EP1751244A2 - Compositions de réfrigérant 1,1,1,2,2,4,5,5,5-nonafluor-4-(trifluorométhyle)-3-pentanone et de transfert de chaleur comprenant un éther fluoré - Google Patents

Compositions de réfrigérant 1,1,1,2,2,4,5,5,5-nonafluor-4-(trifluorométhyle)-3-pentanone et de transfert de chaleur comprenant un éther fluoré

Info

Publication number
EP1751244A2
EP1751244A2 EP05755364A EP05755364A EP1751244A2 EP 1751244 A2 EP1751244 A2 EP 1751244A2 EP 05755364 A EP05755364 A EP 05755364A EP 05755364 A EP05755364 A EP 05755364A EP 1751244 A2 EP1751244 A2 EP 1751244A2
Authority
EP
European Patent Office
Prior art keywords
weight percent
trifluoromethyl
pentanone
nonafluoro
psia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05755364A
Other languages
German (de)
English (en)
Inventor
Barbara Haviland Minor
Mario J. Nappa
Allen C. Sievert
Thomas J. Leck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/063,178 external-priority patent/US7252780B2/en
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of EP1751244A2 publication Critical patent/EP1751244A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/16Saturated compounds containing keto groups bound to acyclic carbon atoms containing halogen
    • C07C49/167Saturated compounds containing keto groups bound to acyclic carbon atoms containing halogen containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M1/00Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D1/00Devices using naturally cold air or cold water
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/11Ethers
    • C09K2205/112Halogenated ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds

Definitions

  • the present invention relates to compositions for use in heat transfer refrigeration and air conditioning systems comprising
  • compositions of the present invention may be azeotropic or near azeotropic.
  • the present invention provides compositions, including refrigerant compositions and heat transfer fluids, that provide characteristics to meet the demands of low or zero ozone depletion potential and lower global warming potential.
  • compositions including refrige rant or heat transfer fluid compositions selected from the group consis ting of: 1 ,1 ,1 ,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl 3-pentanone and 1- (difluoromethoxy)-l ,1 ,2-trifluoroethane; 1 ,1 ,1 ⁇ A ⁇ . ⁇ . ⁇ -nonafluoroA- ⁇ rifluoromethyl -3-pentanone and 1- (difluoromethoxyj-l ⁇ -trifluoroethane; 1 ,1 ,1 ,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl 3-pentanone and 2- fluoromethoxy-1 ,1 ,1 ,2-tetrafluoroethane; 1 ,1 ,1 ,2,2,4,5,5, 5-nonafluoro-4-(trifluor
  • the above listed compounds may be used in refrigeration, heat transfer or air conditioning systems employing a centrifugal ⁇ compressor, a two-stage centrifugal compressor and/or a single slab/single pass heat exchanger.
  • the present invention also relates to processes for producing refrigeration, heat, and transfer of heat from a heat source to a heat sink using the present inventive compositions.0 DETAILED DESCRIPTION OF THE INVENTION Applicants specifically incorporate the entire contents of all cited references in this disclosure.
  • compositions of the present invention comprise 1 ,1 ,1 ,2,2 A ⁇ , ⁇ , ⁇ -nonafluoro-4-(trifluoromethyl)-3-pentanone (PEIK) and at ⁇ least one fluoroether.
  • the fluoroethers of the present invention comprise compounds containing hydrogen, fluorine, carbon and at least one ether group oxygen.
  • the fluoroethers may be represented by the formula R 1 OR 2 , wherein R 1 and R 2 are independently selected from straight or branched chain aliphatic fluorinated hydrocarbon radicals. R 1 and R 2 may be joined to form a cyclic fluoroether ring.
  • the fluoroethers may contain from about 2 to 8 carbon atoms.
  • Preferred fluoroethers have from 3 to 6 carbon atoms.
  • Representative fluoroethers are listed in Table 1. Representative compounds that may be components of the compositions of the present invention are listed in Table 1.
  • C 4 F 9 OCH 3 and C 4 F 9 OC 2 H 5 are both mixtures of isomers as indicated in Table 1 and are available commercially from 3MTM (St. Paul, Minnesota). 1 ,1 ,1 ,2,2,4, ⁇ , ⁇ , ⁇ - nonafluoro-4-(trifluoromethyl)-3-pentanone (PEIK) is also commercially available from 3MTM (St. Paul, Minnesota), ⁇ Compositions of the present invention have low or zero ozone depletion potential and low global warming potential.
  • compositions of the present invention may be prepared by 0 any convenient method to combine the desired amounts of the individual components.
  • a preferred method is to weigh the desired component amounts and thereafter combine the components in an appropriate vessel. Agitation may be used, if desired.
  • the refrigerant or heat transfer compositions of the present ⁇ invention comprise PEIK with at least one fluoroether selected from the group consisting of: 1-(difluoromethoxy)-1 ,1 ,2-trifluoroethane; 1 -(difluoromethoxy)-l ,2,2-trifluoroethane; 2-fluoromethoxy-1 ,1 ,1 ,2-tetrafluoroethane;0 1 -methoxy-1 ,1 ,2,2-tetrafluoroethane; 2-methoxy-1 ,1 ,1 ,2-tetrafluoroethane; 1-difluoromethoxy-2,2-difluoroethane; 2-methoxy-1 ,1 ,2-trifluoroethane; 1 ,1-difluoro-2-methoxyethane; ⁇ 1 ,1 ,2,2-tetrafluoro-3-(trifluoromethoxy)propane; 1-(2,2-d
  • the refrigerant or heat transfer compositions of the present invention may be azeotropic or near azeotropic compositions.
  • azeotropic composition is meant a constant-boiling mixture of two or more substances that behave as a single substance.
  • One way to characterize an azeotropic composition is that the vapor produced by partial0 evaporation or distillation of the liquid has the same composition as the liquid from which it is evaporated or distilled, i.e., the mixture distils/refluxes without compositional change.
  • Constant-boiling compositions are characterized as azeotropic because they exhibit either a maximum or minimum boiling point, as compared with that of the non- ⁇ azeotropic mixture of the same compounds.An azeotropic composition will not fractionate within the refrigeration or air conditioning system during operation, which may reduce efficiency of the system. Additionally, an azeotropic composition will not fractionate upon leakage from the refrigeration or air conditioning system. In the situation where one0 component of a mixture is flammable, fractionation during leakage could lead to a flammable composition either within the system or outside of the system.
  • a near azeotropic composition (also commonly referred to as an "azeotropic-like composition”) is a substantially constant boiling, liquid ⁇ admixture of two or more substances that behaves essentially as a single substance.
  • a near azeotropic composition is that the vapor produced by partial evaporation or distillation of the liquid has substantially the same composition as the liquid from which it was evaporated or distilled, that is, the admixture distills/refluxes without substantial composition change.
  • Another way to characterize a near azeotropic composition is that the bubble point vapor pressure and the dew point vapor pressure of the composition at a particular temperature are substantially the same.
  • a composition is near azeotropic if, after 50 weight percent of the composition is removed, such as by evaporation or boiling off, the difference in vapor pressure between the original composition and the composition remaining after 50 weight percent of the original composition has been removed is less than about 10 percent.
  • the azeotropic compositions, including refrigerant compositions and heat transfer fluids, of the present invention are listed in Table 2. TABLE 2
  • Component A Component B Concentration BP (°C) Wt% A Wt% B
  • compositions of the present invention may further comprise about 0.01 weight percent to about 5 weight percent of an additive such as, for example, a stabilizer, free radical scavenger and/or antioxidant.
  • an additive such as, for example, a stabilizer, free radical scavenger and/or antioxidant.
  • additives include but are not limited to, nitromethane, hindered phenols, hydroxylamines, thiols, phosphites, or lactones. Single additives or combinations may be used.
  • the compositions of the present invention may further comprise about 0.01 weight percent to about 5 weight percent of a water scavenger (drying compound).
  • Such water scavengers may comprise ortho esters such as trimethyl-, triethyl-, or tripropylortho formate.
  • the compositions of the present invention may further comprise an ultra-violet (UV) dye and optionally a solubilizing agent.
  • UV dye is a useful component for detecting leaks of the refrigerant composition or heat transfer fluids by permitting one to observe the fluorescence of the dye in the refrigerant or heat transfer fluid composition at a leak point or in the vicinity of refrigeration or air-conditioning apparatus. One may observe the fluorosence of the dye under an ultraviolet light. Solubilizing agents may be needed due to poor solubility of such UV dyes in some refrigerants and heat transfer fluids.
  • ultra-violet dye is meant a UV fluorescent composition that absorbs light in the ultra-violet or “near” ultra-violet region of the electromagnetic spectrum.
