EP1741016B1 - Current balance arrangement - Google Patents
Current balance arrangement Download PDFInfo
- Publication number
- EP1741016B1 EP1741016B1 EP05742902A EP05742902A EP1741016B1 EP 1741016 B1 EP1741016 B1 EP 1741016B1 EP 05742902 A EP05742902 A EP 05742902A EP 05742902 A EP05742902 A EP 05742902A EP 1741016 B1 EP1741016 B1 EP 1741016B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transistor
- current
- current mirror
- controlled
- mirror device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 230000000295 complement effect Effects 0.000 claims description 14
- 238000007667 floating Methods 0.000 claims description 9
- 238000005516 engineering process Methods 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is DC
- G05F3/10—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/26—Current mirrors
- G05F3/262—Current mirrors using field-effect transistors only
Definitions
- the present invention relates to a current mirror arrangement.
- Current mirrors can be applied in different circuit techniques or integration techniques, for example in MOS, metal oxide semiconductor, circuit technology.
- FIG. 1 shows an exemplary, known current mirror, which has two transistors 2, 3 connected to a reference potential terminal 1.
- the transistors 2, 3 of the current mirror are each of the n-type conductivity and connected directly to each other at their control terminals.
- the input-side transistor 2 of the current mirror has a controlled path, which is connected with a first terminal to the gate terminal of the transistor 2 and with another terminal to the reference potential terminal 1.
- the connected to the gate terminal of the transistor 2 terminal of the controlled path of the transistor 2 is further connected via a current source 4 to a supply potential terminal 5.
- the transistor 3 of FIG. 1 has a controlled path, on the one hand to the reference potential terminal 1 and on the other hand to a terminal of another transistor. 6 connected is.
- the further transistor 6 is connected to the supply potential connection 5 with a further connection of its controlled path and of the p-conductivity type.
- the control terminal of the transistor 6 is connected to that terminal of its controlled path, which is connected to the transistor 3.
- the circuit according to FIG. 1 serves to generate two bias signals, namely on the one hand a bias signal NBIAS for n-MOS devices and on the other hand, a bias signal PBIAS for p-MOS devices.
- the bias signal NBIAS can be tapped off at the control terminals of the n-channel transistors 2, 3 at an output terminal 7.
- Another output terminal 8, which is connected to the control terminal of the transistor 6, serves as an output for picking up the PBIAS signal.
- FIG. 2 shows a development of the circuit of FIG. 1 which largely corresponds to this in the components used and their mode of operation, but is supplemented by a cascode stage 9, 10.
- the cascode stage 9, 10 comprises two transistors, of which one each is connected in the current paths between the current source 4 and the transistor 2 and between the diode 6 and the transistor 3.
- the transistors 9, 10 of the cascode stage, of which transistor 9 is connected as a diode in turn together form a current mirror.
- FIG. 1 Opposite the circuit of FIG. 1 has the current mirror arrangement of FIG. 2 with cascode an improved match of the signals NBIAS and PBIAS with each other. Nevertheless, also in the circuit according to FIG. 2 no exact match of the bias signals for components of the opposite, that is to say complementary, conductivity type ensured.
- NBIAS and PBIAS signals it is desirable to achieve an exact match between NBIAS and PBIAS signals, for example, to operate transistors of complementary conductivity type in matching operating points and / or to provide circuits with high symmetry and good matching.
- the object of the present invention is to specify a current mirror arrangement which makes it possible to deliver two bias currents which coincide very precisely with one another and are suitable for driving integrated components of different conductivity types.
- the proposed principle to provide two transistors of different conductivity type each for delivering a current suitable as a bias signal.
- the first and the second transistor are driven so that they are not themselves the respective output transistor of a current mirror. Rather, it is according to the invention provided that the output transistor of a current mirror is designed as a controlled current source, which is connected between the first and the second transistor.
- the proposed current mirror arrangement Due to the interconnection of the proposed current mirror arrangement, it is possible to generate exactly matching currents at the first transistor and the second transistor, which enable the respective activation of complementary components in a highly precise manner. In this case, with additional advantage of the circuit complexity compared to a conventional current mirror arrangement for providing complementary bias signals low. As a result, the proposed principle with relatively small chip area and thus be integrated cost.
