EP1756842A2 - Dispositif de refroidissement de composants d'installations eoliennes - Google Patents

Dispositif de refroidissement de composants d'installations eoliennes

Info

Publication number
EP1756842A2
EP1756842A2 EP05752462A EP05752462A EP1756842A2 EP 1756842 A2 EP1756842 A2 EP 1756842A2 EP 05752462 A EP05752462 A EP 05752462A EP 05752462 A EP05752462 A EP 05752462A EP 1756842 A2 EP1756842 A2 EP 1756842A2
Authority
EP
European Patent Office
Prior art keywords
electrical system
cooling elements
cooling
transformer
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05752462A
Other languages
German (de)
English (en)
Inventor
Jörg FINDEISEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1756842A2 publication Critical patent/EP1756842A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/025Constructional details relating to cooling

Definitions

  • the invention relates to an arrangement for cooling components of wind turbines.
  • the state of the art is the use of conventional transformers in which the losses to be dissipated are dissipated by radiators and fans. These are usually installed side by side on the boiler wall of the transformer. A large number of radiators are required for this. Fans for vertical or horizontal air circulation are attached to these radiators. In the case of wind farm transformers on land, noise requirements must also be observed, which leads to the use of slowly rotating, low-noise fans. In order to still achieve the cooling capacity, a larger number of fans are therefore required - with the associated higher acquisition and operating costs.
  • a further serious disadvantage is the guarantee of corrosion protection and degree of protection due to the aggressive environmental conditions, especially in the offshore area.
  • the fans generally have an opening for condensation, which leads to problems and thus to failures in the climatic conditions at sea , Furthermore, the fans require large amounts of energy that are provided by the system and therefore also incur costs.
  • a control cabinet with switching devices, motor protection switches and monitoring devices on the transformer is required to control the fans.
  • the external wiring between the fan control cabinet and fans means additional effort.
  • the fan control cabinet and the Fans themselves also require inspection and maintenance (possibly repair work), which is associated with considerable costs, particularly in offshore systems. Since maintenance work cannot always be carried out in the offshore area due to the weather, the use of low-maintenance and highly available components is of particular importance.
  • transformer is only an example for each electrical and / or mechanical system.
  • the object of the invention is to provide an effective and simple cooling of transformers.
  • the aim of the invention is to avoid the disadvantages mentioned above.
  • the inventive use of the wind that is always present when operating wind power plants and the inventive design of the transformer and its components make it possible to achieve an effective and simple dissipation of the thermal energy generated in the transformer. This also reduces the manufacturing and operating costs of the transformer.
  • This wind fading not only eliminates the fan control cabinet, the cabling and the fans themselves, but also the temperature measuring devices
  • the function of wind turbines presupposes the presence of a stronger air flow.
  • the flowing medium can also be a liquid.
  • the system according to the invention can also be used in a flow field under water. According to the present invention, a method is provided in which a flowing medium flows around an energy converter, for example a generator, which develops an associated higher heat through increased power, the heat due to the structural design of the transformer and that with the Transformer-connected cooling elements is effectively removed with the help of the flowing medium.
  • this air flow is used to cool the transformer.
  • the invention also makes use of the fact that the air flow automatically increases with a higher load on the transformer.
  • the transformer is designed so that the natural air flow flows around its outer surface and the cooling elements.
  • the length of the cooling elements is designed so that they form a large cross-sectional area for the circulating medium (wind).
  • the depth of the cooling elements is designed so that the air flow resistance does not become too high and turbulent flow through the cooling air is achieved.
  • the cooling elements are arranged in such a way that they do not mutually stand in the slipstream. The spacing and arrangement of the cooling elements are selected so that the boiler of the transformer itself is reached by the air flow.
  • the outer skin of the transformer is designed so that it acts as a flow guide for the cooling elements and itself.
  • the transformer is designed in such a way that connection technology and accessories are be arranged so that they do not obstruct the flow of cooling air.
  • additional heat-emitting surfaces are attached to the outer skin of the transformer, which surfaces are expediently placed in areas with favorable coolant flow conditions. Depending on the flow conditions, these surfaces can be attached horizontally, vertically or at an angle.
  • the shape and arrangement of these surfaces is selected so that on the one hand there is maximum coverage with the cooling medium air and at the same time a disturbance in the blowing of other heat-emitting parts is avoided.
  • the mechanically required stiffeners of the boiler are arranged so that they do not hinder the natural blowing of the heat-emitting parts.
  • the stiffeners and additional cooling surfaces can be designed in such a way that they serve as a flow guiding device.
  • the design of the boiler and the cooling elements takes place in such a way that mutually irradiating surfaces are avoided or reduced and almost the entire surface of the boiler can emit heat through radiation.
  • the cooling elements are designed so that an effective heat exchange within the cooling elements is guaranteed.
  • the width, spacing and diameter of the cooling channels, as well as the materials used promote an exchange of thermal energy over the largest possible surface.
  • the cooling elements may be attached via compensators for vibration damping / vibration decoupling.
  • the transformer is expediently mounted in this way makes the air flow flow around him at a high speed.
  • the elevated installation in open terrain is particularly advantageous, with no buildings or obstacles in the main wind direction.
  • the invention is also suitable for offshore substations on the high seas, which enable free and high installation of the cooling system.
  • the design of the bottom of the platform is to be carried out in such a way that vertical air currents reach all or part of the cooling elements and thus the flow within the cooling elements additionally uses the convection effect.
  • the platform of an onshore or offshore substation is designed in such a way that the supports of a wind turbine are used for the substation and / or the attachment of the cooling system.
  • the flow-guiding device enables an effective vertical blowing to be achieved even with a plate heat sink or a radiator when the wind is at right angles to the plate by deflecting the horizontal air flow.
  • the flow guide devices improve the flow of air around the cooling system regardless of the wind direction.
  • the flow guide device is designed such that an additional Air flow is achieved without the flow being obstructed by parts of the guide device when there is a different wind direction.
  • Figure 1 is a schematic representation of a previous transformer with cooling elements arranged.
  • FIG. 4 side view of a transformer according to the invention for a wind farm
  • FIG. 5 shows a side view of a transformer according to the invention for a wind farm with flow control devices
  • FIG. 6 top view of a transformer according to the invention with four cooling elements and a flow guide device
  • FIG. 7 top view of a transformer according to the invention with two rigid and two pivotable cooling elements and two flow control devices; 8a, 8b flow guide device according to the invention;
  • FIG. 9 shows schematic side views of a cooling element with flow guiding devices and guided cooling medium
  • FIG. 10 shows a schematic side view and top view of an inventive circular cooling element with air and liquid cooling
  • FIG. 11 shows a schematic representation of a platform according to the invention with cooling elements offset in height relative to the transformer
  • FIG. 12 shows a schematic representation of a cooling element according to the invention with flow guide devices arranged inside and outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)
  • Wind Motors (AREA)