  • the fluorescence produced by the UV fluorescent dye under illumination by a UV light that emits radiation with wavelength anywhere from 10 nanometer to 750 nanometer may be detected. Therefore, if refrigerant or heat transfer fluid containing such a UV fluorescent dye is leaking from a given point in a refrigeration or air conditioning apparatus, the fluorescence can be detected at the leak point.
  • UV fluorescent dyes include but are not limited to naphthalimides, perylenes, coumarins, anthracenes, phenanthracenes, xanthenes, thioxanthenes, naphthoxanthenes, fluoresceins, and derivatives or combinations thereof.
  • Solubilizing agents of the present invention comprise at least one compound selected from the group consisting of hydrocarbons, hydrocarbon ethers, polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers and 1 ,1 ,1-trifluoroalkanes.
  • Hydrocarbon solubilizing agents of the present invention comprise hydrocarbons including straight chained, branched chain or cyclic alkanes or alkenes containing 5 or fewer carbon atoms and only hydrogen with no other functional groups.
  • Representative hydrocarbon solubilizing agents comprise propane, propylene, cyclopropane, n-butane, isobutane, and n-pentane. It should be noted that if the refrigerant or heat transfer fluid is a hydrocarbon, then the solubilizing agent may not be the same hydrocarbon.
  • Hydrocarbon ether solubilizing agents of the present invention comprise ethers containing only carbon, hydrogen and oxygen, such as dimethyl ether (DME).
  • Polyoxyalkylene glycol ether solubilizing agents of the present invention are represented by the formula R 1 [(OR 2 ) x OR 3 ] y , wherein: x is an integer from 1-3; y is an integer from 1-4; R 1 is selected from hydrogen and aliphatic hydrocarbon radicals having 1 to 6 carbon atoms and y bonding sites; R 2 is selected from aliphatic hydrocarbylene radicals having from 2 to 4 carbon atoms; R 3 is selected from hydrogen and aliphatic and alicyclic hydrocarbon radicals having from 1 to 6 carbon atoms; at least one of R 1 and R 3 is said hydrocarbon radical; and wherein said polyoxyalkylene glycol ethers have a molecular weight of from about 100 to about 300 atomic mass units.
  • bonding sites mean radical sites available to form covalent bonds with other radicals.
  • Hydrocarbylene radicals mean divalent hydrocarbon radicals.
  • preferred polyoxyalkylene glycol ether solubilizing agents are represented by R 1 [(OR 2 ) x OR 3 ] y : x is preferably 1-2; y is preferably 1 ; R 1 and R 3 are preferably independently selected from hydrogen and aliphatic hydrocarbon radicals having 1 to 4 carbon atoms; R 2 is preferably selected from aliphatic hydrocarbylene radicals having from 2 or 3 carbon atoms, most preferably 3 carbon atoms; the polyoxyalkylene glycol ether molecular weight is preferably from about 100 to about 250 atomic mass units, most preferably from about 125 to about 250 atomic mass units.
  • the R 1 and R 3 hydrocarbon radicals having 1 to 6 carbon atoms may be linear, branched or cyclic.
  • Representative R 1 and R 3 hydrocarbon radicals include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, terf-butyl, pentyl, isopentyl, neopentyl, terf-pentyl, cyclopentyl, and cyclohexyl.
  • free hydroxyl radicals on the present polyoxyalkylene glycol ether solubilizing agents may be incompatible with certain compression refrigeration apparatus materials of construction (e.g.
  • R 1 and R 3 are preferably aliphatic hydrocarbon radicals having 1 to 4 carbon atoms, most preferably 1 carbon atom.
  • the R 2 aliphatic hydrocarbylene radicals having from 2 to 4 carbon atoms form repeating oxyalkylene radicals - (OR 2 ) x - that include oxyethylene radicals, oxypropylene radicals, and oxybutylene radicals.
  • the oxyalkylene radical comprising R 2 in one polyoxyalkylene glycol ether solubilizing agent molecule may be the same, or one molecule may contain different R 2 oxyalkylene groups.
  • the present polyoxyalkylene glycol ether solubilizing agents preferably comprise at least one oxypropylene radical.
  • R 1 is an aliphatic or alicyclic hydrocarbon radical having 1 to 6 carbon atoms and y bonding sites
  • the radical may be linear, branched or cyclic.
  • Representative R 1 aliphatic hydrocarbon radicals having two bonding sites include, for example, an ethylene radical, a propylene radical, a butylene radical, a pentylene radical, a hexylene radical, a cyclopentylene radical and a cyclohexylene radical.
  • R 1 aliphatic hydrocarbon radicals having three or four bonding sites include residues derived from polyalcohols, such as trimethylolpropane, glycerin, pentaerythritol, 1 ,2,3- trihydroxycyclohexane and 1 ,3,5-trihydroxycyclohexane, by removing their hydroxyl radicals.
  • Representative polyoxyalkylene glycol ether solubilizing agents include but are not limited to: CH 3 OCH 2 CH(CH 3 )O(H or CH 3 ) (propylene glycol methyl (or dimethyl) ether), CH 3 O[CH 2 CH(CH 3 )O] 2 (H or CH 3 ) (dipropylene glycol methyl (or dimethyl) ether), CH 3 O[CH 2 CH(CH 3 )O] 3 (H or CH 3 ) (tripropylene glycol methyl (or dimethyl) ether), C 2 H 5 OCH 2 CH(CH 3 )O(H or C 2 H 5 ) (propylene glycol ethyl (or diethyl) ether), C 2 H 5 O[CH 2 CH(CH 3 )O] 2 (H or C 2 H 5 ) (dipropylene glycol ethyl (or diethyl) ether), C 2 H 5 O[CH 2 CH(CH 3 )O] 3 (H or C 2 H 5
  • Amide solubilizing agents of the present invention comprise those represented by the formulae R 1 C(O)NR 2 R 3 and cyclo- [R 4 C(O)N(R 5 )], wherein R 1 , R 2 , R 3 and R 5 are independently selected from aliphatic and alicyclic hydrocarbon radicals having from 1 to 12 carbon atoms; R 4 is selected from aliphatic hydrocarbylene radicals having from 3 to 12 carbon atoms; and wherein said amides have a molecular weight of from about 100 to about 300 atomic mass units. The molecular weight of said amides is preferably from about 160 to about 250 atomic mass units.
  • R 1 , R 2 , R 3 and R 5 may optionally include substituted hydrocarbon radicals, that is, radicals containing non-hydrocarbon substituents selected from halogens (e.g., fluorine, chlorine) and alkoxides (e.g. methoxy).
  • R 1 , R 2 , R 3 and R 5 may optionally include heteroatom-substituted hydrocarbon radicals, that is, radicals, which contain the atoms nitrogen (aza-), oxygen (oxa-) or sulfur (thia-) in a radical chain otherwise composed of carbon atoms.
  • amide solubilizing agents consist of carbon, hydrogen, nitrogen and oxygen.
  • R 1 , R 2 , R 3 and R 5 aliphatic and alicyclic hydrocarbon radicals include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, terf-butyl, pentyl, isopentyl, neopentyl, fert-pentyl, cyclopentyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and their configurational isomers.
  • a preferred embodiment of amide solubilizing agents are those wherein R 4 in the aforementioned formula cyclo-[R 4 C(O)N(R 5 )-] may be represented by the hydrocarbylene radical (CR 6 R 7 ) n , in other words, the formula: cyclo- [(CR 6 R 7 ) n C(O)N(R 5 )-] wherein: the previously-stated values for molecular weight apply; n is an integer from 3 to 5; R 5 is a saturated hydrocarbon radical containing 1 to 12 carbon atoms; R 6 and R 7 are independently selected (for each n) by the rules previously offered defining R 1"3 .
  • R 6 and R 7 are preferably hydrogen, or contain a single saturated hydrocarbon radical among the n methylene units, and R 5 is a saturated hydrocarbon radical containing 3 to 12 carbon atoms.
  • R 5 is a saturated hydrocarbon radical containing 3 to 12 carbon atoms.
  • amide solubilizing agents include but are not limited to: 1-octylpyrrolidin-2-one, 1-decylpyrrolidin-2-one, 1-octyl-5- methylpyrrolidin-2-one, 1 -butylcaprolactam, 1 -cyclohexylpyrrolidin-2-one, 1-butyl-5-methylpiperid-2-one, 1-pentyl-5-methylpiperid-2-one, 1- hexylcaprolactam, 1-hexyl-5-methylpyrrolidin-2-one, 5-methyl-1- pentylpiperid-2-one, 1 ,3-dimethylpiperid-2-one, 1-methylcaprolactam, 1- butyl-pyrrolidin-2-one, 1 ,5-dimethylpiperid-2-one, 1-decyl-5- methylpyrrolidin-2-one, 1 -dodecylpyrrolid-2-one, N,N-dibutylformamide and N,N-d
