4,

      où :
      • 0 ≤ x' ≤ 1, 0 ≤ z' ≤ 1, et x' + y' + z' = 3, et/ou Cr2O3.
  • De préférence, la valence de M est de 2 ou 3, de préférence de 3. De préférence, la valence de M' est de 3. Les composés de formules Fex, Cry, Mnz, O4 englobent en particulier les composés de formule Fex, Cr1-xCr2O4.
  • Selon un mode de réalisation de l'invention, le composant comprend au moins en partie, de préférence en totalité, une couche de surface formée en majeure partie d'au moins un composé, de préférence inorganique, de métal de transition, la couche de surface comprenant de préférence au moins en partie des, de préférence étant principalement (i.e. généralement au moins 50% en poids) constituée de, nanoparticules ou agglomérats de nanoparticules d'au moins un composé de métal de transition, les nanoparticules et les agglomérats de nanoparticules étant tels que définis précédemment. La « couche de surface » a été définie précédemment. De préférence, ledit composé inorganique est, comme indiqué précédemment, un chalcogénure de métal de transition et/ou un halogénure de métal de transition. De façon encore plus préférée, ledit composé inorganique est un oxyde de métal de transition.
  • Selon ce mode de réalisation de l'invention, ladite couche de surface est généralement d'épaisseur de 30 à 15000 nm, de préférence de 30 à 12000 nm.
  • Selon un mode particulièrement préféré de réalisation du composant selon l'invention, le collecteur comprend un alliage de métaux contenant du chrome, par exemple un alliage de fer et de chrome. De préférence le collecteur comprend de l'acier inoxydable, c'est-à-dire est généralement composé d'un seul acier inoxydable ou de plusieurs aciers inoxydables. Le collecteur peut aussi comprendre de l'acier non inoxydable.
  • Un exemple de collecteur est un acier inoxydable de type AISI 304, par exemple tel que celui commercialisé par la société Goodfellow, qui comprend de nombreux constituants (dont du Mn à moins de 2% poids, du C à moins de 800 ppm poids) et majoritairement du Ni (8 à 11% poids), du Cr (17 à 20% poids) et du fer (balance en poids).
  • Par « acier inoxydable » (appelé communément « inox »), on entend selon l'invention un acier, c'est-à-dire un alliage de métaux comprenant du fer et du carbone (moins de 1,5% généralement), ledit acier inoxydable comprenant généralement, et de façon préférée selon l'invention, du chrome, avec une teneur en chrome généralement supérieure ou égale à 10,5 %. Ledit acier a le plus souvent une teneur en carbone généralement inférieure ou égale à 1,2 %. Un acier inoxydable peut comporter d'autres constituants d'alliage, et en particulier du nickel.
  • Le composant selon l'invention diffère de façon essentielle des constituants actifs supportés des accumulateurs au lithium connus (commerciaux ou non), qui doivent beaucoup à la structure ouverte des matériaux d'électrode actifs pour permettre l'insertion réversible des ions au cours du cyclage. Bien que ne présentant pas de structure semblable, les composants selon l'invention présentent une activité électrochimique en présence de Li avec des capacités importantes.
  • L'invention concerne aussi un procédé de fabrication d'un composant selon l'invention, ledit procédé comprenant au moins un traitement d'au moins un matériau présent dans un collecteur d'électrons, ledit matériau comprenant au moins un métal choisi parmi les métaux de transition des groupes 4 à 12 de la Classification Périodique des Eléments. Généralement selon un mode préféré selon l'invention, ledit traitement est choisi parmi les traitements haute température sous atmosphère réductrice, neutre ou oxydante. Lesdits traitements sont des traitements classiques, connus de l'homme du métier, et opèrent généralement en milieu(x) gazeux ou en milieu de sel(s) fondu(s). Le traitement peut être un traitement sous hydrogène à une température généralement de 500 à 1000°C, de préférence de 600 à 800°C, par exemple d'environ 700°C. De préférence, ledit traitement peut aussi être un traitement sous air à une température généralement de 600 à 1200°C, de préférence de 800 à 1150°C, par exemple d'environ 1000°C. Ces températures sont uniquement données à titre indicatif. L'homme du métier est à même d'adapter la température et la durée de traitement selon le cas. Par « traitement sous hydrogène » ou « traitement sous air », on entend selon l'invention un traitement en présence d'au moins un milieu gazeux comprenant de l'hydrogène ou de l'air, le complément pouvant être un autre gaz tel que l'azote. Par exemple le traitement se fait dans un mélange comprenant 90% d'azote et 10% d'hydrogène ou d'air (en volume).
  • Le composant selon l'invention peut être préalablement traité par au moins un prétraitement qui est généralement au moins une corrosion sous attaque acide et/ou au moins un dépôt chimique ou physique ou électrochimique et/ou au moins un traitement mécanique et/ou au moins un traitement afin d'en modifier la composition chimique et/ou au moins un traitement afin d'en modifier la surface développée.
  • L'invention concerne aussi l'utilisation d'au moins un composant, tel que décrit précédemment, en tant qu'électrode.
  • L'invention concerne de plus un supercondensateur comprenant au moins un composant selon l'invention ou fabriqué selon l'invention.
  • Un tel supercondensateur peut se présenter sous toutes les formes de supercondensateurs : hybride, pseudocondensateur, ou supercondensateur.
  • L'invention concerne en outre un accumulateur électrochimique comprenant au moins une électrode positive (ou cathode), et au moins une électrode négative (ou anode), caractérisé en ce qu'il comporte au moins un composant selon l'invention ou fabriqué selon l'invention.
  • De préférence, un tel accumulateur électrochimique est un accumulateur au lithium.
  • Ledit composant joue avantageusement le rôle d'électrode, de préférence d'anode. Par la suite, dans les exemples de type laboratoire, le lithium sert de potentiel de référence, donc ce qui servira en tant qu'anode dans l'accumulateur industriel est testé en tant que cathode dans l'exemple de type laboratoire.
  • Ledit accumulateur comprend généralement un séparateur, par exemple en fibre de verre, ainsi qu'il est connu de l'homme du métier.
  • Dans un premier mode de réalisation de l'invention, ledit accumulateur est un accumulateur de type lithium métal. Dans ce cas, ledit accumulateur comprend généralement au moins un électrolyte liquide comprenant au moins un sel, l'anode comprenant du lithium métal, et ledit accumulateur est caractérisé en ce que la cathode comprend ledit composant, la cathode étant de préférence principalement constituée dudit composant.
