EP1746348B1 - Turbine with circumferential distribution of combustion air - Google Patents

Turbine with circumferential distribution of combustion air Download PDF

Info

Publication number
EP1746348B1
EP1746348B1 EP06117022.1A EP06117022A EP1746348B1 EP 1746348 B1 EP1746348 B1 EP 1746348B1 EP 06117022 A EP06117022 A EP 06117022A EP 1746348 B1 EP1746348 B1 EP 1746348B1
Authority
EP
European Patent Office
Prior art keywords
turbomachine
inclination
air
angle
combustion section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06117022.1A
Other languages
German (de)
French (fr)
Other versions
EP1746348A3 (en
EP1746348A2 (en
Inventor
Michel Buret
Michel Cazalens
Didier Hernandez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1746348A2 publication Critical patent/EP1746348A2/en
Publication of EP1746348A3 publication Critical patent/EP1746348A3/en
Application granted granted Critical
Publication of EP1746348B1 publication Critical patent/EP1746348B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/32Disposition of burners to obtain rotating flames, i.e. flames moving helically or spirally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03042Film cooled combustion chamber walls or domes

Definitions

  • the present invention relates to the general field of the distribution of air passing through an aeronautical or terrestrial turbomachine.
  • a turbomachine is typically formed of an assembly comprising in particular an annular compression section intended to compress air passing through the turbomachine, an annular combustion section disposed at the outlet of the compression section and in which the air coming from the section compressor is mixed with fuel to be burnt, and an annular turbine section disposed at the outlet of the combustion section and a rotor is rotated by gases from the combustion section.
  • the compression section is in the form of a plurality of stages of movable wheels each carrying blades which are arranged in an annular channel through which the air of the turbomachine and whose section decreases from upstream to downstream.
  • the combustion section is also in the form of an annular channel in which compressed air is mixed with fuel for burning.
  • the turbine section it is formed by a plurality of stages of moving wheels each carrying blades which are arranged in an annular channel through which the combustion gases pass.
  • the circulation of air through this assembly is generally carried out as follows: the compressed air from the last stage of the compression section has a natural rotational movement with an inclination of the order of 35 ° to 45 ° ° with respect to the longitudinal axis of the turbomachine, tilt which varies according to the speed of the turbomachine (speed of rotation).
  • this compressed air is straightened in the longitudinal axis of the turbomachine (that is to say that the inclination of the air with respect to the longitudinal axis of the turbomachine is brought back at 0 °) via an air rectifier.
  • the air in the combustion section is then mixed with fuel so as to ensure satisfactory combustion and the gases resulting from this combustion continue along a route overall along the longitudinal axis of the turbomachine to reach the turbine section.
  • the combustion gases are reoriented by a distributor to present a gyratory movement with an inclination greater than 70 ° relative to the longitudinal axis of the turbomachine.
  • Such inclination is essential to produce the angle of attack required for the mechanical force driving in rotation of the moving wheel of the first stage of the turbine section.
  • Such angular distribution of the air passing through the turbomachine has many disadvantages. Indeed, the air that naturally leaves the last stage of the compression section with an angle between 35 ° and 45 ° is successively rectified (angle reduced to 0 °) at its entry into the combustion section and then reoriented with an angle greater than 70 ° at its entry into the turbine section. These successive angular modifications of the distribution of air through the turbomachine require intense aerodynamic forces produced by the rectifier of the compression section and the distributor of the turbine section, aerodynamic forces which are particularly detrimental to the overall efficiency of the turbomachine. the turbomachine.
  • a turbomachine assembly according to the preamble of claim 1 is shown in DE 1,145,438 B .
  • the main purpose of the present invention is thus to overcome such disadvantages by proposing a turbomachine whose air distribution makes it possible to obtain a large reduction in successive aerodynamic forces.
  • a turbomachine assembly comprising an annular compression section for compressing air passing through said turbomachine, a casing of the turbomachine formed of an outer annular casing centered on a longitudinal axis of the turbomachine and an inner annular envelope coaxially fixed inside the outer casing by means of a plurality of radial holding arms, an annular combustion section housed inside the turbomachine casing, disposed as an output of the compression section and wherein the air from the compression section is mixed with fuel to be burned therein, and an annular turbine section disposed at the outlet of the combustion section and having a rotor rotated by gases from the combustion section, the air from the compression section having a gyratory movement with an inclination with respect to the longitudinal axis of the turbomachine, characterized in that the combustion section comprises means for angular distribution of the air to give gases from the section a gyratory movement with an inclination substantially equal to or greater than that of the air coming from the compression section, said dispensing
  • the invention makes it possible to maintain the natural inclination of the air at the outlet of the compression section and to maintain (or even amplify) this gyratory movement of the air through the combustion section to the inlet of the turbine section.
  • the aerodynamic force required for rotating the first stage of the turbine section is considerably reduced. This sharp decrease in aerodynamic forces generates a gain in efficiency of the turbomachine.
  • the rectifier of the compression section and the distributor of the turbine section can be simplified or even eliminated, which represents a saving in weight and a reduction in production costs.
  • the assembly may comprise additional means of angular distribution of the air formed at one or more of the constituent elements of the following turbomachine: fairing of the combustion section, fuel injection systems of the fuel section. combustion, transverse wall of the combustion section, and axial walls of the combustion section.
  • the present invention also relates to a method of angular distribution of the air passing through a turbomachine, the air being successively compressed by a compression section, mixed with fuel to be burned in a combustion section and used for the implementation.
  • rotation of a rotor of a turbine section said method being characterized in that it consists in giving the air coming from the compression section a gyratory movement with an inclination with respect to a longitudinal axis of the turbomachine, and to maintain or increase this inclination of the air so that the gases from the combustion section has a gyratory movement with an inclination substantially equal to or greater than that of the air coming from the compression section.
  • the turbomachine partially shown on the figure 1 has a longitudinal axis XX. Along this axis, it comprises in particular an annular compression section 100, an annular combustion section 200 disposed at the outlet of the compression section 100 in the direction of flow of the air passing through the turbomachine, and an annular turbine section 300 disposed at the outlet of the combustion section 200.
  • the air injected into the turbomachine therefore passes successively through the compression section 100, then the combustion section 200 and finally the turbine section 300.
  • the compression section 100 is in the form of a plurality of stages of movable wheels 102 each carrying blades 104 (only the last stage of the compression section is shown in FIG. figure 1 ).
  • the blades 104 of these stages are disposed in an annular channel 106 through which air flows through the turbomachine and whose section decreases from upstream to downstream. Thus, as the air injected into the turbomachine passes through the compression section, it is more and more compressed.
  • the combustion section 200 is also in the form of an annular channel in which the compressed air from the compression section 100 is mixed with fuel for burning there.
  • the combustion section comprises a combustion chamber 202 inside which is burned the air / fuel mixture.
  • the combustion section 200 comprises a turbomachine casing formed of an outer annular casing 204 centered on the longitudinal axis XX of the turbomachine and an inner annular casing 206 which is fixed coaxially inside the casing external by means of a plurality of arms 208 arranged radially with respect to the longitudinal axis XX of the turbomachine and regularly distributed over the entire circumference of the casing ( figure 2 ).
  • An annular space 210 formed between these two envelopes 204, 206 receives compressed air coming from the compression section 100 of the turbomachine through an annular diffusion duct 212.
  • the arms 208 of the diffusion duct 212 have two main functions; one is mechanical (secure the outer casing 204 and the inner casing 206 of the casing), and the other is to form a rectifier 213 whose purpose is to give a chosen gyration to the air coming out of the compression section 100.
  • a plurality of fuel injection systems 214 regularly distributed around the diffusion duct 212 open into the annular space 210. These injection systems are each provided with a fuel injection nozzle 216 fixed on the outer casing 204 of the housing.
  • the combustion chamber 202 is mounted inside the annular space 210 by providing with the outer casings 204 and inner 206 an annular channel 218 for receiving a dilution air flow and cooling (also called bypass air of the combustion chamber).
  • the combustion chamber 202 is of annular type; it is in particular formed of an outer annular wall 220 centered on the longitudinal axis XX of the turbomachine and fixed on the outer casing 204 of the casing and an inner annular wall 222 coaxial with the outer wall 220 and fixed on the inner casing 206 of the casing.
  • the outer 220 and inner walls 222 are connected by a transverse wall 224 forming chamber bottom.
  • This chamber bottom 224 is provided with a plurality of openings 226 for the passage of the fuel injection systems 214.
  • the combustion chamber 202 also comprises an annular fairing 228 which is mounted on the chamber bottom 224 in the extension of the axial walls 220, 222 of the chamber.
  • This fairing 228 has a plurality of openings 230 for the passage of the fuel injection systems 214.
  • the injection of the fuel into the combustion chamber 202 is carried out by the fuel injection systems 214.
  • the air that mixes with the fuel in the chamber it comes, on the one hand, from the injection systems which are each provided at their end with an air vortex bowl 232, and secondly the bypass air borrowing orifices 234 formed on the axial walls 220, 222 of the chamber.
  • the air / fuel mixture thus introduced is burned to form combustion gases.
  • the turbine section 300 of the turbomachine is formed by a plurality of stages of movable wheels 302 each carrying blades. 304 (only the first stage of the turbine section is shown on the figure 1 ).
  • the blades 304 of these stages are arranged in an annular channel 306 traversed by the gases coming from the combustion section 200.
  • the gases coming from the combustion section must have an inclination relative to the longitudinal axis XX of the turbomachine which is sufficient to rotate the different stages of the turbine section. turbine.
  • a distributor 308 is mounted directly downstream of the combustion chamber 202 and upstream of the first stage 302 of the turbine section 300.
  • This distributor 308 consists of a plurality of fixed radial vanes 310 of which inclination with respect to the longitudinal axis XX of the turbomachine makes it possible to give the gases coming from the combustion section 200 the inclination necessary for driving in rotation the different stages of the turbine section.
  • the distribution of the air successively passing through the compression section 100, the combustion section 200 and the turbine section 300 takes place as follows.
  • the compressed air from the last stage 102 of the compression section 100 naturally has a gyratory movement with an inclination of the order of 35 ° to 45 ° relative to the longitudinal axis X-X of the turbomachine.
  • this inclination angle is reduced to 0 °.
  • the gases resulting from the combustion are redirected by the distributor 308 thereof to give them a gyratory movement with an inclination with respect to the longitudinal axis XX which is greater at 70 °.
