EP1754005A1 - Method for balancing emitters in a heating system - Google Patents

Method for balancing emitters in a heating system

Info

Publication number
EP1754005A1
EP1754005A1 EP05773263A EP05773263A EP1754005A1 EP 1754005 A1 EP1754005 A1 EP 1754005A1 EP 05773263 A EP05773263 A EP 05773263A EP 05773263 A EP05773263 A EP 05773263A EP 1754005 A1 EP1754005 A1 EP 1754005A1
Authority
EP
European Patent Office
Prior art keywords
series
temperature
valve
coefficient
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05773263A
Other languages
German (de)
French (fr)
Other versions
EP1754005B1 (en
Inventor
Patrick Delpech
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gefen (Lycee Maximilien Perret)
MAPSEC
Original Assignee
Gefen (Lycee Maximilien Perret)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gefen (Lycee Maximilien Perret) filed Critical Gefen (Lycee Maximilien Perret)
Priority to PL05773263T priority Critical patent/PL1754005T3/en
Publication of EP1754005A1 publication Critical patent/EP1754005A1/en
Application granted granted Critical
Publication of EP1754005B1 publication Critical patent/EP1754005B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves

Definitions

  • the present invention relates to a method of balancing a heating / cooling installation of two-tube water circulation type premises. It is known that the balancing of a central heating installation with hot water circulation is to ensure a distribution of the flow of water circulation pumps that is in correspondence with the power of the irrigated radiators. In this type of installation it is known that the radiators are arranged in a bypass between a hot water supply line and a return line. In general, each radiator is provided with a balancing valve whose position makes it possible to control the flow of hot water through it and, consequently, the quantity of heat delivered by it. This type of faucet is called a first-level balancing valve because it allows the flow rate to be adjusted as close as possible to one or more radiators.
  • a relative flow coefficient equal to the ratio of the reference difference on the corrective coefficient of measurement. This corrects the feed rate of a given radiator by multiplying its flow by the inverse of the relative flow coefficient.
  • curves are available which express the relative flow variation q% Rn of a valve of a given brand and type as a function of the number of revolutions N of its regulator and this for a constant pressure difference. .
  • These relative flow curves q% Rn of a valve of a given brand and type as a function of the number of revolutions N of its regulator and this for a constant pressure difference are made available by the manufacturer or, if not, are measured on a hydraulic bench.
  • this relative flow rate variation q% Rn is that specific to a given brand and type valve installed alone without other hydraulic resistance in series. It will be understood that, when the valve is in series with another hydraulic resistor, this relative flow rate variation q% Rn specific to the valve is no longer usable and this especially as this hydraulic resistance is important in comparison with that of the tap. This is why such a control method is limited to the balancing of first level valves arranged in series with emitters of very low hydraulic resistance such as radiators or certain convectors. This considerably limits their use as these first-level valves are rarely accessible in occupied buildings.
  • the object of the present invention is to propose a balancing method that is applicable to first and second level valves in series with emitters whose hydraulic resistance can be significant and impossible to determine.
  • the subject of the present invention is thus a method for balancing a water circulation heating / cooling installation comprising at least one series of at least one emitter disposed in a bypass between an upstream water supply pipe and a downstream return pipe, each series being individually adjustable by at least one first-level balancing valve characterized in that it comprises the steps of: measuring the temperature (T A ) of the supply pipe (1) upstream of the series, and determining the difference in temperature, or reference difference (dt re f), between this temperature (T A ) and a temperature (T B ) equal to either the temperature of the return pipe (3) upstream of the series is a temperature equal to the desired temperature for this pipe, - successively measure the temperature at the output of each of the emitters or set of emitters of the series, - d successively determine, for each series, the difference between the temperature upstream of the first series and the outlet temperature of each series, or specific deviation, establish, for each series, a correction coefficient equal to the difference between the value of the reference deviation with a value constituted by the
  • FIG. 1 is a schematic view of a water circulation heating installation hot line comprising a series of n sets of transmitters disposed in a shunt between a water inlet pipe and a return pipe.
  • FIG. 2 is a curve representing an example of variation of the flow rate of a valve of nominal diameter 25 mm as a function of the number of turns thereof, in the direction of opening, under a constant pressure difference, of 10 5 Pa, as supplied by its manufacturer or measured on a hydraulic bench.
  • FIG. 3 is a curve representing the corrected variation in the flow rate of the 25 mm nominal diameter tap defined in FIG.
  • FIG. 4 installed in series with a 25 mm nominal diameter supply circuit, with a high non-removable, difficult or impossible hydraulic resistance. to calculate or measure, as a function of the number of revolutions, in the direction of opening, under a constant pressure difference p of 10 5 Pa.
  • FIG. 4 identical to FIG. 3, is a curve representing the corrected variation of flow rate of 25 mm nominal diameter tap defined in Figure 4 installed in series with a circuit of 25 mm nominal supply diameter, high hydraulic resistance not removable, difficult or impossible to calculate or measure, depending on the number of turns in the direction of opening, under a constant pressure difference ⁇ of 10 5 Pa.
  • FIG. 1 shows a heating installation comprising a hot water supply pipe 1 and a return pipe 3.
  • R n of emitters E 1 , E 2 , E 3 , ... E m are arranged one after the other, in parallel between these two pipes 1 and 3, and each of these series R n emitters is equipped at the output of a tap ROi , R0 2 ... RO n , said second level, to adjust the flow of hot water through it.
  • these emitters E m may consist of radiators, convectors, or heating or cooling batteries as well as pipes and other elements associated with them which possess a significant unknown hydraulic resistance in comparison with that of the tap which is associated with this set. We are thus in setting conditions that are very different from those where we adjusted several series consist of a single radiator.
  • the balancing operation of this installation consists in ensuring that the specific bit rate of each of these series R n of transmitters is in correspondence with the respective powers.
  • all the temperature measurements carried out in the context of the implementation of the balancing method according to the invention will preferably be carried out by means of thermometers capable of possessing a quasi-inexistent thermal inertia and a capacity to provide accurate and instantaneous measurement, such as infrared thermometers.
  • the balance control valves bodies RO n associated with each Series R n transmitters will preferentially arranged ent position mid-hydraulic opening.
  • the hydraulic mid-opening is defined by the setting position allowing a relative flow increase or decrease of the same amplitude.
  • This mid-hydraulic opening can be very clearly different from the mid-mechanical opening when the control valve is in series with a significant hydraulic resistance in comparison with that of the valve.
  • the temperature T A of the pipe 1 is measured at a point A which, in the diagram of FIG. located upstream of the connection of the first series Ri of transmitters, and the temperature T B of the pipe 3 at a point B, located downstream of the connection of the series Ri of transmitters.
  • the temperature ts n of the pipe situated at the outlet of each of the series R n of emitters are measured. It has been established essentially empirically that the relative flow rate Q% n of a given series of transmitters R n (i.e., the percentage of the initial flow rate of this radiator with respect to its flow rate "to be adjusted” ) could be expressed as a function of the reference deviation and the temperature ts n of its outlet pipe.
  • the coefficient k is taken in a first adjustment cycle to a value close to 1.5. It has indeed been found by the many measurements and tests carried out that if, after a first adjustment, it appears that the quality of the balancing obtained is not satisfactory, a second adjustment cycle can then be carried out in then taking a value of this coefficient of adjustment k weaker, then close to 1.1.
  • a second adjustment cycle can then be carried out in then taking a value of this coefficient of adjustment k weaker, then close to 1.1.
  • the installation comprises a hot water supply pipe 1 and a return pipe 3 between which three series Ri, R 2 , R 3 of emitters E n are connected in shunt.
  • This gives a reference difference of ref 10 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Flow Control (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

The invention relates to a method for balancing a heating system comprising at least one series (R1, R2, Rn) consisting of at least one emitter. The method is characterized in that it comprises steps consisting in measuring the temperatures (TA, Tb) of the feed channel (1) upstream from said series, in determining a reference differential (dtref); in measuring the temperature (tsn) at the output of each emitter; in determining, for each series, the difference between the temperature (TA) upstream from the first series and the output temperature (tsn) of each series; in establishing a measurement corrector coefficient (A) for each series; and in establishing a relative flow coefficient (Q %n) for each series (R1, R2, Rn).