  • Dans ce premier mode de réalisation, généralement, ledit sel est un sel de lithium et/ou d'ammonium, de préférence de lithium.
  • Dans ce premier mode de réalisation, généralement, l'anode ou électrode négative comprend du lithium métal, et est de préférence à base de lithium métal, c'est-à-dire qu'elle comprend principalement du lithium métal. Mais de façon plus générale, l'électrode négative peut comprendre du lithium métallique, ou un alliage de lithium ainsi qu'il est connu de l'homme du métier.
  • L'électrolyte liquide comprend généralement au moins un sel ainsi qu'il est connu de l'homme du métier tel que par exemple un sel de lithium choisi dans le groupe formé par LiCF3SO3, LiclO4, LiN (C2F5SO2) 2, LiN (CF3SO2)2, LiAsF6, LiSbF6, LiPF6, et LiBF4, et/ou un sel d'ammonium tel que (C4H9)4NClO4. De préférence ledit sel est choisi dans le groupe formé par LiCF3SO3, LiClO4, LiPF6, et LiBF9.
  • En général ledit sel est dissous dans un solvant organique anhydre, constitué généralement de mélanges en proportions variables de carbonate de propylène, de carbonate de diméthyle et de carbonate d'éthylène. Ainsi, ledit électrolyte comprend généralement, comme il est connu de l'homme du métier, au moins un carbonate, cyclique ou acyclique, de préférence cyclique selon l'invention. Par exemple, ledit électrolyte est du LP30, composé commercial de la société Merck comportant de l'EC ou Ethylène de Carbone, du DMC ou Di Méthyl Carbonate, et du sel LiPF6, la solution étant 1 molaire en sel et 50%/50% par poids en solvant.
  • Dans un second mode de réalisation de l'accumulateur selon l'invention, ledit accumulateur est un accumulateur de type lithium ion. Dans ce cas, généralement, l'électrolyte comprend au moins un sel, et la cathode ou électrode positive comprend du lithium le plus souvent en tant que source d'ions lithium, ledit accumulateur étant caractérisé en ce que l'anode comprend ledit composant, l'anode étant de préférence principalement constituée dudit composant.
  • Dans ce second mode de réalisation, généralement, ledit sel est un sel de lithium et/ou d'ammonium, de préférence de lithium.
  • Dans ce second mode de réalisation, la cathode ou électrode positive comprend généralement des matériaux d'insertion lithiés, sources d'ion Li+, ainsi qu'il est connu de l'homme du métier. Par exemple ladite cathode comprend au moins un composé de lithium, tel que LiCoO2, LiFePO4 ou un composé de type LiMX2.
  • L'assemblage d'accumulateurs de type lithium métal se fait généralement pour des besoins d'expérimentation de laboratoire dans des configurations de type piles boutons. L'assemblage d'accumulateurs de type lithium ions se fait également généralement pour des besoins d'expérimentation de laboratoire dans des configurations de type piles boutons. Pour ce faire, on effectue l'empilement suivant. On place tout d'abord, au fond d'un boîtier de pile bouton, ledit composant sur lequel sont déposés successivement 1) un séparateur, de type séparateur fibre de verre, imbibé d'électrolyte, 2) un feuillet plastique (par exemple préparé selon la technologie Bellcore - tel que celui décrit dans l'exemple 4), contenant un matériau d'électrode positive contenant du lithium, puis 3) un disque d'acier non traité et 4) un ressort métallique. Par la suite, un couvercle est ajouté sur le dessus de la pile bouton et le tout est scellé mécaniquement, le plus souvent à l'aide d'une sertisseuse adaptée.
  • L'assemblage d'accumulateur de type lithium-ion pour un usage industriel se fait généralement à partir de l'empilement suivant. On dépose sur ledit composant successivement 1) un séparateur, de type séparateur fibre de verre, 2)un feuillet plastique (par exemple préparé selon la technologie Bellcore - tel que celui décrit dans l'exemple 4), contenant un matériau d'électrode positive contenant du lithium, 3) un feuillet d'aluminium, 4) un feuillet plastique (par exemple préparé selon la technologie Bellcore - tel que celui décrit dans l'exemple puis 5)un séparateur, de type séparateur fibre de verre. Le tout est enroulé sur une longueur déterminée puis ledit composant est introduit dans un godet métallique. Ledit composant est en contact électrique direct avec le godet métallique. Le couvercle du godet est soudé sur les feuillards d'aluminium. Le godet est ensuite rempli d'électrolyte liquide sous vide afin d'imprégner les différent films. Le couvercle est alors serti sur le godet.
  • L'invention concerne enfin l'utilisation d'un accumulateur tel que décrit précédemment pour véhicule hybride, véhicule électrique, application stationnaire (i.e. secours électrique ou stockage d'énergie pour les énergies renouvelables) ou équipement portable. Le véhicule hybride est un véhicule qui combine un moteur électrique et un moteur thermique.
  • L'invention sera mieux comprise et d'autres caractéristiques et avantages apparaîtront à la lecture de la description qui va suivre, donnée à titre non limitatif, par référence aux figures 1 à 11.
    • La figure 1 représente une coupe schématique d'un composant selon l'invention.
    • La figure 2 représente une coupe schématique d'un accumulateur selon l'invention de type lithium métal comprenant un composant selon l'invention.
    • La figure 3 représente schématiquement, en vue en perspective, un des éléments de la figure 2 qui est le composant selon l'invention.
    • La figure 4 représente, pour un accumulateur selon l'invention de la figure 2, le potentiel V (en volts) par rapport à celui du couple Li / Li+ en fonction de la capacité dudit accumulateur (C en mAh/cm2) à 55°C.
    • La figure 5 représente, pour le même accumulateur selon l'invention que celui étudié à la figure 4, la capacité dudit accumulateur (C en mAh/cm2), ainsi que la capacité d'un accumulateur comparatif, en fonction du nombre de cycles (N) à 55°C.
    • La figure 6 représente, pour un accumulateur selon l'invention de la figure 2, différent de celui étudié aux figures 4 et 5, la capacité en charge (T1) et en décharge (T2) dudit accumulateur (C en mAh/cm2) ainsi que la capacité d'un accumulateur comparatif, en fonction du nombre de cycles (N).
    • La figure 7 représente une coupe schématique d'un accumulateur selon l'invention de type lithium ion comprenant un composant selon l'invention.
    • La figure 8 représente, pour un accumulateur selon l'invention de type lithium ion, différent de celui étudié aux figures 4 et 5, la capacité dudit accumulateur (C en mAh/cm2) en fonction du nombre de cycles (N).
