EP1743344B1 - Procede et appareillage pour communiquer a distance en utilisant des nucleides isomeres. - Google Patents

Procede et appareillage pour communiquer a distance en utilisant des nucleides isomeres. Download PDF

Info

Publication number
EP1743344B1
EP1743344B1 EP05733600A EP05733600A EP1743344B1 EP 1743344 B1 EP1743344 B1 EP 1743344B1 EP 05733600 A EP05733600 A EP 05733600A EP 05733600 A EP05733600 A EP 05733600A EP 1743344 B1 EP1743344 B1 EP 1743344B1
Authority
EP
European Patent Office
Prior art keywords
samples
entangled
aforesaid
aforementioned
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05733600A
Other languages
German (de)
English (en)
Other versions
EP1743344A2 (fr
Inventor
Robert Desbrandes
Daniel Lee Van Gent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E-QUANTIC COMMUNICATIONS
Original Assignee
E-QUANTIC COMMUNICATIONS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E-QUANTIC COMMUNICATIONS filed Critical E-QUANTIC COMMUNICATIONS
Publication of EP1743344A2 publication Critical patent/EP1743344A2/fr
Application granted granted Critical
Publication of EP1743344B1 publication Critical patent/EP1743344B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means

Definitions

  • indium half life normal 115 m is 268 minutes.
  • the probability of de-excitation of one nucleus per minute is 0.00258 which represents a chance on 387 per minute.
  • indium 115 m normal the classically excited isomer is designated.
  • nuclide likely to have a metastable state. It can be excited by neutron irradiation or simply come from the disintegration of a heavier nucleus. The excitation of the isomeric nuclides can also take place by inverse isomeric transition due to irradiation of gamma rays of sufficient energy.
  • the invention exploits properties anticipated by Quantum Mechanics according to which two or more entangled particles retain a quantum bond when they are separated by any distance, a quantum bond which is instantaneous in the same repository.
  • the present invention relates to a method and apparatus for remote communication using isomeric nuclides.
  • the present invention consists in irradiating by the method described below and simultaneously, two or more samples of the same element and likely to have a metastable state.
  • this irradiation is caused by gamma rays emitted by the same nucleus and in cascade, the half-life varies with time instead of being constant.
  • a similar but even more important phenomenon is obtained with the gamma produced by Bremsstrahlung by particle accelerators. This phenomenon is attributed to the entanglement of irradiated metastable nuclei.
  • Two samples will first be considered: After irradiation; the two samples are then separated in space.
  • the irradiated sample (s) are the only ones that can instantly receive the signal (s) from one or more "master” samples regardless of the distances separating the samples.
  • Embodiments of the invention have been made with a source of cobalt 60, each core of which has the characteristic of cascading two gamma rays with the energy sufficient to excite indium 115.
  • Other embodiments of The invention was made by exciting indium 115 with gamma rays from a compact linear accelerator.
  • the gamma spectrum extends from 0 to 6 MeV, but is centered on 1.5 MeV, that is to say that, in majority, two, three or four gamma rays are emitted in cascade by the same electron, when the accelerator uses electrons.
  • some of the gamma, X or optical rays emitted are entangled.
  • the present invention makes use of entangled gamma rays to excite isomeric nuclei.
  • gamma rays originate, as indicated previously, from nuclear reactions such as the disintegration of cobalt 60 or the Bremsstrahlung phenomenon in particle accelerators.
  • the gamma activity is measured in particular for the energy of the isomeric transition on the slave sample.
  • a diagram of this implementation is illustrated on the figure 1 .
  • An enclosure (1) of 3 mm of copper, 15 cm of lead and 12 mm of steel contains the gamma counter (10) and the slave sample (8) which emits gamma (9) naturally.
  • the master sample (4) is irradiated by the iron source 55 (2) which emits gamma rays and X-rays (3).
  • the stimulation well known to those skilled in the art occurs and additional gamma rays (5) are emitted by the master sample (4).
  • the stimulation of the master sample causes an additional emission of the slave sample (8) although it is within its thick shielding and 12 m from the master sample.
  • the figure 2 is an example of measurements made on indium sheets with 99.999% purity, previously irradiated and simultaneously for 20 minutes with a compact linear accelerator.
  • the X and gamma ray source, iron 55 was placed for 5 minutes on the master sample, marked "YES” and then removed for 5 minutes, marked "NO” and so on.
  • the measures of the figure 2 represent the total count during the 5 minutes of irradiation of the master, the 5 minutes without irradiation and so on.
  • An important signal on the slave is obtained during the irradiation periods of the master, except the last period for which no signal has been obtained.
  • the same experiments made with the source of cobalt 60 give identical results but barely superior to the noise.
  • the present invention can be implemented with nuclides of different half-lives.
  • the half-lives of the metastable nuclides usable for this invention range from 1 microsecond to 50 years.
  • Table 1 gives a list of the main nuclides that have a metastable state. Their symbol, abundance, half-life in ordinary excitation and isomeric transition energy are mentioned. Excited samples can be transported over long distances and wait for long periods of time, if their half-life permits, being always liable to be de-excited.
  • Embodiments of the invention that are reported relate to a master and a slave, but a master may de-energize a plurality of slaves if a plurality of samples have been excited together. Similarly, a slave can receive a signal from any master. The action occurs regardless of the distance or materials that separate master and slave.
  • the method according to the invention consists in irradiating with gamma rays two or more samples of an element having a metastable state with a half-life of less than one second to several years.
  • the gamma rays used for the excitation of the samples must come either from a cascade decay in the case of a radioactive isotope, or from a Bremsstrahlung effect in which the same particle emits several gamma.
  • a cascade emission is provided by cobalt 60.
