EP1746348B1 - Turbogruppe mit einer Umfangsverteilung der Verbrennungsluft - Google Patents

Turbogruppe mit einer Umfangsverteilung der Verbrennungsluft Download PDF

Info

Publication number
EP1746348B1
EP1746348B1 EP06117022.1A EP06117022A EP1746348B1 EP 1746348 B1 EP1746348 B1 EP 1746348B1 EP 06117022 A EP06117022 A EP 06117022A EP 1746348 B1 EP1746348 B1 EP 1746348B1
Authority
EP
European Patent Office
Prior art keywords
turbomachine
inclination
air
angle
combustion section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06117022.1A
Other languages
English (en)
French (fr)
Other versions
EP1746348A2 (de
EP1746348A3 (de
Inventor
Michel Buret
Michel Cazalens
Didier Hernandez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1746348A2 publication Critical patent/EP1746348A2/de
Publication of EP1746348A3 publication Critical patent/EP1746348A3/de
Application granted granted Critical
Publication of EP1746348B1 publication Critical patent/EP1746348B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/32Disposition of burners to obtain rotating flames, i.e. flames moving helically or spirally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03042Film cooled combustion chamber walls or domes

Definitions

  • the present invention relates to the general field of the distribution of air passing through an aeronautical or terrestrial turbomachine.
  • a turbomachine is typically formed of an assembly comprising in particular an annular compression section intended to compress air passing through the turbomachine, an annular combustion section disposed at the outlet of the compression section and in which the air coming from the section compressor is mixed with fuel to be burnt, and an annular turbine section disposed at the outlet of the combustion section and a rotor is rotated by gases from the combustion section.
  • the compression section is in the form of a plurality of stages of movable wheels each carrying blades which are arranged in an annular channel through which the air of the turbomachine and whose section decreases from upstream to downstream.
  • the combustion section is also in the form of an annular channel in which compressed air is mixed with fuel for burning.
  • the turbine section it is formed by a plurality of stages of moving wheels each carrying blades which are arranged in an annular channel through which the combustion gases pass.
  • the circulation of air through this assembly is generally carried out as follows: the compressed air from the last stage of the compression section has a natural rotational movement with an inclination of the order of 35 ° to 45 ° ° with respect to the longitudinal axis of the turbomachine, tilt which varies according to the speed of the turbomachine (speed of rotation).
  • this compressed air is straightened in the longitudinal axis of the turbomachine (that is to say that the inclination of the air with respect to the longitudinal axis of the turbomachine is brought back at 0 °) via an air rectifier.
  • the air in the combustion section is then mixed with fuel so as to ensure satisfactory combustion and the gases resulting from this combustion continue along a route overall along the longitudinal axis of the turbomachine to reach the turbine section.
  • the combustion gases are reoriented by a distributor to present a gyratory movement with an inclination greater than 70 ° relative to the longitudinal axis of the turbomachine.
  • Such inclination is essential to produce the angle of attack required for the mechanical force driving in rotation of the moving wheel of the first stage of the turbine section.
  • Such angular distribution of the air passing through the turbomachine has many disadvantages. Indeed, the air that naturally leaves the last stage of the compression section with an angle between 35 ° and 45 ° is successively rectified (angle reduced to 0 °) at its entry into the combustion section and then reoriented with an angle greater than 70 ° at its entry into the turbine section. These successive angular modifications of the distribution of air through the turbomachine require intense aerodynamic forces produced by the rectifier of the compression section and the distributor of the turbine section, aerodynamic forces which are particularly detrimental to the overall efficiency of the turbomachine. the turbomachine.
  • a turbomachine assembly according to the preamble of claim 1 is shown in DE 1,145,438 B .
  • the main purpose of the present invention is thus to overcome such disadvantages by proposing a turbomachine whose air distribution makes it possible to obtain a large reduction in successive aerodynamic forces.
  • a turbomachine assembly comprising an annular compression section for compressing air passing through said turbomachine, a casing of the turbomachine formed of an outer annular casing centered on a longitudinal axis of the turbomachine and an inner annular envelope coaxially fixed inside the outer casing by means of a plurality of radial holding arms, an annular combustion section housed inside the turbomachine casing, disposed as an output of the compression section and wherein the air from the compression section is mixed with fuel to be burned therein, and an annular turbine section disposed at the outlet of the combustion section and having a rotor rotated by gases from the combustion section, the air from the compression section having a gyratory movement with an inclination with respect to the longitudinal axis of the turbomachine, characterized in that the combustion section comprises means for angular distribution of the air to give gases from the section a gyratory movement with an inclination substantially equal to or greater than that of the air coming from the compression section, said dispensing
  • the invention makes it possible to maintain the natural inclination of the air at the outlet of the compression section and to maintain (or even amplify) this gyratory movement of the air through the combustion section to the inlet of the turbine section.
  • the aerodynamic force required for rotating the first stage of the turbine section is considerably reduced. This sharp decrease in aerodynamic forces generates a gain in efficiency of the turbomachine.