    • La figure 9 représente, pour un accumulateur selon l'invention, le potentiel V (en volts) par rapport à celui du couple Li / Li+ en fonction de la capacité dudit accumulateur (C en mAh/cm2) à 55°C.
    • La figure 10 représente la capacité C (mAh/cm2) de quatre accumulateurs selon l'invention en fonction du nombre de cycles (N).
    • La figure 11 représente la capacité C (mAh/cm2) d'accumulateurs (A et B) selon l'invention en fonction du nombre de cycles (N) ainsi que, pour comparaison, la capacité C (mAh/cm2) d'un accumulateur comparatif (Comp).
  • La figure 1 représente une coupe schématique d'un composant selon l'invention. Un tel composant 200 comporte un collecteur 100, typiquement en forme de disque vu sur sa tranche, à partir duquel ont été formées des nanoparticules 101 de matière active (qui sont grossies et indiquées arbitrairement comme étant de taille identique, pour simplifier la représentation schématique de la figure 1). L'ensemble 102 des nanoparticules 101 forme une couche 102 d'épaisseur maximale CS sur une surface 100a du collecteur 100. Plus cette couche 102 est épaisse, plus les nanoparticules 101 peuvent s'agglomérer (agglomérats non représentés). Cela a été réalisé par traitement, par exemple sous air à haute température, du collecteur 100 et en particulier de sa surface 100a. Le collecteur 100 est typiquement en acier inoxydable. Le chrome (Cr), le fer (Fe) et le manganèse (Mn), constituants du collecteur 100, ont réagi avec l'oxygène (O2) de l'air pour former des oxydes principalement à base de chrome sous forme de nanoparticules 101. Aucune matière extérieure n'a été ajoutée, tel qu'un conducteur électronique secondaire ou un liant. Pourtant, le composant 200 tel quel peut servir d'électrode dans un accumulateur ou un supercondensateur.
  • La figure 2 représente une coupe schématique d'un accumulateur 4 selon l'invention de type lithium métal. L'accumulateur 4 comprend une anode ou électrode négative 3 (partie active) qui est à base de lithium métal, par exemple qui comprend sur toute sa surface faisant face à l'électrolyte une couche de Li métal, une partie 2 qui est un séparateur par exemple en fibre de verre imprégné d'électrolyte liquide qui est constitué par exemple de LP30, et une électrode positive 1 constituée d'un composant 1 selon l'invention placé de telle façon que les nanoparticules font face à la partie 2. Les pièces 1, 2 et 3 sont des disques vus en coupe. L'ensemble est serti dans un récipient 5 par exemple de type pile bouton, qui comporte un couvercle (non représenté ici).
  • La figure 3 représente schématiquement, en vue en perspective, un des éléments de la figure 2 qui est le composant de forme circulaire selon l'invention.
  • Les figures 4 et 5 sont commentées ci-après dans l'exemple 1.
  • La figure 6 est commentée ci-après dans l'exemple 2.
  • La figure 7 représente une coupe schématique d'un accumulateur 6 selon l'invention de type lithium ion. L'accumulateur 6 comprend une anode ou électrode négative 10 (partie active) constituée d'un collecteur 10 selon l'invention, une partie 9 qui est un séparateur par exemple en fibre de verre imprégné d'électrolyte liquide qui est constitué par exemple de LP30, un collecteur 7 de courant d'électrode positive, par exemple en aluminium, et une cathode 8 ou électrode positive contenant un matériau d'insertion aux ions lithium, par exemple LiFePO4. L'anode 10 est placée de telle façon que les nanoparticules font face à la partie 9. Les pièces 7, 8, 9 et 10 sont des disques vus en coupe. L'ensemble est serti dans un récipient 11 par exemple de type pile bouton.
  • La figure 8 est commentée ci-après dans l'exemple 3.
  • Les figures 9 et 10 sont commentées ci-après dans l'exemple 4.
  • La figure 11 est commentée ci-après dans l'exemple 5.
  • EXEMPLES
  • Les exemples qui suivent illustrent l'invention sans pour autant en limiter la portée.
  • Exemple 1
  • On a pris un disque d'INOX AISI 304 commercialisé par la société Goodfellow de 1,8 cm2 de surface (géométrique), poli et d'épaisseur 0,5 mm. Sa surface développée était égale à sa surface (géométrique) et était donc de 1,8 cm2. Un tel disque a été chauffé sous un mélange d'azote contenant 10% en hydrogène à raison d'une élévation de 5°C par minute pour des températures allant de 25°C jusqu'à 700°C. La température a été maintenue à 700°C pendant 13 heures avant d'être abaissée à température ambiante (généralement d'environ 20°C) sans rampe. Par microscopie à balayage dudit disque AISI 304 poli avant et après traitement thermique, on a vu que la surface du disque était uniforme dans le cas du disque poli alors que dans le cas du disque poli puis traité, on voyait que la surface du disque contenait des particules d'environ 50 à 100 nm. Un tel disque poli puis traité comportait une surface développée estimée à environ 40 cm2.
  • Ce disque poli puis traité, comportait donc en couche de surface un film nanostructuré composé essentiellement de Cr2O3 et de FexCr1-xCr2O4 (0≤x≤1), ledit film reposant sur une surface d'inox AISI 304. Ce disque a été inclus dans un accumulateur 4 tel que représenté sur la figure 2. Ledit accumulateur 4 comportait, dans un récipient 5, un disque poli puis traité 1, qui jouait le rôle d'électrode positive ou cathode 1, une partie d'électrolyte 2 qui était du LP30 imprégné dans un séparateur en fibre de verre sous forme de disque, et une électrode négative ou anode 3 en lithium sous forme de disque.
  • La figure 4 représente, pour un tel accumulateur selon l'invention de la figure 2, le potentiel V (en volts) par rapport à celui du couple Li / Li+ en fonction de la capacité dudit accumulateur (C en mAh/cm2) à 55°C. On y voit donc le comportement électrochimique d'un tel disque à 55°C cyclé avec du LP30 entre 0,02 et 3V à une densité de courant de 0,16 mA/cm2. La première décharge est caractérisée par une chute de potentiel jusqu'à 0,4V. Après cette chute, la courbe potentiel/capacité commence par être matérialisée par un petit plateau puis évolue vers une courbe de potentiel descendant lentement. Le disque AISI 304 poli puis traité, selon l'invention, avait donc une grande surface libre pour l'électrolyte. Cette surface jouait le rôle de catalyseur pour la dégradation de l'électrolyte ce qui peut expliquer en partie l'extra capacité. Quand l'électrolyte est complètement consommé ou qu'il y a empoisonnement de l'électrode avec les produits de dégradation, la capacité tombe pratiquement à zéro.
  • On voit donc que l'électro-activité est importante. En effet, des capacités d'environ 0,11 à 0,13 mAh par cm2 à une densité de courant de 0,16mA/cm2 ont pu être obtenues à 55°C en présence de l'électrolyte LP30 imprégnant un séparateur en fibre de verre. Poursuivant ce calcul à l'extrême, on voit que des surfaces développées de 400 et 800cm2 donneraient des capacités respectivement de 0,7 et 1,4 mAh par cm2.