Description

PROCEDE D'EQUILIBRAGE DES EMETTEURS D'UNE INSTALLATION DE CHAUFFAGE METHOD FOR BALANCING THE TRANSMITTERS OF A HEATING FACILITY
La présente invention concerne un procédé d'équilibrage d'une installation de chauffage/ refroidissement de locaux de type à circulation d'eau bitube. On sait que l'équilibrage d'une installation de chauffage central à circulation d'eau chaude consiste à assurer une répartition du débit des pompes de circulation d'eau qui soit en correspondance avec la puissance des radiateurs irrigués. Dans ce type d'installation on sait que les radiateurs sont disposés en dérivation entre une ligne d'arrivée d'eau chaude et une ligne de retour. En règle générale, chaque radiateur est pourvu d'un robinet d'équilibrage dont la position permet de contrôler le débit d'eau chaude qui le traverse et, en conséquence, la quantité de chaleur délivrée par celui-ci. Ce type de robinet est appelé robinet d'équilibrage de premier niveau car il permet le réglage du débit au plus près d'un ou plusieurs radiateurs. On sait que lorsque l'installation est importante, il est prévu des robinets de deuxième niveau qui permettent le réglage du débit d'un ensemble de radiateurs équilibrés entre eux par les robinets de premier niveau. On sait que lorsque l'installation est très importante, il est prévu des robinets de troisième niveau qui permettent le réglage du débit de plusieurs ensembles de radiateurs équilibrés entre eux par les robinets de deuxième niveau. L'une des difficultés rencontrées lorsque l'équilibrage de ce type d'installation est mal réalisé provient d'une mauvaise répartition des débits entre les différents radiateurs ou ensembles de radiateurs qui engendre des écarts de chauffage, écarts qui se creusent d'ailleurs lorsque la température extérieure décroît. Une telle situation est extrêmement fréquente, notamment dans les installations anciennes, et se traduit par un inconfort pour l'usager et par une surconsommation importante pouvant atteindre 10 à 20%. La recherche d'un bon équilibre d'une installation est rendue difficile en raison de ce que, lorsque l'on effectue une correction de débit sur l'un des radiateurs d'une installation, on modifie du même coup le débit des autres radiateurs de cette même installation. Pour éviter cet inconvénient on a proposé, dans l'état antérieur de la technique, de précalculer la position de réglage de l'ensemble des robinets de l'installation. Une telle opération, délicate en raison de sa complexité, impose de plus au concepteur de disposer de l'ensemble des plans exacts de l'installation ce qui, dans le cas d'installations anciennes, contraint le plus souvent l'utilisateur à refaire un relevé complet de la distribution. On a proposé également de réaliser un tel équilibrage en mesurant, sur des robinets spéciaux, le débit d'eau chaude traversant chaque robinet et en corrigeant le débit de celui-ci de façon appropriée. Cette mesure de débit est habituellement réalisée par la mesure de la perte de charge qui existe sur le robinet de réglage. En appliquant ensuite diverses méthodes on converge vers un équilibre, et ce plus ou moins facilement en fonction de l'installation. Les inconvénients majeurs de cette technique d'équilibrage sont que, d'une part, elle nécessite une installation disposant de robinets spéciaux permettant d' effectuer une telle mesure et que, d'autre part, il faut connaître les débits à régler ce qui, dans le cas d'installations anciennes, impose le plus souvent de refaire un relevé complet de la distribution. On a également proposé dans la demande FR-A-2 795 491 et dans le cas du réglage de robinets de premier niveau associés à des radiateurs, c'est-à-dire des émetteurs dont la résistance hydraulique est négligeable par rapport à celle des robinets, de mesurer les températures des canalisations d'alimentation et de retour au niveau du radiateur situé le plus en amont de la série, et de déterminer la différence de température existant entre ces deux valeurs, dénommé ci-après "écart de référence", de déterminer pour chaque radiateur de la série, la différence entre la température d'entrée du radiateur le plus en amont et la température de sortie du radiateur considéré, dénommé ci-après "écart spécifique", d'établir, pour chaque radiateur de la série un coefficient correcteur de mesure égal à la différence existant entre la valeur de l'écart de référence avec une valeur constituée par la différence existant entre la susdite valeur de l'écart de référence et la susdite valeur de l'écart spécifique multipliée par un coefficient d'ajustement, établi de façon empirique à une valeur voisine de 2. Suivant ce procédé, on a établi, pour chaque radiateur, un coefficient de débit relatif égal au rapport de l'écart de référence sur le coefficient correcteur de mesure. On corrige ainsi le débit d'alimentation d'un radiateur déterminé en multipliant son débit par l'inverse du coefficient de débit relatif. Afin de réaliser cette opération, on dispose de courbes qui expriment la variation de débit relative q%Rn d'un robinet de marque et de type donné en fonction du nombre de tours N de son organe de réglage et ceci pour un écart de pression constant. Ces courbes de débit relatif q%Rn d'un robinet de marque et de type donné en fonction du nombre de tours N de son organe de réglage et ceci pour un écart de pression constant sont mises à disposition par le fabricant ou si non sont mesurées sur un banc hydraulique. Ainsi déterminée cette variation de débit relative q%Rn est celle propre à un robinet de marque et de type donné installé seul sans autre résistance hydraulique en série. On comprend que, lorsque le robinet se trouve en série avec une autre résistance hydraulique, cette variation de débit relative q%Rn propre au robinet n'est plus exploitable et ceci d'autant plus que cette résistance hydraulique est importante en comparaison de celle du robinet. C'est pourquoi un tel procédé de réglage est limité à l'équilibrage de robinets de premier niveau disposés en série avec des émetteurs de très faible résistance hydraulique tels que des radiateurs ou certains convecteurs. Ceci en limite considérablement l'utilisation car ces robinets de premier niveau sont rarement accessibles dans les bâtiments occupés. Le but de la présente invention est de proposer une méthode d'équilibrage qui soit applicable aux robinets de premier deuxième et troisième niveau en série avec des émetteurs dont la résistance hydraulique peut être importante et impossible à déterminer. Tel est par exemple le cas d'éléments non démontables, difficiles ou impossibles à mesurer ou calculer du fait de l'absence fréquente des plans de distribution et de l'encrassement intérieur des réseaux avec le temps, résistances hydrauliques telles que celles de colonnes ou de lignes d'alimentation d'émetteurs, de batteries de chauffage ou de refroidissement, de boucles de circuits sanitaire etc... ) Ce procédé doit par ailleurs éviter à l'utilisateur l'astreinte de l'utilisation de robinets spéciaux de mesure des débits, ou la mise en oeuvre de relevés et de calculs complexes. La présente invention a ainsi pour objet un procédé d'équilibrage d'une installation de chauffage/refroidissement à circulation d'eau comportant au moins une série d'au moins un émetteur disposée en dérivation entre une canalisation d'alimentation en eau amont et une canalisation de retour aval, chaque série étant réglable individuellement par au moins un robinet d'équilibrage de premier niveau caractérisé en ce qu'il comporte les étapes consistant à : - mesurer la température (TA) de la canalisation d'alimentation (1) en amont de la série, et déterminer la différence de température, ou écart de référence (dtref) , entre cette température (TA) et une température (TB) égale soit à la température de la canalisation de retour (3) en amont de la série soit une température égale à la température souhaitée pour cette canalisation, - mesurer successivement la température, en sortie de chacun des émetteurs ou ensemble d'émetteurs de la série, - déterminer successivement, pour chaque série, la différence entre la température en amont de la première série et la température de sortie de chaque série, ou écart spécifique, établir, pour chaque série un coefficient correcteur de mesure égal à la différence existant entre la valeur de l'écart de référence avec une valeur constituée par le produit d'un coefficient d'ajustement par la différence existant entre la susdite valeur de l'écart de référence et la susdite valeur de l'écart spécifique, - établir