- the controlled current source which forms the output of the current mirror which drives the first and second transistors, is preferably designed as a so-called floating current source, ie for operation with a floating potential.
- floating potential is sometimes referred to as floating potential.
- the first transistor, the controlled current source and the second transistor are arranged in a common current path.
- the controlled current source arranged in the middle between the two transistors, which itself has floating potential, ensures that the currents through the first and second transistors are identical and thus a further improved match between the two emitted bias currents of the current mirror arrangement is present.
- the two conductivity types of the transistors are preferably a p-conductivity type and an n-conductivity type. This means that the first transistor is preferably a p-channel transistor and the second transistor is a complementary n-channel transistor.
- the first transistor and the second transistor are preferably each connected as a diode.
- the first current and the second current are each tapped at the load connection of the first and second transistor connected to the controlled current source.
- control connection of the respective transistor is connected to this tap node to form a diode.
- the common current path which comprises the series connection of the first transistor, controlled current source and second transistor, is preferably connected between a supply potential terminal and a reference potential terminal.
- the controlled current source itself is preferably also designed as a transistor, namely as a current source transistor, whose controlled path forms a series circuit with the controlled paths of the first and second transistors.
- the controlled current source preferably forms the current mirror with a diode-connected transistor, wherein the diode-connected transistor is further preferably arranged in a further current path, that of an input-side Power source is powered.
- the current source in the further current path serves as a reference current source.
- the further current path further preferably includes a further diode, which is connected between the input-side transistor of the current mirror and the reference potential or supply potential connection.
- a further transistor may be provided, which together with the second transistor forms a feedback current mirror, wherein the second transistor is connected as a diode.
- the two current mirrors of this further developed current mirror arrangement form together a so-called Wilson current mirror.
- the current mirror arrangement is preferably produced in integrated circuit construction.
- the current mirror arrangement is preferably integrated in unipolar circuit technology, for example a metal-insulator-semiconductor structure.
- the current mirror arrangement is preferably constructed in complementary MOS circuit technology.
- the proposed current mirror arrangement also works in the complementary circuit variant, which means that all n-channel conductivity type MOS transistors are replaced by p-channel devices and vice versa.
- FIG. 3 shows a current mirror arrangement according to the proposed principle with a first transistor 11, which is of a p-type conductivity, and with a second transistor 12, which is of an n-type conductivity.
- the first and the second transistor 11, 12 each have a control terminal and one controlled path each. Between each one terminal of the controlled paths of the transistors 11, 12, a current source 13 is connected.
- the free connection of the controlled path of the transistor 11 is connected to a supply potential terminal 14 and the free connection of the controlled path of the second transistor 12 to a reference potential terminal 15 interconnected.
- the connected to the current source 13 terminals of the controlled paths of the transistors 11, 12 are connected to the respective control terminal of the associated transistor 11, 12 to form a diode and at the same time form outputs 16, 17 of the current mirror assembly.
- the first output 16 is designed to deliver a first current PBIAS, while the second output 17 is designed to deliver a second, the first complementary current NBIAS.
- First and second currents serve as complementary BIAS signals.
- the current source 13 is designed as a floating current source, that is to say with a floating potential.
- a further current path is provided, which is designed to be traversed by a reference current I REF .
- a reference current I REF To couple these two current paths is a in FIG. 3 not explicitly drawn current mirror provided, which is indicated by the fact that the controlled current source 13 is traversed by the n-times the reference current I REF of the first current path.
- the letter n represents the mirror ratio of the current mirror.
- the proposed circuit has a low component cost and is inexpensive to integrate with a small chip area and therefore.
- FIG. 4 A development of the circuit of FIG. 3 for generating identical n-MOS and p-MOS currents by means of a current mirror arrangement FIG. 4 ,
- the circuit of FIG. 4 agrees in the components used, their advantageous interconnection and operation largely with that of FIG. 3 and will not be repeated at this point.
- the floating powered controlled current source 13 is at FIG. 4 is formed as a transistor 13 ', which forms the current mirror 18, 13' with an input transistor 18.
- the input transistor 18 is connected as a diode.
- the transistor 18 is of the n-channel type.
- a current source 19 is provided, which connects a supply potential terminal 14 to a terminal of the controlled path of the diode transistor 18, which is also connected to its gate terminal.