Abstract

Selon l'invention, l'écoulement d'un fluide est employé pour le refroidissement d'une installation, notamment d'un transformateur. L'invention repose notamment sur le fait que l'écoulement du fluide, par ex, du vent, augmente automatiquement avec la charge du transformateur. Le transformateur selon l'invention est conçu de telle manière que l'exposition à l'écoulement naturel de l'air du transformateur et des éléments de refroidissement est maximale. A cet effet, les éléments de refroidissement sont conçus longitudinalement de manière à former une grande section transversale pour le fluide qui s'écoule. La profondeur des éléments de refroidissement est par ailleurs choisie de manière que la résistance à l'écoulement reste mesurée et qu'on obtient un écoulement tourbillonnaire de l'air de refroidissement. L'espacement et la disposition des éléments de refroidissement sont choisis de telle manière que le caisson du transformateur est également exposé à l'écoulement de l'air et sert au refroidissement.
EP05752462A 2004-06-18 2005-05-13 Dispositif de refroidissement de composants d'installations eoliennes Withdrawn EP1756842A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004030522 2004-06-18
PCT/DE2005/000919 WO2005124799A2 (fr) 2004-06-18 2005-05-13 Dispositif de refroidissement de composants d'installations eoliennes

Publications (1)

Publication Number Publication Date
EP1756842A2 true EP1756842A2 (fr) 2007-02-28

Family

ID=35058157

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05752462A Withdrawn EP1756842A2 (fr) 2004-06-18 2005-05-13 Dispositif de refroidissement de composants d'installations eoliennes

Country Status (4)

Country Link
US (1) US7443273B2 (fr)
EP (1) EP1756842A2 (fr)
CN (1) CN101006532A (fr)
WO (1) WO2005124799A2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007062442A1 (de) * 2007-12-20 2009-06-25 Innovative Windpower Ag Medientransportvorrichtung in einem Fundament für Windenergieanlagen
US20110000640A1 (en) * 2007-12-21 2011-01-06 Vestas Wind Systems A/S wind turbine generator with a heat exchanger
DE102009017468A1 (de) * 2009-04-03 2010-10-07 Areva Energietechnik Gmbh Kühlsystem für ein elektrisches Umspannwerk insbesondere für eine Windkraftanlage
JP5492832B2 (ja) * 2011-07-25 2014-05-14 株式会社日立産機システム 変圧器及び風力発電システム
DK2733265T3 (en) * 2012-11-14 2018-03-12 Siemens Ag Cooling system for a transformer platform
CN105899806B (zh) * 2013-09-20 2018-11-27 株式会社日立产机系统 海上风力发电装置及其使用的油浸式变压器
DE102016200744A1 (de) * 2016-01-20 2017-07-20 Siemens Aktiengesellschaft Transformator mit temperaturabhängiger Kühlung
DE102016125375A1 (de) 2016-12-22 2018-06-28 Innogy Se Umspannstation, verfahren und vorrichtung für eine umspannstation
DE102017201889A1 (de) * 2017-02-07 2018-08-09 Siemens Aktiengesellschaft Kühleinrichtung zum Kühlen einer energietechnischen Anlage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE739588C (de) * 1941-08-28 1943-09-30 Aeg Grosstransformator