pour chaque série un coefficient de débit relatif égal au rapport de l'écart de référence sur le coefficient correcteur de mesure On sait que, correctement dimensionné, un robinet de réglage de débit doit disposer, en grande ouverture, d'une autorité d'au moins 0,5 en moyenne et comprise, en limites usuelles, entre 0,33 et 0,66, (autorité définie par le rapport entre la résistance hydraulique du robinet grand ouvert sur la somme de la résistance hydraulique du robinet grand ouvert et de celle du circuit dont il est chargé de régler le débit) . En conséquence, il a été établi que l'on peut admettre que la résistance hydraulique des réseaux sur lesquels les débits sont à régler peuvent être considérés de résistance hydraulique égale en moyenne à la résistance hydraulique des robinets de réglage de débit de même diamètre les plus représentatifs de ceux disponibles sur le marché en position de grande ouverture et en limite comprise entre 50% et 200% de cette résistance hydraulique. En conséquence, il peut être tenu compte, en série avec les robinets d'équilibrage, d'une telle résistance hydraulique. Il en découle une correction de la variation de débit relative q%Rn d'un robinet de marque et de type donné en fonction du nombre de tours N de son organe de réglage et ceci pour un écart de pression constant, correction définie par : The present invention relates to a method of balancing a heating / cooling installation of two-tube water circulation type premises. It is known that the balancing of a central heating installation with hot water circulation is to ensure a distribution of the flow of water circulation pumps that is in correspondence with the power of the irrigated radiators. In this type of installation it is known that the radiators are arranged in a bypass between a hot water supply line and a return line. In general, each radiator is provided with a balancing valve whose position makes it possible to control the flow of hot water through it and, consequently, the quantity of heat delivered by it. This type of faucet is called a first-level balancing valve because it allows the flow rate to be adjusted as close as possible to one or more radiators. It is known that when the installation is important, there are provided second level valves that allow the adjustment of the flow of a set of radiators balanced with each other by the first level valves. It is known that when the installation is very important, there are provided third-level valves that allow the adjustment of the flow of several sets of radiators balanced with each other by the second-level valves. One of the difficulties encountered when the balancing of this type of installation is poorly achieved stems from a poor distribution of the flow rates between the various radiators or sets of radiators which generates differences in heating, which are widening when the outside temperature decreases. Such a situation is extremely frequent, especially in old installations, and results in discomfort for the user and significant overconsumption of up to 10 to 20%. The search for a good balance of an installation is made difficult because, when one performs a correction of flow on one of the radiators of an installation, one modifies at the same time the flow of the other radiators of this same installation. To avoid this drawback, it has been proposed in the prior art to precompute the adjustment position of all the faucets of the installation. Such an operation, delicate because of its complexity, also requires the designer to have all the exact plans of the installation which, in the case of old installations, most often forced the user to redo a complete record of the distribution. It has also been proposed to achieve such balancing by measuring, on special valves, the flow of hot water through each valve and correcting the flow thereof appropriately. This flow measurement is usually performed by measuring the pressure drop that exists on the control valve. Then applying various methods converges to a balance, and more or less easily depending on the installation. The major drawbacks of this balancing technique are that, on the one hand, it requires an installation with special valves to perform such a measurement and that, on the other hand, it is necessary to know the flow rates to be adjusted which, in the case of installations old, usually requires a complete record of the distribution. It has also been proposed in Application FR-A-2 795 491 and in the case of the adjustment of first-level valves associated with radiators, that is to say transmitters whose hydraulic resistance is negligible compared to that of valves, to measure the temperatures of the supply and return lines at the radiator located furthest upstream of the series, and to determine the difference in temperature between these two values, hereinafter referred to as the "reference difference", to determine for each radiator in the series, the difference between the inlet temperature of the radiator the most upstream and the exit temperature of the radiator considered, hereinafter referred to as "specific deviation", to establish, for each radiator of the series a correction coefficient equal to the difference between the value of the reference deviation and a value constituted by the difference existing between the aforesaid value of the reference deviation and the aforesaid value of the specific deviation multiplied by an adjustment coefficient, established empirically at a value close to 2. According to this method, for each radiator, a relative flow coefficient equal to the ratio of the reference difference on the corrective coefficient of measurement. This corrects the feed rate of a given radiator by multiplying its flow by the inverse of the relative flow coefficient. In order to carry out this operation, curves are available which express the relative flow variation q% Rn of a valve of a given brand and type as a function of the number of revolutions N of its regulator and this for a constant pressure difference. . These relative flow curves q% Rn of a valve of a given brand and type as a function of the number of revolutions N of its regulator and this for a constant pressure difference are made available by the manufacturer or, if not, are measured on a hydraulic bench. Thus determined this relative flow rate variation q% Rn is that specific to a given brand and type valve installed alone without other hydraulic resistance in series. It will be understood that, when the valve is in series with another hydraulic resistor, this relative flow rate variation q% Rn specific to the valve is no longer usable and this especially as this hydraulic resistance is important in comparison with that of the tap. This is why such a control method is limited to the balancing of first level valves arranged in series with emitters of very low hydraulic resistance such as radiators or certain convectors. This considerably limits their use as these first-level valves are rarely accessible in occupied buildings. The object of the present invention is to propose a balancing method that is applicable to first and second level valves in series with emitters whose hydraulic resistance can be significant and impossible to determine. This is for example the case of non-removable elements, difficult or impossible to measure or calculate due to the frequent absence of distribution plans and internal fouling networks over time, hydraulic resistors such as those of columns or supply lines for transmitters, heating or cooling coils, sanitary circuit loops, etc.) This method must also prevent the user the strain of using special valves for measuring flow rates, or the implementation of surveys and complex calculations. The subject of the present invention is thus a method for balancing a water circulation heating / cooling installation comprising at least one series of at least one emitter disposed in a bypass between an upstream water supply pipe and a downstream return pipe, each series being individually adjustable by at least one first-level balancing valve characterized in that it comprises the steps of: measuring the temperature (T A ) of the supply pipe (1) upstream of the series, and determining the difference in temperature, or reference difference (dt re f), between this temperature (T A ) and a temperature (T B ) equal to either the temperature of the return pipe (3) upstream of the series is a temperature equal to the desired temperature for this pipe, - successively measure the temperature