  • the rectifier of the compression section and the distributor of the turbine section can be simplified or even eliminated, which represents a saving in weight and a reduction in production costs.
  • the assembly may comprise additional means of angular distribution of the air formed at one or more of the constituent elements of the following turbomachine: fairing of the combustion section, fuel injection systems of the fuel section. combustion, transverse wall of the combustion section, and axial walls of the combustion section.
  • the present invention also relates to a method of angular distribution of the air passing through a turbomachine, the air being successively compressed by a compression section, mixed with fuel to be burned in a combustion section and used for the implementation.
  • rotation of a rotor of a turbine section said method being characterized in that it consists in giving the air coming from the compression section a gyratory movement with an inclination with respect to a longitudinal axis of the turbomachine, and to maintain or increase this inclination of the air so that the gases from the combustion section has a gyratory movement with an inclination substantially equal to or greater than that of the air coming from the compression section.
  • the turbomachine partially shown on the figure 1 has a longitudinal axis XX. Along this axis, it comprises in particular an annular compression section 100, an annular combustion section 200 disposed at the outlet of the compression section 100 in the direction of flow of the air passing through the turbomachine, and an annular turbine section 300 disposed at the outlet of the combustion section 200.
  • the air injected into the turbomachine therefore passes successively through the compression section 100, then the combustion section 200 and finally the turbine section 300.
  • the compression section 100 is in the form of a plurality of stages of movable wheels 102 each carrying blades 104 (only the last stage of the compression section is shown in FIG. figure 1 ).
  • the blades 104 of these stages are disposed in an annular channel 106 through which air flows through the turbomachine and whose section decreases from upstream to downstream. Thus, as the air injected into the turbomachine passes through the compression section, it is more and more compressed.
  • the combustion section 200 is also in the form of an annular channel in which the compressed air from the compression section 100 is mixed with fuel for burning there.
  • the combustion section comprises a combustion chamber 202 inside which is burned the air / fuel mixture.
  • the combustion section 200 comprises a turbomachine casing formed of an outer annular casing 204 centered on the longitudinal axis XX of the turbomachine and an inner annular casing 206 which is fixed coaxially inside the casing external by means of a plurality of arms 208 arranged radially with respect to the longitudinal axis XX of the turbomachine and regularly distributed over the entire circumference of the casing ( figure 2 ).
  • An annular space 210 formed between these two envelopes 204, 206 receives compressed air coming from the compression section 100 of the turbomachine through an annular diffusion duct 212.
  • the arms 208 of the diffusion duct 212 have two main functions; one is mechanical (secure the outer casing 204 and the inner casing 206 of the casing), and the other is to form a rectifier 213 whose purpose is to give a chosen gyration to the air coming out of the compression section 100.
  • a plurality of fuel injection systems 214 regularly distributed around the diffusion duct 212 open into the annular space 210. These injection systems are each provided with a fuel injection nozzle 216 fixed on the outer casing 204 of the housing.
  • the combustion chamber 202 is mounted inside the annular space 210 by providing with the outer casings 204 and inner 206 an annular channel 218 for receiving a dilution air flow and cooling (also called bypass air of the combustion chamber).
  • the combustion chamber 202 is of annular type; it is in particular formed of an outer annular wall 220 centered on the longitudinal axis XX of the turbomachine and fixed on the outer casing 204 of the casing and an inner annular wall 222 coaxial with the outer wall 220 and fixed on the inner casing 206 of the casing.
  • the outer 220 and inner walls 222 are connected by a transverse wall 224 forming chamber bottom.
  • This chamber bottom 224 is provided with a plurality of openings 226 for the passage of the fuel injection systems 214.
  • the combustion chamber 202 also comprises an annular fairing 228 which is mounted on the chamber bottom 224 in the extension of the axial walls 220, 222 of the chamber.
  • This fairing 228 has a plurality of openings 230 for the passage of the fuel injection systems 214.
  • the injection of the fuel into the combustion chamber 202 is carried out by the fuel injection systems 214.
  • the air that mixes with the fuel in the chamber it comes, on the one hand, from the injection systems which are each provided at their end with an air vortex bowl 232, and secondly the bypass air borrowing orifices 234 formed on the axial walls 220, 222 of the chamber.
  • the air / fuel mixture thus introduced is burned to form combustion gases.
  • the turbine section 300 of the turbomachine is formed by a plurality of stages of movable wheels 302 each carrying blades. 304 (only the first stage of the turbine section is shown on the figure 1 ).
  • the blades 304 of these stages are arranged in an annular channel 306 traversed by the gases coming from the combustion section 200.
  • the gases coming from the combustion section must have an inclination relative to the longitudinal axis XX of the turbomachine which is sufficient to rotate the different stages of the turbine section. turbine.
  • a distributor 308 is mounted directly downstream of the combustion chamber 202 and upstream of the first stage 302 of the turbine section 300.
  • This distributor 308 consists of a plurality of fixed radial vanes 310 of which inclination with respect to the longitudinal axis XX of the turbomachine makes it possible to give the gases coming from the combustion section 200 the inclination necessary for driving in rotation the different stages of the turbine section.