  • angular air distribution means are provided for maintaining or increasing the natural inclination of the air coming from the compression section 100 so that the gases coming from the combustion section 200 has a gyratory movement with an inclination substantially equal to or greater than that of the air coming from the compression section.
  • Maintaining or even increasing the inclination of the compressed air from the outlet of the compression section 100 to the inlet into the turbine section 300 has many advantages.
  • the distributor 308 of the turbine section 300 it is no longer necessary for the distributor 308 of the turbine section 300 to have such a large inclination (at least equal to 70 ° in conventional turbomachines) to produce the angle of attack required for the mechanical force of the turbine. driving in rotation of the moving wheel 302 of the first stage of the turbine section.
  • the inclination of the distributor 308 then only compensates for the angular difference necessary to bring the combustion gases already in a gyratory movement to the additional angle of attack required for rotating the first stage 302 of the turbine section.
  • the distributor 308 it can even be eliminated, which represents for the turbomachine a significant gain in mass, size and cost of production.
  • the air straightener function 213 of the combustion section 200 can be suppressed to keep only the mechanical function of the arms 208 with also the advantage of reducing the mass and the size of the turbomachine and reduce production costs.
  • the aerodynamic force required for the rotational drive of the first stage 302 of the turbine section 300 is considerably reduced, it is expected a significant gain in terms of efficiency of the turbomachine.
  • the angular distribution means of the air according to the invention may be formed at one or more of the constituent elements of the turbomachine which are detailed below. It should be noted that the modifications made to these constituent elements of the turbomachine can accumulate with each other in order to optimize the angular distribution of the air so that the gases present at the outlet of the combustion section an equal inclination ( or as close as possible) to the angle of attack required to rotate the first stage of the turbine section.
  • FIG. 2 represents the casing of the turbomachine which is formed by the outer casing 204 and the inner casing 206 and inside which is mounted the combustion chamber (not shown).
  • the arms 208 that remain necessary for the maintenance of the inner casing 206 inside the outer casing 204 each have an inclination ⁇ with respect to the longitudinal axis XX of the turbomachine.
  • This inclination ⁇ is substantially equal to or greater than that of the air coming from the compression section.
  • the angle of inclination ⁇ of the holding arms 208 will be at least 35 °.
  • the holding arms 208 each have a gas turbine blade type profile with a general inclination at least equal to that of the air from the section compression, or even higher in order to cause an additional gyration effect.
  • the fairing 228 is provided with a plurality of openings 230 for the passage of the fuel injection systems (for the sake of simplification, only the air vortex bowl 232 of the fuel injection system is represented on the Figures 4 and 5 ).
  • the openings 230 of the shroud 228 each comprise an axial wall 236 forming an inclination ⁇ with respect to the longitudinal axis XX of the turbomachine which is substantially equal to or greater than that of the air coming from the compression section .
  • the angle of inclination ⁇ of the axial wall 236 of the openings 230 of the shroud 228 will be at least 35 °.
  • the angle of inclination ⁇ of the wall axial 236 apertures 230 of the shroud 228 will preferably be equal to or greater than this angle of inclination of the holding arms.
  • a first embodiment of this modification is represented on the figure 6 cross-sectional representation of a bolus 232 of a fuel injection system passing through an opening 226 formed in the chamber bottom 224 of the combustion chamber.
  • each fuel injection system is provided with a plurality of air vices 238 which are arranged radially with respect to a longitudinal axis Y-Y of the bowl parallel to the longitudinal axis of the turbomachine (not shown).
  • the air swirlers 238 provide rotational movement to the air introduced into the combustion chamber through the fuel injection system bowl. They can be arranged on one or two floors.
  • the air swirlers 238 of the bowl 232 of each fuel injection system have a variable permeability to air in order to obtain homogeneity of air supply.
  • Variable permeability means that the air passage section between the tendrils varies according to the angular position of the latter.
  • This modification is made necessary by the fact that, since the air coming from the compression section has a gyratory movement, the upstream part of the air vices (with respect to the direction of rotation of the air supplying these tendrils) is more favorably supplied with air as the downstream part.
  • variable permeability of the air swirlers 238 of each bowl 232 is obtained by varying the spacing between the swirlers according to the inclination of the air coming from the compression section.
  • the spacing d1 between the adjacent air swirlers 238a and 238b is larger than the spacing d2 between the adjacent air swirlers 238b and 238c.
  • the figure 7 represents an alternative embodiment of the modification made to the fuel injection systems.
  • the fuel injection systems 214 i.e. the assembly comprising the injection nozzle 216 and the air twist bowl 232
  • the angle of inclination y fuel injection 214 will be at least 35 °. This inclination angle there may even be more important, especially if the change of the housing of the holding arm and / or modification of the combustion section of the fairing were made.
  • the chamber bottom 224 has at each fuel injection system 214 an inclination ⁇ with respect to a transverse plane P of the turbomachine (that is to say with respect to a perpendicular plane P to the longitudinal axis XX of the turbomachine).
  • Such a characteristic consists in modifying the chamber bottom 224 so that it has a "staircase” shape with a step associated with each fuel injection system 214. This form is particularly visible on the figure 8 .
  • the inclination ⁇ of the chamber bottom 224 is preferably substantially identical to this inclination of the injection systems.
  • Orifices 234 are formed on the axial walls 220, 222 of the combustion chamber 202 to convey air necessary for combustion and dilution of the air / fuel mixture.
  • the axial walls 220, 222 of the combustion chamber 202 are also provided with a plurality of additional passages for air.
  • the air passing through these passages is intended to ensure cooling of the axial walls of the combustion chamber by forming air films on their inner surface (it is referred to as a "multiperforation" cooling of the walls of the chamber).
  • Such cooling air passages generally consist of orifices pierced in the thickness of the axial walls of the combustion chamber so as to form channels. These orifices can be drilled, either perpendicular to the axial walls, or inclined relative thereto. Moreover, these orifices are distributed in the form of a mesh on the surfaces of the axial walls 220, 222 of the combustion chamber.
  • the figure 9 represents a modification made to the holes drilled in the thickness of the axial walls 220, 222 of the combustion chamber according to one embodiment of the invention.
  • the orifices 240 pierced through the axial walls 220, 222 are distributed in the form of a mesh which extends over an axial length 1 .
  • the orifices 240 are aligned in parallel rows. As illustrated with rows n and n +1, the orifices of two adjacent rows may further be staggered.
  • these rows of orifices 240 each have an inclination ⁇ with respect to the longitudinal axis XX of the turbomachine which is substantially equal to or greater than that of the air coming from the compression section.
  • the angle of inclination ⁇ may be greater than that of the air coming from the compression section, especially if the previously described modifications of the crankcase and / or section holding arms combustion and / or fuel injection systems have been made.
  • the profile of the rows of orifices for the passage of cooling air may be curved, that is to say that the inclination of these rows relative to the
  • the longitudinal axis of the turbomachine can increase as one moves away from the entrance of the combustion chamber.
  • the orifices can be drilled in the thickness of the axial walls 220, 222 of the combustion chamber and form channels 240 perpendicular to them (that is to say that the channels 240 are parallel to a perpendicular axis ZZ to the walls).
  • the orifices may be in the form of channels 240 'each having an inclination ⁇ 1 with respect to a ZZ axis perpendicular to the walls, the inclination ⁇ 1 being preferably directed so that the orifices are inclined downstream of the chamber of combustion.
  • FIGS. 11A and 11B represent alternative embodiments in which the channels 240 'drilled in the axial walls 220, 222 of the combustion chamber each have such inclination ⁇ 1 with respect to an axis perpendicular to the walls.
  • orifices 240 ' are distributed in the form of a mesh extending over an axial length l within which they are aligned in parallel rows n , each row of orifices having an inclination ⁇ with respect to the axis longitudinal XX of the turbomachine as described above.
  • Each channel 240 ' which has an inclination ⁇ 1 is located in a plane perpendicular to the walls 220, 222 of the combustion chamber. This plane perpendicular to the walls in which each channel 240 'is located further has itself an inclination ⁇ 2 with respect to the longitudinal axis XX of the turbomachine. This inclination ⁇ 2 is made to coincide with the inclination ⁇ rows n orifices.
  • the axis passing through the inlet 240'a and 240b air outlet holes of each channel 240 ' is in a plane perpendicular to the walls 220, 222 which is aligned with the axis of alignment of rows n of orifices.
  • orifices 240 ' are also distributed in the form of a mesh extending over an axial length 1 within which they are aligned in parallel rows n , each row of orifices having an inclination ⁇ relative to the longitudinal axis XX of the turbomachine as described above.
  • Each channel 240 ' which has an inclination ⁇ 1 is also located in a plane perpendicular to the walls 220, 222 of the combustion chamber.
  • this plane perpendicular to the walls in which each channel 240 'is located itself has an inclination ⁇ 2' with respect to the longitudinal axis XX of the turbomachine.
  • this inclination ⁇ 2 ' is substantially greater than the inclination ⁇ of rows n of orifices and is made so as to give the air exiting from these channels an additional gyration with respect to the longitudinal axis XX of the turbomachine.
  • the axis passing through the inlet 240'a and 240'b air outlet holes of each channel 240 ' is in a plane perpendicular to the walls 220, 222 which is inclined by angle ( ⁇ 2 ' - ⁇ ) with the axis of alignment of the rows n of orifices.
  • the inclination ⁇ 2 ' of the plane perpendicular to the axial walls 220, 222 of the combustion chamber in which the channels 240' are located is included in the range of values between ⁇ and ( ⁇ + 90 °) with respect to the longitudinal axis XX of the turbomachine.
  • the profile of the rows of these channels 240 'for the passage of the cooling air can be curved, that is to say that the inclination ⁇ 2' of the plane perpendicular to the axial walls of the combustion chamber in which each channel of these rows is located may evolve as one moves away from the entrance of the combustion chamber.

Description

Arrière-plan de l'inventionBackground of the invention

La présente invention se rapporte au domaine général de la distribution de l'air traversant une turbomachine aéronautique ou terrestre.The present invention relates to the general field of the distribution of air passing through an aeronautical or terrestrial turbomachine.

Une turbomachine est typiquement formée d'un ensemble comportant notamment une section annulaire de compression destinée à comprimer de l'air traversant la turbomachine, une section annulaire de combustion disposée en sortie de la section de compression et dans laquelle l'air issu de la section de compression est mélangé à du carburant pour y être brûlé, et une section annulaire de turbine disposée en sortie de la section de combustion et dont un rotor est entraîné en rotation par des gaz issus de la section de combustion.A turbomachine is typically formed of an assembly comprising in particular an annular compression section intended to compress air passing through the turbomachine, an annular combustion section disposed at the outlet of the compression section and in which the air coming from the section compressor is mixed with fuel to be burnt, and an annular turbine section disposed at the outlet of the combustion section and a rotor is rotated by gases from the combustion section.