  • the emitted gamma rays must have sufficient energy to effect an inverse isomeric transition, ie to move the nucleus from its ground state to the metastable state.
  • the necessary energy of the excitation threshold is 1080 keV, a condition which is fulfilled by the two gamma rays of cobalt 60.
  • One of the gamma has an energy of 1173 keV with 99.90% chance to occur, and the other 1332 keV 99.98% chance to occur.
  • We have a cascade because the two gamma are emitted at 0.713 picosecond (10 -12 s) interval on average.
  • the gamma energy In the case of irradiation by the Bremsstrahlung gamma rays of a linear accelerator of particles, for example of electrons, the gamma energy must again be greater than the excitation threshold of the chosen element.
  • a compact linear accelerator can emit highly focused gamma radiation with a gamma energy spectrum of 0 to 6 MeV. If the energy of all the electrons before meeting the tungsten target is 6 MeV, each electron emits on average four gamma 1.5 MeV (1500 keV) in a very fast succession comparable to a waterfall.
  • the gamma cascade of the accelerator is, as experience shows, more efficient in performing the work described in this invention.
  • the samples to be irradiated are placed in pairs or more on a plate (11) which presents the groups of samples (12) in succession in front of a piston (16) which introduces them in front of a radioactive source (14) through the orifice (15) with the aid of the piston.
  • the source is placed in a thick shield of lead and steel (17).
  • An axle (18) connects the platform to a stepper motor (19) controlled by a timer (20).
  • the irradiation time is set for each group of samples by means of a timer (21) which actuates a pneumatic valve (22) to obtain the optimum activation response.
  • a timer (21) which actuates a pneumatic valve (22)
  • the groups of samples (23) are placed on a turntable (24).
  • This plate is supported by an axis (25) and connected to a stepping motor (26), itself controlled by a timer (27).
  • the groups of samples are presented one after the other in front of the X-ray beam of a compact linear accelerator (28) for example.
  • accelerators can not work continuously.
  • a number of irradiation time units, for example 5 minutes, will be applied to each sample to achieve optimum excitation using a timer (30).
  • an excitation of 20 minutes with a compact linear accelerator is sufficient to have a satisfactory signal-to-noise ratio.
  • An ordered set of independent pairs of samples can also be irradiated, as shown in FIG. figure 5 .
  • the pairs of samples are arranged on two disks, the master disk (31) and the slave disk (32), during irradiations.
  • the other elements of the figure 5 are identical to those of the figure 4 .
  • These disks can then be moved away at any distance and exploited by modulated de-excitation stimulation of each ordered sample of the master disk and the reception of this modulation by the corresponding sample of the slave disk, thus allowing the transmission of a complex message. .
  • the message can be transmitted simultaneously to several slave disks.
  • Media other than discs may be used.
  • the apparatuses described above are exemplary embodiments. Other means for presenting the samples to irradiation can be used without departing from the scope of the invention.
  • the groups of master-slave samples to be irradiated are sheet or powder solids, liquids or gases (for example Xenon) which contain a proportion of one or more isotopes, for example mentioned in Table 1.
  • the samples may also be alloys, mixtures or chemical compounds incorporating a proportion of one or more isotopes of Table 1.
  • Samples of the same group may be of a different nature, for example one in powder and the other in sheet.
  • One or more of the samples of the same group can also be transformed physically or chemically after irradiation, the slave sample in the form of powder or gas can be incorporated in an injectable carrier molecule for example.
  • the isomer, a salt or a molecule containing the isomer may also be dissolved in the sample. A plurality of isomers can be employed in this solution.
  • the gamma measurements due to the isomeric transition of the slave during the stimulation of the master can be performed with conventional instruments of the skilled person.
  • a common instrument is the germanium crystal detector operating at low temperature.
  • the slave sample can be placed in a container with copper, lead and steel walls, located at a great distance from the master sample (12 m in implementation reported).
  • a multi-channel analyzer must be able to calibrate on the characteristic radiation of the chosen isomer. For example, in the case of 115 m indium gamma in the 336.2 keV line is counted. It is also possible that advances in the technique can measure the radiation of 336.2 keV without having a special container.
  • Temporal modulation of de-excitation stimulations can be used to send a message composed of "yes" and "no", ie 1 and 0 in binary language, on one or a plurality of samples.
  • Embodiments of the invention with more complex modulations such as amplitude or frequency modulation of the stimuli of De-excitation can also be used.
  • optimal radiation can be chosen to stimulate a particular isomer.
  • the master sample containing a mixture of isomers can be selectively excited.
  • Each isomer therefore represents in this case a particular "channel" of transmission.
  • Device 10 according to the device 9 characterized in that the samples of each group are arranged on a single support in the excitation apparatus, being subsequently separated and positioned in relation to each other in the modulated stimulation device or devices and in the detection apparatus or devices.
  • Device 11 according to the device 9 characterized in that the samples of each group are arranged on a plurality of supports in the excitation apparatus, the supports being subsequently separated and positioned in synchronous relation with each other in the apparatus or apparatus modulated stimulation and in the detection apparatus or devices.
  • Device 12 according to one of the devices 9, 10 or 11 characterized in that the groups of samples are arranged according to a defined scheduling allowing the transmission of complex messages.
  • This invention therefore solves a technical problem of information transmission, for the moment very summary, but nevertheless of great novelty.
  • Medical applications are also possible by remotely stimulating the product according to the invention, a slave sample of which has been disposed near or in the organ to be treated.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