  • the distribution of the air successively passing through the compression section 100, the combustion section 200 and the turbine section 300 takes place as follows.
  • the compressed air from the last stage 102 of the compression section 100 naturally has a gyratory movement with an inclination of the order of 35 ° to 45 ° relative to the longitudinal axis X-X of the turbomachine.
  • this inclination angle is reduced to 0 °.
  • the gases resulting from the combustion are redirected by the distributor 308 thereof to give them a gyratory movement with an inclination with respect to the longitudinal axis XX which is greater at 70 °.
  • angular air distribution means are provided for maintaining or increasing the natural inclination of the air coming from the compression section 100 so that the gases coming from the combustion section 200 has a gyratory movement with an inclination substantially equal to or greater than that of the air coming from the compression section.
  • Maintaining or even increasing the inclination of the compressed air from the outlet of the compression section 100 to the inlet into the turbine section 300 has many advantages.
  • the distributor 308 of the turbine section 300 it is no longer necessary for the distributor 308 of the turbine section 300 to have such a large inclination (at least equal to 70 ° in conventional turbomachines) to produce the angle of attack required for the mechanical force of the turbine. driving in rotation of the moving wheel 302 of the first stage of the turbine section.
  • the inclination of the distributor 308 then only compensates for the angular difference necessary to bring the combustion gases already in a gyratory movement to the additional angle of attack required for rotating the first stage 302 of the turbine section.
  • the distributor 308 it can even be eliminated, which represents for the turbomachine a significant gain in mass, size and cost of production.
  • the air straightener function 213 of the combustion section 200 can be suppressed to keep only the mechanical function of the arms 208 with also the advantage of reducing the mass and the size of the turbomachine and reduce production costs.
  • the aerodynamic force required for the rotational drive of the first stage 302 of the turbine section 300 is considerably reduced, it is expected a significant gain in terms of efficiency of the turbomachine.
  • the angular distribution means of the air according to the invention may be formed at one or more of the constituent elements of the turbomachine which are detailed below. It should be noted that the modifications made to these constituent elements of the turbomachine can accumulate with each other in order to optimize the angular distribution of the air so that the gases present at the outlet of the combustion section an equal inclination ( or as close as possible) to the angle of attack required to rotate the first stage of the turbine section.
  • FIG. 2 represents the casing of the turbomachine which is formed by the outer casing 204 and the inner casing 206 and inside which is mounted the combustion chamber (not shown).
  • the arms 208 that remain necessary for the maintenance of the inner casing 206 inside the outer casing 204 each have an inclination ⁇ with respect to the longitudinal axis XX of the turbomachine.
  • This inclination ⁇ is substantially equal to or greater than that of the air coming from the compression section.
  • the angle of inclination ⁇ of the holding arms 208 will be at least 35 °.
  • the holding arms 208 each have a gas turbine blade type profile with a general inclination at least equal to that of the air from the section compression, or even higher in order to cause an additional gyration effect.
  • the fairing 228 is provided with a plurality of openings 230 for the passage of the fuel injection systems (for the sake of simplification, only the air vortex bowl 232 of the fuel injection system is represented on the Figures 4 and 5 ).
  • the openings 230 of the shroud 228 each comprise an axial wall 236 forming an inclination ⁇ with respect to the longitudinal axis XX of the turbomachine which is substantially equal to or greater than that of the air coming from the compression section .
  • the angle of inclination ⁇ of the axial wall 236 of the openings 230 of the shroud 228 will be at least 35 °.
  • the angle of inclination ⁇ of the wall axial 236 apertures 230 of the shroud 228 will preferably be equal to or greater than this angle of inclination of the holding arms.
  • a first embodiment of this modification is represented on the figure 6 cross-sectional representation of a bolus 232 of a fuel injection system passing through an opening 226 formed in the chamber bottom 224 of the combustion chamber.
  • each fuel injection system is provided with a plurality of air vices 238 which are arranged radially with respect to a longitudinal axis Y-Y of the bowl parallel to the longitudinal axis of the turbomachine (not shown).
  • the air swirlers 238 provide rotational movement to the air introduced into the combustion chamber through the fuel injection system bowl. They can be arranged on one or two floors.
  • the air swirlers 238 of the bowl 232 of each fuel injection system have a variable permeability to air in order to obtain homogeneity of air supply.
  • Variable permeability means that the air passage section between the tendrils varies according to the angular position of the latter.
  • This modification is made necessary by the fact that, since the air coming from the compression section has a gyratory movement, the upstream part of the air vices (with respect to the direction of rotation of the air supplying these tendrils) is more favorably supplied with air as the downstream part.
  • variable permeability of the air swirlers 238 of each bowl 232 is obtained by varying the spacing between the swirlers according to the inclination of the air coming from the compression section.
  • the spacing d1 between the adjacent air swirlers 238a and 238b is larger than the spacing d2 between the adjacent air swirlers 238b and 238c.
  • the figure 7 represents an alternative embodiment of the modification made to the fuel injection systems.
  • the fuel injection systems 214 i.e. the assembly comprising the injection nozzle 216 and the air twist bowl 232