La section de compression se présente sous la forme d'une pluralité d'étages de roues mobiles portant chacune des aubes qui sont disposées dans un canal annulaire traversé par l'air de la turbomachine et dont la section diminue d'amont en aval. La section de combustion se présente également sous la forme d'un canal annulaire dans lequel l'air comprimé est mélangé à du carburant pour y être brûlé. Quant à la section de turbine, elle est formée par une pluralité d'étages de roues mobiles portant chacune des aubes qui sont disposées dans un canal annulaire traversé par les gaz de combustion.The compression section is in the form of a plurality of stages of movable wheels each carrying blades which are arranged in an annular channel through which the air of the turbomachine and whose section decreases from upstream to downstream. The combustion section is also in the form of an annular channel in which compressed air is mixed with fuel for burning. As for the turbine section, it is formed by a plurality of stages of moving wheels each carrying blades which are arranged in an annular channel through which the combustion gases pass.

La circulation de l'air au travers de cet ensemble s'effectue généralement de la manière suivante : l'air comprimé issu du dernier étage de la section de compression possède un mouvement giratoire naturel avec une inclinaison de l'ordre de 35° à 45° par rapport à l'axe longitudinal de la turbomachine, inclinaison qui varie en fonction du régime de la turbomachine (vitesse de rotation). A son entrée dans la section de combustion, cet air comprimé est redressé dans l'axe longitudinal de la turbomachine (c'est-à-dire que l'inclinaison de l'air par rapport à l'axe longitudinal de la turbomachine est ramenée à 0°) par l'intermédiaire d'un redresseur d'air. L'air dans la section de combustion est alors mélangé à du carburant de manière à assurer une combustion satisfaisante et les gaz issus de cette combustion poursuivent un parcours globalement selon l'axe longitudinal de la turbomachine pour parvenir à la section de turbine. Au niveau de cette dernière, les gaz de combustion sont réorientés par un distributeur pour présenter un mouvement giratoire avec une inclinaison supérieure à 70° par rapport à l'axe longitudinal de la turbomachine. Une telle inclinaison est indispensable pour produire l'angle d'attaque nécessaire à la force mécanique d'entraînement en rotation de la roue mobile du premier étage de la section de turbine.The circulation of air through this assembly is generally carried out as follows: the compressed air from the last stage of the compression section has a natural rotational movement with an inclination of the order of 35 ° to 45 ° ° with respect to the longitudinal axis of the turbomachine, tilt which varies according to the speed of the turbomachine (speed of rotation). At its entry into the combustion section, this compressed air is straightened in the longitudinal axis of the turbomachine (that is to say that the inclination of the air with respect to the longitudinal axis of the turbomachine is brought back at 0 °) via an air rectifier. The air in the combustion section is then mixed with fuel so as to ensure satisfactory combustion and the gases resulting from this combustion continue along a route overall along the longitudinal axis of the turbomachine to reach the turbine section. At the latter, the combustion gases are reoriented by a distributor to present a gyratory movement with an inclination greater than 70 ° relative to the longitudinal axis of the turbomachine. Such inclination is essential to produce the angle of attack required for the mechanical force driving in rotation of the moving wheel of the first stage of the turbine section.

Une telle distribution angulaire de l'air traversant la turbomachine présente de nombreux inconvénients. En effet, l'air qui sort naturellement du dernier étage de la section de compression avec un angle compris entre 35° et 45° est successivement redressé (angle ramené à 0°) à son entrée dans la section de combustion puis réorienté avec un angle supérieur à 70° à son entrée dans la section de turbine. Ces modifications angulaires successives de la distribution de l'air au travers de la turbomachine nécessitent des efforts aérodynamiques intenses produits par le redresseur de la section de compression et le distributeur de la section de turbine, efforts aérodynamiques qui sont particulièrement préjudiciables pour le rendement global de la turbomachine.Such angular distribution of the air passing through the turbomachine has many disadvantages. Indeed, the air that naturally leaves the last stage of the compression section with an angle between 35 ° and 45 ° is successively rectified (angle reduced to 0 °) at its entry into the combustion section and then reoriented with an angle greater than 70 ° at its entry into the turbine section. These successive angular modifications of the distribution of air through the turbomachine require intense aerodynamic forces produced by the rectifier of the compression section and the distributor of the turbine section, aerodynamic forces which are particularly detrimental to the overall efficiency of the turbomachine. the turbomachine.

Un ensemble de turbomachine selon le préambule de la revendication 1 est montré dans DE 1 145 438 B .A turbomachine assembly according to the preamble of claim 1 is shown in DE 1,145,438 B .

Objet et résumé de l'inventionObject and summary of the invention

La présente invention a donc pour but principal de pallier de tels inconvénients en proposant une turbomachine dont la distribution en air permet d'obtenir une forte diminution des efforts aérodynamiques successifs.The main purpose of the present invention is thus to overcome such disadvantages by proposing a turbomachine whose air distribution makes it possible to obtain a large reduction in successive aerodynamic forces.

A cet effet, il est prévu un ensemble de turbomachine comportant une section annulaire de compression destinée à comprimer de l'air traversant ladite turbomachine, un carter de la turbomachine formé d'une enveloppe annulaire externe centrée sur un axe longitudinal de la turbomachine et d'une enveloppe annulaire interne fixée de façon coaxiale à l'intérieur de l'enveloppe externe à l'aide d'une pluralité de bras radiaux de maintien, une section annulaire de combustion logée à l'intérieur du carter de turbomachine, disposée en sortie de la section de compression et dans laquelle l'air issu de la section de compression est mélangé à du carburant pour y être brûlé, et une section annulaire de turbine disposée en sortie de la section de combustion et dont un rotor est entraîné en rotation par des gaz issus de la section de combustion, l'air issu de la section de compression présentant un mouvement giratoire avec une inclinaison par rapport à l'axe longitudinal de la turbomachine, caractérisée en ce que la section de combustion comporte des moyens de distribution angulaire de l'air pour donner aux gaz issus de la section de combustion un mouvement giratoire avec une inclinaison sensiblement égale ou supérieure à celle de l'air issu de la section de compression, lesdits moyens de distribution étant formés au niveau du carter de la turbomachine par les bras de maintien qui présentent chacun une inclinaison par rapport à l'axe longitudinal de la turbomachine sensiblement égale ou supérieure à celle de l'air issu de la section de compression.For this purpose, there is provided a turbomachine assembly comprising an annular compression section for compressing air passing through said turbomachine, a casing of the turbomachine formed of an outer annular casing centered on a longitudinal axis of the turbomachine and an inner annular envelope coaxially fixed inside the outer casing by means of a plurality of radial holding arms, an annular combustion section housed inside the turbomachine casing, disposed as an output of the compression section and wherein the air from the compression section is mixed with fuel to be burned therein, and an annular turbine section disposed at the outlet of the combustion section and having a rotor rotated by gases from the combustion section, the air from the compression section having a gyratory movement with an inclination with respect to the longitudinal axis of the turbomachine, characterized in that the combustion section comprises means for angular distribution of the air to give gases from the section a gyratory movement with an inclination substantially equal to or greater than that of the air coming from the compression section, said dispensing means being formed at the level of the casing of the turbomachine by the holding arms which each have an inclination relative to the longitudinal axis of the turbomachine substantially equal to or greater than that of the air from the compression section.

L'invention permet de conserver l'inclinaison naturelle de l'air en sortie de la section de compression et de maintenir (voire d'amplifier) ce mouvement giratoire de l'air au travers de la section de combustion jusqu'à l'entrée de la section de turbine. Ainsi, l'effort aérodynamique nécessaire à l'entraînement en rotation du premier étage de la section de turbine est considérablement diminué. Cette forte diminution des efforts aérodynamiques engendre un gain de rendement de la turbomachine. Par ailleurs, le redresseur de la section de compression et le distributeur de la section de turbine peuvent être simplifiés, voire supprimés, ce qui représente un gain de masse et une diminution des coûts de production.The invention makes it possible to maintain the natural inclination of the air at the outlet of the compression section and to maintain (or even amplify) this gyratory movement of the air through the combustion section to the inlet of the turbine section. Thus, the aerodynamic force required for rotating the first stage of the turbine section is considerably reduced. This sharp decrease in aerodynamic forces generates a gain in efficiency of the turbomachine. In addition, the rectifier of the compression section and the distributor of the turbine section can be simplified or even eliminated, which represents a saving in weight and a reduction in production costs.

L'ensemble peut comporter des moyens supplémentaires de distribution angulaire de l'air formés au niveau de l'un ou de plusieurs des éléments constitutifs de la turbomachine suivants : carénage de la section de combustion, systèmes d'injection de carburant de la section de combustion, paroi transversale de la section de combustion, et parois axiales de la section de combustion.The assembly may comprise additional means of angular distribution of the air formed at one or more of the constituent elements of the following turbomachine: fairing of the combustion section, fuel injection systems of the fuel section. combustion, transverse wall of the combustion section, and axial walls of the combustion section.