  • Ketone solubilizing agents of the present invention comprise ketones represented by the formula R 1 C(O)R 2 , wherein R 1 and R 2 are independently selected from aliphatic, alicyclic and aryl hydrocarbon radicals having from 1 to 12 carbon atoms, and wherein said ketones have a molecular weight of from about 70 to about 300 atomic mass units.
  • R 1 and R 2 in said ketones are preferably independently selected from aliphatic and alicyclic hydrocarbon radicals having 1 to 9 carbon atoms.
  • the molecular weight of said ketones is preferably from about 100 to 200 atomic mass units.
  • R 1 and R 2 may together form a hydrocarbylene radical connected and forming a five, six, or seven-membered ring cyclic ketone, for example, cyclopentanone, cyclohexanone, and cycloheptanone.
  • R 1 and R 2 may optionally include substituted hydrocarbon radicals, that is, radicals containing non-hydrocarbon substituents selected from halogens (e.g., fluorine, chlorine) and alkoxides (e.g. methoxy).
  • R 1 and R 2 may optionally include heteroatom-substituted hydrocarbon radicals, that is, radicals, which contain the atoms nitrogen (aza-), oxygen (keto-, oxa-) or sulfur (thia-) in a radical chain otherwise composed of carbon atoms.
  • heteroatom-substituted hydrocarbon radicals that is, radicals, which contain the atoms nitrogen (aza-), oxygen (keto-, oxa-) or sulfur (thia-) in a radical chain otherwise composed of carbon atoms.
  • no more than three non-hydrocarbon substituents and heteroatoms, and preferably no more than one, will be present for each 10 carbon atoms in R 1 and R 2 , and the presence of any such non- hydrocarbon substituents and heteroatoms must be considered in applying the aforementioned molecular weight limitations.
  • R 1 and R 2 aliphatic, alicyclic and aryl hydrocarbon radicals in the general formula R 1 C(O)R 2 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, te/f-butyl, pentyl, isopentyl, neopentyl, ferf-pentyl, cyclopentyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and their configurational isomers, as well as phenyl, benzyl, cumenyl, mesityl, tolyl, xylyl and phenethyl.
  • ketone solubilizing agents include but are not limited to: 2-butanone, 2-pentanone, acetophenone, butyrophenone, hexanophenone, cyclohexanone, cycloheptanone, 2-heptanone, 3- heptanone, 5-methyl-2-hexanone, 2-octanone, 3-octanone, diisobutyl ketone, 4-ethylcyclohexanone, 2-nonanone, 5-nonanone, 2-decanone, 4- decanone, 2-decalone, 2-tridecanone, dihexyl ketone and dicyclohexyl ketone.
  • Nitrile solubilizing agents of the present invention comprise nitriles represented by the formula R 1 CN, wherein R 1 is selected from aliphatic, alicyclic or aryl hydrocarbon radicals having from 5 to 12 carbon atoms, and wherein said nitriles have a molecular weight of from about 90 to about 200 atomic mass units.
  • R 1 in said nitrile solubilizing agents is preferably selected from aliphatic and alicyclic hydrocarbon radicals having 8 to 10 carbon atoms.
  • the molecular weight of said nitrile solubilizing agents is preferably from about 120 to about 140 atomic mass units.
  • R 1 may optionally include substituted hydrocarbon radicals, that is, radicals containing non-hydrocarbon substituents selected from halogens (e.g., fluorine, chlorine) and alkoxides (e.g. methoxy).
  • R 1 may optionally include heteroatom-substituted hydrocarbon radicals, that is, radicals, which contain the atoms nitrogen (aza-), oxygen (keto-, oxa-) or sulfur (thia-) in a radical chain otherwise composed of carbon atoms.
  • R 1 aliphatic, alicyclic and aryl hydrocarbon radicals in the general formula R 1 CN include pentyl, isopentyl, neopentyl, terf-pentyl, cyclopentyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and their configurational isomers, as well as phenyl, benzyl, cumenyl, mesityl, tolyl, xylyl and phenethyl.
  • nitrile solubilizing agents include but are not limited to: 1- cyanopentane, 2,2-dimethyl-4-cyanopentane, 1-cyanohexane, 1- cyanoheptane, 1-cyanooctane, 2-cyanooctane, 1-cyanononane, 1- cyanodecane, 2-cyanodecane, 1-cyanoundecane and 1-cyanododecane.
  • Chlorocarbon solubilizing agents of the present invention comprise chlorocarbons represented by the formula RCI X , wherein; x is selected from the integers 1 or 2; R is selected from aliphatic and alicyclic hydrocarbon radicals having 1 to 12 carbon atoms; and wherein said chlorocarbons have a molecular weight of from about 100 to about 200 atomic mass units.
  • the molecular weight of said chlorocarbon solubilizing agents is preferably from about 120 to 150 atomic mass units.
  • R aliphatic and alicyclic hydrocarbon radicals in the general formula RCI X include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, terf-butyl, pentyl, isopentyl, neopentyl, terf-pentyl, cyclopentyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and their configurational isomers.
  • chlorocarbon solubilizing agents include but are not limited to: 3-(chloromethyl)pentane, 3-chloro-3-methylpentane, 1- chlorohexane, 1 ,6-dichlorohexane, 1-chloroheptane, 1-chlorooctane, 1- chlorononane, 1-chlorodecane, and 1 ,1 ,1-trichlorodecane.
  • Ester solubilizing agents of the present invention comprise esters represented by the general formula R 1 CO 2 R 2 , wherein R 1 and R 2 are independently selected from linear and cyclic, saturated and unsaturated, alkyl and aryl radicals.
  • esters consist essentially of the elements C, H and O, have a molecular weight of from about 80 to about 550 atomic mass units.
  • Representative esters include but are not limited to: (CH 3 )2CHCH2 ⁇ OC(CH 2 )2-4 ⁇ COCH 2 CH(CH3)2 (diisobutyl dibasic ester), ethyl hexanoate, ethyl heptanoate, n-butyl propionate, n-propyl propionate, ethyl benzoate, di-n-propyl phthalate, benzoic acid ethoxyethyl ester, dipropyl carbonate, "Exxate 700" (a commercial C 7 alkyl acetate), "Exxate 800" (a commercial C ⁇ alkyl acetate), dibutyl phthalate, and tert-butyl acetate.
  • Lactone solubilizing agents of the present invention comprise lactones represented by structures [A], [B],
  • lactones contain the functional group -CO2- in a ring of six (A), or preferably five atoms (B), wherein for structures [A] and [B], R ⁇ through Re are independently selected from hydrogen or linear, branched, cyclic, bicyclic, saturated and unsaturated hydrocarbyl radicals. Each Ri though Re may be connected forming a ring with another R ⁇ through R 8 .
  • the lactone may have an exocyclic alkylidene group as in structure [C], wherein Ri through R 6 are independently selected from hydrogen or linear, branched, cyclic, bicyclic, saturated and unsaturated hydrocarbyl radicals. Each Ri though Re may be connected forming a ring with another Ri through RQ.
  • the lactone solubilizing agents have a molecular weight range of from about 80 to about 300 atomic mass units, preferred from about 80 to about 200 atomic mass units. Representative lactone solubilizing agents include but are not limited to the compounds listed in Table 4.
  • Lactone solubilizing agents generally have a kinematic viscosity of less than about 7 centistokes at 40°C.
  • gamma- undecalactone has kinematic viscosity of 5.4 centistokes and cis-(3-hexyl- 5-methyl)dihydrofuran-2-one has viscosity of 4.5 centistokes both at 40°C.
  • Lactone solubilizing agents may be available commercially or prepared by methods as described in U. S. patent application 10/910,495 (inventors being P. J. Fagan and C. J. Brandenburg), filed August 3, 2004, incorporated herein by reference.
  • Aryl ether solubilizing agents of the present invention further comprise aryl ethers represented by the formula R 1 OR 2 , wherein: R 1 is selected from aryl hydrocarbon radicals having from 6 to 12 carbon atoms; R 2 is selected from aliphatic hydrocarbon radicals having from 1 to 4 carbon atoms; and wherein said aryl ethers have a molecular weight of from about 100 to about 150 atomic mass units.