  • the angle of inclination y fuel injection 214 will be at least 35 °. This inclination angle there may even be more important, especially if the change of the housing of the holding arm and / or modification of the combustion section of the fairing were made.
  • the chamber bottom 224 has at each fuel injection system 214 an inclination ⁇ with respect to a transverse plane P of the turbomachine (that is to say with respect to a perpendicular plane P to the longitudinal axis XX of the turbomachine).
  • Such a characteristic consists in modifying the chamber bottom 224 so that it has a "staircase” shape with a step associated with each fuel injection system 214. This form is particularly visible on the figure 8 .
  • the inclination ⁇ of the chamber bottom 224 is preferably substantially identical to this inclination of the injection systems.
  • Orifices 234 are formed on the axial walls 220, 222 of the combustion chamber 202 to convey air necessary for combustion and dilution of the air / fuel mixture.
  • the axial walls 220, 222 of the combustion chamber 202 are also provided with a plurality of additional passages for air.
  • the air passing through these passages is intended to ensure cooling of the axial walls of the combustion chamber by forming air films on their inner surface (it is referred to as a "multiperforation" cooling of the walls of the chamber).
  • Such cooling air passages generally consist of orifices pierced in the thickness of the axial walls of the combustion chamber so as to form channels. These orifices can be drilled, either perpendicular to the axial walls, or inclined relative thereto. Moreover, these orifices are distributed in the form of a mesh on the surfaces of the axial walls 220, 222 of the combustion chamber.
  • the figure 9 represents a modification made to the holes drilled in the thickness of the axial walls 220, 222 of the combustion chamber according to one embodiment of the invention.
  • the orifices 240 pierced through the axial walls 220, 222 are distributed in the form of a mesh which extends over an axial length 1 .
  • the orifices 240 are aligned in parallel rows. As illustrated with rows n and n +1, the orifices of two adjacent rows may further be staggered.
  • these rows of orifices 240 each have an inclination ⁇ with respect to the longitudinal axis XX of the turbomachine which is substantially equal to or greater than that of the air coming from the compression section.
  • the angle of inclination ⁇ may be greater than that of the air coming from the compression section, especially if the previously described modifications of the crankcase and / or section holding arms combustion and / or fuel injection systems have been made.
  • the profile of the rows of orifices for the passage of cooling air may be curved, that is to say that the inclination of these rows relative to the
  • the longitudinal axis of the turbomachine can increase as one moves away from the entrance of the combustion chamber.
  • the orifices can be drilled in the thickness of the axial walls 220, 222 of the combustion chamber and form channels 240 perpendicular to them (that is to say that the channels 240 are parallel to a perpendicular axis ZZ to the walls).
  • the orifices may be in the form of channels 240 'each having an inclination ⁇ 1 with respect to a ZZ axis perpendicular to the walls, the inclination ⁇ 1 being preferably directed so that the orifices are inclined downstream of the chamber of combustion.
  • FIGS. 11A and 11B represent alternative embodiments in which the channels 240 'drilled in the axial walls 220, 222 of the combustion chamber each have such inclination ⁇ 1 with respect to an axis perpendicular to the walls.
  • orifices 240 ' are distributed in the form of a mesh extending over an axial length l within which they are aligned in parallel rows n , each row of orifices having an inclination ⁇ with respect to the axis longitudinal XX of the turbomachine as described above.
  • Each channel 240 ' which has an inclination ⁇ 1 is located in a plane perpendicular to the walls 220, 222 of the combustion chamber. This plane perpendicular to the walls in which each channel 240 'is located further has itself an inclination ⁇ 2 with respect to the longitudinal axis XX of the turbomachine. This inclination ⁇ 2 is made to coincide with the inclination ⁇ rows n orifices.
  • the axis passing through the inlet 240'a and 240b air outlet holes of each channel 240 ' is in a plane perpendicular to the walls 220, 222 which is aligned with the axis of alignment of rows n of orifices.
  • orifices 240 ' are also distributed in the form of a mesh extending over an axial length 1 within which they are aligned in parallel rows n , each row of orifices having an inclination ⁇ relative to the longitudinal axis XX of the turbomachine as described above.
  • Each channel 240 ' which has an inclination ⁇ 1 is also located in a plane perpendicular to the walls 220, 222 of the combustion chamber.
  • this plane perpendicular to the walls in which each channel 240 'is located itself has an inclination ⁇ 2' with respect to the longitudinal axis XX of the turbomachine.
  • this inclination ⁇ 2 ' is substantially greater than the inclination ⁇ of rows n of orifices and is made so as to give the air exiting from these channels an additional gyration with respect to the longitudinal axis XX of the turbomachine.
  • the axis passing through the inlet 240'a and 240'b air outlet holes of each channel 240 ' is in a plane perpendicular to the walls 220, 222 which is inclined by angle ( ⁇ 2 ' - ⁇ ) with the axis of alignment of the rows n of orifices.
  • the inclination ⁇ 2 ' of the plane perpendicular to the axial walls 220, 222 of the combustion chamber in which the channels 240' are located is included in the range of values between ⁇ and ( ⁇ + 90 °) with respect to the longitudinal axis XX of the turbomachine.
  • the profile of the rows of these channels 240 'for the passage of the cooling air can be curved, that is to say that the inclination ⁇ 2' of the plane perpendicular to the axial walls of the combustion chamber in which each channel of these rows is located may evolve as one moves away from the entrance of the combustion chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (13)