La présente invention a également pour objet un procédé de distribution angulaire de l'air traversant une turbomachine, l'air étant successivement comprimé par une section de compression, mélangé à du carburant pour être brûlé dans une section de combustion et utilisé pour la mise en rotation d'un rotor d'une section de turbine, ledit procédé étant caractérisé en ce qu'il consiste à donner à l'air issu de la section de compression un mouvement giratoire avec une inclinaison par rapport à un axe longitudinal de la turbomachine, et à maintenir ou augmenter cette inclinaison de l'air de sorte que les gaz issus de la section de combustion présente un mouvement giratoire avec une inclinaison sensiblement égale ou supérieure à celle de l'air issu de la section de compression.The present invention also relates to a method of angular distribution of the air passing through a turbomachine, the air being successively compressed by a compression section, mixed with fuel to be burned in a combustion section and used for the implementation. rotation of a rotor of a turbine section, said method being characterized in that it consists in giving the air coming from the compression section a gyratory movement with an inclination with respect to a longitudinal axis of the turbomachine, and to maintain or increase this inclination of the air so that the gases from the combustion section has a gyratory movement with an inclination substantially equal to or greater than that of the air coming from the compression section.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :

  • la figure 1 est une demi vue partielle et en coupe longitudinale d'une turbomachine selon l'invention ;
  • la figure 2 est une vue en perspective du carter de la turbomachine de la figure 1 ;
  • la figure 3 est une vue en développé des bras de maintien du carter de la figure 2 ;
  • la figure 4 est une vue de face du carénage de la section de combustion de la turbomachine de la figure 1 ;
  • la figure 5 est une vue en coupe longitudinale du carter de la figure 4 ;
  • la figure 6 est une vue en coupe transversale d'un système d'injection d'air dans la section de combustion de la turbomachine de la figure 1 ;
  • la figure 7 est une vue en coupe longitudinale de la paroi transversale traversée par des systèmes d'injection de la section de combustion de la turbomachine de la figure 1 ;
  • la figure 8 est une vue partielle et en perspective de la paroi transversale de la chambre de combustion de la turbomachine de la figure 1;
  • la figure 9 est une vue en développé d'une paroi axiale de la chambre de combustion de la turbomachine de la figure 1 ;
  • les figures 10A et 10B sont des vues en coupe transversale d'une paroi axiale de la chambre de combustion de la turbomachine de la figure 1 selon des variantes de réalisation ;
  • les figures 11A et 11B sont des vues en développé d'une paroi axiale de la chambre de combustion d'une turbomachine de la figure 1 selon des variantes de réalisation de l'invention.
Other features and advantages of the present invention will emerge from the description given below, with reference to the accompanying drawings which illustrate an embodiment having no limiting character. In the figures:
  • the figure 1 is a partial view half and longitudinal section of a turbomachine according to the invention;
  • the figure 2 is a perspective view of the casing of the turbomachine of the figure 1 ;
  • the figure 3 is a view in developed of the maintenance arms of the housing of the figure 2 ;
  • the figure 4 is a front view of the fairing of the combustion section of the turbomachine of the figure 1 ;
  • the figure 5 is a longitudinal sectional view of the housing of the figure 4 ;
  • the figure 6 is a cross-sectional view of an air injection system in the combustion section of the turbomachine of the figure 1 ;
  • the figure 7 is a longitudinal sectional view of the transverse wall traversed by injection systems of the combustion section of the turbomachine of the figure 1 ;
  • the figure 8 is a partial view in perspective of the transverse wall of the combustion chamber of the turbomachine of the figure 1 ;
  • the figure 9 is a view in developed of an axial wall of the combustion chamber of the turbomachine of the figure 1 ;
  • the Figures 10A and 10B are cross-sectional views of an axial wall of the combustion chamber of the turbomachine of the figure 1 according to alternative embodiments;
  • the Figures 11A and 11B are views in developed of an axial wall of the combustion chamber of a turbomachine of the figure 1 according to alternative embodiments of the invention.

Description détaillée d'un mode de réalisationDetailed description of an embodiment

La turbomachine partiellement représentée sur la figure 1 possède un axe longitudinal X-X. Selon cet axe, elle comporte notamment une section annulaire de compression 100, une section annulaire de combustion 200 disposée en sortie de la section de compression 100 selon le sens d'écoulement de l'air traversant la turbomachine, et une section annulaire de turbine 300 disposée en sortie de la section de combustion 200. L'air injecté dans la turbomachine traverse donc successivement la section de compression 100, puis la section de combustion 200 et enfin la section de turbine 300.The turbomachine partially shown on the figure 1 has a longitudinal axis XX. Along this axis, it comprises in particular an annular compression section 100, an annular combustion section 200 disposed at the outlet of the compression section 100 in the direction of flow of the air passing through the turbomachine, and an annular turbine section 300 disposed at the outlet of the combustion section 200. The air injected into the turbomachine therefore passes successively through the compression section 100, then the combustion section 200 and finally the turbine section 300.

La section de compression 100 se présente sous la forme d'une pluralité d'étages de roues mobiles 102 portant chacune des aubes 104 (seul le dernier étage de la section de compression est représenté sur la figure 1). Les aubes 104 de ces étages sont disposées dans un canal annulaire 106 traversé par l'air de la turbomachine et dont la section diminue d'amont en aval. Ainsi, à mesure que l'air injecté dans la turbomachine traverse la section de compression, il est de plus en plus comprimé.The compression section 100 is in the form of a plurality of stages of movable wheels 102 each carrying blades 104 (only the last stage of the compression section is shown in FIG. figure 1 ). The blades 104 of these stages are disposed in an annular channel 106 through which air flows through the turbomachine and whose section decreases from upstream to downstream. Thus, as the air injected into the turbomachine passes through the compression section, it is more and more compressed.

La section de combustion 200 se présente également sous la forme d'un canal annulaire dans lequel l'air comprimé issu de la section de compression 100 est mélangé à du carburant pour y être brûlé. A cet effet, la section de combustion comporte une chambre de combustion 202 à l'intérieur de laquelle est brûlé le mélange air/carburant.The combustion section 200 is also in the form of an annular channel in which the compressed air from the compression section 100 is mixed with fuel for burning there. For this purpose, the combustion section comprises a combustion chamber 202 inside which is burned the air / fuel mixture.

La section de combustion 200 comporte un carter de turbomachine formé d'une enveloppe annulaire externe 204 centrée sur l'axe longitudinal X-X de la turbomachine et d'une enveloppe annulaire interne 206 qui est fixée de façon coaxiale à l'intérieur de l'enveloppe externe à l'aide d'une pluralité de bras 208 disposés radialement par rapport à l'axe longitudinal X-X de la turbomachine et régulièrement répartis sur toute la circonférence du carter (figure 2). Un espace annulaire 210 formé entre ces deux enveloppes 204, 206 reçoit de l'air comprimé provenant de la section de compression 100 de la turbomachine au travers d'un conduit annulaire de diffusion 212.The combustion section 200 comprises a turbomachine casing formed of an outer annular casing 204 centered on the longitudinal axis XX of the turbomachine and an inner annular casing 206 which is fixed coaxially inside the casing external by means of a plurality of arms 208 arranged radially with respect to the longitudinal axis XX of the turbomachine and regularly distributed over the entire circumference of the casing ( figure 2 ). An annular space 210 formed between these two envelopes 204, 206 receives compressed air coming from the compression section 100 of the turbomachine through an annular diffusion duct 212.

Les bras 208 du conduit de diffusion 212 ont deux fonctions principales ; l'une est mécanique (solidariser l'enveloppe externe 204 et l'enveloppe interne 206 du carter), et l'autre est de former un redresseur 213 dont le but est de donner une giration choisie à l'air sortant de la section de compression 100.The arms 208 of the diffusion duct 212 have two main functions; one is mechanical (secure the outer casing 204 and the inner casing 206 of the casing), and the other is to form a rectifier 213 whose purpose is to give a chosen gyration to the air coming out of the compression section 100.

Une pluralité de systèmes d'injection de carburant 214 régulièrement répartis autour du conduit de diffusion 212 débouchent dans l'espace annulaire 210. Ces systèmes d'injection sont chacun munis d'une buse d'injection de carburant 216 fixée sur l'enveloppe externe 204 du carter.A plurality of fuel injection systems 214 regularly distributed around the diffusion duct 212 open into the annular space 210. These injection systems are each provided with a fuel injection nozzle 216 fixed on the outer casing 204 of the housing.

La chambre de combustion 202 est montée à l'intérieur de l'espace annulaire 210 en ménageant avec les enveloppes externe 204 et interne 206 un canal annulaire 218 destiné à recevoir un débit d'air de dilution et de refroidissement (aussi appelé air de contournement de la chambre de combustion).The combustion chamber 202 is mounted inside the annular space 210 by providing with the outer casings 204 and inner 206 an annular channel 218 for receiving a dilution air flow and cooling (also called bypass air of the combustion chamber).

La chambre de combustion 202 est de type annulaire ; elle est notamment formée d'une paroi annulaire externe 220 centrée sur l'axe longitudinal X-X de la turbomachine et fixée sur l'enveloppe externe 204 du carter et d'une paroi annulaire interne 222 coaxiale à la paroi externe 220 et fixée sur l'enveloppe interne 206 du carter.The combustion chamber 202 is of annular type; it is in particular formed of an outer annular wall 220 centered on the longitudinal axis XX of the turbomachine and fixed on the outer casing 204 of the casing and an inner annular wall 222 coaxial with the outer wall 220 and fixed on the inner casing 206 of the casing.

A leur extrémité amont, les parois externe 220 et interne 222 sont reliées par une paroi transversale 224 formant fond de chambre. Ce fond de chambre 224 est pourvu d'une pluralité d'ouvertures 226 pour le passage des systèmes d'injection de carburant 214.At their upstream end, the outer 220 and inner walls 222 are connected by a transverse wall 224 forming chamber bottom. This chamber bottom 224 is provided with a plurality of openings 226 for the passage of the fuel injection systems 214.

La chambre de combustion 202 comporte également un carénage annulaire 228 qui est monté sur le fond de chambre 224 dans le prolongement des parois axiales 220, 222 de la chambre. Ce carénage 228 présente une pluralité d'ouvertures 230 pour le passage des systèmes d'injection de carburant 214.The combustion chamber 202 also comprises an annular fairing 228 which is mounted on the chamber bottom 224 in the extension of the axial walls 220, 222 of the chamber. This fairing 228 has a plurality of openings 230 for the passage of the fuel injection systems 214.

L'injection du carburant dans la chambre de combustion 202 est réalisée par les systèmes d'injection de carburant 214. Quant à l'air venant se mélanger au carburant dans la chambre, il provient, d'une part des systèmes d'injection qui sont chacun munis à leur extrémité d'un bol à vrilles d'air 232, et d'autre part de l'air de contournement empruntant des orifices 234 pratiqués sur les parois axiales 220, 222 de la chambre. Au sein de la chambre de combustion, le mélange air/carburant ainsi introduit est brûlé pour former des gaz de combustion.The injection of the fuel into the combustion chamber 202 is carried out by the fuel injection systems 214. As for the air that mixes with the fuel in the chamber, it comes, on the one hand, from the injection systems which are each provided at their end with an air vortex bowl 232, and secondly the bypass air borrowing orifices 234 formed on the axial walls 220, 222 of the chamber. Within the combustion chamber, the air / fuel mixture thus introduced is burned to form combustion gases.

La section de turbine 300 de la turbomachine est formée par une pluralité d'étages de roues mobiles 302 portant chacune des aubes 304 (seul le premier étage de la section de turbine est représenté sur la figure 1). Les aubes 304 de ces étages sont disposées dans un canal annulaire 306 traversé par les gaz issus de la section de combustion 200.The turbine section 300 of the turbomachine is formed by a plurality of stages of movable wheels 302 each carrying blades. 304 (only the first stage of the turbine section is shown on the figure 1 ). The blades 304 of these stages are arranged in an annular channel 306 traversed by the gases coming from the combustion section 200.