  • La figure 5 représente, pour le même accumulateur selon l'invention que celui étudié ci-dessus à la figure 4, la capacité dudit accumulateur (C en mAh/cm2), ainsi que la capacité d'un accumulateur comparatif (comprenant le disque AISI 304 (P) poli puis non traité), en fonction du nombre de cycles (N) à 55°C. Ledit disque AISI 304 (P) poli puis non traité a été intégré dans un accumulateur dit comparatif de la même façon que l'a été le disque poli puis traité (T) selon l'invention. La figure 5 souligne l'évolution de la capacité en fonction du nombre de cycles d'un accumulateur comprenant le disque AISI 304 poli puis traité (T), selon l'invention, ainsi que celle de l'accumulateur comparatif. Nous notons qu'il y avait une grande différence de comportement entre l'accumulateur comparatif et l'accumulateur selon l'invention. La capacité de l'accumulateur selon l'invention comprenant le disque poli puis traité (T) a augmenté régulièrement jusqu'à environ 400 cycles, puis a décru jusqu'à environ 600 cycles, alors que la capacité de l'accumulateur comparatif n'a montré qu'une infime évolution durant le cyclage.
  • Exemple 2
  • On a pris un disque d'INOX AISI 304 commercialisé par la société Goodfellow de 1,8 cm2 de surface (géométrique), non poli et d'épaisseur 0,5 mm. Sa surface développée était à peu près égale à sa surface (géométrique) et était donc d'environ 1,8 cm2. Un tel disque a été chauffé sous un mélange d'azote contenant 10% en hydrogène à raison d'une élévation de 5°C par minute pour des températures allant de 25°C jusqu'à 700°C. La température a été maintenue pendant 13 heures à 700°C avant d'être abaissée jusqu'à température ambiante (généralement d'environ 20°C) sans rampe. Par microscopie à balayage dudit disque AISI 304 non poli avant et après traitement thermique, on a vu que la surface du disque était approximativement plane dans le cas du disque non poli et non traité (NT) alors que dans le cas du disque non poli puis traité (courbe T1 en charge et courbe T2 en décharge), on a vu que la surface du disque contenait des particules de tailles supérieures à celles du disque initialement poli puis traité (T de l'exemple 1), allant de 100 à 300nm.
  • Un tel disque non poli puis traité comportait donc en couche de surface un film nanostructuré composé essentiellement de Cr2O3 et de FexCr1-xCr2O4 (0≤x≤1), ledit film reposant sur une surface d'inox AISI 304. Ce disque a été inclus dans un accumulateur 4 tel que représenté sur la figure 2. Ledit accumulateur 4 comportait un disque 1 qui jouait le rôle d'électrode positive ou cathode 1, un électrolyte 2 qui était du LP30, et une électrode négative ou anode 3 en lithium.
  • La figure 6 représente, pour ledit accumulateur selon l'invention de la figure 2, différent de celui étudié aux figures 4 et 5, la capacité en charge (T1) et en décharge (T2) dudit accumulateur (C en mAh/cm2), ainsi que la capacité d'un accumulateur comparatif (NT) (comportant un disque non poli et non traité), en fonction du nombre de cycles (N). Ledit disque AISI 304 (NT) non poli et non traité a été intégré dans un accumulateur dit comparatif de la même façon que l'a été le disque non poli puis traité (T1 ou T2) selon l'invention. On y voit le comportement électrochimique d'un accumulateur comprenant un disque AISI 304 non poli et traité (T1 ou T2) selon l'invention à 55°C cyclé avec du LP30 entre 0,02 et 3V à une densité de courant de 0,16 mA/cm2. La figure 6 montre l'évolution de la capacité en fonction du nombre de cycles de l'accumulateur selon l'invention comparée à celle de l'accumulateur comparatif (NT) obtenue pour ledit cyclage. Comme dans le cas de l'exemple 1, les capacités ont augmenté jusqu'à environ 0,45 mAh/cm2 après environ 400 cycles.
  • Notons qu'il est possible dans les deux cas de modifier la taille des particules (et donc l'épaisseur de la couche de surface) en modifiant soit les conditions en température (i.e. les conditions de chauffe et/ou de refroidissement) soit en agissant sur la surface avant le traitement généralement par une méthode de prétraitement telle que décrite précédemment.
  • Les mesures de MET (microcopie électronique à transmission) ont indiqué des nanoparticules plus grosses et aux contours mieux définis pour l'accumulateur comprenant un disque non poli puis traité (T1 ou T2) que pour l'accumulateur comprenant un disque poli puis traité (T). De plus, des analyses EDS (« Energy Dispersion Spectroscopy » en anglais, pour Microanalyse Elémentaire) ont semblé indiquer que, suite au traitement thermique, la surface a été fortement enrichie de chrome et de fer avec la diffusion du nickel dans la matrice AISI 304 métallique.
  • Exemple 3
  • Un accumulateur électrochimique Li ion a été assemblé en pile bouton de façon à produire un accumulateur de type bouton, comprenant un disque AISI 304, non poli puis traité selon la procédure décrite dans l'exemple 2, comme électrode négative, un séparateur en fibre de verre imbibé de LP30, et une électrode constituée de matériaux LiFePO4 et carbone mélangés dans une matrice polymère comme électrode positive (cas d'une électrode positive plastique). L'électrode positive était constituée de 72,4% massique de LiFePO4, de 7,85% massique de carbone et de 19,75% massique d'un polymère liant qui était du PVDF-HFP (pour Poly Vinyl DI Fluorure - Hexa Fluoro Propylène). Ainsi, le composant selon l'invention a joué le rôle d'anode ou d'électrode négative.
  • La figure 8 représente, pour un tel accumulateur selon l'invention de type lithium ion, différent de celui étudié aux figures 4 et 5, la capacité dudit accumulateur (C en mAh/cm2) cyclé entre 0,01 et 3,43V à 55°C, à une densité de courant de 0,16 mA/cm2 en fonction du nombre de cycles (N).
  • On peut constater, sur la figure 8, que le comportement de cet accumulateur, de type lithium ion, était identique à celui des accumulateurs précédents, de type lithium métal, avec une bonne réversibilité comme on l'avait vu sur la figure 4 pour l'accumulateur de l'exemple 1. Ainsi, ce nouveau concept d'électrode peut être utilisé pour l'assemblage d'accumulateurs au lithium de configurations variables.
  • Exemple 4
  • Un disque d'inox de type SUS316L, commercialisé par la société HOHSEN Corporation, de diamètre 1,6cm , non poli et d'épaisseur 0,5mm, a été nettoyé à l'alcool avant d'être chauffé dans un four tubulaire, non plus sous mélange azote/hydrogène comme dans les exemples 1 et 2, mais sous air. Le chauffage a été effectué à raison de 5°C par min jusqu'à 800°C puis maintenu pendant 13h à cette température avant d'être arrêté. Le refroidissement jusqu'à la température ambiante s'est effectué sans rampe.