  • R 1 aryl radicals in the general formula R 1 OR 2 include phenyl, biphenyl, cumenyl, mesityl, tolyl, xylyl, naphthyl and pyridyl.
  • R 2 aliphatic hydrocarbon radicals in the general formula R 1 OR 2 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and terf-butyl.
  • Representative aromatic ether solubilizing agents include but are not limited to: methyl phenyl ether (anisole), 1 ,3-dimethyoxybenzene, ethyl phenyl ether and butyl phenyl ether.
  • Fluoroether solubilizing agents of the present invention comprise those represented by the general formula R 1 OCF 2 CF 2 H, wherein R 1 is selected from aliphatic and alicyclic hydrocarbon radicals having from about 5 to about 15 carbon atoms, preferably primary, linear, saturated, alkyl radicals.
  • Representative fluoroether solubilizing agents include but are not limited to: C 8 H ⁇ 7 OCF 2 CF 2 H and C 6 H ⁇ 3 OCF 2 CF 2 H. It should be noted that if the refrigerant is a fluoroether, then the solubilizing agent may not be the same fluoroether.
  • Fluoroether solubilizing agents may further comprise ethers derived from fluoro-olefins and polyols.
  • Representative fluoro-olefins are tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, and perfluoromethylvinyl ether.
  • the polyols may be of the type
  • HOCH 2 CRR'(CH 2 )z(CHOH) x CH 2 (CH 2 OH) y wherein R and R' are hydrogen or CH 3 or C 2 H5 and wherein x is an integer from 0-4, y is an integer from 0-3 and z is either zero or 1.
  • Representative polyols are trimethylol propane, pentaerythritol, butane diol, and ethylene glycol.
  • 1 ,1 ,1-Trifluoroalkane solubilizing agents of the present invention comprise 1 ,1,1-trifluoroalkanes represented by the general formula CF 3 R 1 , wherein R 1 is selected from aliphatic and alicyclic hydrocarbon radicals having from about 5 to about 15 carbon atoms, preferably primary, linear, saturated, alkyl radicals.
  • Representative 1 ,1 ,1- trifluoroalkane solubilizing agents include but are not limited to: 1 ,1 ,1- trifluorohexane and 1 ,1 ,1-trifluorododecane.
  • Solubilizing agents of the present invention may be present as a single compound, or may be present as a mixture of more than one solubilizing agent. Mixtures of solubilizing agents may contain two solubilizing agents from the same class of compounds, say two lactones, or two solubilizing agents from two different classes, such as a lactone and a polyoxyalkylene glycol ether.
  • compositions comprising refrigerant and UV fluorescent dye, or comprising heat transfer fluid and UV fluorescent dye, from about 0.001 weight percent to about 1.0 weight percent of the composition is UV dye, preferably from about 0.005 weight percent to about 0.5 weight percent, and most preferably from 0.01 weight percent to about 0.25 weight percent.
  • the present invention relates to compositions including UV fluorescent dye, which may be introduced into the system in the refrigerant.
  • inventive compositions will allow the storage and transport of dye-containing refrigerant and heat transfer fluid even at low temperatures while maintaining the dye in solution.
  • present compositions comprising refrigerant, UV fluorescent dye and solubilizing agent, or comprising heat transfer fluid and UV fluorescent dye and solubilizing agent, from about 1 to about 50 weight percent, preferably from about 2 to about 25 weight percent, and most preferably from about 5 to about 15 weight percent of the combined composition is solubilizing agent in the refrigerant or heat transfer fluid.
  • the UV fluorescent dye is present in a concentration from about 0.001 weight percent to about 1.0 weight percent in the refrigerant or heat transfer fluid, preferably from 0.005 weight percent to about 0.5 weight percent, and most preferably from 0.01 weight percent to about 0.25 weight percent.
  • commonly used refrigeration or air-conditioning system additives may be added, as desired, to compositions of the present invention in order to enhance performance and system stability. These additives are known in the field of refrigeration and air-conditioning, and include, but are not limited to, anti wear agents, extreme pressure lubricants, corrosion and oxidation inhibitors, metal surface deactivators, free radical scavengers, and foam control agents.
  • these additives are present in the inventive compositions in small amounts relative to the overall composition. Typically concentrations of from less than about 0.1 weight percent to as much as about 3 weight percent of each additive are used. These additives are selected on the basis of the individual system requirements.
  • These additives include members of the triaryl phosphate family of EP (extreme pressure) lubricity additives, such as butylated triphenyl phosphates (BTPP), or other alkylated triaryl phosphate esters, e.g. Syn-0-Ad 8478 from Akzo Chemicals, tricresyl phosphates and related compounds. Additionally, the metal dialkyl dithiophosphates (e.g.
  • zinc dialkyl dithiophosphate or ZDDP
  • Lubrizol 1375 and other members of this family of chemicals may be used in compositions of the present invention.
  • Other antiwear additives include natural product oils and asymmetrical polyhydroxyl lubrication additives, such as Synergol TMS (International Lubricants).
  • stabilizers such as anti oxidants, free radical scavengers, and water scavengers may be employed.
  • Compounds in this category can include, but are not limited to, butylated hydroxy toluene (BHT) and epoxides. Solubilizing agents such as ketones may have an objectionable odor, which can be masked by addition of an odor masking agent or fragrance.
  • BHT butylated hydroxy toluene
  • Solubilizing agents such as ketones may have an objectionable odor, which can be masked by addition of an odor masking agent or fragrance.
  • odor masking agents or fragrances may include Evergreen, Fresh Lemon, Cherry, Cinnamon, Peppermint, Floral or Orange Peel all commercially available, as well as d-limonene and pinene.
  • Such odor masking agents may be used at concentrations of from about 0.001% to as much as about 15% by weight based on the combined weight of odor masking agent and solubilizing agent.
  • the present invention further relates to a method of using the refrigerant or heat transfer fluid compositions further comprising ultraviolet fluorescent dye, and optionally, solubilizing agent, in refrigeration or air- conditioning apparatus. The method comprises introducing the refrigerant or heat transfer fluid composition into the refrigeration or air-conditioning apparatus.
  • the present invention further relates to a method of using the refrigerant or heat transfer fluid compositions comprising ultraviolet fluorescent dye to detect leaks.
  • the presence of the dye in the compositions allows for detection of leaking refrigerant in the refrigeration or air conditioning apparatus. Leak detection helps to address, resolve or prevent inefficient operation of the apparatus or system or equipment failure.
  • Leak detection also helps one contain chemicals used in the operation of the apparatus.
  • the method comprises providing the composition comprising refrigerant, ultra-violet fluorescent dye or comprising heat transfer fluid and UV fluorescent dye, as described herein, and optionally, a solubilizing agent as described herein, to refrigeration and air-conditioning apparatus and employing a sutiable means for detecting the UV fluorescent dye- containing refrigerant.
  • Suitable means for detecting the dye include, but are not limited to, ultra-violet lamps, often referred to as a "black light” or "blue light”. Such ultra-violet lamps are commercially available from numerous sources specifically designed for this purpose.