    Domaine technique :
  • Certains nucléides possèdent un état métastable. Ces états sont des isomères, c'est à dire des états excités du noyau de l'atome. Les isomères retournent à leur état fondamental par transition isomérique en émettant un rayonnement gamma. La transition isomérique, comme la conversion interne, ne donne pas lieu à un changement de numéro atomique. Dans son état normal, un isomère retourne à son état fondamental avec une loi exponentielle comme les autres éléments radioactifs. Cette loi exponentielle est généralement caractérisée par la demi-vie de l'élément radioactif. La demi-vie est reliée à la probabilité de désexcitation par la formule : P = LN 2 / λ
    Figure imgb0001
    • P, probabilité de désintégration par minutes ;
    • LN, logarithme naturel ;
    • λ, demi-vie en minutes.
  • Par exemple, la demi-vie de l'indium 115m normal est de 268 minutes. La probabilité de désexcitation d'un noyau par minutes est de 0,00258 ce qui représente une chance sur 387 par minute. Par indium 115m normal, on désigne l'isomère excité classiquement.
  • Il existe en effet plusieurs façons d'exciter un nucléide susceptible d'avoir un état métastable. Il peut être excité par irradiation neutronique ou simplement provenir de la désintégration d'un noyau plus lourd. L'excitation des nucléides isomères peut également avoir lieu par transition isomérique inverse due à une irradiation de rayons gamma d'énergie suffisante.
  • Il est connu des hommes de l'art que la désexcitation de l'isomère peut être accélérée par irradiation X ou gamma. Dans cette invention cette propriété sera utilisée.
  • L'invention, dont la mise en oeuvre sera détaillée dans la suite, exploite des propriétés anticipées par la Mécanique Quantique selon lesquelles deux ou plusieurs particules intriquées conservent une liaison quantique lorsqu'elles sont séparées par une distance quelconque, liaison quantique qui est instantanée dans le même référentiel.
  • De nombreux articles et ouvrages existent sur le sujet de l'intrication. Ci-dessous sont listés les principaux :
    • [1.] Einstein A., Podolski B., Rosen N ., «Can Quantum Mechanical Description of Physical Reality Be Considered Complete», Physical Review, 47, (1935),pp. 777-780.
    • [2.] Bell J. S., «Speakable and Unspeakable in Quantum Mechanics», New York, Cambridge University Press, 1993.
    • [3.] Aspect A., « Trois tests expérimentaux des inégalités de Bell par mesure de corrélation de polarisation de photons», Thèse de Doctorat d'Etat, Université de Paris Orsay, 1er Février 1983.
    • [4.] Townsend P. D., Rarity J. G., Tapster P. R., «Single-Photon Interference in 10 km Long Optical-Fiber», lectronics etters, V; 29, p. 634, 1993.
    • [5.] Le Bellac M., « Physique Quantique », EDP/Sciences/CNRS, 2003, voir « Etats Intriqués », p. 165-201.
    • [6.] Aczel A. D., «ENTANGLEMENT: The Greatest Mystery in Physics», John Wiley & Sons, LTD, Chichester, W. Sussex, England, 2003.
    • [7.] Aczel A. D., «ENTANGLEMENT : The Unlikely Story of How Scientists, Mathematicians, and Philosophers Proved Einstein's Spookiest Theory», A Plume Book, Sept. 2003.
    • [8.] Shimony A., «The Reality of the Quantum World", Scientific American, p. 46, Jan 1998.
    • [9.] Greestein G., Zajonc A. G., «The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics», Jones and Barlett, Sudbury, MA, USA, 1997.
    • [10.] Herbert Nick, "Quantum Reality", Anchor Book, NY, 1985.
    • [11.] Carroll M. J., Bird, D. G., et al., « Photoexcitation of nuclear Isomers by (γ,γ') reactions », Physical Review C, 43, 3, p. 1238-1245.
    • [12.] Magniez F. « Cryptographie Quantique », Mémoire magistère, ENS-Cachan, mai 1993.
    • [13.] Muller, A., Breguet J., Gisin N., "Experimental Demonstration of Quantum Cryptography using Polarized Photons in Optical-Fiber over more than 1 KM", Europhysics Letters,V. 23, p. 383, 1993.
    • [14.] Sudbury Tony, « Instant Teleportation », Nature, V. 362, pp. 586-587, 1993.
    • [15.] Nairz O., Arndt M., Zeilinger A., « Experimental Nonlocality Proof of Quantum Teleportation and Entanglement Swapping », Physical Review Letters, V.88, p; 017903, 2002.
    • [16.] Julsgaard B., Kozhekin A., and Polzik E; S., « Experimental long-lived entanglement of two macroscopic objects », Nature, 413, 400-403" (2001).
    • [17.] Olariu S. et Olariu A., « Induced emission of γ radiation from isomeric nuclei », Physical Review C, 58, 1, (July 1998).
    • [18.] (Cité durant l'examen) Duan et al., "Long-distance quantum communication with atomic ensembles and linear optics", Nature, Vol. 414 - 22 Novembre 2001, pages 413-418.
    • [19] Collins et al., «gamma emission from the 31-yz isomer of <178>Hf induced by X-ray irradiation» - Physical Review C, 61, 5 (2000), pages 054305/1-7.
    Technique antérieure :
  • La technique d'intrication de photons est utilisée en cryptographie. Celle-ci permet de transmettre des messages entre deux correspondants. La détection des messages par une tierce personne est immédiatement connue des correspondants, Une liaison classique reste cependant nécessaire pour décoder les messages.
  • Exposé de l'invention :
  • La présente invention concerne un procédé et un appareillage pour communiquer à distance en utilisant des nucléides isomères.
  • La technique d'intrication des nucléides contenus dans des objets macroscopiques qui est utilisée dans cette invention pour la communication à distance n'est pas connue de l'homme de l'art.
  • La présente invention consiste à irradier par la méthode décrite ci-dessous et simultanément, deux ou plusieurs échantillons d'un même élément et susceptibles d'avoir un état métastable. Lorsque cette irradiation est causée par des rayons gamma émis par le même noyau et en cascade, la demi-vie varie avec le temps au lieu d'être constante. Un phénomène analogue mais encore plus important est obtenu avec les gamma produits par Bremsstrahlung par des accélérateurs de particules. Ce phénomène est attribué à l'intrication des noyaux métastables irradiés. On considérera d'abord deux échantillons : Après irradiation ; les deux échantillons sont alors séparés dans l'espace. L'un des échantillons que nous appellerons « maître » est excité à l'aide de rayons X ou gamma alors que l'autre, 1'« esclave », est placé sur un détecteur de rayons gamma. La stimulation du « maître » provoque la désexcitation de 1'« esclave » qui est mesurée par le détecteur de rayons gamma. Cette invention est généralisée à une pluralité d'échantillons irradiés ensembles, chaque échantillon pouvant être « maître » et / ou « esclave » dans des mises en oeuvre successives de l'invention. La stimulation d'au moins un échantillon « maître » provoque les désexcitations de un ou plusieurs échantillons « esclaves » qui sont mesurées par des détecteurs de rayons gamma associés aux échantillons « esclaves ». Compte tenue de la nature quantique de la transmission, il n'y a pas de procédé connu d'interférence entre le ou les échantillons « maîtres » et le ou les échantillons « esclaves ». Le ou les échantillons irradiés ensembles sont les seuls à pouvoir recevoir instantanément le ou les signaux d'un ou des échantillons « maîtres » quelles que soient les distances séparant les échantillons.