En entrée du premier étage 302 de la section de turbine 300, les gaz issus de la section de combustion doivent présenter une inclinaison par rapport à l'axe longitudinal X-X de la turbomachine qui soit suffisante pour entraîner en rotation les différents étages de la section de turbine.At the inlet of the first stage 302 of the turbine section 300, the gases coming from the combustion section must have an inclination relative to the longitudinal axis XX of the turbomachine which is sufficient to rotate the different stages of the turbine section. turbine.

A cet effet, un distributeur 308 est monté directement en aval de la chambre de combustion 202 et en amont du premier étage 302 de la section de turbine 300. Ce distributeur 308 se compose d'une pluralité d'aubes radiales fixes 310 dont l'inclinaison par rapport à l'axe longitudinal X-X de la turbomachine permet de donner aux gaz issus de la section de combustion 200 l'inclinaison nécessaire à l'entraînement en rotation des différents étages de la section de turbine.For this purpose, a distributor 308 is mounted directly downstream of the combustion chamber 202 and upstream of the first stage 302 of the turbine section 300. This distributor 308 consists of a plurality of fixed radial vanes 310 of which inclination with respect to the longitudinal axis XX of the turbomachine makes it possible to give the gases coming from the combustion section 200 the inclination necessary for driving in rotation the different stages of the turbine section.

Dans les turbomachines classiques, la distribution de l'air traversant successivement la section de compression 100, la section de combustion 200 et la section de turbine 300 s'opère de la façon suivante. L'air comprimé issu du dernier étage 102 de la section de compression 100 possède naturellement un mouvement giratoire avec une inclinaison de l'ordre de 35° à 45° par rapport à l'axe longitudinal X-X de la turbomachine. Par l'intermédiaire du redresseur d'air 213 de la section de combustion 200, cet angle d'inclinaison est ramené à 0°. Enfin, au niveau de l'entrée de la section de turbine 300, les gaz issus de la combustion sont réorientés par le distributeur 308 de cette dernière pour leur donner un mouvement giratoire avec une inclinaison par rapport à l'axe longitudinal X-X qui est supérieure à 70°.In conventional turbomachines, the distribution of the air successively passing through the compression section 100, the combustion section 200 and the turbine section 300 takes place as follows. The compressed air from the last stage 102 of the compression section 100 naturally has a gyratory movement with an inclination of the order of 35 ° to 45 ° relative to the longitudinal axis X-X of the turbomachine. Through the air rectifier 213 of the combustion section 200, this inclination angle is reduced to 0 °. Finally, at the inlet of the turbine section 300, the gases resulting from the combustion are redirected by the distributor 308 thereof to give them a gyratory movement with an inclination with respect to the longitudinal axis XX which is greater at 70 °.

Selon l'invention, il est prévu des moyens de distribution angulaire de l'air pour maintenir, voire augmenter, l'inclinaison naturelle de l'air issu de la section de compression 100 de sorte que les gaz issus de la section de combustion 200 présente un mouvement giratoire avec une inclinaison sensiblement égale ou supérieure à celle de l'air issu de la section de compression.According to the invention, angular air distribution means are provided for maintaining or increasing the natural inclination of the air coming from the compression section 100 so that the gases coming from the combustion section 200 has a gyratory movement with an inclination substantially equal to or greater than that of the air coming from the compression section.

Maintenir, voire augmenter l'inclinaison de l'air comprimé depuis la sortie de la section de compression 100 jusqu'à l'entrée dans la section de turbine 300 présente de nombreux avantages.Maintaining or even increasing the inclination of the compressed air from the outlet of the compression section 100 to the inlet into the turbine section 300 has many advantages.

Notamment, il n'est plus nécessaire que le distributeur 308 de la section de turbine 300 présente une inclinaison aussi importante (au moins égale à 70° dans les turbomachines classiques) pour produire l'angle d'attaque nécessaire à la force mécanique d'entraînement en rotation de la roue mobile 302 du premier étage de la section de turbine. En fonction de la valeur angulaire obtenue en sortie de la section de combustion par les moyens de distribution angulaire de l'air, l'inclinaison du distributeur 308 compense alors seulement l'écart angulaire nécessaire pour amener les gaz de combustion déjà en mouvement giratoire à l'angle d'attaque complémentaire requis pour la mise en rotation du premier étage 302 de la section de turbine.In particular, it is no longer necessary for the distributor 308 of the turbine section 300 to have such a large inclination (at least equal to 70 ° in conventional turbomachines) to produce the angle of attack required for the mechanical force of the turbine. driving in rotation of the moving wheel 302 of the first stage of the turbine section. As a function of the angular value obtained at the outlet of the combustion section by the angular distribution means of the air, the inclination of the distributor 308 then only compensates for the angular difference necessary to bring the combustion gases already in a gyratory movement to the additional angle of attack required for rotating the first stage 302 of the turbine section.

Si les moyens de distribution angulaire de l'air permettent d'obtenir en sortie de la section de combustion une inclinaison égale à l'angle d'attaque nécessaire à la mise en rotation du premier étage 302 de la section de turbine, le distributeur 308 de celle-ci peut même être supprimé, ce qui représente pour la turbomachine un gain important de masse, d'encombrement et de coût de production. De même, en optimisant les moyens de distribution angulaire de l'air, la fonction de redresseur d'air 213 de la section de combustion 200 peut être supprimée pour ne garder que la fonction mécanique des bras 208 avec également comme avantage de diminuer la masse et l'encombrement de la turbomachine et de réduire les coûts de production. Par ailleurs, l'effort aérodynamique nécessaire à l'entraînement en rotation du premier étage 302 de la section de turbine 300 étant considérablement diminué, il est attendu un gain important en terme de rendement de la turbomachine.If the angular distribution means of the air make it possible to obtain at the outlet of the combustion section an inclination equal to the angle of attack necessary for the rotation of the first stage 302 of the turbine section, the distributor 308 it can even be eliminated, which represents for the turbomachine a significant gain in mass, size and cost of production. Similarly, by optimizing the angular distribution means of the air, the air straightener function 213 of the combustion section 200 can be suppressed to keep only the mechanical function of the arms 208 with also the advantage of reducing the mass and the size of the turbomachine and reduce production costs. Moreover, the aerodynamic force required for the rotational drive of the first stage 302 of the turbine section 300 is considerably reduced, it is expected a significant gain in terms of efficiency of the turbomachine.

Les moyens de distribution angulaire de l'air selon l'invention peuvent être formés au niveau de l'un ou de plusieurs des éléments constitutifs de la turbomachine qui sont détaillés ci-après. Il est à noter que les modifications apportées à ces éléments constitutifs de la turbomachine peuvent se cumuler les uns aux autres afin d'optimiser la distribution angulaire de l'air de sorte que les gaz présentent en sortie de la section de combustion une inclinaison égale (ou aussi proche que possible) de l'angle d'attaque nécessaire à la mise en rotation du premier étage de la section de turbine.The angular distribution means of the air according to the invention may be formed at one or more of the constituent elements of the turbomachine which are detailed below. It should be noted that the modifications made to these constituent elements of the turbomachine can accumulate with each other in order to optimize the angular distribution of the air so that the gases present at the outlet of the combustion section an equal inclination ( or as close as possible) to the angle of attack required to rotate the first stage of the turbine section.

Modification du carter de la section de combustionChanging the crankcase of the combustion section

Cette modification est représentée sur les figures 2 et 3. La figure 2 représente le carter de la turbomachine qui est formé par l'enveloppe externe 204 et l'enveloppe interne 206 et à l'intérieur duquel est monté la chambre de combustion (non représentée).This change is represented on the Figures 2 and 3 . The figure 2 represents the casing of the turbomachine which is formed by the outer casing 204 and the inner casing 206 and inside which is mounted the combustion chamber (not shown).

Selon l'invention, les bras 208 qui restent nécessaires pour le maintien de l'enveloppe interne 206 à l'intérieur de l'enveloppe externe 204 présentent chacun une inclinaison α par rapport à l'axe longitudinal X-X de la turbomachine. Cette inclinaison α est sensiblement égale ou supérieure à celle de l'air issu de la section de compression.According to the invention, the arms 208 that remain necessary for the maintenance of the inner casing 206 inside the outer casing 204 each have an inclination α with respect to the longitudinal axis XX of the turbomachine. This inclination α is substantially equal to or greater than that of the air coming from the compression section.

A titre d'exemple, si l'air issu de la section de compression s'écoule selon une direction générale F en ayant un mouvement giratoire avec un angle d'inclinaison de l'ordre de 35° à 45° par rapport à l'axe longitudinal X-X, l'angle d'inclinaison α des bras de maintien 208 sera d'au moins 35°.By way of example, if the air coming from the compression section flows in a general direction F while having a gyratory movement with an angle of inclination of the order of 35 ° to 45 ° with respect to the longitudinal axis XX, the angle of inclination α of the holding arms 208 will be at least 35 °.

Selon une variante non représentée sur les figures, il est possible d'envisager que les bras de maintien 208 présentent chacun un profil de type aube mobile de turbine à gaz avec une inclinaison générale au moins égale à celle de l'air issu de la section de compression, voire supérieure afin de provoquer un effet de giration supplémentaire.According to a variant not shown in the figures, it is possible to envisage that the holding arms 208 each have a gas turbine blade type profile with a general inclination at least equal to that of the air from the section compression, or even higher in order to cause an additional gyration effect.

Modification du carénage de la section de combustionChanging the fairing of the combustion section

Cette modification est représentée sur les figures 4 et 5. Ces figures représentent partiellement le carénage annulaire 228 qui est monté sur le fond de chambre de la chambre de combustion dans le prolongement des parois axiales de cette dernière.This change is represented on the Figures 4 and 5 . These figures partially represent the annular fairing 228 which is mounted on the chamber bottom of the combustion chamber in the extension of the axial walls of the latter.

Comme précédemment décrit, le carénage 228 est pourvu d'une pluralité d'ouvertures 230 pour le passage des systèmes d'injection de carburant (par soucis de simplification, seul le bol à vrilles d'air 232 du système d'injection de carburant est représenté sur les figures 4 et 5).As previously described, the fairing 228 is provided with a plurality of openings 230 for the passage of the fuel injection systems (for the sake of simplification, only the air vortex bowl 232 of the fuel injection system is represented on the Figures 4 and 5 ).

Selon l'invention, les ouvertures 230 du carénage 228 comportent chacune une paroi axiale 236 formant une inclinaison β par rapport à l'axe longitudinal X-X de la turbomachine qui est sensiblement égale ou supérieure à celle de l'air issu de la section de compression.According to the invention, the openings 230 of the shroud 228 each comprise an axial wall 236 forming an inclination β with respect to the longitudinal axis XX of the turbomachine which is substantially equal to or greater than that of the air coming from the compression section .