  • Par microscopie électronique à balayage, la surface du disque avant traitement s'est révélée être approximativement plane alors que celle du disque traité thermiquement sous air présentait des particules de forme octaédrique (ou losange), de taille hétérogène pouvant atteindre 2000 nm, ainsi que des particules sous forme de plaquettes d'environ 10 000 nm de diamètre et 500 nm d'épaisseur. La composition des deux types de particules a été déterminée par microscopie électronique à transmission couplée à l'analyseur élémentaire EDS : les particules de forme octaédrique ont été caractérisées par une phase de structure spinelle de composition proche de Mn0,96, Fe0,03Cr2O4 alors que les particules sous forme de plaquettes correspondaient à la phase bien cristallisée Cr2O3. Nous avons pu noter ici l'enrichissement de la phase de structure spinelle en Manganèse par rapport aux exemples 1 et 2.
  • Un tel disque d'acier inoxydable non poli puis traité sous air à 800°C comportait donc en une couche de surface un film constitué essentiellement d'oxydes principalement à base de chrome tels que Cr2O3 et Mn0,96, Fe0,03Cr2O4. Ce disque a été inclus dans un accumulateur 4 tel que représenté sur la figure 1. Ledit accumulateur 4 comportait un disque 1 qui jouait le rôle d'électrode positive ou cathode 1, un électrolyte 2 qui était du LP30 et une électrode négative ou anode 3 en Lithium.
  • La figure 9 représente pour un tel accumulateur selon l'invention le potentiel V (en Volts) par rapport à celui du couple Li/Li+ en fonction de la capacité dudit accumulateur (C en mAh/cm2) à 55°C. Le cyclage a été effectué avec du LP30, entre 0,02 et 3V à une densité de courant de 0,15mAh/cm2. La première décharge est caractérisée par une chute de potentiel jusqu'à environ 0,15V puis la courbe de potentiel est matérialisée par un pseudo plateau descendant lentement pour atteindre une capacité d'environ 0,96 mAh/cm2. Comparée aux exemples 1 et 2, l'électroactivité a été multipliée par un facteur légèrement supérieur à 3 pour une densité de courant appliquée quasi identique.
  • La figure 10 représente la capacité C (mAh/cm2) d'un tel accumulateur selon l'invention, en fonction du nombre de cycles (N), ainsi que les capacités de trois autres accumulateurs selon l'invention identiques au précédent à l'exception du fait que les températures du traitement thermique sous air des disques d'inox ont été modifiées, à savoir : 600°C, 700°C et 750°C au lieu de 800°C. Nous avons noté une grande différence de valeurs de capacités entre les différents accumulateurs soulignant l'influence de la température du traitement sur l'électroactivité de la couche de surface du disque d'acier. Quelques dizaines de degrés ont ainsi permis ici de multiplier l'électroactivité par un facteur 3.
  • Exemple 5
  • Un disque d'inox de type SUS316L, commercialisé par la société HOHSEN Corporation, de diamètre 1,6cm et d'épaisseur 0,5mm, a été prétraité chimiquement dans le but d'augmenter la porosité de la surface et ainsi la surface électrochimiquement active. Le prétraitement s'est déroulé en trois étapes : 1) un nettoyage dans le THF (Tétra Hydro Furane), 2) une étape d'activation de 5 minutes dans une solution d'acide sulfurique (5% en volume), et 3) une oxydation chimique dans une solution d'acide adaptée à 60°C. Le bain était composé d'acide sulfurique (0,93M), de Na2S2O3 (0, 0006M) et d'alcool propargylique C3H4O (0, 05M). Na2S2O3 et C3H4O jouaient respectivement le rôle d'activateur et d'inhibiteur cathodique. La durée de la dernière étape 3) avait été fixée soit à 5 minutes, conduisant à l'échantillon noté A sur la figure 11, soit à 20 minutes, conduisant à l'échantillon noté B sur cette même figure 11. La caractérisation par microscopie électronique à balayage a révélé une évolution drastique de la morphologie de surface des échantillons traités avec l'apparition d'une surface très poreuse. Les mesures de la surface des disques traités réalisées par la technique BET utilisant le Krypton comme gaz absorbant affichaient respectivement des valeurs de 6m2/m2 et 13m2/m2 pour les échantillons A et B.
  • Ces deux disques A et B traités chimiquement ont subi ensuite un traitement thermique, selon l'invention, sous flux d'un mélange azote/hydrogène(10%) comme dans les exemples 1 et 2. Le chauffage a été effectué à raison de 5°C par min jusqu'à 700°C puis maintenu pendant 13h à cette température avant d'être arrêté. Le refroidissement jusqu'à la température ambiante s'est effectué sans rampe sous flux de ce même gaz.
  • La caractérisation par microscopie électronique à balayage de ces échantillons A et B, traités chimiquement puis thermiquement, a révélé également une surface très poreuse. Hormis la l'apparition de petits nodules métalliques, le traitement thermique n'a pas semblé induire de profonde modification sur la porosité de surface. Les mesures de surfaces réalisées par BET n'ont d'ailleurs pas révélé de différences significatives.
  • Les disques d'acier inoxydable notés A et B, traités chimiquement puis thermiquement sous flux de mélange azote /hydrogène à 700°C, comportaient en couche de surface un film constitué essentiellement d'oxydes principalement à base de chrome tels que Cr2O3 et FexCr1-xCr2O4 (0≤x≤1). Chacun de ces disques a été inclus dans un accumulateur 4 tel que représenté sur la figure 1. Ledit accumulateur 4 comportait un disque 1 qui jouait le rôle d'électrode positive ou cathode 1, un électrolyte 2 qui était du LP30 et une électrode négative ou anode 3 en Lithium.
  • La figure 11 représente la capacité (mAh/cm2) d'accumulateurs contenant les disques A ou B en fonction du nombre de cycles (N), ainsi que, pour comparaison, la capacité d'un accumulateur dont le disque SUS316L n'a pas subi de traitement chimique avant le traitement thermique sous flux de mélange azote /hydrogène à 700°C. Le cyclage a été effectué avec du LP30, à 55°C entre 0,02 et 3V à une densité de courant de 0,15mAh/cm2. Nous avons noté une grande différence de valeurs de capacités entre l'accumulateur ne comprenant pas de disque prétraité chimiquement, et les accumulateurs comprenant les disques notés A ou B présentant une grande surface. Un prétraitement chimique a donc permis de multiplier les capacités par un facteur d'environ 5. La figure 11 souligne également l'influence de la durée de la troisième étape du prétraitement chimique : La capacité est passée de 0,8 à 1, lmAh/cm2 en augmentant la durée de ce traitement de 5 à 20 minutes.