at the output of each of the emitters or set of emitters of the series, - d successively determine, for each series, the difference between the temperature upstream of the first series and the outlet temperature of each series, or specific deviation, establish, for each series, a correction coefficient equal to the difference between the value of the reference deviation with a value constituted by the product of an adjustment coefficient by the difference between the aforesaid value of the reference difference and the aforesaid value of the difference specific, - establish for each series a relative flow coefficient equal to the ratio of the reference difference on the corrective coefficient of measurement It is known that, properly sized, a flow control valve must have, in large opening, a authority of at least 0.5 on average and included, within customary limits, between 0.33 and 0.66, (authority defined by the ratio of the hydraulic resistance of the large open tap to the sum of the hydraulic resistance of the large tap open circuit and that of the circuit which he is responsible for regulating the flow). As a result, it has been established that it can be assumed that the hydraulic resistance of the networks on which the flow rates are to be adjusted can be considered as hydraulic resistance equal on average to the hydraulic resistance of the flow control valves of the same diameter. representative of those available on the market in position of large opening and limit between 50% and 200% of this hydraulic resistance. Accordingly, it can be taken into account, in series with the balancing valves, such a hydraulic resistance. This results in a correction of the relative flow variation q% Rn of a valve of a given brand and type as a function of the number of revolutions N of its regulator and this for a constant pressure difference, correction defined by:
Avec : • qvN : Débit en m3/h du robinet de marque et de type donné pour un nombre de tour N, sous une pression Δp en Pa, installé en série avec une résistance hydraulique non démontable, impossible ou difficile à calculerWith: • q vN : Flow in m 3 / h of the tap of the given brand and type for a number of N-turns, under a pressure Δp in Pa, installed in series with a hydraulic resistance that can not be dismantled, impossible or difficult to compute
• qvιN : Débit en m3/h du robinet de marque et de type donné pour un nombre de tour N, sous une pression Δp en Pa, tel qu'indiqué par le fabriquant ou tel que mesuré sur un banc hydraulique• q v ι N : Flow rate in m 3 / h of the valve of the mark and of the type given for a number of turns N, under a pressure Δp in Pa, as indicated by the manufacturer or as measured on a hydraulic bench
• Δp : Pression de détermination de qviN en Pa • kl : coefficient d'ajustement de l'autorité, de 1 en moyenne et en limite compris entre 0,5 et 2.• Δp: Determination pressure of q v iN in Pa • kl: coefficient of adjustment of the authority, of 1 on average and between 0.5 and 2.
• Kvs: Débit en m3/h sous 105 Pa des robinets d'équilibrage les plus représentatifs du marché en position de grande ouverture, avec : Pour des robinets du DN 10 au DN 50 : 1 ηη Kv, = — + 9,83 x DN + 1,39.10"21 x em - 47,23 s DN• Kv s : Flow rate in m 3 / h under 10 5 Pa of the most representative balancing valves on the market in the large open position, with: For valves from DN 10 to DN 50: 1 ηη Kv, = - + 9 , 83 x DN + 1.39.10 "21 x m - 47.23 s DN
Pour les robinets du DN 65 au DN 300 :For valves from DN 65 to DN 300:
Kvs = 0,016 x i>V2 - L14.10"128 x em ,r« - 0,54 Kv s = 0.016 x i> V 2 - L14.10 "128 xe m , r" - 0.54
On décrira ci-après, à titre d'exemple non limitatif, une forme d'exécution de la présente invention, en regard des dessins annexés sur lesquels : La figure 1 est une vue schématique d'une installation de chauffage à circulation d'eau chaude comportant une série de n ensembles d'émetteurs disposés en dérivation entre une canalisation d'arrivée d'eau et une canalisation de retour. La figure 2 est une courbe représentant un exemple de variation du débit d'un robinet de diamètre nominal 25mm en fonction du nombre de tours de celui-ci, dans le sens de l'ouverture, sous un écart de pression constant, de 105 Pa, telle que fournie par son fabricant ou mesurée sur un banc hydraulique. La figure 3 est une courbe représentant la variation corrigée du débit du robinet de diamètre nominal 25 mm défini à la figure 4 installé en série avec un circuit de diamètre nominal d'alimentation de 25 mm, de forte résistance hydraulique non démontable, difficile ou impossible à calculer ou mesurer, en fonction du nombre de tours, dans le sens de l'ouverture, sous un écart de pression p constant de 105 Pa. La figure 4, identique à la figure 3, est une courbe représentant la variation corrigée du débit du robinet de diamètre nominal 25 mm défini à la figure 4 installé en série avec un circuit de diamètre nominal d'alimentation de 25 mm, de forte résistance hydraulique non démontable, difficile ou impossible à calculer ou mesurer, en fonction du nombre de tours, dans le sens de l'ouverture, sous un écart de pression p constant de 105 Pa . On a représenté sur la figure 1 une installation de chauffage comprenant une canalisation d'alimentation en eau chaude 1 et une canalisation de retour 3. Plusieurs séries Ri, R2, R3, ... Rn d'émetteurs Ei, E2, E3, ... Em, respectivement sont disposés les unes à la suite des autres, en parallèle entre ces deux canalisations 1 et 3, et chacune de ces séries Rn d'émetteurs est équipée en sortie d'un robinet ROi, R02... ROn, dit de deuxième niveau, permettant de régler le débit d'eau chaude qui le traverse. Dans la pratique ces émetteurs Em peuvent être constitués de radiateurs, de convecteurs, ou de batteries de chauffage ou de refroidissement ainsi que des canalisations et autres éléments qui leur sont associés qui possèdent une résistance hydraulique inconnue importante en comparaison de celle du robinet qui est associé à cet ensemble. On se trouve ainsi dans des conditions de réglage qui sont très différentes de celles où l'on procédait au réglage de plusieurs séries constituées d'un unique radiateur. L'opération d'équilibrage de cette installation consiste à faire en sorte que le débit spécifique de chacune de ces séries Rn d' émetteurs soit en correspondance avec les puissances respectives. Pour, suivant l'invention, mettre en état d'équilibre une telle installation, on procède ainsi qu'indiqué ci-après. On remarquera tout d'abord que toutes les mesures de températures effectuées dans le cadre de la mise en oeuvre du procédé d'équilibrage suivant l'invention seront préférablement réalisées au moyen de thermomètres en mesure de posséder une inertie thermique quasi inexistante et une capacité à fournir une mesure précise et instantanée, tels que par exemple les thermomètres à infrarouge. Préalablement aux mesures, les organes de commande des robinets d'équilibrage ROn associés à chacune des séries Rn d'émetteurs seront préférentielle ent disposés en position de mi-ouverture hydraulique. On a établi que la mi-ouverture hydraulique est définie par la position de réglage permettant une augmentation ou une diminution de débit relative de même amplitude. Cette mi-ouverture hydraulique peut être très nettement différente de la mi-ouverture mécanique lorsque le robinet de réglage se trouve en série avec une résistance hydraulique importante en comparaison de celle du robinet. Suivant l'invention on mesure tout d'abord, dans un premier temps, à l'aide d'un thermomètre à infrarouge, la température TA de la canalisation 1 en un point A qui, sur le schéma de la figure 1, est situé en amont du raccordement de la première série Ri d'émetteurs, et la température TB de la canalisation 3 en un point B, situé en aval du raccordement de la série Ri d'émetteurs. On peut ainsi calculer la valeur qui sera désignée ci-après par "écart de référence". On mesure ensuite, également au moyen d'un thermomètre à infrarouge, la température tsn de la canalisation située en sortie de chacune des séries Rn d' émetteurs. On a établi de façon essentiellement empirique, que le débit relatif Q%n d'une série d'émetteurs Rn donnée (c'est-à-dire le pourcentage du débit initial de ce radiateur par rapport à son débit « à régler ») pouvait s'exprimer en fonction de l'écart de référence et de la température tsn de sa canalisation de sortie.An embodiment of the present invention will be described below, by way of nonlimiting example, with reference to the accompanying