  1. Turbomaschinenanordnung, umfassend
    einen ringförmigen Verdichtungsabschnitt (100), der dazu bestimmt ist, die Turbomaschine durchströmende Luft zu verdichten,
    ein Gehäuse der Turbomaschine, das von einem ringförmigen Außenmantel (204), welcher um eine Längsachse (X-X) der Turbomaschine zentriert ist, und von einem ringförmigen Innenmantel (206), der innerhalb des Außenmantels mit Hilfe einer Vielzahl von radialen Haltearmen (208) koaxial befestigt ist, gebildet ist,
    einen ringförmigen Verbrennungsabschnitt (200), der innerhalb des Turbomaschinengehäuses aufgenommen ist, am Ausgang des Verdichtungsabschnitts (100) angeordnet ist und in dem die aus dem Verdichtungsabschnitt kommende Luft mit Treibstoff gemischt wird, um darin verbrannt zu werden, und
    einen ringförmigen Turbinenabschnitt (300), der am Ausgang des Verbrennungsabschnitts (200) angeordnet ist und von dem ein Rotor durch aus dem Verbrennungsabschnitt kommende Gase drehangetrieben wird, wobei die aus dem Verdichtungsabschnitt (100) kommende Luft eine Rotationsbewegung mit einer Neigung gegenüber der Längsachse (X-X) der Turbomaschine aufweist,
    dadurch gekennzeichnet, dass der Verbrennungsabschnitt (200) Mittel zur Winkelverteilung der Luft umfasst, um den aus dem Verbrennungsabschnitt kommenden Gasen eine Rotationsbewegung mit einer Neigung, die im Wesentlichen gleich derjenigen oder größer als diejenige der aus dem Verdichtungsabschnitt kommenden Luft ist, zu verleihen, wobei die Winkelverteilungsmittel im Bereich des Gehäuses der Turbomaschine durch die Haltearme (208) gebildet sind, die jeweils eine Neigung (α) gegenüber der Längsachse (X-X) der Turbomaschine, die im Wesentlichen gleich derjenigen oder größer als diejenige der aus dem Verdichtungsabschnitt (100) kommenden Luft ist, aufweisen.
  2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass sie zusätzliche Mittel zur Winkelverteilung der Luft umfasst, die im Bereich von einem oder von mehreren der folgenden Bestandteile der Turbomaschine gebildet sind: Verkleidung (228) des Verbrennungsabschnitts, Treibstoffeinspritzsysteme (214) des Verbrennungsabschnitts, Querwand (224) des Verbrennungsabschnitts und axiale Wände (220, 222) des Verbrennungsabschnitts.
  3. Anordnung nach Anspruch 2, wobei die zusätzlichen Winkelverteilungsmittel im Bereich der Verkleidung (228) des Verbrennungsabschnitts (200) gebildet sind, wobei der Verbrennungsabschnitt von einer ringförmigen Außenwand (220), die um die Längsachse (X-X) der Turbomaschine zentriert ist, von einer ringförmigen Innenwand (222), die zu der Außenwand koaxial ist, von einer Querwand (224), die die Außenwand (220) und die Innenwand (222) stromaufwärts verbindet, von einer Vielzahl von Treibstoffeinspritzsystemen (214), die die Querwand (224) durchgreifen, sowie von einer an der Querwand angebrachten ringförmigen Verkleidung gebildet ist, wobei die Verkleidung (228) eine Vielzahl von Öffnungen (230) für den Durchgang der Treibstoffeinspritzsysteme (214) aufweist, dadurch gekennzeichnet, dass die Öffnungen (230) der Verkleidung (228) jeweils eine axiale Wand (236) umfassen, die jeweils eine Neigung (β) gegenüber der Längsachse (X-X) der Turbomaschine bildet, die im Wesentlichen gleich derjenigen oder größer als diejenige der aus dem Verdichtungsabschnitt (100) kommenden Luft ist.
  4. Anordnung nach einem der Ansprüche 2 und 3, wobei die zusätzlichen Winkelverteilungsmittel im Bereich der Treibstoffeinspritzsysteme (214) des Verbrennungsabschnitts (200) gebildet sind, wobei die Einspritzsysteme (214) jeweils eine Treibstoffeinspritzdüse (216) umfassen, von welcher ein Ende an einer mit radialen Luftverwirblern (238) ausgestatteten Schale (232) angebracht ist, dadurch gekennzeichnet, dass die Luftverwirbler (238) einer jeden Schale eine variable Luftdurchlässigkeit aufweisen.