  • Des mises en oeuvre de l'invention ont été faites avec une source de cobalt 60 dont chaque noyau a la caractéristique d'émettre en cascade deux rayons gamma avec l'énergie suffisante pour exciter l'indium 115. D'autres mises en oeuvre de l'invention ont été faites en excitant l'indium 115 avec des rayons gamma en provenance d'un accélérateur linéaire compact. Le spectre gamma s'étend de 0 à 6 MeV, mais est centré sur 1,5 MeV, c'est à dire que, en majorité, deux, trois ou quatre rayons gamma sont émis en cascade par le même électron, lorsque l'accélérateur utilise des électrons. Lors des cascades certains des rayons gamma, X ou optiques émis sont intriqués. La présente invention fait usage de rayons gamma intriqués pour exciter les noyaux isomères. Ces rayons gamma proviennent, comme indiqué précédemment, de réactions nucléaires telles que la désintégration du cobalt 60 ou du phénomène de Bremsstrahlung dans les accélérateurs de particules.
  • On mesure l'activité gamma en particulier pour l'énergie de la transition isomérique sur l'échantillon esclave. Un schéma de cette mise en oeuvre est illustré sur la figure 1. Une enceinte (1) de 3 mm de cuivre, 15 cm de plomb et 12 mm d'acier contient le compteur de gamma (10) et l'échantillon esclave (8) qui émet des gamma (9) naturellement. A une distance de 12 m (7), l'échantillon maître (4) est irradié par la source de fer 55 (2) qui émet des rayons gamma et des rayons X (3). La stimulation bien connue des hommes de l'art se produit et des rayons gamma supplémentaires (5) sont émis par l'échantillon maître (4). Simultanément, la stimulation de l'échantillon maître provoque une émission supplémentaire de l'échantillon esclave (8) bien qu'il soit à l'intérieur de son épais blindage et à 12 m de l'échantillon maître.
  • La figure 2 est un exemple de mesures faites sur des feuilles d'indium à 99,999% de pureté, irradiées préalablement et simultanément pendant 20 minutes avec un accélérateur linéaire compact. La source de rayon X et gamma, du fer 55, a été placée pendant 5 minutes sur l'échantillon maître, noté « OUI » puis retirée pendant 5 minutes, noté « NON » et ainsi de suite. Les mesures de la figure 2 représentent le comptage total pendant les 5 minutes d'irradiation du maître, les 5 minutes sans irradiation et ainsi de suite. Un important signal sur l'esclave est obtenu pendant les périodes d'irradiation du maître, sauf la dernière période pour laquelle pas de signal a été obtenu. Les mêmes expériences faites avec la source de cobalt 60 donnent des résultats identiques mais à peine supérieurs au bruit.
  • Description sommaire des dessins et tableau:
    • La figure 1 représente schématiquement le principe de la méthode utilisée dans l'invention pour communiquer à distance.
    • La figure 2 représente un exemple de résultat expérimental obtenu avec deux échantillons d'Indium 115 irradiés avec les rayons gamma d'un accélérateur linéaire compact. Dans cet essai, les échantillons sont séparés de 12 m.
    • La figure 3 illustre un mode de mise en oeuvre de l'invention avec une source radioactive et une pluralité de pairs d'échantillons.
    • La figure 4 illustre un mode de mise en oeuvre de l'invention avec un accélérateur de particules et une pluralité de pairs d'échantillons placés sur un seul disque.
    • La figure 5 illustre un mode de mise en oeuvre de l'invention avec un accélérateur de particules et une pluralité de pairs d'échantillons placés sur deux disques superposés. Le tableau 1 énumère une liste des principaux noyaux nucléaires ayant un état métastable avec leur symbole, abondance, demi-vie et émission de rayons gamma.
    Manières de réaliser l'invention :
  • Des manières de réaliser l'invention sont décrites ci-dessous. Cependant il est précisé que la présente invention peut être réalisée de différentes façons. Ainsi, les détails spécifiques mentionnés ci-dessous ne doivent pas être compris comme limitant la réalisation, mais plutôt comme une base descriptive pour supporter les revendications et pour apprendre à l'homme du métier l'usage de l'invention présente, dans pratiquement la totalité des systèmes, structures ou manières détaillés appropriés
  • La présente invention peut être mise en oeuvre avec des nucléides de différentes demi-vies. En effet, les demi-vies des nucléides métastables utilisables pour cette invention s'étendent de 1 microseconde à 50 ans. Le tableau 1 donne une liste des principaux nucléides qui ont un état métastable. Leur symbole, abondance, demi-vie en excitation ordinaire et énergie de transition isomérique sont mentionnés. Les échantillons excités peuvent être transportés sur de larges distances et attendre de longues périodes, si leur demi-vie le permet, en étant toujours susceptibles d'être désexcités.
  • Les mises en oeuvre de l'invention qui sont rapportées concernent un maître et un esclave, mais un maître peut désexciter une pluralité d'esclaves si une pluralité d'échantillons ont été excités ensemble. De même, un esclave peut recevoir un signal de n'importe quel maître. L'action se produit quelle que soit la distance ou les matériaux qui séparent maître et esclave.
  • Le procédé selon l'invention consiste à irradier à l'aide de rayons gamma deux ou plusieurs échantillons d'un élément possédant un état métastable d'une durée de demi-vie allant moins d'une seconde à plusieurs années. Les rayons gamma utilisés pour l'excitation des échantillons doivent provenir soit d'une désintégration en cascade dans le cas d'un isotope radioactif, soit d'un effet de Bremsstrahlung dans lequel la même particule émet plusieurs gamma.