drawings in which: FIG. 1 is a schematic view of a water circulation heating installation hot line comprising a series of n sets of transmitters disposed in a shunt between a water inlet pipe and a return pipe. FIG. 2 is a curve representing an example of variation of the flow rate of a valve of nominal diameter 25 mm as a function of the number of turns thereof, in the direction of opening, under a constant pressure difference, of 10 5 Pa, as supplied by its manufacturer or measured on a hydraulic bench. FIG. 3 is a curve representing the corrected variation in the flow rate of the 25 mm nominal diameter tap defined in FIG. 4 installed in series with a 25 mm nominal diameter supply circuit, with a high non-removable, difficult or impossible hydraulic resistance. to calculate or measure, as a function of the number of revolutions, in the direction of opening, under a constant pressure difference p of 10 5 Pa. FIG. 4, identical to FIG. 3, is a curve representing the corrected variation of flow rate of 25 mm nominal diameter tap defined in Figure 4 installed in series with a circuit of 25 mm nominal supply diameter, high hydraulic resistance not removable, difficult or impossible to calculate or measure, depending on the number of turns in the direction of opening, under a constant pressure difference ρ of 10 5 Pa. FIG. 1 shows a heating installation comprising a hot water supply pipe 1 and a return pipe 3. Several series Ri, R 2 , R 3 ,... R n of emitters E 1 , E 2 , E 3 , ... E m , respectively are arranged one after the other, in parallel between these two pipes 1 and 3, and each of these series R n emitters is equipped at the output of a tap ROi , R0 2 ... RO n , said second level, to adjust the flow of hot water through it. In practice these emitters E m may consist of radiators, convectors, or heating or cooling batteries as well as pipes and other elements associated with them which possess a significant unknown hydraulic resistance in comparison with that of the tap which is associated with this set. We are thus in setting conditions that are very different from those where we adjusted several series consist of a single radiator. The balancing operation of this installation consists in ensuring that the specific bit rate of each of these series R n of transmitters is in correspondence with the respective powers. For, according to the invention, to put in equilibrium state such an installation, one proceeds as indicated hereinafter. It will first be noted that all the temperature measurements carried out in the context of the implementation of the balancing method according to the invention will preferably be carried out by means of thermometers capable of possessing a quasi-inexistent thermal inertia and a capacity to provide accurate and instantaneous measurement, such as infrared thermometers. Prior to the measurements, the balance control valves bodies RO n associated with each Series R n transmitters will preferentially arranged ent position mid-hydraulic opening. It has been established that the hydraulic mid-opening is defined by the setting position allowing a relative flow increase or decrease of the same amplitude. This mid-hydraulic opening can be very clearly different from the mid-mechanical opening when the control valve is in series with a significant hydraulic resistance in comparison with that of the valve. According to the invention, firstly, using an infrared thermometer, the temperature T A of the pipe 1 is measured at a point A which, in the diagram of FIG. located upstream of the connection of the first series Ri of transmitters, and the temperature T B of the pipe 3 at a point B, located downstream of the connection of the series Ri of transmitters. We can thus calculate the value which will be referred to below as the "reference gap". Then, also by means of an infrared thermometer, the temperature ts n of the pipe situated at the outlet of each of the series R n of emitters are measured. It has been established essentially empirically that the relative flow rate Q% n of a given series of transmitters R n (i.e., the percentage of the initial flow rate of this radiator with respect to its flow rate "to be adjusted" ) could be expressed as a function of the reference deviation and the temperature ts n of its outlet pipe.
Dans cette formule le coefficient k, dénommé « coefficient d'ajustement », est pris dans un premier cycle de réglage à une valeur voisine de 1,5. On a en effet constaté par les nombreuses mesures et essais réalisés que si, à l'issue d'un premier réglage il apparaît que la qualité de l'équilibrage obtenu n'est pas satisfaisante on puisse procéder ensuite à un second cycle de réglage en prenant alors une valeur de ce coefficient d'ajustement k plus faible, voisine alors de 1,1. On décrira ci-après, en regard de la figure 1, un exemple de mise en oeuvre de l'invention.In this formula the coefficient k, called "adjustment coefficient", is taken in a first adjustment cycle to a value close to 1.5. It has indeed been found by the many measurements and tests carried out that if, after a first adjustment, it appears that the quality of the balancing obtained is not satisfactory, a second adjustment cycle can then be carried out in then taking a value of this coefficient of adjustment k weaker, then close to 1.1. Hereinafter will be described, with reference to FIG. 1, an exemplary implementation of the invention.
EXEMPLE Dans cet exemple l'installation comprend une canalisation d'alimentation en eau chaude 1 et une canalisation de retour 3 entre lesquelles sont montées en dérivation trois séries Ri, R2, R3 d'émetteurs En. On mesure une température de la canalisation d'alimentation 1 en tête de la série au point A de Ta = 60°C et une température de la canalisation de retour 3 au point B de TB = 50 °C, ainsi que les températures en sortie des séries d'émetteurs Ri, R2 et R3 qui sont respectivement tsi = 54°C, ts2 = 49°C et ts3 = 45°C. On obtient ainsi un écart de référence dtref = 10 °C. On effectue ensuite pour la série Rx des émetteurs le calcul suivant la formule (2) et on obtient ainsi :EXAMPLE In this example, the installation comprises a hot water supply pipe 1 and a return pipe 3 between which three series Ri, R 2 , R 3 of emitters E n are connected in shunt. A temperature of the supply line 1 at the top of the series is measured at the point A of T a = 60 ° C. and a temperature of the return line 3 at the point B of T B = 50 ° C., as well as the temperatures at the output of the series of emitters Ri, R 2 and R 3 which are respectively tsi = 54 ° C, ts 2 = 49 ° C and ts 3 = 45 ° C. This gives a reference difference of ref = 10 ° C. For the R x series of emitters, the calculation according to formula (2) is then carried out and the following are obtained:
Le débit relatif Q%Rι obtenu pour la série des émetteurs Ri étant de 250%, cela signifie que le débit initial de cette série d'émetteurs est 2,5 fois trop élevé et que, en conséquence, on devra donc le diminuer dans un même rapport de 2,5 et ainsi fermer le robinet de réglage ROi de façon que son débit soit divisé par 2,5. On opérera de même ensuite pour la série des émetteurs R2 : The relative flow rate Q% R1 obtained for the series of emitters Ri being 250%, this means that the initial flow rate of this series of emitters is 2.5 times too high and that, consequently, it will have to be reduced in a same ratio of 2.5 and thus close the control valve ROi so that its flow rate is divided by 2.5. The same will be followed for the series of R 2 emitters:
10 100=87% Q%R2=10-1.5.[lO-(60-49)] Le débit relatif Q%R2 obtenu pour la série des émetteurs R2 étant de 87%, cela signifie que le débit initial de cette série d'émetteurs est les 87/100 de ce qu'il devrait être et que, en conséquence, son débit devra être augmenté dans un rapport de 100/87 = 1,15 et l'on devra alors ouvrir le robinet de réglage R02 de façon que son débit soit multiplié par 1,15. De même pour la série des émetteurs R3 on obtient : 10 100 = 87% Q% R2 = 10-1.5. [10- (60-49)] Since the relative flow rate Q% R2 obtained for the series of issuers R 2 is 87%, this means that the initial throughput of this series of transmitters is the 87/100 of what it should be and that, consequently, its The flow rate should be increased in a ratio of 100/87 = 1.15 and the control valve R0 2 must be opened so that its flow rate is multiplied by 1.15. Similarly for the series of emitters R 3 we get:
10 100 = 57,1% Q °R3 Œ 10 - 1,5.[10 - (60 - 45)]10 100 = 57.1% Q R3 Œ ° 10 to 1.5 [10 - (60 - 45)].