Par exemple, pour un écoulement selon une direction générale F de l'air issu de la section de compression ayant un angle d'inclinaison de l'ordre de 35° à 45°, l'angle d'inclinaison β de la paroi axiale 236 des ouvertures 230 du carénage 228 sera d'au moins 35°.For example, for a flow in a general direction F of the air coming from the compression section having an angle of inclination of in the order of 35 ° to 45 °, the angle of inclination β of the axial wall 236 of the openings 230 of the shroud 228 will be at least 35 °.

Il est à noter que si la modification précédemment décrite est apportée aux bras de maintien du carter en leur donnant un angle d'inclinaison supérieure à celui de l'air issu de la section de compression, l'angle d'inclinaison β de la paroi axiale 236 des ouvertures 230 du carénage 228 sera de préférence égale ou supérieur à cet angle d'inclinaison des bras de maintien.It should be noted that if the modification described above is made to the casing holding arms by giving them an angle of inclination greater than that of the air coming from the compression section, the angle of inclination β of the wall axial 236 apertures 230 of the shroud 228 will preferably be equal to or greater than this angle of inclination of the holding arms.

Modification des systèmes d'iniection de la section de combustionModification of combustion section iniection systems

Un premier mode de réalisation de cette modification est représentée sur la figure 6 représentant en coupe transversale un bol 232 d'un système d'injection de carburant traversant une ouverture 226 pratiquée dans le fond de chambre 224 de la chambre de combustion.A first embodiment of this modification is represented on the figure 6 cross-sectional representation of a bolus 232 of a fuel injection system passing through an opening 226 formed in the chamber bottom 224 of the combustion chamber.

Le bol 232 de chaque système d'injection de carburant est muni d'une pluralité de vrilles d'air 238 qui sont disposées radialement par rapport à un axe longitudinal Y-Y du bol parallèle à l'axe longitudinal de la turbomachine (non représenté). Les vrilles d'air 238 permettent de donner un mouvement rotatif à l'air introduit dans la chambre de combustion par le bol des systèmes d'injection de carburant. Elles peuvent être aménagées selon un ou deux étages.The bowl 232 of each fuel injection system is provided with a plurality of air vices 238 which are arranged radially with respect to a longitudinal axis Y-Y of the bowl parallel to the longitudinal axis of the turbomachine (not shown). The air swirlers 238 provide rotational movement to the air introduced into the combustion chamber through the fuel injection system bowl. They can be arranged on one or two floors.

Selon l'invention, les vrilles d'air 238 du bol 232 de chaque système d'injection de carburant présentent une perméabilité variable à l'air afin d'obtenir une homogénéité d'alimentation en air. Par perméabilité variable, on entend que la section de passage de l'air entre les vrilles varie selon la position angulaire de ces dernières.According to the invention, the air swirlers 238 of the bowl 232 of each fuel injection system have a variable permeability to air in order to obtain homogeneity of air supply. Variable permeability means that the air passage section between the tendrils varies according to the angular position of the latter.

Cette modification est rendue nécessaire par le fait que, comme l'air issu de la section de compression présente un mouvement giratoire, la partie amont des vrilles d'air (par rapport au sens de rotation de l'air alimentant ces vrilles) est plus favorablement alimentée en air que la partie aval.This modification is made necessary by the fact that, since the air coming from the compression section has a gyratory movement, the upstream part of the air vices (with respect to the direction of rotation of the air supplying these tendrils) is more favorably supplied with air as the downstream part.

De préférence, la perméabilité variable des vrilles d'air 238 de chaque bol 232 est obtenue en faisant varier l'espacement entre les vrilles suivant l'inclinaison de l'air issu de la section de compression.Preferably, the variable permeability of the air swirlers 238 of each bowl 232 is obtained by varying the spacing between the swirlers according to the inclination of the air coming from the compression section.

Par exemple, pour un écoulement giratoire selon une direction générale F de l'air issu de la section de compression telle que projetée en F' sur la figure 6, l'espacement d1 entre les vrilles d'air adjacentes 238a et 238b est plus important que l'espacement d2 entre les vrilles d'air adjacentes 238b et 238c.For example, for a gyratory flow in a general direction F of the air coming from the compression section as projected in FIG. F ' on the figure 6 the spacing d1 between the adjacent air swirlers 238a and 238b is larger than the spacing d2 between the adjacent air swirlers 238b and 238c.

La figure 7 représente une alternative de réalisation de la modification apportée aux systèmes d'injection de carburant.The figure 7 represents an alternative embodiment of the modification made to the fuel injection systems.

Dans ce mode de réalisation, les systèmes d'injection de carburant 214 (c'est-à-dire l'ensemble comprenant la buse d'injection 216 et le bol 232 à vrilles d'air) présentent chacun une inclinaison y par rapport à l'axe longitudinal X-X de la turbomachine qui est sensiblement égale ou supérieure à celle de l'air issu de la section de compression.In this embodiment, the fuel injection systems 214 (i.e. the assembly comprising the injection nozzle 216 and the air twist bowl 232) each have an inclination y with respect to the longitudinal axis XX of the turbomachine which is substantially equal to or greater than that of the air coming from the compression section.

Toujours dans l'exemple où l'air issu de la section de compression s'écoule selon une direction générale F avec un angle d'inclinaison de l'ordre de 35° à 45°, l'angle d'inclinaison y des systèmes d'injection de carburant 214 sera au moins égal à 35°. Cet angle d'inclinaison y pourra même être plus important, notamment si la modification des bras de maintien du carter et/ou la modification du carénage de la section de combustion ont été apportées.Still in the example where the air issuing from the compression section flows in a general direction F with an angle of inclination of the order of 35 ° to 45 °, the angle of inclination y fuel injection 214 will be at least 35 °. This inclination angle there may even be more important, especially if the change of the housing of the holding arm and / or modification of the combustion section of the fairing were made.

Modification du fond de chambre de la section de combustionModification of the chamber bottom of the combustion section

Cette modification est représentée sur les figures 7 et 8 qui représentent notamment le fond de chambre 224 de la chambre de combustion, c'est-à-dire la paroi transversale reliant en amont les parois axiales 220, 222 de cette dernière.This change is represented on the figures 7 and 8 which represent in particular the bottom chamber 224 of the combustion chamber, that is to say the transverse wall connecting upstream axial walls 220, 222 of the latter.

Selon l'invention, le fond de chambre 224 présente au niveau de chaque système d'injection de carburant 214 une inclinaison δ par rapport à un plan P transversal de la turbomachine (c'est-à-dire par rapport à un plan P perpendiculaire à l'axe longitudinal X-X de la turbomachine).According to the invention, the chamber bottom 224 has at each fuel injection system 214 an inclination δ with respect to a transverse plane P of the turbomachine (that is to say with respect to a perpendicular plane P to the longitudinal axis XX of the turbomachine).

Une telle caractéristique consiste à modifier le fond de chambre 224 de sorte que celui-ci présente une forme « d'escalier » avec une marche associée à chaque système d'injection de carburant 214. Cette forme est particulièrement visible sur la figure 8.Such a characteristic consists in modifying the chamber bottom 224 so that it has a "staircase" shape with a step associated with each fuel injection system 214. This form is particularly visible on the figure 8 .

Lorsque les systèmes d'injection de carburant 214 présentent chacun une inclinaison y par rapport à l'axe longitudinal X-X comme proposé précédemment (figure 7), l'inclinaison δ du fond de chambre 224 sera de préférence sensiblement identique à cette inclinaison des systèmes d'injection.When the fuel injection systems 214 each have an inclination y with respect to the longitudinal axis XX as previously proposed ( figure 7 ), the inclination δ of the chamber bottom 224 is preferably substantially identical to this inclination of the injection systems.

Modification des parois axiales de la section de combustionModification of the axial walls of the combustion section

Comme décrit précédemment en liaison avec la figure 1, des orifices 234 sont pratiqués sur les parois axiales 220, 222 de la chambre de combustion 202 afin d'acheminer de l'air nécessaire à la combustion et à la dilution du mélange air/carburant.As previously described in connection with the figure 1 , Orifices 234 are formed on the axial walls 220, 222 of the combustion chamber 202 to convey air necessary for combustion and dilution of the air / fuel mixture.

Les parois axiales 220, 222 de la chambre de combustion 202 sont par ailleurs munies d'une pluralité de passages supplémentaires pour l'air. L'air empruntant ces passages est destiné à assurer un refroidissement des parois axiales de la chambre de combustion en formant des films d'air à leur surface interne (on parle d'un refroidissement par « multiperforation » des parois de la chambre).The axial walls 220, 222 of the combustion chamber 202 are also provided with a plurality of additional passages for air. The air passing through these passages is intended to ensure cooling of the axial walls of the combustion chamber by forming air films on their inner surface (it is referred to as a "multiperforation" cooling of the walls of the chamber).

De tels passages d'air de refroidissement consistent généralement en des orifices percés dans l'épaisseur des parois axiales de la chambre de combustion de façon à former des canaux. Ces orifices peuvent être percés, soit perpendiculairement aux parois axiales, soit de façon inclinée par rapport à celles-ci. Par ailleurs, ces orifices sont répartis sous forme d'un maillage sur les surfaces des parois axiales 220, 222 de la chambre de combustion.Such cooling air passages generally consist of orifices pierced in the thickness of the axial walls of the combustion chamber so as to form channels. These orifices can be drilled, either perpendicular to the axial walls, or inclined relative thereto. Moreover, these orifices are distributed in the form of a mesh on the surfaces of the axial walls 220, 222 of the combustion chamber.

La figure 9 représente une modification apportée aux orifices percés dans l'épaisseur des parois axiales 220, 222 de la chambre de combustion selon un mode de réalisation de l'invention.The figure 9 represents a modification made to the holes drilled in the thickness of the axial walls 220, 222 of the combustion chamber according to one embodiment of the invention.

Sur l'exemple de réalisation de cette figure 9, les orifices 240 percés au travers des parois axiales 220, 222 sont répartis sous forme d'un maillage qui s'étend sur une longueur axiale l. A l'intérieur de ce maillage, les orifices 240 sont alignés selon des rangées parallèles. Comme illustré avec les rangées n et n+1, les orifices de deux rangées adjacentes peuvent en outre être disposés en quinconce.On the example of realization of this figure 9 the orifices 240 pierced through the axial walls 220, 222 are distributed in the form of a mesh which extends over an axial length 1 . Within this mesh, the orifices 240 are aligned in parallel rows. As illustrated with rows n and n +1, the orifices of two adjacent rows may further be staggered.