Claims (14)

  1. Composant (1 ; 10 ; 200) comprenant au moins un collecteur d'électrons (100) et de la manière électrochimiquement active (102), ladite matière active (102) contenant au moins un métal appartenant au groupe des métaux de transition des groupes 4 à 12 de la Classification Périodique des Eléments, de préférence appartenant au groupe constitué du nickel, du cobalt, du manganèse, du cuivre, du chrome et du fer, de façon encore plus préférée du chrome, la matière active (102) ayant été formée à partir du collecteur (100) et la matière active (102) étant en surface (100a) du collecteur d'électrons (100), et au moins une partie de la matière active (102) comprenant au moins des nanoparticules (101) d'au moins un composé du métal de transition ou des agglomérants desdites nanoparticles (101), les nanoparticules (101) étant de taille moyenne de 1 à 1000 nm de préférence de 10 à 300 nm, et les agglomérats de nanoparticules (101) étant de taille moyenne de 1 à 10000 nm de préférence de 10 à 3000 nm.
  2. Composant (1 ; 10 ; 200) selon la revendication 1 tel que le composé de métal de transition est un composé inorganique de métal de transition, de préférence choisi dans le groupe formé les chalcogénures de métal de transition et les halogénures de métal de transition, de façon encore plus préférée choisi dans le groupe formé par les chalcogénures de métal de transition.
  3. Composant (1; 10 ; 200) selon la revendication 2 tel que le composé inorganique de métal de transition est un oxyde de métal de transition.
  4. Composant (1 ; 10 ; 200) selon l'une des revendications 2 ou 3 dans lequel le composé du métal de transition est de formule M,Oy, dans lequel 1< x ≤ 3 et 1 ≤ y ≤ 5, de préférence 1 ≤ y ≤ 4, et M est au moins un métal de transition, le composé de métal de transition étant de préférence de formule choisie : dans le groupe formé par les structures spinelles
    AB204, où A est au moins un métal de transition choisi dans le groupe formé par Fe, Mn, Cr, Ni, Co et
    Cu, et B est au moins un métal choisi dans le groupe formé par Fe, Cr et Mn, et/ou dans le groupe formé par les sesquioxydes M1 2O3), où M' est au moins un métal de transition choisi dans la groupe formé par Fe, Mn, Cr, Ni, Co et Cu, le composé de métal de transition étant de façon encore plus préférée de formule