  • the present invention further relates to a method of using the compositions of the present invention for producing refrigeration or heat, wherein the method comprises producing refrigeration by evaporating said composition in the vicinity of a body to be cooled and thereafter condensing said composition; or producing heat by condensing said composition in the vicinity of the body to be heated and thereafter evaporating said composition.
  • Mechanical refrigeration is primarily an application of thermodynamics wherein a cooling medium, such as a refrigerant, goes through a cycle so that it can be recovered for reuse.
  • Vapor-compression refrigeration systems include an evaporator, a compressor, a condenser, and an expansion device.
  • a vapor-compression cycle re-uses refrigerant in multiple steps producing a cooling effect in one step and a heating effect in a different step.
  • the cycle can be described simply as follows. Liquid refrigerant enters an evaporator through an expansion device, and the liquid refrigerant boils in the evaporator at a low temperature to form a gas and produce cooling. The low-pressure gas enters a compressor where the gas is compressed to raise its pressure and temperature.
  • compressors There are various types of compressors that may be used in refrigeration applications. Compressors can be generally classified as reciprocating, rotary, jet, centrifugal, scroll, screw or axial-flow, depending on the mechanical means to compress the fluid, or as positive- displacement (e.g., reciprocating, scroll or screw) or dynamic (e.g., centrifugal or jet), depending on how the mechanical elements act on the fluid to be compressed.
  • a centrifugal type compressor is the preferred equipment for the present refrigerant compositions.
  • a centrifugal compressor uses rotating elements to accelerate the refrigerant radially, and typically includes an impeller and diffuser housed in a casing.
  • Centrifugal compressors usually take fluid in at an impeller eye, or central inlet of a circulating impeller, and accelerate it radially outward. Some static pressure rise occurs in the impeller, but most of the pressure rise occurs in the diffuser section of the casing, where velocity is converted to static pressure.
  • Each impeller-diffuser set is a stage of the compressor.
  • Centrifugal compressors are built with from 1 to 12 or more stages, depending on the final pressure desired and the volume of refrigerant to be handled.
  • the pressure ratio, or compression ratio, of a compressor is the ratio of absolute discharge pressure to the absolute inlet pressure.
  • Pressure delivered by a centrifugal compressor is practically constant over a relatively wide range of capacities.
  • Positive displacement compressors draw vapor into a chamber, and the chamber decreases in volume to compress the vapor. After being compressed, the vapor is forced from the chamber by further decreasing the volume of the chamber to zero or nearly zero.
  • a positive displacement compressor can build up a pressure, which is limited only by the volumetric efficiency and the strength of the parts to withstand the pressure.
  • a centrifugal compressor Unlike a positive displacement compressor, a centrifugal compressor depends entirely on the centrifugal force of the high-speed impeller to compress the vapor passing through the impeller. There is no positive displacement, but rather what is called dynamic-compression.
  • the pressure a centrifugal compressor can develop depends on the tip speed of the impeller. Tip speed is the speed of the impeller measured at its tip and is related to the diameter of the impeller and its revolutions per minute.
  • the capacity of the centrifugal compressor is determined by the size of the passages through the impeller. This makes the size of the compressor more dependent on the pressure required than the capacity. Because of its high-speed operation, a centrifugal compressor is fundamentally a high volume, low-pressure machine.
  • a centrifugal compressor works best with a low-pressure refrigerant, such as trichlorofluoromethane (CFC-11 ) or 1 ,2,2-trichlorotrifluoroethane (CFC- 113).
  • Large centrifugal compressors typically operate at 3000 to 7000 revolutions per minute (rpm).
  • Small turbine centrifugal compressors are designed for high speeds, from about 40,000 to about 70,000 (rpm), and have small impeller sizes, typically less than 0.15 meters.
  • a multi-stage impeller may be used in a centrifugal compressor to improve compressor efficiency thus requiring less power in use. For a two-stage system, in operation, the discharge of the first stage impeller goes to the suction intake of a second impeller.
  • Both impellers may operate by use of a single shaft (or axle).
  • Each stage can build up a compression ratio of about 4 to 1 ; that is, the absolute discharge pressure can be four times the absolute suction pressure.
  • An example of a two- stage centrifugal compressor system, in this case for automotive applications, is described in U.S. Patent No. 5,065,990, incorporated herein by reference.
  • compositions of the present invention suitable for use in a refrigeration or air conditioning systems employing a centrifugal compressor comprise at least one of: 1 ,1 ,1 , 2,2 A5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone and 1- (difluoromethoxy)-l ,1 ,2-trifluoroethane; 1 ,1 ,1 ,2,2,4, 5,5, 5-nonafluoro-4-(trifluoromethyl)-3-pentanone and 1- (difluoromethoxy)-1 ,2,2-trifluoroethane; ,1 ,1 ,2,2,4,5, 5,5-nonafluoroA-(trifluoromethyl)-3-pentanone and 2- fluoromethoxy-1 ,1 ,1 ,2-tetrafluoroethane; ,1 ,1 ,2,2 ,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-p
  • compositions of the present invention are also suitable for use in a multi-stage centrifugal compressor, preferably a two-stage centrifugal compressor apparatus.
  • the compositions of the present invention may be used in stationary air-conditioning, heat pumps or mobile air-conditioning and refrigeration systems.
  • Stationary air conditioning and heat pump applications include window, ductless, ducted, packaged terminal, chillers and commercial, including packaged rooftop.
  • Refrigeration applications include domestic or home refrigerators and freezers, ice machines, self- contained coolers and freezers, walk-in coolers and freezers and transport refrigeration systems.
  • the compositions of the present invention may additionally be used in air-conditioning, heating and refrigeration systems that employ fin and tube heat exchangers, microchannel heat exchangers and vertical or horizontal single pass tube or plate type heat exchangers.
  • microchannel heat exchangers may not be ideal for the low pressure refrigerant compositions of the present invention.
  • the low operating pressure and density result in high flow velocities and high frictional losses in all components.
  • the evaporator design may be modified.
  • a single slab/single pass heat exchanger arrangement may be used. Therefore, a preferred heat exchanger for the low pressure refrigerants of the present invention is a single slab/single pass heat exchanger.
  • compositions of the present invention are suitable for use in refrigeration or air conditioning apparatus employing a single slab/single pass heat exchanger: ,1,1 ,2,2,4, 5,5,5-nonafluoro-4-(trifluoromethyl ⁇ 3-pentanone and 1- (difluoromethoxy)-l ,1 ,2-trifluoroethane; ,1 ,1 ,2,2,4,5, 5,5-nonafluoro-4-(trifluoromethyl ⁇ 3-pentanone and 1- (difluoromethoxy)-l ,2,2-trifluoroethane; ,1 ,1 ,2,2 ,4,5,5,5-nonafluoro-4-(trifluoromethyl ⁇ 3-pentanone and 2- fluoromethoxy-1 ,1 ,1 ,2-tetrafluoroethane; ,1 ,1 ,2,2,4, 5,5, 5-nona