Selon l'invention, ces rangées d'orifices 240 présentent chacune une inclinaison ε par rapport à l'axe longitudinal X-X de la turbomachine qui est sensiblement égale ou supérieure à celle de l'air issu de la section de compression.According to the invention, these rows of orifices 240 each have an inclination ε with respect to the longitudinal axis XX of the turbomachine which is substantially equal to or greater than that of the air coming from the compression section.

L'angle d'inclinaison ε pourra être plus important que celui de l'air issu de la section de compression, notamment si les modifications précédemment décrites des bras de maintien du carter et/ou de la section de combustion et/ou des systèmes d'injection de carburant ont été apportées.The angle of inclination ε may be greater than that of the air coming from the compression section, especially if the previously described modifications of the crankcase and / or section holding arms combustion and / or fuel injection systems have been made.

Selon une variante de réalisation non représentée sur les figures, le profil des rangées d'orifices pour le passage de l'air de refroidissement peut être courbe, c'est-à-dire que l'inclinaison de ces rangées par rapport à l'axe longitudinal de la turbomachine peut augmenter au fur et à mesure que l'on s'éloigne de l'entrée de la chambre de combustion.According to an alternative embodiment not shown in the figures, the profile of the rows of orifices for the passage of cooling air may be curved, that is to say that the inclination of these rows relative to the The longitudinal axis of the turbomachine can increase as one moves away from the entrance of the combustion chamber.

Par ailleurs, comme illustré sur la figure 10A, les orifices peuvent être percés dans l'épaisseur des parois axiales 220, 222 de la chambre de combustion et former des canaux 240 perpendiculaires à celles-ci (c'est-à-dire que les canaux 240 sont parallèles à un axe Z-Z perpendiculaire aux parois).Moreover, as illustrated on the figure 10A , the orifices can be drilled in the thickness of the axial walls 220, 222 of the combustion chamber and form channels 240 perpendicular to them (that is to say that the channels 240 are parallel to a perpendicular axis ZZ to the walls).

Alternativement, comme représenté sur la figure 10B, les orifices peuvent se présenter sous la forme de canaux 240' ayant chacun une inclinaison θ1 par rapport à un axe Z-Z perpendiculaire aux parois, l'inclinaison θ1 étant préférentiellement dirigée de sorte que les orifices soient inclinés vers l'aval de la chambre de combustion.Alternatively, as shown on the figure 10B , the orifices may be in the form of channels 240 'each having an inclination θ1 with respect to a ZZ axis perpendicular to the walls, the inclination θ1 being preferably directed so that the orifices are inclined downstream of the chamber of combustion.

Les figures 11A et 11B représentent des variantes de réalisation dans lesquelles les canaux 240' percés dans les parois axiales 220, 222 de la chambre de combustion présentent chacun une telle inclinaison θ1 par rapport à un axe perpendiculaire aux parois.The Figures 11A and 11B represent alternative embodiments in which the channels 240 'drilled in the axial walls 220, 222 of the combustion chamber each have such inclination θ1 with respect to an axis perpendicular to the walls.

Sur l'exemple de réalisation de la figure 11A, les orifices 240' sont répartis sous forme d'un maillage s'étendant sur une longueur axiale l à l'intérieur duquel ils sont alignés selon des rangées parallèles n, chaque rangée d'orifices présentant une inclinaison ε par rapport à l'axe longitudinal X-X de la turbomachine comme décrit précédemment.On the example of realization of the figure 11A , orifices 240 'are distributed in the form of a mesh extending over an axial length l within which they are aligned in parallel rows n , each row of orifices having an inclination ε with respect to the axis longitudinal XX of the turbomachine as described above.

Chaque canal 240' qui présente une inclinaison θ1 est situé dans un plan perpendiculaire aux parois 220, 222 de la chambre de combustion. Ce plan perpendiculaire aux parois dans lequel est situé chaque canal 240' présente en outre lui-même une inclinaison θ2 par rapport à l'axe longitudinal X-X de la turbomachine. Cette inclinaison θ2 est réalisée de façon à coïncider avec l'inclinaison ε des rangées n d'orifices. En d'autres termes, l'axe passant par les trous d'entrée 240'a et de sortie de l'air 240b de chaque canal 240' est dans un plan perpendiculaire aux parois 220, 222 qui est aligné avec l'axe d'alignement des rangées n d'orifices.Each channel 240 'which has an inclination θ1 is located in a plane perpendicular to the walls 220, 222 of the combustion chamber. This plane perpendicular to the walls in which each channel 240 'is located further has itself an inclination θ2 with respect to the longitudinal axis XX of the turbomachine. This inclination θ2 is made to coincide with the inclination ε rows n orifices. In other words, the axis passing through the inlet 240'a and 240b air outlet holes of each channel 240 'is in a plane perpendicular to the walls 220, 222 which is aligned with the axis of alignment of rows n of orifices.

Sur l'exemple de réalisation de la figure 11B, les orifices 240' sont également répartis sous forme d'un maillage s'étendant sur une longueur axiale l à l'intérieur duquel ils sont alignés selon des rangées parallèles n, chaque rangée d'orifices présentant une inclinaison ε par rapport à l'axe longitudinal X-X de la turbomachine comme décrit précédemment.On the example of realization of the Figure 11B , orifices 240 'are also distributed in the form of a mesh extending over an axial length 1 within which they are aligned in parallel rows n , each row of orifices having an inclination ε relative to the longitudinal axis XX of the turbomachine as described above.

Chaque canal 240' qui présente une inclinaison θ1 est également situé dans un plan perpendiculaire aux parois 220, 222 de la chambre de combustion. De plus, ce plan perpendiculaire aux parois dans lequel est situé chaque canal 240' présente lui-même une inclinaison θ2' par rapport à l'axe longitudinal X-X de la turbomachine.Each channel 240 'which has an inclination θ1 is also located in a plane perpendicular to the walls 220, 222 of the combustion chamber. In addition, this plane perpendicular to the walls in which each channel 240 'is located itself has an inclination θ2' with respect to the longitudinal axis XX of the turbomachine.

Contrairement au mode de réalisation de la figure 11A, cette inclinaison θ2' est sensiblement supérieure à l'inclinaison ε des rangées n d'orifices et elle est réalisée de façon à donner à l'air sortant de ces canaux une giration supplémentaire par rapport à l'axe longitudinal X-X de la turbomachine. En d'autres termes, l'axe passant par les trous d'entrée 240'a et de sortie de l'air 240'b de chaque canal 240' est dans un plan perpendiculaire aux parois 220, 222 qui est incliné d'un angle (θ2' - ε) avec l'axe d'alignement des rangées n d'orifices.Unlike the embodiment of the figure 11A this inclination θ2 ' is substantially greater than the inclination ε of rows n of orifices and is made so as to give the air exiting from these channels an additional gyration with respect to the longitudinal axis XX of the turbomachine. In other words, the axis passing through the inlet 240'a and 240'b air outlet holes of each channel 240 'is in a plane perpendicular to the walls 220, 222 which is inclined by angle ( θ2 ' - ε ) with the axis of alignment of the rows n of orifices.

Aussi, l'inclinaison θ2' du plan perpendiculaire aux parois axiales 220, 222 de la chambre de combustion dans lequel se situent les canaux 240' est incluse dans la plage de valeurs situées entre ε et (ε + 90°) par rapport à l'axe longitudinal X-X de la turbomachine.Also, the inclination θ2 ' of the plane perpendicular to the axial walls 220, 222 of the combustion chamber in which the channels 240' are located is included in the range of values between ε and ( ε + 90 °) with respect to the longitudinal axis XX of the turbomachine.

Par ailleurs, selon une variante de réalisation non représentée sur les figures, le profil des rangées de ces canaux 240' pour le passage de l'air de refroidissement peut être courbe, c'est-à-dire que l'inclinaison θ2' du plan perpendiculaire aux parois axiales de la chambre de combustion dans lequel chaque canal de ces rangées est situé peut évoluer au fur et à mesure que l'on s'éloigne de l'entrée de la chambre de combustion.Furthermore, according to an alternative embodiment not shown in the figures, the profile of the rows of these channels 240 'for the passage of the cooling air can be curved, that is to say that the inclination θ2' of the plane perpendicular to the axial walls of the combustion chamber in which each channel of these rows is located may evolve as one moves away from the entrance of the combustion chamber.

Claims (13)