            Fex,Cry, Mnz,04,

    où:
    0 ≤ x' ≤ 1, 0 ≤ z' ≤ 1, et x' + y' + z' = 3, et/ou Cr203.
  5. Composant (1 ; 10 ; 200) selon l'une des revendications 1 à 4 comprenant en totalité, une couche de surface formée en majeure partie d'au moins un composé, de préférence inorganique, de métal de transition, la couche de surface étant principalement constituée de, nanoparticules (109) ou agglomérats de nanoparticules (102) d'au moins un composé de métal de transition, les nanoparticules (102) et les agglomérats de nanoparticules (102) étant tels que définis dans la revendication 1.
  6. Composant (1 ; 10 ; 200) selon la revendication précédente tel que ladite couche de surface est d'épaisseur de 30 à 15000 nm, de préférence de 30 à 12000 fim.
  7. Composant (1 ; 10 ; 200) selon l'une des revendications précédentes tel que le collecteur comprend de l'acier inoxydable.
  8. Procédé de fabrication d'un composant (1 ; 10 ; 200) selon l'une des revendications précédentes comprenant au moins un traitement d'au moins un matériau présent dans un collecteur d'électrons, ledit matériau comprenant au moins un métal choisi parmi les métaux de transition des groupes 4 à 12 de la Classification Périodique des Éléments, ledit traitement étant un traitement haute température pendant une durée et à une température suffisante pour convertir une partie du collecteur (100) en matière électrochimiquement active (102).
  9. Utilisation d'au moins un composant (1,8) selon l'une des revendications 1 à 7 ou fabriqué selon la revendication 8, en tant qu'électrode.
  10. Supercondensateur comprenant au moins un composant (1,8) selon l'une des revendication 1 à 7 ou fabriqué selon la revendication 8.
  11. Accumulateur électrochimidique (4,6), de préférence un accumulateur au lithium, comprenant au moins une électrode positive (ou cathode) (1, 8), et au moins une électrode négative (ou anode) (3.6) caractérisé en ce qu' il comporte au moins un composant (1,8) selon l'une des revendications 1 à 7 ou fabriqué selon la revendication 8.
  12. Accumulateur (4) selon la revendication précédente comprenant au moins un électrolyte (2) liquide comprenant au moins un sel, l'anode (3) comprenant du lithium métal, ledit accumulateur (4) étant caractérisé en ce que la cathode (1) comprend ledit composant (1), la cathode (1) étant de préférence essentiellement constituée dudit composant. (1).
  13. Accumulateur (6) selon la revendication 11 tel que l'électrolyte (9) comprend au moins un sel, et la cathode (8) comprend du lithium, ledit accumulateur (6) étant caractérisé en ce que l'anode (10) comprend ledit composant (10), l'anode (10) étant de préférence essentiellement constituée dudit composant (10).
  14. Utilisation d'un accumulateur (4,6) selon l'une des revendications 11 à 13 pour véhicule hybride, véhicule électrique, application stationnaire ou équipement portable.
EP05773269.5A 2004-05-19 2005-05-19 Composant comprenant un collecteur d'electrons et de la matiere active, et son utilisation en tant qu'electrode de batterie Not-in-force EP1756893B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0405486A FR2870639B1 (fr) 2004-05-19 2004-05-19 Support type collecteur de courant et son utilisation en tant qu'electrode de batterie
PCT/FR2005/001256 WO2005114766A2 (fr) 2004-05-19 2005-05-19 Composant comprenant un collecteur d’electrons et de la matiere active, et son utilisation en tant qu’electrode de batterie

Publications (2)

Publication Number Publication Date
EP1756893A2 EP1756893A2 (fr) 2007-02-28
EP1756893B1 true EP1756893B1 (fr) 2016-10-19

Family

ID=34945004

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05773269.5A Not-in-force EP1756893B1 (fr) 2004-05-19 2005-05-19 Composant comprenant un collecteur d'electrons et de la matiere active, et son utilisation en tant qu'electrode de batterie

Country Status (5)