Cela signifie que l'on devra ouvrir le robinet de réglage R02 de façon que son débit soit multiplié par 100/57,1 = 1,75. Lorsqu'il advient que le débit relatif obtenu Q% est soit négatif, soit infini on considère que le débit initial est infiniment trop important et que, en conséquence, le réglage du robinet ROn correspondant doit être mis dans sa position de réglage minimal. Afin de réaliser cette opération, pour chacune des séries d' émetteurs Rn, de façon facile et rapide on dispose de courbes qui expriment la variation de débit qvN du robinet ROn de marque et de type donné en fonction du nombre de tours n de son organe de réglage et ceci pour un écart de pression constant. Une telle courbe, qui peut être fournie par le fabricant ou mesurée sur un banc hydraulique, est représentée à titre d'exemple sur la figure 2, pour un diamètre nominal de 25 mm d'un robinet de 8 T, mesurée sous une pression de 105 Pa This means that the regulating valve R0 2 must be opened so that its flow rate is multiplied by 100 / 57.1 = 1.75. When it happens that the relative flow obtained Q% is either negative or infinite, it is considered that the initial flow rate is infinitely large and that, consequently, the adjustment of the corresponding RO n valve must be set to its minimum setting position. . In order to carry out this operation, for each of the series of emitters R n , in an easy and fast way, curves are available which express the variation of the flow rate qv N of the tap RO n of the mark and of the type given as a function of the number of turns. of its adjustment member and this for a constant pressure difference. Such a curve, which can be supplied by the manufacturer or measured on a hydraulic bench, is shown by way of example in FIG. 2, for a nominal diameter of 25 mm of a tap of 8 T, measured under a pressure of 10 5 Pa
Il a été établi, de façon essentiellement empirique, que ces valeurs devaient être soumises à un coefficient correcteur. On effectue pour le robinet ROn le calcul de correction suivant la formule (1) précédemment mentionnée :It has been established, essentially empirically, that these values should be subject to a weighting. For the valve RO n, the correction calculation according to formula (1) previously mentioned is carried out:
sur laquelle on which
Qv2 = 3,02 ΛH3 Ih 1 1 + • [3,2x3,2 1x1x9' En reportant ces valeurs sur la courbe de la figure 2 on obtient une courbe (a) qui se situe sous la courbe (b) (figure 3) . On connaît, pour chacun des robinets ROχ, R02 et R03, la position de réglage initiale du robinet. On supposera ainsi, qu'à l'origine le robinet était en mi- ouverture hydraulique ce qui correspond sur la courbe de la figure 4 à une position dite de 2,25 tours (N=2,25) et à un débit de 3,3 m3/h, c'est-à-dire une position obtenue à partir de la fermeture prise comme référence et en ouvrant ensuite le robinet de 2,25 tours. Le premier ensemble des émetteurs Ri dont on souhaite réduire le débit dans un rapport de 2,5 devra donc être amené à un débit de son robinet de ROi de 3,3/2,5 = 1,3 m3/h et la courbe de la figure 4 nous montre que ce débit est obtenu pour une position Nι=0,87 du robinet ROi. Dans ces conditions, pour amener ce robinet de la mi ouverture hydraulique à cette position 0,87 tours d'ouverture on sera contraint de le fermer d'une valeur de 2,75-0,875 = 1,87 tours. Il en est de même, pour la série des émetteurs R2, dont le débit doit être augmenté dans un rapport de 1,15. Le débit du robinet associé R02 devra être amené à un débit de 3,3χl,15 = 3,8 m3/h et la courbe de la figure 4 nous montre que 1 ' on devra tourner la commande de ce robinet R02 pour l'amener à une position N2=2,75 tours d' ouverture. Il en est de même, bien entendu pour la série des émetteurs R3, dont le débit doit être augmenté dans un rapport de 1,75. Le débit de son robinet RO3 devra être amené à un débit de 3,3x1,75 = 5,77 m3/h et la courbe de la figure 4 nous montre que l'on devra amener le robinet à une position N3=5,37. Il faudra donc fermer le robinet de 5 , 375-2 , 25=3 , 12 tours . On a constaté qu'une fois les réglages ainsi effectués l'installation se trouvait équilibrée ou quasi équilibrée. Cependant dans certains cas de réglage il peut s'avérer nécessaire d'effectuer un second cycle d'ajustement. On met alors en œuvre un processus identique à celui précédemment décrit mais en retenant alors une valeur du coefficient k que les essais et tests effectués ont montré qu'elle devait être inférieure et voisine de 1,1. Lorsqu'il s'avère que le robinet a été en premier réglage trop fermé ou trop ouvert, on corrige le coefficient d'autorité ki en l'augmentant avec pour limite haute une valeur de 2. Lorsqu'il s'avère que le robinet a été en premier réglage insuffisamment ouvert ou insuffisamment fermé, on corrige le coefficient d'autorité ki en le diminuant avec pour limite basse une valeur de 0,5. Le procédé suivant l'invention peut être mis en œuvre de façon manuelle en effectuant les calculs précédemment mentionnés. Cependant il sera plus facile à contrôler en faisant appel à un appareil ayant pour effet de guider l'utilisateur au cours du processus et d'automatiser certaines des opérations et notamment les calculs. Bien que les exemples décrits dans cette demande soient relatifs à une installation à circulation d'eau par laquelle on chauffe le local, l'ensemble des opérations pourrait également être effectué dans l'hypothèse où cette installation à circulation d'eau véhiculerait de l'eau froide afin de refroidir ledit local. Qv 2 = 3.02 ΛH 3 Ih 1 1 + • [ 3,2x3,2 1x1x9 ' By plotting these values on the curve of figure 2 one obtains a curve (a) which is under the curve (b) (figure 3). For each of the valves ROχ, R0 2 and R0 3 , the initial setting position of the valve is known. It will be assumed that initially the valve was half-open hydraulically which corresponds on the curve of Figure 4 to a position called 2.25 turns (N = 2.25) and at a rate of 3 , 3 m 3 / h, that is to say a position obtained from the closure taken as reference and then opening the valve 2.25 turns. The first set of emitters Ri whose flow rate is to be reduced in a ratio of 2.5 must therefore be brought to a flow rate of its ROi tap of 3.3 / 2.5 = 1.3 m 3 / h and the curve of FIG. 4 shows us that this flow is obtained for a position Nι = 0.87 of the tap ROi. Under these conditions, to bring this valve half of the hydraulic opening at this position 0.87 opening turns we will be forced to close a value of 2.75-0.875 = 1.87 turns. It is the same for the series of emitters R 2 , whose flow must be increased in a ratio of 1.15. The flow rate of the associated valve R0 2 should be brought to a flow rate of 3.3 χ l, 15 = 3.8 m 3 / h and the curve of Figure 4 shows us that we must turn the control of this valve R0 2 to bring it to a position N 2 = 2.75 turns of opening. It is the same, of course for the series of emitters R 3 , whose flow must be increased in a ratio of 1.75. The flow rate of its valve RO3 should be brought to a flow rate of 3.3x1,75 = 5,77 m 3 / h and the curve of Figure 4 shows us that it will be necessary to bring the valve to a position N 3 = 5 37. It will be necessary to close the tap of 5, 375-2, 25 = 3, 12 rounds. It was found that once the adjustments were made the installation was balanced or almost balanced. However in some cases of adjustment it may be necessary to perform a second adjustment cycle. We then implement a process identical to that previously described but then retaining a value of the coefficient k that the tests and tests carried out showed that it should be lower and close to 1.1. When it turns out that the valve was first setting too closed or too open, the coefficient of authority ki is corrected by increasing it with the upper limit a value of 2. When it turns out that the valve was first adjustment insufficiently open or insufficiently closed, it corrects the coefficient of authority ki by decreasing it with low limit a value of 0.5. The method according to the invention can be implemented manually by carrying out the calculations mentioned above. However it will be easier to control by using a device to guide the user during the process and to automate some of the operations including calculations. Although the examples described in this application relate to a water-circulating installation by which the room is heated, all the operations could also be carried out in the event that this water-circulating installation would convey water. cold water to cool said room.