  • Par exemple, une émission en cascade est fournie par le cobalt 60. Les rayons gamma émis doivent avoir une énergie suffisante pour effectuer une transition isomérique inverse, c'est à dire de faire passer le noyau de son état fondamental à l'état métastable. Dans le cas de l'indium 115, par exemple, l'énergie nécessaire du seuil d'excitation est de 1080 keV, condition qui est remplie par les deux rayons gamma du cobalt 60. L'un des gamma a une énergie de 1173 keV avec 99,90% chance de se produire, et l'autre 1332 keV 99,98% chance de se produire. Nous avons bien une cascade car les deux gamma sont émis à 0,713 picoseconde (10-12 s) d'intervalle en moyenne.
  • Dans le cas d'une irradiation par les rayons gamma de Bremsstrahlung d'un accélérateur linéaire de particules, par exemple d'électrons, l'énergie des gamma doit à nouveau être supérieure au seuil d'excitation de l'élément choisi.
  • Par exemple, un accélérateur linéaire compact peut émettre un rayonnement gamma très focalisé avec un spectre d'énergie gamma de 0 à 6 MeV. Si l'énergie de tous les électrons avant de rencontrer la cible de tungstène est de 6 MeV, chaque électron émet en moyenne quatre gamma de 1,5 MeV (1500 keV) dans une très rapide succession comparable à une cascade. La cascade de gamma de l'accélérateur est, comme le montre l'expérience, plus efficace pour effectuer les travaux décrits dans cette invention.
  • Selon un mode particulier de l'invention représenté sur la figure 3 qui concerne une irradiation par source radioactive émettant des gamma en cascade, les échantillons à irradier sont placés par couple ou plusieurs sur un plateau (11) qui présente les groupes d'échantillons (12) en succession devant un piston (16) qui les introduit en face d'une source radioactive (14) par l'orifice (15) à l'aide du piston. La source est placée dans un épais blindage de plomb et d'acier (17). Un axe (18) connecte le plateau à un moteur pas à pas (19) commandé par une minuterie (20). Le temps d'irradiation est réglé pour chaque groupe d'échantillons à l'aide d'une minuterie (21) qui actionne une vanne pneumatique (22) pour obtenir la réponse optimale d'activation. Dans le cas de l'indium 115, avec une source de 111000 GBq (3000 Ci), plusieurs heures d'excitation sont nécessaires.
  • Selon un autre mode de réalisation de l'invention, schématisé sur la figure 4, les groupes d'échantillons (23) sont placés sur un plateau tournant(24). Ce plateau est supporté par un axe (25) et connecté à un moteur pas à pas (26), lui-même commandé par une minuterie (27). Les groupes d'échantillons sont présentés l'un après l'autre devant le faisceau de rayons X d'un accélérateur linéaire compact (28) par exemple. Un « fantôme » (29) rempli d'eau arrête les rayons gamma non absorbés. En général les accélérateurs ne peuvent pas fonctionner en permanence. Un certain nombre d'unités de temps d'irradiation, par exemple de 5 minutes, sera appliqué à chaque échantillon pour obtenir l'excitation optimale à l'aide d'une minuterie (30). Dans le cas de l'indium 115, une excitation de 20 minutes avec un accélérateur linéaire compact suffit pour avoir un rapport signal sur bruit satisfaisant.
  • Un ensemble ordonné de couples indépendants d'échantillons peuvent également être irradiés, comme le montre la figure 5. Sur cette figure, les couples d'échantillons sont disposés sur deux disques, le disque maître (31) et le disque esclave (32), lors des irradiations. Les autres éléments de la figure 5 sont identiques à ceux de la figure 4. Ces disques peuvent alors être éloignés à n'importe quelle distance et exploités par stimulation de désexcitation modulée de chaque échantillon ordonné du disque maître et la réception de cette modulation par l'échantillon correspondant du disque esclave, permet ainsi la transmission d'un message complexe. Si plusieurs échantillons, placés dans plusieurs disques, sont excités ensembles au lieu d'un simple couple de disques, le message peut être transmis simultanément à plusieurs disques esclaves. D'autres supports que des disques peuvent être utilisés. Par exemple des plaquettes présentées en translation devant le générateur de gamma émis en cascade. Les appareillages décrits précédemment sont des exemples de réalisation. D'autres moyens pour présenter les échantillons à l'irradiation peuvent être employés sans sortir du cadre de l'invention.
  • Les groupes d'échantillons maîtres-esclaves à irradier sont des solides en feuille ou en poudre, des liquides ou des gaz (cas du Xénon par exemple) qui contiennent une proportion d'un ou de plusieurs isotopes par exemple mentionnés sur le tableau 1. Les échantillons peuvent être aussi des alliages, des mélanges ou des composés de chimiques incorporant une proportion d'un ou de plusieurs isotopes du tableau 1. Les échantillons d'un même groupe peuvent être de nature différente, par exemple l'un en poudre et l'autre en feuille. Un ou plusieurs des échantillons d'un même groupe peuvent également être transformés physiquement ou chimiquement après irradiation, l'échantillon esclave sous forme de poudre ou de gaz peut être incorporé dans une molécule porteuse injectable par exemple. L'isomère, un sel ou une molécule contenant l'isomère peut également être mis en solution dans l'échantillon. Une pluralité d'isomères peut être employée dans cette solution.
  • Les mesures de gamma dus à la transition isomérique de l'esclave lors de la stimulation du maître peuvent être effectuées avec les instruments classiques de l'homme de l'art. Un instrument courant est le détecteur à cristaux de germanium fonctionnant à basse température. Afin de minimiser les effets des rayons cosmiques, du radon et des parasites ambiants, l'échantillon esclave peut être placé dans un containeur avec des parois de cuivre, plomb et acier, localisé à une grande distance de l'échantillon maître (12 m dans la mise en oeuvre rapportée). Un analyseur multi-canal doit pouvoir se caler sur la radiation caractéristique de l'isomère choisi. Par exemple, dans le cas de l'indium 115m, les gamma dans la raie 336,2 keV sont comptés. Il est également possible que les progrès de la technique permettent de mesurer la radiation de 336,2 keV sans avoir un containeur spécial.