  5. Anordnung nach Anspruch 4, dadurch gekennzeichnet, dass der Abstand zwischen den Luftverwirblern (238) einer jeden Schale (232) je nach der Neigung der aus dem Verdichtungsabschnitt (100) kommenden Luft variabel ist.
  6. Anordnung nach einem der Ansprüche 2 und 3, wobei die zusätzlichen Winkelverteilungsmittel im Bereich der Treibstoffeinspritzsysteme (214) des Verbrennungsabschnitts (200) gebildet sind, dadurch gekennzeichnet, dass die Treibstoffeinspritzsysteme (214) jeweils eine Neigung (γ) gegenüber der Längsachse (X-X) der Turbomaschine aufweisen, die im Wesentlichen gleich derjenigen oder größer als diejenige der aus dem Verdichtungsabschnitt (100) kommenden Luft ist.
  7. Anordnung nach einem der Ansprüche 2 bis 6, wobei die zusätzlichen Winkelverteilungsmittel im Bereich der Querwand (224) des Verbrennungsabschnitts (200) gebildet sind, wobei der Verbrennungsabschnitt von einer ringförmigen Außenwand (220), welche um die Längsachse (X-X) der Turbomaschine zentriert ist, von einer ringförmigen Innenwand (222), die zu der Außenwand koaxial ist, von einer Querwand (224), die die Innen- und die Außenwand stromaufwärts verbindet, sowie von einer Vielzahl von Treibstoffeinspritzsystemen (214), die die Querwand (224) durchgreifen, gebildet ist, dadurch gekennzeichnet, dass die Querwand (224) im Bereich eines jeden Treibstoffeinspritzsystems (214) eine Neigung (δ) gegenüber einer Querebene (P) der Turbomaschine aufweist.
  8. Anordnung nach einem der Ansprüche 2 bis 7, wobei die zusätzlichen Winkelverteilungsmittel im Bereich der axialen Wände (220, 222) des Verbrennungsabschnitts (200) gebildet sind, wobei die axialen Wände (220, 222) des Verbrennungsabschnitts mit einer Vielzahl von Öffnungen (240, 240'), die in Reihen ausgerichtet sind und Kanäle für den Durchgang der Luft bilden, versehen sind, dadurch gekennzeichnet, dass die Reihen von Luftdurchgangsöffnungen (240, 240') eine Neigung (ε) gegenüber der Längsachse (X-X) der Turbomaschine aufweisen, die im Wesentlichen gleich derjenigen oder größer als diejenige der aus dem Verdichtungsabschnitt (100) kommenden Luft ist.
  9. Anordnung nach Anspruch 8, wobei die Kanäle (240') jeweils eine Neigung (θ1) gegenüber einer Achse (Z-Z) senkrecht zu den axialen Wänden (220, 222) des Verbrennungsabschnitts (200) aufweisen.
  10. Anordnung nach Anspruch 9, wobei jeder Kanal (240') in einer Ebene senkrecht zu den axialen Wänden (220, 222) des Verbrennungsabschnitts (200), mit einer Neigung (θ2) gegenüber der Längsachse (X-X) der Turbomaschine, die im Wesentlichen gleich der Neigung (ε) der Öffnungsreihen ist, gelegen ist.
  11. Turbomaschine nach Anspruch 9, wobei jeder Kanal (240') in einer Ebene senkrecht zu den axialen Wänden (220, 222) des Verbrennungsabschnitts (200), mit einer Neigung (θ2') gegenüber der Längsachse (X-X) der Turbomaschine, die im Wesentlichen größer als die Neigung (ε) der Öffnungsreihen ist, gelegen ist.
  12. Turbomaschine nach Anspruch 11, wobei die Neigung (θ2') der Ebene senkrecht zu den axialen Wänden (220, 222) des Verbrennungsabschnitts (200), in der die Kanäle (240') gelegen sind, zwischen ε und ε + 90°gegenüber der Längsachse (X-X) der Turbomaschine beträgt.
  13. Turbomaschine, die eine Anordnung nach einem der Ansprüche 1 bis 12 umfasst.
EP06117022.1A 2005-07-18 2006-07-12 Turbogruppe mit einer Umfangsverteilung der Verbrennungsluft Active EP1746348B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0507578A FR2888631B1 (fr) 2005-07-18 2005-07-18 Turbomachine a distribution angulaire de l'air