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE903008C (de) 1951-12-23 1954-02-01 Siemens Ag Transformator fuer den Bergbau
US4413674A (en) * 1980-11-28 1983-11-08 Westinghouse Electric Corp. Transformer cooling structure
JPS59139771U (ja) * 1983-03-08 1984-09-18 三菱電機株式会社 熱交換装置
DE3427459A1 (de) 1984-07-25 1986-02-06 Siemens AG, 1000 Berlin und 8000 München Geschlossenes oelgefaess fuer elektrische geraete
GB9120053D0 (en) * 1991-09-19 1991-11-06 Razedge Ltd Induction heating apparatus
KR960013032B1 (ko) * 1992-01-17 1996-09-25 미쯔비시 덴끼 가부시기가이샤 전기차 탑재용 변압기의 냉각장치
JPH0997720A (ja) * 1995-09-28 1997-04-08 Matsushita Electric Ind Co Ltd 変圧装置
US6259347B1 (en) * 1997-09-30 2001-07-10 The United States Of America As Represented By The Secretary Of The Navy Electrical power cooling technique
WO1999030031A1 (fr) 1997-12-08 1999-06-17 Siemens Aktiengesellschaft Eolienne et procede de refroidissement d'un generateur d'une eolienne
DE19816483C2 (de) 1998-04-14 2003-12-11 Aloys Wobben Windenergieanlage
DK1004751T3 (da) * 1998-11-25 2003-06-23 Alstom Power Generation Ag Dampkraftværk opstillet i det fri
KR100335050B1 (ko) * 1999-07-06 2002-05-02 구자홍 다기능 전자레인지
DE19947915A1 (de) * 1999-10-06 2001-04-12 Abb Research Ltd Kühlsystem für Baugruppen in einer Windkraftanlage
US6909349B1 (en) * 1999-11-17 2005-06-21 Trexco, Llc Apparatus and method for cooling power transformers
DE10111846A1 (de) 2001-03-01 2002-09-19 Siemens Ag Behälter für eine gasisolierte elektrische Schaltanlage mit Wärmetauscher

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE739588C (de) * 1941-08-28 1943-09-30 Aeg Grosstransformator

Also Published As

Publication number Publication date
US20070229205A1 (en) 2007-10-04
WO2005124799A2 (fr) 2005-12-29
CN101006532A (zh) 2007-07-25
US7443273B2 (en) 2008-10-28
WO2005124799A3 (fr) 2006-06-01

Similar Documents

Publication Publication Date Title
EP1831901B1 (fr) Composant electrique a circuit de refroidissement pour une utilisation sous-marine
WO2005124799A2 (fr) Dispositif de refroidissement de composants d'installations eoliennes
EP1200733B2 (fr) Eolienne a circuit de refroidissement ferme
DE19932394C2 (de) Windenergieanlage mit einem geschlossenen Kühlkreislauf
DE10000370A1 (de) Windenergieanlage mit einem geschlossenen Kühlkreislauf
EP3221655A1 (fr) Procédé et dispositif d'introduction et d'extraction d'énergie calorifique dans un plan d'eau ou à partir d'un plan d'eau.
EP3397859B1 (fr) Éolienne et dispositif de refroidissement d'une éolienne
WO2008043389A1 (fr) Transformateur pour une centrale électrique fonctionnant avec le courant océanique
EP3358688A1 (fr) Dispositif de refroidissement permettant de refroidir une installation énergétique
DE202014004372U1 (de) Offshore Windpark mit mindestens einem seeseitigen Umspannwerk
DE102016111332B3 (de) Modular aufgebaute Windenergieanlage
EP2811159B1 (fr) Installation de production d'énergie éolienne en mer
EP3317533B1 (fr) Éolienne et dispositif de refroidissement pour une éolienne
WO2018072932A1 (fr) Armoire de commande dotée d'un boîtier fermé et d'un dispositif de refroidissement
WO2009132639A2 (fr) Bâti
DE102008050778A1 (de) Kühlanordnung für einen Elektro- oder Geräteschrank mit Luft-Luft-Wärmetauscherkassetten
EP3560051B1 (fr) Sous-station, procédé et dispositif pour sous-station
EP2237384A2 (fr) Système de refroidissement pour une station de transformation électrique, notamment pour une éolienne
EP3571402B1 (fr) Nacelle d'éolienne
DE102011103311A1 (de) Windenergieanlage mit geschlossenem Kühlkreislauf
EP3344871B1 (fr) Éolienne et procédé de commande du refroidissement d'une éolienne
DE102015200347A1 (de) Windkraftanlage
EP2524135A1 (fr) Dispositif de refroidissement rabattable
DE102020112554B4 (de) Vorrichtung zur Kühlung elektrischer Elemente sowie ein mit einer solchen Vorrichtung ausgestattetes elektrisches Element
DE29800631U1 (de) Niedertemperaturheizung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061218

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080428

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120413