  • Une modulation temporelle des stimulations de désexcitation, comme le montre l'exemple de la figure 2, peut être utilisée pour envoyer un message composé de « oui » et de « non », c'est à dire de 1 et de 0 en langage binaire, sur un ou une pluralité d'échantillons. Des mises en oeuvre de l'invention avec des modulations plus complexes telles qu'une modulation en amplitude ou en fréquence des stimulations de désexcitation peuvent également être utilisées. Selon les techniques de stimulation des isomères connues, on peut choisir le rayonnement optimal pour stimuler un isomère particulier. En conséquence, l'échantillon maître contenant un mélange d'isomères peut être excité sélectivement. Chaque isomère représente donc dans ce cas un « canal » particulier de transmission. Lorsque l'isomère émet, naturellement ou lors de la stimulation à distance, des gamma de plusieurs énergie, les mesures faites pour chaque énergie permettent d'améliorer le niveau signal sur bruit.
  • L'invention inclut les procédés, dispositifs et utilisations suivants :
    • Procédé 1 pour communiquer ou commander une désexcitation à distance en utilisant des nucléides isomères, dans lequel:
      • on prépare deux ou plusieurs échantillons contenant au moins un nucléide isomère ayant un état métastable par irradiation au moyen soit d'une source de rayons gamma émis en cascade, soit d'un générateur de rayons gamma provenant du Bremsstrahlung de particules accélérées, avec une énergie suffisante pour exciter ledit nucléide isomère à son état métastable,
      • on provoque la stimulation modulée de la désexcitation par irradiation X ou gamma de l'un ou plusieurs des échantillons précédant, le ou les maîtres,
      caractérisé en ce que l'on obtient une désexcitation modulée supplémentaire des autres échantillons, les esclaves, lors de la stimulation modulée de la désexcitation du ou des échantillons maîtres, indépendamment des distances séparant les échantillons, et des milieux séparant ces échantillons ou dans lesquels ils sont placés.
    • Procédé 2 selon le procédé 1 caractérisé en ce que l'on utilise des échantillons contenant au moins un nucléide isomère ayant un état métastable d'une durée de demi-vie de moins d'une seconde à plusieurs années, par exemple: Niobium (93Nb41m), Cadmium (111Cd48m), Cadmium (113Cd48m), Césium (135Ce55m), Indium (115In49m), Etain (117Sn50m), Etain (119Sn50m), Tellure (125Te52m), Xénon (129Xe54m), Xénon (131Xe54m), Hafnium (178Hf72m), Hafnium (179Hf72m), Iridium (193Ir77m), Platine (195Pt78m).
    • Procédé 3 selon l'un des procédés 1 ou 2 caractérisé en ce que l'on utilise des échantillons contenant plusieurs nucléides isomères excités dont la réponse gamma de chacun d'eux est mesurée simultanément.
    • Procédé 4 selon l'un des procédés 1, 2 ou 3 caractérisé en ce que l'on utilise des échantillons contenant au moins un nucléide isomère excité dont la réponse gamma est composée d'une pluralité de raies mesurées simultanément.
    • Procédé 5 selon l'un des procédés 1, 2, 3 ou 4 caractérisé en ce que l'on utilise des échantillons sous différentes formes physiques ou sous différentes formes chimiques. Procédé 6 selon l'un des procédés 1, 2, 3, 4 ou 5 caractérisé en ce que l'on utilise un groupe d'échantillons dont l'un au moins a subi une transformation physique ou chimique après irradiation.
    • Procédé 7 selon l'un des procédés 1, 2, 3, 4, 5 ou 6 caractérisé en ce que l'on utilise une stimulation modulée en amplitude d'au moins un échantillon maître.
    • Procédé 8 selon l'un des procédés 1, 2, 3, 4, 5, 6 ou 7 caractérisé en ce que l'on utilise une stimulation modulée dans le temps d'au moins un échantillon maître.
  • Dispositif 9 de mise en oeuvre selon l'un quelconque des procédés 1 à 8 caractérisé en ce qu'il comprend :
    • Un appareillage d'excitation irradiant deux ou plusieurs échantillons contenant au moins un nucléide isomère ayant un état métastable au moyen soit d'une source de rayons gamma émis en cascade, soit d'un générateur de rayons gamma provenant du Bremsstrahlung de particules accélérées, avec une énergie suffisante pour exciter ledit nucléide isomère à son état métastable,
    • un ou des appareillages de stimulation modulée désexcitant par irradiation X ou gamma l'un ou plusieurs des échantillons irradiés précédemment, le ou les maîtres,
    • un ou des appareillages de détection mesurant les rayons gamma émis par un ou plusieurs des autres échantillons irradiés précédemment, le ou les esclaves.
  • Dispositif 10 selon le dispositif 9 caractérisé en ce que les échantillons de chaque groupe sont disposés sur un seul support dans l'appareillage d'excitation, étant par la suite séparés et positionnés en relation entre eux dans le ou les appareillages de stimulation modulée et dans le ou les appareillages de détection.
  • Dispositif 11 selon le dispositif 9 caractérisé en ce que les échantillons de chaque groupe sont disposés sur une pluralité de supports dans l'appareillage d'excitation, les supports étant par la suite séparés et positionnés en relation synchrone entre eux dans le ou les appareillages de stimulation modulée et dans le ou les appareillages de détection.
  • Dispositif 12 selon l'un des dispositifs 9, 10 ou 11 caractérisé en ce que les groupes d'échantillons sont agencés selon un ordonnancement défini permettant la transmission de messages complexes.
  • Utilisation selon l'un quelconque des procédés 1 à 8 pour transmettre à distance des informations, notamment des signaux de secours.
  • Possibilités d'applications industrielles :
  • Cette invention résout donc un problème technique de transmission d'information, pour l'instant très sommaire, mais néanmoins de grande nouveauté.
  • Différentes applications industrielles sont immédiatement envisageables, signaux de secours, de télécommandes, d'acquisition de données, dans les mines, les fonds marins (robots et sous-marins), dans les forages, dans le domaine spatial en particulier à très grandes distances, etc.
  • Des applications médicales sont également possibles en stimulant à distance le produit selon l'invention, dont un échantillon esclave a été disposé près ou dans l'organe à traiter.
  • Tableaux :
  • TABLEAU 1
    Nucléide Symbole Abondance % Demi-vie Gamma keV
    Niobium 93Nb41 100 16.3 a 31.8
    Cadmium 111Cd48 12.8 48.54 m 396.2
    Cadmium 113Cd48 12.2 14.1 a 263.5
    Césium 135Ce - 53 m 846/786
    Indium 115In49 95.7 4.48 h 336.2
    Tin 117Sn50 7.7 13.6 a 314.6
    Tin 119Sn50 8.6 293 j 60.5
    Tellure 125Te52 7.1 57.4 j 144.8
    Xénon 129Xe54 26.5 8.8 j 238.1
    Xénon 131Xe54 21.2 11.8 j 163.9
    Hafnium 178Hf72 27.3 31 a 574/..../93
    Hafnium 179Hf72 13.6 25 j 453/..../122
    Iridium 193Ir77 62.7 10.5 j 80.2
    Platinum 195Pt78 33.8 4 j 259.3
    m: minutes, h: heures, j: jours, a: années.