Publications (3)

Publication Number Publication Date
EP1746348A2 EP1746348A2 (de) 2007-01-24
EP1746348A3 EP1746348A3 (de) 2013-05-01
EP1746348B1 true EP1746348B1 (de) 2015-06-10

Family

ID=36001030

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06117022.1A Active EP1746348B1 (de) 2005-07-18 2006-07-12 Turbogruppe mit einer Umfangsverteilung der Verbrennungsluft

Country Status (4)

Country Link
US (1) US7549294B2 (de)
EP (1) EP1746348B1 (de)
FR (1) FR2888631B1 (de)
RU (1) RU2415342C2 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102807A1 (en) * 2006-03-06 2007-09-13 United Technologies Corporation Angled flow annular combustor for turbine engine
FR2909748B1 (fr) * 2006-12-07 2009-07-10 Snecma Sa Fond de chambre, procede de realisation de celui-ci, chambre de combustion le comportant et turboreacteur en etant equipe
US7798765B2 (en) * 2007-04-12 2010-09-21 United Technologies Corporation Out-flow margin protection for a gas turbine engine
US7594401B1 (en) * 2008-04-10 2009-09-29 General Electric Company Combustor seal having multiple cooling fluid pathways
FR2931515B1 (fr) * 2008-05-22 2014-07-18 Snecma Turbomachine avec diffuseur
US8104288B2 (en) * 2008-09-25 2012-01-31 Honeywell International Inc. Effusion cooling techniques for combustors in engine assemblies
FR2945854B1 (fr) * 2009-05-19 2015-08-07 Snecma Vrille melangeuse pour un injecteur de carburant dans une chambre de combustion d'une turbine a gaz et dispositif de combustion correspondant
FR2955375B1 (fr) * 2010-01-18 2012-06-15 Turbomeca Dispositif d'injection et chambre de combustion de turbomachine equipee d'un tel dispositif d'injection
DE102010023816A1 (de) 2010-06-15 2011-12-15 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammeranordnung
FR2964725B1 (fr) * 2010-09-14 2012-10-12 Snecma Carenage aerodynamique pour fond de chambre de combustion
DE102011108887A1 (de) 2011-07-28 2013-01-31 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenzentripetalringbrennkammer sowie Verfahren zur Strömungsführung
US20150323185A1 (en) * 2014-05-07 2015-11-12 General Electric Compamy Turbine engine and method of assembling thereof
US10359194B2 (en) 2014-08-26 2019-07-23 Siemens Energy, Inc. Film cooling hole arrangement for acoustic resonators in gas turbine engines
DE102017100984B4 (de) 2017-01-19 2019-03-07 Karlsruher Institut für Technologie Gasturbinenbrennkammeranordnung
US10823422B2 (en) * 2017-10-17 2020-11-03 General Electric Company Tangential bulk swirl air in a trapped vortex combustor for a gas turbine engine
US11181269B2 (en) 2018-11-15 2021-11-23 General Electric Company Involute trapped vortex combustor assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088281A (en) * 1956-04-03 1963-05-07 Bristol Siddeley Engines Ltd Combustion chambers for use with swirling combustion supporting medium
DE1145438B (de) * 1958-12-15 1963-03-14 Bristol Siddeley Engines Ltd Brenneinrichtung
US4638628A (en) * 1978-10-26 1987-01-27 Rice Ivan G Process for directing a combustion gas stream onto rotatable blades of a gas turbine
US4996838A (en) * 1988-10-27 1991-03-05 Sol-3 Resources, Inc. Annular vortex slinger combustor
DE4232383A1 (de) * 1992-09-26 1994-03-31 Asea Brown Boveri Gasturbogruppe
DE19541303A1 (de) * 1995-11-06 1997-05-28 Siemens Ag Gasturbine