  1. A turbomachine assembly comprising:
    an annular compression section (100) for compressing air passing through said turbomachine;
    a turbomachine casing formed by an outer annular shell (204) centered on a longitudinal axis (X-X) of the turbomachine and an inner annular shell (206) secured coaxially inside the outer shell by means of a plurality of radial support arms (208) ;
    an annular combustion section (200) housed inside the turbomachine casing, disposed at the outlet from the compression section (100) and within which the air coming from the compression section is mixed with fuel in order to be burnt therein; and
    an annular turbine section (300) disposed at the outlet from the combustion section (200) and having a rotor that is driven in rotation by the gas coming from the combustion section, the air coming from the compression section (100) presenting rotary motion with an angle of inclination relative to the longitudinal axis (X-X) of the turbomachine;
    the assembly being characterized in that the combustion section (200) includes angular distribution means for determining air flow direction so as to impart to the gas coming from the combustion section rotary motion with an angle of inclination that is substantially equal to or greater than the angle of inclination of the air coming from the compression section, said angular distribution means being formed in the turbomachine casing by the support arms (208), each of which presents an angle of inclination (α) relative to the longitudinal axis (X-X) of the turbomachine that is substantially equal to or greater than the angle of inclination of the air coming from the compression section (100).
  2. An assembly according to claim 1, characterized in that it includes additional angular distribution means for determining air flow direction and formed at one or more of the following component elements of the turbomachine: a fairing (228) of the combustion section; fuel injecter systems (214) of the combustion section; a transverse wall (224) of the combustion section; and axial walls (220, 222) of the combustion section.
  3. An assembly according to claim 2, in which the additional angular distribution means are formed at the fairing (228) of the combustion section (200), the combustion section being formed by an outer annular wall (220) centered on the longitudinal axis (X-X) of the turbomachine, an inner annular wall (222) coaxial with the outer wall, a transverse wall (224) interconnecting the upstream ends of the outer and inner walls (220 and 222), a plurality of fuel injector systems (214) passing through the transverse wall (224), and an annular fairing mounted on said transverse wall, said fairing (228) having a plurality of openings (230) for passing the fuel injector systems (214), the assembly being characterized in that each opening (230) in the fairing (228) has an axial wall (236) forming an angle of inclination (β) relative to the longitudinal axis (X-X) of the turbomachine that is substantially equal to or greater than the angle of inclination of the air coming from the compression section (100).
  4. An assembly according to claim 2 or claim 3, in which the additional angular distribution means are formed at the fuel injector systems (214) of the combustion section (200), each of said fuel injector Systems (214) comprising a fuel injector nozzle (216) having one end mounted on a bowl (232) provided with radial air swirlers (238), the assembly being characterized in that the air swirlers (238) of each bowl present varying permeability to the air.
  5. An assembly according to claim 4, characterized in that the spacing between the air swirlers (238) of each bowl (232) varies depending on the inclination of the air coming from the combustion section (100).
  6. An assembly according to claim 2 or claim 3, in which the additional angular distribution means are formed at the fuel injector systems (214) of the combustion section (200), the assembly being characterized in that each of said fuel injector systems (214) presents an angle of inclination (γ) relative to the longitudinal axis (X-X) of the turbomachine that is substantially equal to or greater than the angle of inclination of the air coming from the compression section (100).
  7. An assembly according to any one of claims 2 to 6, in which the additional angular distribution means are formed at the transverse wall (224) of the combustion section (200), said combustion section being formed by an outer annular wall (220) centered on the longitudinal axis (X-X) of the turbomachine, an inner annular wall (222) coaxial with the outer wall, a transverse wall (224) interconnecting the upstream ends of the inner and outer walls, and a plurality of fuel injector systems (214) passing through the transverse wall (224), the assembly being characterized in that said transverse wall (224) presents at each fuel injector system (214) an angle of inclination (δ) relative to a transverse plane (P) of the turbomachine.
  8. An assembly according to any one of claims 2 to 7, in which the additional angular distribution means are formed at the axial walls (220, 222) of the combustion section (200), said axial walls (220, 222) of the combustion section being provided with a plurality of orifices (240, 240') aligned in rows and forming channels for passing air, the assembly being characterized in that the rows of air-passing orifices (240, 240') present an angle of inclination (ε) relative to the longitudinal axis (X-X) of the turbomachine that is substantially equal to or greater than the angle of inclination of the air coming from the compression section (100).
  9. An assembly according to claim 8, in which each channel (240') presents an angle of inclination (θ1) relative to an axis (Z-Z) perpendicular to axial walls (220, 222) of the combustion section (200).
  10. An assembly according to claim 9, in which each channel (240') is situated in a plane perpendicular to the axial walls (220, 222) of the combustion section (200) presenting an angle of inclination (θ2) relative to the longitudinal axis (X-X) of the turbomachine that is substantially equal to the angle of inclination (ε) of the rows of orifices.
  11. A turbomachine according to claim 9, in which each channel (240') is situated in a plane perpendicular to the axial walls (220, 222) of the combustion section (200) presenting an angle of inclination (θ2') relative to the longitudinal axis (X-X) of the turbomachine that is substantially greater than the angle of inclination (ε) of the rows of orifices.
  12. A turbomachine according to claim 11, in which the angle of inclination (02') of the plane perpendicular to the axial walls (220, 222) of the combustion section (200) in which the channels (240') are situated lies in the range ε to ε + 90° relative to the longitudinal axis (X-X) of the turbomachine.
  13. A turbomachine including an assembly according to any one of claims 1 to 12.
EP06117022.1A 2005-07-18 2006-07-12 Turbine with circumferential distribution of combustion air Active EP1746348B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0507578A FR2888631B1 (en) 2005-07-18 2005-07-18 TURBOMACHINE WITH ANGULAR AIR DISTRIBUTION

Publications (3)

Publication Number Publication Date
EP1746348A2 EP1746348A2 (en) 2007-01-24
EP1746348A3 EP1746348A3 (en) 2013-05-01
EP1746348B1 true EP1746348B1 (en) 2015-06-10

Family

ID=36001030

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06117022.1A Active EP1746348B1 (en) 2005-07-18 2006-07-12 Turbine with circumferential distribution of combustion air

Country Status (4)

Country Link
US (1) US7549294B2 (en)
EP (1) EP1746348B1 (en)
FR (1) FR2888631B1 (en)
RU (1) RU2415342C2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102807A1 (en) * 2006-03-06 2007-09-13 United Technologies Corporation Angled flow annular combustor for turbine engine
FR2909748B1 (en) * 2006-12-07 2009-07-10 Snecma Sa BOTTOM BOTTOM, METHOD OF MAKING SAME, COMBUSTION CHAMBER COMPRISING SAME, AND TURBOJET ENGINE
US7798765B2 (en) * 2007-04-12 2010-09-21 United Technologies Corporation Out-flow margin protection for a gas turbine engine
US7594401B1 (en) * 2008-04-10 2009-09-29 General Electric Company Combustor seal having multiple cooling fluid pathways
FR2931515B1 (en) * 2008-05-22 2014-07-18 Snecma TURBOMACHINE WITH DIFFUSER
US8104288B2 (en) * 2008-09-25 2012-01-31 Honeywell International Inc. Effusion cooling techniques for combustors in engine assemblies
FR2945854B1 (en) * 2009-05-19 2015-08-07 Snecma MIXTURE SPINDLE FOR A FUEL INJECTOR IN A COMBUSTION CHAMBER OF A GAS TURBINE AND CORRESPONDING COMBUSTION DEVICE
FR2955375B1 (en) * 2010-01-18 2012-06-15 Turbomeca INJECTION DEVICE AND TURBOMACHINE COMBUSTION CHAMBER EQUIPPED WITH SUCH AN INJECTION DEVICE
DE102010023816A1 (en) 2010-06-15 2011-12-15 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine combustor assembly
FR2964725B1 (en) * 2010-09-14 2012-10-12 Snecma AERODYNAMIC FAIRING FOR BOTTOM OF COMBUSTION CHAMBER
DE102011108887A1 (en) 2011-07-28 2013-01-31 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine centripetal ring combustion chamber and method for flow guidance
US20150323185A1 (en) * 2014-05-07 2015-11-12 General Electric Compamy Turbine engine and method of assembling thereof
EP3186558B1 (en) * 2014-08-26 2020-06-24 Siemens Energy, Inc. Film cooling hole arrangement for acoustic resonators in gas turbine engines
DE102017100984B4 (en) 2017-01-19 2019-03-07 Karlsruher Institut für Technologie Gas turbine combustor assembly
US10823422B2 (en) * 2017-10-17 2020-11-03 General Electric Company Tangential bulk swirl air in a trapped vortex combustor for a gas turbine engine
US11181269B2 (en) 2018-11-15 2021-11-23 General Electric Company Involute trapped vortex combustor assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088281A (en) * 1956-04-03 1963-05-07 Bristol Siddeley Engines Ltd Combustion chambers for use with swirling combustion supporting medium
DE1145438B (en) * 1958-12-15 1963-03-14 Bristol Siddeley Engines Ltd Burning device
US4638628A (en) * 1978-10-26 1987-01-27 Rice Ivan G Process for directing a combustion gas stream onto rotatable blades of a gas turbine
US4996838A (en) * 1988-10-27 1991-03-05 Sol-3 Resources, Inc. Annular vortex slinger combustor
DE4232383A1 (en) * 1992-09-26 1994-03-31 Asea Brown Boveri Gas turbine group
DE19541303A1 (en) * 1995-11-06 1997-05-28 Siemens Ag Gas turbine arrangement e.g.for driving electrical power generators

Also Published As

Publication number Publication date
US7549294B2 (en) 2009-06-23
EP1746348A3 (en) 2013-05-01
US20070012048A1 (en) 2007-01-18
FR2888631B1 (en) 2010-12-10
EP1746348A2 (en) 2007-01-24
RU2415342C2 (en) 2011-03-27
RU2006125657A (en) 2008-01-27
FR2888631A1 (en) 2007-01-19

Similar Documents

Publication Publication Date Title
EP1746348B1 (en) Turbine with circumferential distribution of combustion air
EP2034245B1 (en) Gas turbine combustion chamber with helicoidal air circulation
EP1884649B1 (en) Turbofan with variation of its throat section by means of air injection
EP2003399B1 (en) Turbomachine combustion chamber with helical air circulation
FR3027053B1 (en) AIRCRAFT TURBOMACHINE STATOR
EP3312391B1 (en) Deicing inlet of an axial turbine engine compressor
FR2685033A1 (en) STATOR DIRECTING AIR INTAKE INTO A TURBOMACHINE AND METHOD FOR MOUNTING A DUST OF THIS STATOR.
CA2925565C (en) Turbomachine combustion chamber provided with air deflection means for reducing the wake created by an ignition plug
WO2013060985A1 (en) Aircraft turbomachine combustion chamber module and method for designing same
FR2960923A1 (en) AXIAL PUSH CONTROL BY GUIDING AIR FROM A CENTRIFUGAL COMPRESSOR
FR3068075B1 (en) CONSTANT VOLUME COMBUSTION SYSTEM COMPRISING A SEGMENTED LIGHTING ROTATING ELEMENT
EP3781791A1 (en) Turbine nozzle for a turbine engine, comprising a passive system for reintroducing blow-by gas into a gas jet
FR3009747A1 (en) TURBOMACHINE COMBUSTION CHAMBER WITH IMPROVED AIR INPUT PASSING DOWN A CANDLE PITCH ORIFICE
FR2951504A1 (en) Gas turbine engine and nacelle assembly for e.g. helicopter, has secondary deflecting channel shaped such that flow velocity of air increases from upstream to downstream, where channel has outlet with opening leading into wall of nacelle
WO2017187104A1 (en) Air intake swirler for a turbomachine injection system comprising an aerodynamic deflector at its inlet
BE1028097B1 (en) Turbomachine compressor blade, compressor and turbomachine fitted therewith
FR2998330A1 (en) Single piece part i.e. casting part, for intermediate casing hub of e.g. turbojet engine, of aircraft, has deflecting surface whose radial internal end partially defines separation nozzle, where surface is extended to external end
FR3068074B1 (en) CONSTANT VOLUME COMBUSTION SYSTEM WITH CLOISONNE EXHAUST MANIFOLD
FR2951503A1 (en) Gas turbine engine and nacelle assembly for e.g. helicopter, has secondary deflecting channel shaped such that flow velocity of air increases from upstream to downstream, where channel has outlet with opening leading into wall of nacelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060712

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/02 20060101ALI20130328BHEP

Ipc: F23R 3/58 20060101AFI20130328BHEP

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006045647

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006045647

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160311

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 18

Ref country code: FR

Payment date: 20230621

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 18