Claims

REVENDICATIONS
1.- Procédé d'équilibrage d'une installation de chauffage/refroidissement à circulation d'eau comportant au moins une série (Ri, R2, Rn) d'au moins un émetteur (Ei, E2, En) disposée en dérivation entre une canalisation d'alimentation en eau amont (1) et une canalisation de retour aval (3) , chaque série étant réglable individuellement par au moins un robinet d' équilibrage de premier niveau (ROi, R02, ROn) caractérisé en ce qu'il comporte les étapes consistant à: - mesurer la température (TA) de la canalisation d'alimentation (1) en amont de la série, et déterminer la différence de température, ou écart de référence (dtref) , entre cette température (TA) et une température (TB) égale soit à la température de la canalisation de retour (3) en amont de la série soit une température égale à la température souhaitée pour cette canalisation, - mesurer successivement la température, (tsn) en sortie de chacun des émetteurs ou ensemble d'émetteurs (Rn) de la série, - déterminer successivement, pour chaque série, la différence entre la température (TA) en amont de la première série et la température de sortie (tsn) de chaque série, ou écart spécifique, établir, pour chaque série un coefficient correcteur de mesure (A) égal à la différence existant entre la valeur de l'écart de référence (dtref) avec une valeur constituée par le produit d'un coefficient d'ajustement (k) par la différence existant entre la susdite valeur de l'écart de référence (dtref) et la susdite valeur de l'écart spécifique, établir pour chaque série (Ri, R2, Rn) un coefficient de débit relatif (Q%n) égal au rapport de l'écart de référence (dtrβf) sur le coefficient correcteur de mesure (A) . 1.- Method for balancing a water circulation heating / cooling installation comprising at least one series (Ri, R 2 , R n ) of at least one emitter (Ei, E 2 , E n ) arranged in branching between an upstream water supply line (1) and a downstream return line (3), each series being individually adjustable by at least one first level balancing valve (ROi, R0 2 , RO n ) characterized in that it comprises the steps of: measuring the temperature (T A ) of the supply pipe (1) upstream of the series, and determining the difference in temperature, or reference difference (dt ref ), between this temperature (T A ) and a temperature (T B ) equal to either the temperature of the return pipe (3) upstream of the series or a temperature equal to the desired temperature for this pipe, - successively measuring the temperature, (ts n ) at the output of each of the transmitters or together of emitters (R n ) of the series, - successively determining, for each series, the difference between the temperature (T A ) upstream of the first series and the exit temperature (ts n ) of each series, or specific deviation , for each series, establish a correction coefficient (A) equal to the difference between the value of the reference difference (dt ref ) and a value constituted by the product of an adjustment coefficient (k) per the difference between the aforesaid value of the reference difference (dt ref ) and the aforementioned value of the specific deviation, establish for each series (Ri, R 2 , R n ) a relative flow coefficient (Q% n ) equal to the ratio of the reference difference (dt rβf ) on the measurement correction coefficient (A).
2.- Procédé suivant la revendication 1 caractérisé en ce que le coefficient d'ajustement (k) est voisin de 1,5 lors d'un premier cycle de réglage et voisin de 1,1 pour les cycles de réglage éventuels suivants. 2. A process according to claim 1 characterized in that the adjustment coefficient (k) is close to 1.5 during a first adjustment cycle and close to 1.1 for the following possible adjustment cycles.
3.- Procédé suivant l'une des revendications 1 ou 2 caractérisé en ce que l'on corrige le débit fourni à une série (Rn) déterminée en multipliant son débit par l'inverse du coefficient de débit relatif. 3. A process according to one of claims 1 or 2 characterized in that one corrects the flow rate supplied to a series (R n ) determined by multiplying its flow rate by the inverse of the relative flow coefficient.
4.- Procédé suivant la revendication 3 caractérisé en ce que l'on assure le positionnement de l'organe de réglage du robinet (R0n) à régler, en référence à la réponse hydraulique de ce robinet sous pression constante, corrigée de la résistance hydraulique en série selon la formule :4. A process according to claim 3 characterized in that one ensures the positioning of the valve adjusting member (R0 n ) to be adjusted, with reference to the hydraulic response of this valve under constant pressure, corrected resistance series hydraulic according to the formula:
OU qvN : est le débit en m3/h du robinet, qvιN : est le débit en m3/h du robinet tel qu'indiqué par le fabriquant ou tel que mesuré sur un banc hydraulique, Δp : est la pression de détermination de qvιN en Pa kl : est le coefficient d'ajustement de l'autorité, Kvs: est le débit en m3/h sous 105Pa des robinets d'équilibrage les plus représentatifs du marché en position de grande ouverture. OR q vN : is the flow rate in m 3 / h of the valve, q v ι N : is the flow rate in m 3 / h of the valve as indicated by the manufacturer or as measured on a hydraulic bench, Δp: is the determination pressure of q v ι N in Pa kl: is the coefficient of adjustment of the authority, Kv s : is the flow rate in m 3 / h under 10 5 Pa of the balancing valves most representative of the market in position great opening.
5.- Procédé suivant la revendication 4 caractérisé en ce que, lorsqu'il s'avère qu'un robinet a été en premier réglage trop fermé ou trop ouvert, on corrige le coefficient d'ajustement de l'autorité ki associé à celui-ci en l'augmentant avec pour limite haute une valeur de 2. 5. A process according to claim 4 characterized in that, when it turns out that a valve was first setting too closed or too open, it corrects the adjustment coefficient of the authority ki associated with that- by increasing it with a high value of 2.
6.- Procédé suivant la revendication 4 caractérisé en ce que lorsqu'il s'avère qu'un robinet a été en premier réglage insuffisamment ouvert ou insuffisamment fermé, on corrige le coefficient d'autorité ki associé à celui-ci en le diminuant avec pour limite basse une valeur de 0,5. 6. A process according to claim 4 characterized in that when it turns out that a valve was first not sufficiently open or insufficiently closed setting, it corrects the authority coefficient ki associated with it by decreasing it with for low limit a value of 0.5.
EP05773263.8A 2004-05-26 2005-05-25 Method for balancing emitters in a heating system Active EP1754005B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05773263T PL1754005T3 (en) 2004-05-26 2005-05-25 Method for balancing emitters in a heating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0405687A FR2870927B1 (en) 2004-05-26 2004-05-26 METHOD FOR BALANCING THE TRANSMITTERS OF A HEATING FACILITY
PCT/FR2005/001295 WO2005119129A1 (en) 2004-05-26 2005-05-25 Method for balancing emitters in a heating system