Also Published As

Publication number Publication date
FR2888631B1 (fr) 2010-12-10
EP1746348A2 (de) 2007-01-24
FR2888631A1 (fr) 2007-01-19
RU2006125657A (ru) 2008-01-27
RU2415342C2 (ru) 2011-03-27
US20070012048A1 (en) 2007-01-18
EP1746348A3 (de) 2013-05-01
US7549294B2 (en) 2009-06-23

Similar Documents

Publication Publication Date Title
EP1746348B1 (de) Turbogruppe mit einer Umfangsverteilung der Verbrennungsluft
EP2034245B1 (de) Gasturbinenbrennkammer mit schraubenförmigem Luftumlauf
EP1884649B1 (de) Mantelstromtriebwerk mit variablem engsten Querschnitt mittels Luft-Einspritzung
EP2003399B1 (de) Brennkammer einer Strömungsmaschine mit helikoidaler Luftströmung
FR3027053B1 (fr) Stator de turbomachine d'aeronef
EP3312391B1 (de) Enteisungseinlass eines kompressors einer axialen turbomaschine
FR2685033A1 (fr) Stator dirigeant l'entree de l'air a l'interieur d'une turbomachine et procede de montage d'une aube de ce stator.
EP3325346A1 (de) Luftfahrzeug mit einem stromlinienförmigen hinteren triebwerk mit einem eingangsstator mit beweglichen klappen
CA2925565C (fr) Chambre de combustion de turbomachine pourvue de moyens de deflection d'air pour reduire le sillage cree par une bougie d'allumage
WO2013060985A1 (fr) Module de chambre de combustion de turbomachine d'aéronef et procédé de conception de celui-ci
FR2960923A1 (fr) Controle de la poussee axiale par guidage de l'air preleve sur un compresseur centrifuge
FR3068075B1 (fr) Systeme de combustion a volume constant comprenant un element d'obturation tournant a lumieres segmentees
EP3781791A1 (de) Turbinendüse für einen turbinenmotor mit einem passiven system zum wiedereinführen von blow-by-gas in einen gasstrahl
WO2017187104A1 (fr) Vrille d'admission d'air pour système d'injection de turbomachine comprenant un déflecteur aérodynamique à son entrée
FR3009747A1 (fr) Chambre de combustion de turbomachine pourvue d'un passage d'entree d'air ameliore en aval d'un orifice de passage de bougie
FR2951504A1 (fr) Entree d'air de moteur a turbine a gaz dans une nacelle
BE1028097B1 (fr) Aube de compresseur de turbomachine, compresseur et turbomachine munis de celle-ci
FR2998330A1 (fr) Moyeu de carter pour turbomachine d'aeronef comprenant une piece de fonderie compacte a deflecteur integre au flasque aval
FR3068074B1 (fr) Systeme de combustion a volume constant avec collecteur d'echappement cloisonne
FR2951503A1 (fr) Entree d air de moteur a turbine a gaz dans une nacelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060712

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/02 20060101ALI20130328BHEP

Ipc: F23R 3/58 20060101AFI20130328BHEP

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006045647

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006045647

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160311

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 18

Ref country code: FR

Payment date: 20230621

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 18