  • compositions of the present invention are particularly useful in small turbine centrifugal compressors, which can be used in auto and window air-conditioning or heat pumps as well as other applications.
  • These high efficiency miniature centrifugal compressors may be driven by an electric motor and can therefore be operated independently of the engine speed.
  • a constant compressor speed allows the system to provide a relatively constant cooling capacity at all engine speeds. This provides an opportunity for efficiency improvements especially at higher engine speeds as compared to a conventional R-134a automobile air-conditioning system.
  • the advantage of these low pressure systems becomes even greater.
  • Some of the low pressure refrigerant fluids of the present invention may be suitable as drop-in replacements for CFC-113 in existing centrifugal equipment.
  • the present invention further relates to a process for producing refrigeration comprising evaporating the compositions of the present invention in the vicinity of a body to be cooled, and thereafter condensing said compositions.
  • the present invention further relates to a process for producing heat comprising condensing the compositions of the present invention in the vicinity of a body to be heated, and thereafter evaporating said compositions.
  • the present invention further relates to a process for transfer of heat from a heat source to a heat sink wherein the compositions of the present invention serve as heat transfer fluids. Said process for heat transfer comprises transferring the compositions of the present invention from a heat source to a heat sink.
  • Heat transfer fluids are utilized to transfer, move or remove heat from one space, location, object or body to a different space, location, object or body by radiation, conduction, or convection.
  • a heat transfer fluid may function as a secondary coolant by providing means of transfer for cooling (or heating) from a remote refrigeration (or heating) system.
  • the heat transfer fluid may remain in a constant state throughout the transfer process (i.e., not evaporate or condense).
  • evaporative cooling processes may utilize heat transfer fluids as well.
  • a heat source may be defined as any space, location, object or body from which it is desirable to transfer, move or remove heat.
  • heat sources may be spaces (open or enclosed) requiring refrigeration or cooling, such as refrigerator or freezer cases in a supermarket, building spaces requiring air-conditioning, or the passenger compartment of an automobile requiring air-conditioning.
  • a heat sink may be defined as any space, location, object or body capable of absorbing heat.
  • a vapor compression refrigeration system is one example of such a heat sink.
  • PEIK /HFOC-245eaE (40.5 °C) 66.2/33.8 14.71 101.42 14.71 101.42 0.0% 80/20 14.67 101.15 14.12 97.35 3.7% 90/10 13.60 93.77 12.57 86.67 7.6% 99/1 11.29 77.84 10.97 75.64 2.8% 100/0 10.85 74.81 10.85 74.81 0.0% 40/60 14.36 99.01 13.37 92.18 6.9% 38/62 14.31 98.66 13.02 89.77 9.0% 37/63 14.28 98.46 12.82 88.39 10.2% 0/100 9.47 65.29 9.47 65.29 0.0%
  • PEIK /HFOC-254faE (35.9 °C) 73.3/26.7 14.68 101.22 14.68 101.22 0.0% 80/20 14.66 101.08 14.59 100.60 0.5% 87/13 14.54 100.25 13.45 92.74 7.5% 88/19 14.50 99.97 12.97 89.43 10.6% 100/0 9.13 62.95 9.13 62.95 0.0% 49/51 14.61 100.73 13.43 92.60 8.1% 48/52 14.60 100.66 12.96 89.36 11.2% 0/100 7.38 50.88 7.38 50.88 0.0%
  • PEIK /HFOC-356mecE ⁇ (38.8 °C) 73.7/26.3 14.68 101.22 14.68 101.22 0.0% 88/12 14.49 99.91 13.50 93.08 6.8% 89/11 14.46 99.70 12.96 89.36 10.4% 100/0 10.19 70.26 10.19 70.26 0.0% 47/53 14.10 97.22 12.72 87.70 9.8% 46/54 14.05 96.87 12.57 86.67 10.5% 0/100 8.59 59.23 8.59 59.23 0.0%
  • PEIK /HFOC-365mpzE ⁇ (43.0 °C) 70.3/29.7 14.72 101.49 14.72 101.49 0.0% 90/10 14.10 97.22 13.62 93.91 3.4% 99/1 12.35 85.15 12.01 82.81 2.8% 100/0 11.89 81.98 11.89 81.98 0.0% 40/60 14.10 97.22 13.86 95.56 1.7% 20/80 13.30 91.70 13.04 89.91 2.0% 10/90 12.85 88.60 12.68 87.43 1.3% 1/99 12.42 85.63 12.40 85.50 0.2% 0/100 12.37 85.29 12.37 85.29 0.0%
  • PEIK /HFOC-383peE ⁇ (34.5 °C) 76.0/24.0 14.71 101.42 14.71 101.42 0.0% 89/11 14.66 101.08 13.97 96.32 4.7% 90/10 14.65 101.01 12.13 83.63 17.2% 100/0 8.65 59.64 8.65 59.64 0.0% 54/46 14.52 100.11 13.14 90.60 9.5% 53/47 14.49 99.91 12.92 89.08 10.8% 0/100 7.90 54.47 7.90 54.47 0.0%
  • PEIK /HFOC-42-11 meE ⁇ (50.0 °C) 0/100 20.83 143.62 20.83 143.62 0.0% 1/99 20.78 143.27 20.77 143.20 0.0% 20/80 19.90 137.21 19.75 136.17 0.8% 40/60 18.89 130.24 18.62 128.38 1.4% 60/40 17.78 122.59 17.46 120.38 1.8% 80/20 16.56 114.18 16.32 112.52 1.4% 99/1 15.30 105.49 15.28 105.35 0.1 % 100/0 15.23 105.01 15.23 105.01 0.0%
  • PEIK/HFOC-374pcE ⁇ (39.9 °C) 74.8/25.2 14.69 101.28 14.69 101.28 0.0% 90/10 14.25 98.25 13.03 89.84 8.6% 91/9 14.15 97.56 12.67 87.36 10.5% 60/40 14.54 100.25 14.17 97.70 2.5% 50/50 14.29 98.53 12.95 89.29 9.4% 49/51 14.26 98.32 12.77 88.05 10.4% 100/0 10.61 73.15 10.61 73.15 0.0% 0/100 8.42 58.05 8.42 58.05 0.0%
  • compositions of the present invention are azeotropic or near-azeotropic. Where an azeotrope is present, the data show compositions of the present invention have an initial vapor pressure higher than the vapor pressure of either pure component.
  • EXAMPLE 2 Tip Speed to Develop Pressure Tip speed can be estimated by making some fundamental relationships for refrigeration equipment that use centrifugal compressors. The torque an impeller ideally imparts to a gas is defined as
  • T m*(v2*r2-v-
  • T torque
  • N * m m mass rate of flow
  • kg/s V2 tangential velocity of refrigerant leaving impeller (tip speed)
  • m/s T2 radius of exit impeller
  • tangential velocity of refrigerant entering impeller
  • m/s ri radius of inlet of impeller
  • Equation 8 is based on some fundamental assumptions, it provides a good estimate of the tip speed of the impeller and provides an important way to compare tip speeds of refrigerants.
  • the table below shows theoretical tip speeds that are calculated for 1 ,2,2-trichlorotrifluoroethane (CFC-113) and compositions of the present invention. The conditions assumed for this comparison are:
  • the Example shows that compounds of the present invention have tip speeds within about +/- 10 percent of CFC-113 and would be effective replacements for CFC-113 with minimal compressor design changes.
  • compositions of the present invention have evaporator and condenser pressures similar to CFC-113. Some compositions also have higher capacity or energy efficiency (COP) than CFC-113.
  • COP energy efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Formation Of Insulating Films (AREA)
  • Detergent Compositions (AREA)
  • Paints Or Removers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Divulgation de compositions 1,1,1,2,2,4,5,5,5-nonafluor-4-(trifluorométhyle)-3-pentanone utilisées dans des systèmes de réfrigération et de climatisation, notamment les systèmes à compresseur centrifuge. Divulgation également de 1,1,1,2,2,4,5,5,5-nonafluor-4-(trifluorométhyle)-pentan-3-one en combinaison avec des éthers fluorés, qui sont azéotropiques ou quasi azéotropiques.
EP05755364A 2004-05-26 2005-05-25 Compositions de réfrigérant 1,1,1,2,2,4,5,5,5-nonafluor-4-(trifluorométhyle)-3-pentanone et de transfert de chaleur comprenant un éther fluoré Withdrawn EP1751244A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US57503704P 2004-05-26 2004-05-26
US11/063,178 US7252780B2 (en) 2004-05-26 2005-02-22 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone refrigerant and heat transfer compositions comprising a fluoroether
PCT/US2005/018885 WO2005119142A2 (fr) 2004-05-26 2005-05-25 Compositions de réfrigérant 1,1,1,2,2,4,5,5,5-nonafluor-4-(trifluorométhyle)-3-pentanone et de transfert de chaleur comprenant un éther fluoré