Claims (16)

  1. Système d'échantillons « intriqués » comprenant au moins une sorte de nucléides isomères dans lequel au moins un desdits nucléides isomères est excité à au moins un état métastable qui se désexcite en émettant des rayons gamma, caractérisé en ce que des groupes de deux ou plusieurs noyaux excités, dudit ou desdits nucléides isomères excités desdits échantillons, sont intriqués entre eux et sont répartis dans tout ou partie desdits échantillons, appelés par la suite par convention échantillons « intriqués », lesdits échantillons « intriqués » (4, 8) pouvant être séparés dans l'espace (7) et présentant des liaisons quantiques entre certains des noyaux excités desdits nucléides isomères excités contenus dans ces échantillons séparés.
  2. Système d'échantillons « intriqués » selon la revendication 1 dans lequel lesdits échantillons « intriqués » contiennent lesdits noyaux excités d'au moins une sorte desdits nucléides isomères excités ayant au moins un état métastable d'une durée de demi-vie de une microseconde à 50 ans, par exemple Niobium (93Nb41m), Cadmium (111Cd48m), Cadmium (113Cd48m), Césium (135Ce55m), Indium (115In49m), Etain (117Sn50m), Etain (119Sn50m), Tellure (125Te52m), Xénon (129Xe54m), Xénon (131Xe54m), Hafnium (178Hf72m), Hafnium (179Hf72m), Iridium (193Ir77m), ou encore Platine (195Pt78m), lesdits échantillons « intriqués » pouvant être transportés sur de larges distances et attendre de longues périodes, si leur demi-vie le permet, en étant toujours susceptibles d'être désexcités.
  3. Système d'échantillons « intriqués » selon la revendication 1 dans lequel lesdits échantillons « intriqués » sont sous n'importe quelle forme physique ou chimique, par exemple des solides en feuille ou en poudre, des liquides ou des gaz (cas du Xénon par exemple) qui contiennent une proportion d'au moins un desdits nucléides isomères excités, par exemple Niobium (93Nb41 m), Cadmium (111 Cd48m), Cadmium (113Cd48m), Césium (135Ce55m), Indium (115In49m), Etain (117Sn50m), Etain (119Sn50m), Tellure (125Te52m), Xénon (129Xe54m), Xénon (131Xe54m), Hafnium (178Hf72m), Hafnium (179Hf72m), Iridium (193Ir77m), Platine (195Pt78m), ou encore des alliages, des mélanges ou des composés chimiques incorporant une proportion d'un ou de plusieurs des susdits nucléides isomères excités.
  4. Système d'échantillons « intriqués » selon la revendication 1 dans lequel l'un au moins desdits échantillons « intriqués » est sous une forme physique et / ou chimique différente des autres échantillons « intriqués », par exemple l'un en poudre et l'autre en feuille, ou encore l'un sous forme de solide, de poudre ou de gaz et l'autre incorporé dans des molécules porteuses injectables par exemple, ou dans des sels ou dans des molécules mises en solution.
  5. Procédé de fabrication d'un système d'échantillons « intriqués » caractérisé en ce que l'on effectue les étapes suivantes:
    (a) on prépare un ensemble d'échantillons (23, Fig. 3 - 12) contenant des noyaux d'au moins une sorte de nucléides isomères ayant au moins un état métastable,
    (b) on procède à l'irradiation au moyen de rayons gamma au moins en partie intriqués, d'une énergie suffisante pour exciter certains desdits noyaux desdits nucléides isomères à au moins un état métastable, lesdits rayons gamma intriqués formant des groupes qui sont générés, par exemple, soit par une source de rayons gamma (14) émis en cascade, soit par un générateur de rayons gamma (28) provenant du Bremsstrahlung de particules accélérées, lesdits groupes de rayons gamma, lorsqu'ils sont intriqués, excitant lesdits noyaux correspondants dudit nucléide isomère répartis dans lesdits échantillons irradiés produits ensembles, et formant les échantillons « intriqués » (23, Fig. 3 - 12) dudit système d'échantillons « intriqués ».
  6. Procédé selon la revendication 5 dans lequel les échantillons sont préalablement disposés sur au moins deux supports, par exemple des disques (31, 32), dans l'appareillage d'excitation effectuant la susdite irradiation, deux au moins de ces supports étant par la suite séparés.
  7. Procédé selon la revendication 5 dans lequel les échantillons sont préalablement disposés sur un seul support dans l'appareillage d'excitation effectuant l'irradiation, ce support étant par la suite séparé en deux supports.
  8. Utilisation du système d'échantillons « intriqué » selon la revendication 1 caractérisée en ce que l'on effectue les étapes suivantes pour commander à distance une désexcitation en employant lesdits échantillons « intriqués » (4, 8) :
    (a) on sépare dans l'espace tout ou partie desdits échantillons « intriqués » dudit système d'échantillons « intriqués »,
    (b) on exploite des liaisons quantiques entre des noyaux excités de certains desdits échantillons « intriqués », indépendamment des distances (7), des milieux les séparant et des milieux dans lesquels lesdits échantillons « intriqués » sont placés :
    (i) en provoquant au moins une stimulation modulée de la désexcitation, par irradiation X ou gamma (3), par exemple obtenue au moyen d'une source de fer-55 (2), d'au moins un desdits échantillons « intriqués », dénommé échantillon « maître » (4), ladite stimulation modulée induisant, au moyen desdites liaisons quantiques, une désexcitation à distance de un ou plusieurs des autres échantillons « intriqués », dénommés échantillons « esclaves » (8), la susdite stimulation modulée appliquée audit échantillon « maître » caractérisant au moins une information ou au moins une commande à transmettre,
    (ii) et, ou bien en déterminant, soit au moins une détection d'information, soit au moins une détection de commande à distance, au moyen d'au moins une mesure faite avec un détecteur de rayonnement gamma (10), d'au moins une désexcitation modulée supplémentaire (9) sur au moins une raie caractéristique d'au moins un susdit nucléide isomère contenu dans au moins un susdit échantillon « esclave » (8), ou bien en utilisant le rayonnement gamma issu de la désexcitation modulée supplémentaire d'au moins un susdit nucléide isomère contenu dans au moins un susdit échantillon « esclave », en tant que commande locale.
  9. Utilisation selon la revendication 8 dans laquelle on emploie lesdits échantillons « intriqués » contenant lesdits noyaux excités d'au moins deux desdits nucléides isomères, dont les réponses gamma sont mesurées simultanément sur au moins un échantillon « esclave ».
  10. Utilisation selon la revendication 8 dans laquelle on emploie lesdits échantillons « intriqués » contenant lesdits noyaux excités d'au moins un desdits nucléides isomères, dont la réponse gamma est composée d'une pluralité de raies dont au moins deux raies sont mesurées simultanément pour améliorer le niveau signal sur bruit lors de la mesure sur ledit ou lesdits échantillons « esclave ».
  11. Utilisation selon la revendication 8 dans laquelle la susdite stimulation modulée est appliquée en amplitude sur au moins un desdits échantillons « maître ».
  12. Utilisation selon la revendication 8 dans laquelle la susdite stimulation modulée est appliqué dans le temps sur au moins un desdits échantillons « maître ».
  13. Utilisation selon la revendication 8 dans laquelle au moins deux supports, par exemple des disques, comprennent une pluralité de systèmes d'échantillons « intriqués » qui ont été disposés en relation entre eux sur au moins deux supports, appelés par la suite par convention supports « intriqués », par exemple en positionnant un échantillon « intriqué » de tout ou partie des systèmes d'échantillons « intriqués » sur chacun desdits supports selon un ordonnancement défini, lesdits supports étant positionnés en relation entre eux, par exemple synchrone, de telle façon qu'au moins un appareillage applique la détection de rayonnement gamma d'au moins une désexcitation modulée supplémentaire sur au moins un échantillon « intriqué », l'échantillon « esclave », situé sur au moins un des susdits supports, le support « esclave », lorsqu'au moins un appareillage applique la stimulation modulée de la désexcitation à au moins un échantillon « intriqué », l'échantillon « maître », appartenant au même système d'échantillons « intriqués », situé sur au moins un des autres susdits supports, le support « maître ».
  14. Utilisation selon la revendication 8 dans laquelle une pluralité de systèmes d'échantillons « intriqués » sont agencées selon un ordonnancement défini permettant la transmission et la réception de messages complexes.
  15. Utilisation selon la revendication 8 pour transmettre à distance des informations.
  16. Utilisation du système d'échantillons « intriqué » selon la revendication 1 caractérisée en ce que l'on effectue les étapes suivantes pour commander à distance une désexcitation en employant lesdits échantillons « intriqués » (4, 8) :
    (a) on sépare dans l'espace tout ou partie desdits échantillons « intriqués » dudit système d'échantillons « intriqués »,
    (b) on exploite des liaisons quantiques entre des noyaux excités de certains desdits échantillons « intriqués », indépendamment des distances (7), des milieux les séparant et des milieux dans lesquels lesdits échantillons « intriqués » sont placés :
    (i) en provoquant au moins une stimulation modulée de la désexcitation, par irradiation X ou gamma (3), par exemple obtenue au moyen d'une source de fer-55 (2), d'au moins un desdits échantillons « intriqués », dénommé échantillon « maître » (4), ladite stimulation modulée induisant, au moyen desdites liaisons quantiques, une désexcitation à distance de un ou plusieurs des autres échantillons « intriqués », dénommés échantillons « esclaves » (8),
    (ii) et en utilisant au moins un susdit échantillon « esclave », comme produit dont l'irradiation est télécommandée à distance à partir dudit échantillon « maître » pour irradier l'environnement dudit échantillon « esclave » à l'exception du corps humain ou animal.
EP05733600A 2004-04-13 2005-03-28 Procede et appareillage pour communiquer a distance en utilisant des nucleides isomeres. Not-in-force EP1743344B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0403904A FR2868868A1 (fr) 2004-04-13 2004-04-13 Procede et appareillage pour communiquer a distance en utilisant des nucleides isomeres
PCT/EP2005/051405 WO2005112041A2 (fr) 2004-04-13 2005-03-28 Procede et appareillage pour communiquer a distance en utilisant des nucleides isomeres