Publications (2)

Publication Number Publication Date
EP1754005A1 true EP1754005A1 (en) 2007-02-21
EP1754005B1 EP1754005B1 (en) 2014-11-19

Family

ID=34944877

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05773263.8A Active EP1754005B1 (en) 2004-05-26 2005-05-25 Method for balancing emitters in a heating system

Country Status (7)

Country Link
EP (1) EP1754005B1 (en)
DK (1) DK1754005T3 (en)
ES (1) ES2529450T3 (en)
FR (1) FR2870927B1 (en)
PL (1) PL1754005T3 (en)
PT (1) PT1754005E (en)
WO (1) WO2005119129A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180031251A1 (en) * 2016-07-27 2018-02-01 Computime, Ltd. Automatic Balance Valve Control

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8109289B2 (en) 2008-12-16 2012-02-07 Honeywell International Inc. System and method for decentralized balancing of hydronic networks
PL2395288T3 (en) * 2010-06-08 2019-07-31 Comap Balancing valve
EP4004446B1 (en) * 2019-07-22 2023-06-21 Belimo Holding AG Method and system for balancing a hydronic network

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2746168B1 (en) * 1996-03-14 1998-04-30 METHOD FOR BALANCING A NON-COMPRESSIBLE FLUID DISTRIBUTION NETWORK WITH TWO TUBES, MULTIPLE BRANCHES OR DERIVED COLUMNS
FR2795491B1 (en) * 1999-06-24 2001-09-28 Gefen Lycee Maximilien Perret METHOD AND DEVICE FOR BALANCING A WATER CIRCULATION HEATING / COOLING SYSTEM

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005119129A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180031251A1 (en) * 2016-07-27 2018-02-01 Computime, Ltd. Automatic Balance Valve Control

Also Published As

Publication number Publication date
ES2529450T3 (en) 2015-02-20
FR2870927A1 (en) 2005-12-02
PL1754005T3 (en) 2015-07-31
DK1754005T3 (en) 2015-03-02
FR2870927B1 (en) 2007-10-05
EP1754005B1 (en) 2014-11-19
WO2005119129A1 (en) 2005-12-15
PT1754005E (en) 2015-02-24

Similar Documents

Publication Publication Date Title
EP0795724B1 (en) Equalizing method for a network of a non compressible fluid
EP1754005B1 (en) Method for balancing emitters in a heating system
FR2651296A1 (en) VALVE CONTROL.
EP1133662B1 (en) Automatic hydraulic balancing device
FR2706645A1 (en) Method for regulating the temperature of a system
EP0133732B1 (en) Protection device for water conduits
FR2920858A1 (en) METHOD OF FILLING A GAS CONTAINER UNDER PRESSURE
FR2530014A1 (en) METHOD AND DEVICE FOR THERMAL MEASUREMENT OF MASS FLOW RATE
EP1809151A2 (en) Device and method for heating a liquid
FR2567992A1 (en) DEVICE FOR ADJUSTING THE ON AND OFF PERIODS OF A BURNER OF A HOT WATER HEATING SYSTEM
EP1886116A2 (en) Method and system for measuring and examining reactor fouling
EP3489588B1 (en) System for heating water for domestic use
EP3145374A1 (en) Device and method for producing and dispensing a boiling liquid and apparatus for preparing a beverage provided with such a device
FR2931226A1 (en) Heat transfer fluid circuit control system for heating or cooling room, has monitoring module detecting when flow regulation unit of fluid is differently parametered by comparing current value with reference indicator value in each loop
FR2795491A1 (en) Method of achieving equilibrium in a heating or air-conditioning installation which circulates water to radiators at different rates
EP3671051A1 (en) Method for controlling the domestic hot water loop return for a system for producing domestic hot water
EP0063530B1 (en) Method of controlling the flow of a fluid circulating in a central heating system, and apparatus therefor
FR2547396A1 (en) METHOD FOR BALANCING A BITUBE TYPE CENTRAL HEATING SYSTEM AND INSTALLATION FOR CARRYING OUT SAID METHOD
EP0316496A1 (en) Method for regulating the temperature of a central heating installation
FR2903763A1 (en) Fluid e.g. hot water, circulating installation e.g. air conditioning installation and heating installation, controlling and balancing system for building, has computer with unit calculating flow value of valve and screen visualizing value
EP0076759A1 (en) Apparatus for continuously determining the heating value of gases
CH624486A5 (en)
FR2957666A1 (en) DEVICE FOR MEASURING THE TEMPERATURE OF WATER COVERING A PAVEMENT
FR2817610A1 (en) Circuit, for preparing sanitary water to be used in heater, comprises small container, sanitary heat exchanger, principal heat exchanger and short circuiting channel in parallel with container
FR2701306A1 (en) Fluid distribution network with regulating device.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

INTG Intention to grant announced

Effective date: 20140520

INTG Intention to grant announced

Effective date: 20140617

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DELPECH, PATRICK

Owner name: GEFEN (LYCEE MAXIMILIEN PERRET)

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 697263

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005045226

Country of ref document: DE

Effective date: 20141231

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MAPSEC

Owner name: GEFEN (LYCEE MAXIMILIEN PERRET)

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2529450

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150220

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20150213

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KATZAROV S.A., CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20150223

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: MAPSEC, FR

Effective date: 20150223

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150319

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005045226

Country of ref document: DE

Representative=s name: PATENTANWAELTE LIPPERT, STACHOW & PARTNER, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005045226

Country of ref document: DE

Representative=s name: LIPPERT STACHOW PATENTANWAELTE RECHTSANWAELTE , DE

Effective date: 20150511

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005045226

Country of ref document: DE

Representative=s name: PATENTANWAELTE LIPPERT, STACHOW & PARTNER, DE

Effective date: 20150511

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005045226

Country of ref document: DE

Owner name: MAPSEC, FR

Free format text: FORMER OWNER: PATRICK DELPECH,LYCEE MAXIMILIEN PERRET GEFEN, , FR

Effective date: 20141120

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005045226

Country of ref document: DE

Owner name: MAPSEC, FR

Free format text: FORMER OWNER: DELPECH, PATRICK, PARIS, FR

Effective date: 20150511

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005045226

Country of ref document: DE

Owner name: MAPSEC, FR

Free format text: FORMER OWNERS: DELPECH, PATRICK, PARIS, FR; GEFEN, LYCEE MAXIMILIEN PERRET, ALFORTVILLE, FR

Effective date: 20141120

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150528 AND 20150603

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20150716

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20150716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20150512

Year of fee payment: 11

Ref country code: ES

Payment date: 20150520

Year of fee payment: 11

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005045226

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E023526

Country of ref document: HU

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150519

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 697263

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141119

Ref country code: AT

Ref legal event code: PC

Ref document number: 697263

Country of ref document: AT

Kind code of ref document: T

Owner name: MAPSEC, FR

Effective date: 20151218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20160520

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160519

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161125

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160525

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170522

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170524

Year of fee payment: 13

Ref country code: CH

Payment date: 20170523

Year of fee payment: 13

Ref country code: DK

Payment date: 20170524

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20170512

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20170512

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 697263

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170525

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: AVENUE DES MORGINES 12, 1213 PETIT-LANCY (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170525

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160526

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181204

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20180531

Ref country code: NL

Ref legal event code: MM

Effective date: 20180601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180525

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20220519

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20220524

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220727

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230517

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005045226

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531