Country Link
US (1) US20070231688A1 (fr)
EP (1) EP1756893B1 (fr)
CA (1) CA2566142A1 (fr)
FR (1) FR2870639B1 (fr)
WO (1) WO2005114766A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2901641B1 (fr) * 2006-05-24 2009-04-24 Electricite De France Electrode textile et accumulateur contenant une telle electrode
FR2931298B1 (fr) 2008-05-13 2010-09-03 Electricite De France Accumulateur fer-air a mediateur lithium
US8178241B2 (en) 2008-08-28 2012-05-15 3M Innovative Properties Company Electrode including current collector with nano-scale coating and method of making the same
FR2973949B1 (fr) 2011-04-06 2013-10-11 Electricite De France Precurseur d'accumulateur lithium-ion a electrode sacrificielle de lithium et electrode textile negative a conversion
FR2973950B1 (fr) * 2011-04-06 2013-10-04 Electricite De France Precurseur d'accumulateur lithium-ion a electrode sacrificielle de lithium et electrode textile positive a conversion
CN113511732B (zh) * 2021-04-09 2023-05-09 安徽中科索纳新材料科技有限公司 一种电容去离子选择吸附电极、电容去离子装置及应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184690A (ja) * 1984-03-02 1985-09-20 Permelec Electrode Ltd 耐久性を有する電極及びその製造方法
US4585715A (en) * 1984-06-29 1986-04-29 Union Carbide Corporation Metal cathode collector having a protective surface layer of a metal oxide
US4720910A (en) * 1987-06-16 1988-01-26 Mhb Joint Venture Method for preparing encapsulated cathode material
US5110696A (en) * 1990-11-09 1992-05-05 Bell Communications Research Rechargeable lithiated thin film intercalation electrode battery
WO1993011283A1 (fr) * 1991-11-27 1993-06-10 Minnesota Mining And Manufacturing Company Depot electrophoretique de dicalcogenure de metaux de transition
US5194341A (en) * 1991-12-03 1993-03-16 Bell Communications Research, Inc. Silica electrolyte element for secondary lithium battery
FR2721308B1 (fr) * 1994-06-21 1996-10-11 Commissariat Energie Atomique Composés d'insertion à base d'oxyde de manganèse, utilisables comme électrode positive dans un accumulateur au lithium.
EP0958627B1 (fr) * 1996-05-22 2002-02-27 Moltech Corporation Cathodes composites, cellules electrochimiques contenant de nouvelles cathodes composites et procedes de fabrication desdits produits
US6022640A (en) * 1996-09-13 2000-02-08 Matsushita Electric Industrial Co., Ltd. Solid state rechargeable lithium battery, stacking battery, and charging method of the same
JP3624088B2 (ja) * 1998-01-30 2005-02-23 キヤノン株式会社 粉末材料、電極構造体、それらの製造方法、及びリチウム二次電池
JP3068092B1 (ja) * 1999-06-11 2000-07-24 花王株式会社 非水系二次電池用正極の製造方法
US20030203282A1 (en) * 2002-04-29 2003-10-30 Sylvie Grugeon Nano-metal electrode rechargeable battery cell
US7061749B2 (en) * 2002-07-01 2006-06-13 Georgia Tech Research Corporation Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same
KR100484642B1 (ko) * 2002-09-23 2005-04-20 삼성에스디아이 주식회사 리튬-설퍼 전지용 양극 활물질 및 그 제조방법
US20040202605A1 (en) * 2003-04-14 2004-10-14 Jun Xu Iron oxyhydroxides as ion intercalation materials and synthesis method thereof
US7531267B2 (en) * 2003-06-02 2009-05-12 Kh Chemicals Co., Ltd. Process for preparing carbon nanotube electrode comprising sulfur or metal nanoparticles as a binder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2870639A1 (fr) 2005-11-25
FR2870639B1 (fr) 2006-11-10
WO2005114766A3 (fr) 2006-05-04
WO2005114766A2 (fr) 2005-12-01
EP1756893A2 (fr) 2007-02-28
US20070231688A1 (en) 2007-10-04
CA2566142A1 (fr) 2005-12-01

Similar Documents

Publication Publication Date Title
EP2022116B1 (fr) Electrode textile et accumulateur contenant une telle electrode.
EP1917691B1 (fr) Materiau d&#39;electrode positive haute tension de structure spinelle a base de nickel et de manganese pour accumulateurs au lithium
EP2297812B1 (fr) Electrolyte non-aqueux pour accumulateur au lithium a tension elevee
EP3103155B1 (fr) Batteries au lithium spécifiques comprenant des électrolytes non aqueux à base de composés sulfones
EP1828058B1 (fr) Materiau d&#39;electrode positive optimise pour accumulateurs au lithium, procede pour sa realisation, electrode, accumulateur et batterie mettant en oeuvre ce materiau
EP1756893B1 (fr) Composant comprenant un collecteur d&#39;electrons et de la matiere active, et son utilisation en tant qu&#39;electrode de batterie
EP1846331B1 (fr) Procede de modification d&#39;un oxyde lithie comprenant au moins un metal de transition utilisant des ions de phosphate
EP3108524B1 (fr) Electrode positive pour accumulateur electrochimique lithium-soufre presentant une structuration specifique
EP2583347B1 (fr) Accumulateur electrochimique au lithium a architecture bipolaire fonctionnant sur la base d&#39;un couple d&#39;electrodes lithium-soufre
EP0837036B1 (fr) Oxydes doubles de lithium et de manganèse pour électrode positive de dispositifs électrochimiques, leur préparation et les électrodes comportant de tels oxydes
EP1860713B1 (fr) Composé d&#39;insertion du lithium utilisable comme matière active cathodique d&#39;un générateur électrochimique rechargeable au lithium
EP3714498A1 (fr) Utilisation d&#39;un melange de sels a titre d&#39;additif dans une batterie au lithium gelifiee
EP1845065A2 (fr) Oxyde de métal de transition lithie ou surlithie, matériau actif d&#39;électrode positive comprenant cet oxyde, et accumulateur
CA2500193C (fr) Accumulateur au lithium
FR3071362B1 (fr) Procede de fabrication d&#39;une electrode pour accumulateur lithium-soufre a surface active importante
EP3629400A1 (fr) Procédé de préparation d&#39;oxydes de métaux de transition lithiés
EP3647443A1 (fr) Électrode négative spécifique à base de lithium et générateur électrochimique au lithium comprenant une telle électrode négative
EP3648206B1 (fr) Accumulateur électrochimique au lithium du type lithium-soufre comprenant un matériau d&#39;électrode négative spécifique
EP3391437B1 (fr) Electrode en halogénure de métal auto-formée et procédé de fabrication associé
WO2023118772A1 (fr) Matériau d&#39;électrode enrobé d&#39;un composé particulier
WO1999052826A1 (fr) Accumulateur au lithium fonctionnant jusqu&#39;a une borne superieure de tension de 3,5 volts
WO1999024359A1 (fr) Produit carbone riche en lithium utilisable comme electrode negative dans un accumulateur au lithium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061215

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602005050481

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01M0004660000

Ipc: H01M0004040000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 4/64 20060101ALI20160302BHEP

Ipc: H01M 4/66 20060101ALI20160302BHEP

Ipc: H01M 6/02 20060101ALI20160302BHEP

Ipc: H01M 4/04 20060101AFI20160302BHEP

INTG Intention to grant announced

Effective date: 20160323

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20160906

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 839021

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005050481

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161019

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 839021

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170120

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170220

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170219

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005050481

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170119

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

26N No opposition filed

Effective date: 20170720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170519

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170519

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200527

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210428

Year of fee payment: 17

Ref country code: DE

Payment date: 20210507

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005050481

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201