Publications (2)

Publication Number Publication Date
EP1743344A2 EP1743344A2 (fr) 2007-01-17
EP1743344B1 true EP1743344B1 (fr) 2009-12-23

Family

ID=34947607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05733600A Not-in-force EP1743344B1 (fr) 2004-04-13 2005-03-28 Procede et appareillage pour communiquer a distance en utilisant des nucleides isomeres.

Country Status (6)

Country Link
US (1) US20080317207A1 (fr)
EP (1) EP1743344B1 (fr)
AT (1) ATE453197T1 (fr)
DE (1) DE602005018472D1 (fr)
FR (1) FR2868868A1 (fr)
WO (1) WO2005112041A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1779561T3 (da) * 2004-05-26 2012-10-22 Saquant Fremgangsmåde og anordning til fjernformidling ved anvendelse af fotoluminescens eller termoluminescens
FR2913834B1 (fr) * 2007-03-12 2014-04-04 Quantic Comm E Produit,procede et appareillage pour communiquer a distance en utilisant des materiaux chromogeniques

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1457434A (fr) * 1965-07-30 1966-01-24 Commissariat Energie Atomique Dispositif d'irradiation
SU1137901A1 (ru) * 1983-06-07 1985-08-15 Предприятие П/Я В-8851 Способ определени энергии и интенсивности пучка частиц при активационных измерени х
DE4315002C1 (de) * 1993-05-06 1994-08-18 Kernforschungsz Karlsruhe Gefäßimplantat
US5855546A (en) * 1996-02-29 1999-01-05 Sci-Med Life Systems Perfusion balloon and radioactive wire delivery system
US5782742A (en) * 1997-01-31 1998-07-21 Cardiovascular Dynamics, Inc. Radiation delivery balloon
US5802439A (en) * 1997-02-19 1998-09-01 Lockheed Martin Idaho Technologies Company Method for the production of 99m Tc compositions from 99 Mo-containing materials
US6019718A (en) * 1997-05-30 2000-02-01 Scimed Life Systems, Inc. Apparatus for intravascular radioactive treatment
US6553355B1 (en) * 1998-05-29 2003-04-22 Indranet Technologies Limited Autopoietic network system endowed with distributed artificial intelligence for the supply of high volume high-speed multimedia telesthesia telemetry, telekinesis, telepresence, telemanagement, telecommunications, and data processing services
FR2868869B1 (fr) * 2004-04-13 2013-08-30 Robert Desbrandes Procede et appareillage pour modifier la probabilite de desexcitation des nucleides isomeres

Also Published As

Publication number Publication date
DE602005018472D1 (de) 2010-02-04
WO2005112041B1 (fr) 2006-06-01
EP1743344A2 (fr) 2007-01-17
FR2868868A1 (fr) 2005-10-14
US20080317207A1 (en) 2008-12-25
WO2005112041A2 (fr) 2005-11-24
WO2005112041A3 (fr) 2006-01-05
ATE453197T1 (de) 2010-01-15

Similar Documents

Publication Publication Date Title
Jin et al. A kilonova associated with GRB 070809
Gupta et al. Detection of a quasi-periodic oscillation in γ-ray light curve of the high-redshift blazar B2 1520+ 31
Gao et al. Constraints on binary neutron star merger product from short GRB observations
Mészáros Gamma-ray bursts: accumulating afterglow implications, progenitor clues, and prospects
Ahmed Physics and engineering of radiation detection
Cordova et al. X-ray observations of a large sample of cataclysmic variable stars using the Einstein Observatory
Wei et al. The deep and transient universe in the SVOM era: new challenges and opportunities-scientific prospects of the SVOM mission
Enoto et al. Suzaku Discovery of a Hard X-Ray Tail in the Persistent Spectra from the Magnetar 1E 1547.0 5408 during its 2009 Activity
Paudel et al. K 2 Ultracool Dwarfs Survey–V. High superflare rates on rapidly rotating late-M dwarfs
Gridin et al. Kinetic model of energy relaxation in CsI: A (A= Tl and In) scintillators
Hermes et al. Insights into internal effects of common-envelope evolution using the extended Kepler mission
Oruru et al. X-ray characteristics and the spectral energy distribution of AE Aquarii
Foschini et al. Does the gamma-ray flux of the blazar 3C 454.3 vary on subhour time-scales?
Shah et al. Study on temporal and spectral behaviour of 3C 279 during 2018 January flare
Orienti et al. Exploring the multiband emission of TXS 0536+ 145: the most distant γ-ray flaring blazar
Sahakyan et al. High energy gamma-ray emission from PKS 1441+ 25
EP1743344B1 (fr) Procede et appareillage pour communiquer a distance en utilisant des nucleides isomeres.
Rowlinson et al. A deceleration search for magnetar pulsations in the X-ray plateaus of short GRBs
EP1779561B1 (fr) Procede et appareillage pour communiquer a distance en utilisant la photoluminescence ou la thermoluminescence
Larsson et al. FBQS J1644+ 2619: multiwavelength properties and its place in the class of γ-ray emitting Narrow Line Seyfert 1s
Starling et al. Swift captures the spectrally evolving prompt emission of GRB 070616
Melandri et al. Evidence for energy injection and a fine-tuned central engine at optical wavelengths in GRB 070419A
Hurkett et al. GRB 050505: a high-redshift burst discovered by Swift
Burlon et al. Gamma-ray bursts from massive Population-III stars: clues from the radio band
WO2005109985A2 (fr) Procede et appareillage pour modifier la probabilite de desexcitation des nucleides isomeres.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061113

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005018472

Country of ref document: DE

Date of ref document: 20100204

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100403

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100423

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100423

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140310

Year of fee payment: 10

Ref country code: IE

Payment date: 20140307

Year of fee payment: 10

Ref country code: LU

Payment date: 20140311

Year of fee payment: 10

Ref country code: NL

Payment date: 20140310

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140310

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140331

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140709

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20150217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005018472

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150328

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150328

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150328

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170124

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200329

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210328