Publications (1)

Publication Number Publication Date
EP1751244A2 true EP1751244A2 (fr) 2007-02-14

Family

ID=35463508

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05755364A Withdrawn EP1751244A2 (fr) 2004-05-26 2005-05-25 Compositions de réfrigérant 1,1,1,2,2,4,5,5,5-nonafluor-4-(trifluorométhyle)-3-pentanone et de transfert de chaleur comprenant un éther fluoré

Country Status (10)

Country Link
EP (1) EP1751244A2 (fr)
JP (1) JP2008500436A (fr)
KR (1) KR20070015593A (fr)
AR (1) AR050664A1 (fr)
AU (1) AU2005250878A1 (fr)
BR (1) BRPI0510924A (fr)
CA (1) CA2564165A1 (fr)
MX (1) MXPA06013549A (fr)
NO (1) NO20066031L (fr)
WO (1) WO2005119142A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2250144A4 (fr) 2008-03-07 2014-06-04 Arkema Inc Systèmes formulés et stables contenant du chloro-3,3,3-trifluoropropène
JP5987497B2 (ja) * 2012-06-27 2016-09-07 セントラル硝子株式会社 フッ素化エーテルを含む熱伝達作動媒体
US20240279520A1 (en) * 2022-10-13 2024-08-22 Honeywell International Inc. Fluorine substituted ethers and compositions, methods and uses including same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423673B1 (en) * 2001-09-07 2002-07-23 3M Innovation Properties Company Azeotrope-like compositions and their use
US20050151110A1 (en) * 2004-01-14 2005-07-14 Minor Barbara H. Fluoroether refrigerant compositions and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005119142A2 *

Also Published As

Publication number Publication date
WO2005119142A2 (fr) 2005-12-15
BRPI0510924A (pt) 2007-11-13
JP2008500436A (ja) 2008-01-10
AR050664A1 (es) 2006-11-15
AU2005250878A1 (en) 2005-12-15
WO2005119142A3 (fr) 2006-06-08
NO20066031L (no) 2007-02-19
KR20070015593A (ko) 2007-02-05
MXPA06013549A (es) 2007-01-26
CA2564165A1 (fr) 2005-12-15

Similar Documents

Publication Publication Date Title
US7416679B2 (en) 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone refrigerant and heat transfer compositions comprising a fluoroether
WO2005119143A2 (fr) Mélanges de 1, 1, 1, 2, 2, 4, 5, 5, 5-nonafluoro-4-(trifluoromethyle)-3-pentanone et leurs utilisations
WO2006012097A1 (fr) Compositions rfrigrantes comprenant des composs organiques comportant des fonctions et utilisations de celles-ci
WO2006012096A1 (fr) Compositions refrigerantes de 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane comprenant des composes organiques fonctionnalises, et leurs utilisations
WO2006012100A1 (fr) Compositions frigorigenes a base de 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane comprenant des composes organiques fonctionnalises et leurs utilisations
WO2005067558A2 (fr) Compositions de refrigerants contenant 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane et un hydrofluorocarbone et utilisations
EP1769044A1 (fr) Compositions réfrigérantes de 1-éthoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane comprenant un hydrocarbure et utilisations de celles-ci
US20080283793A1 (en) 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane refrigerant compositions comprising a fluoroether and uses thereof
WO2005068579A1 (fr) Compositions de 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane frigorigenes comprenant un fluoroether et utilisations
WO2005067554A2 (fr) Compositions de fluide frigorigene hydrofluorocarbone et leurs utilisations
EP1706468A2 (fr) Compositions liquides de 1,1,1,3,3-pentafluorobutane frigorigenes ou de transfert thermique comprenant des hydrofluorocarbones et utilisations
WO2005119142A2 (fr) Compositions de réfrigérant 1,1,1,2,2,4,5,5,5-nonafluor-4-(trifluorométhyle)-3-pentanone et de transfert de chaleur comprenant un éther fluoré
WO2005067559A2 (fr) Compositions de refrigerants fluoroether et utilisations
WO2005118754A2 (fr) Compositions frigorigenes de 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone et leurs utilisations
WO2005067556A2 (fr) Compositions refrigerantes a base de 1,1,1,3,3,-pentafluorobutane comprenant un fluoroether et leurs applications
EP1769045A2 (fr) Compositions refrigerantes de 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane comprenant des hydrocarbures, et leurs utilisations
WO2005119144A2 (fr) Compositions réfrigérante de 1,1,1,2,2,4,5,5,5-nonfluoro-4-(trifluorométhyl)-3-pentanone comprenant un hydrocarbure et leurs utilisations
WO2005067557A2 (fr) Compositions refrigerantes hydrofluorocarbonees a base de 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane et leur mode d'emploi
EP1704200A1 (fr) Compositions de refrigerants 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane contenant un fluoroether et utilisations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061122

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091201