- Another transistor diode 20, also of the n-conductivity type connects the transistor 18 to the reference potential terminal 15.
- the reference current source 19, the transistor 18 and the diode 20 together form a series circuit.
- FIG. 5 shows a further embodiment of a development of a current mirror arrangement according to the proposed Principle.
- the circuit of FIG. 5 agrees in the components used, their interconnection with each other and their advantageous operation largely with that of FIG. 4 and will not be described again at this point.
- the transistors 12, 20 ' together form a feedback current mirror, which together with the current mirror 18, 13', which operates in the forward direction, forms a Wilson current mirror.
- the Wilson current mirror 18, 13 '; 12, 20 ' forms a closed loop.
- bias signals PBIAS, NBIAS which can be tapped off at the outputs 16, 17 exactly match one another.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
- Amplifiers (AREA)
Description
Die vorliegende Erfindung betrifft eine Stromspiegelanordnung.The present invention relates to a current mirror arrangement.
Stromspiegel sind als Grundschaltungen mit Transistoren bekannt und beispielsweise in
Stromspiegel können in unterschiedlichen Schaltungstechniken oder Integrationstechniken, beispielsweise in MOS, Metal Oxide Semiconductor, -Schaltungstechnik angewandt werden.Current mirrors can be applied in different circuit techniques or integration techniques, for example in MOS, metal oxide semiconductor, circuit technology.
Auch der Transistor 3 von
Die Schaltung gemäß
Gegenüber der Schaltung von
Vielmehr können auch die Bias-Signale bei der Schaltung von
Es ist jedoch in vielen Anwendungen wünschenswert, eine exakte Übereinstimmung zwischen NBIAS- und PBIAS-Signal zu erzielen, um beispielsweise Transistoren von komplementärem Leitfähigkeitstyp in je übereinstimmenden Arbeitspunkten zu betreiben und/oder Schaltungen mit hoher Symmetrie und gutem Matching zu schaffen.However, in many applications, it is desirable to achieve an exact match between NBIAS and PBIAS signals, for example, to operate transistors of complementary conductivity type in matching operating points and / or to provide circuits with high symmetry and good matching.
In dem Dokument
Aufgabe der vorliegenden Erfindung ist es, eine Stromspiegelanordnung anzugeben, die es ermöglicht, zwei Bias-Ströme abzugeben, die sehr genau miteinander übereinstimmen und zur Ansteuerung von integrierten Bauteilen unterschiedlichen Leitfähigkeitstyps geeignet sind.The object of the present invention is to specify a current mirror arrangement which makes it possible to deliver two bias currents which coincide very precisely with one another and are suitable for driving integrated components of different conductivity types.
Erfindungsgemäß wird die Aufgabe durch eine Stromspiegelanordnung gelöst, aufweisend die Merkmale des Patentanspruchs 1.According to the invention the object is achieved by a current mirror arrangement, comprising the features of patent claim 1.
Es entspricht dem vorgeschlagenen Prinzip, zwei Transistoren vorzusehen, die von unterschiedlichem Leitfähigkeitstyp sind und je zur Abgabe eines Stroms dienen, der als Bias-Signal geeignet ist. Der erste und der zweite Transistor werden dabei so angesteuert, dass sie nicht selbst der jeweilige Ausgangstransistor eines Stromspiegels sind. Vielmehr ist erfindungsgemäß vorgesehen, dass der Ausgangstransistor eines Stromspiegels als gesteuerte Stromquelle ausgeführt ist, die zwischen den ersten und den zweiten Transistor geschaltet ist.It is the proposed principle to provide two transistors of different conductivity type each for delivering a current suitable as a bias signal. The first and the second transistor are driven so that they are not themselves the respective output transistor of a current mirror. Rather, it is according to the invention provided that the output transistor of a current mirror is designed as a controlled current source, which is connected between the first and the second transistor.
Aufgrund der Verschaltung der vorgeschlagenen Stromspiegelanordnung ist es möglich, an dem ersten Transistor und dem zweiten Transistor exakt miteinander übereinstimmende Ströme zu generieren, die die jeweilige Ansteuerung komplementärer Bauteile in hochpräziser Weise ermöglichen. Dabei ist mit zusätzlichem Vorteil der Schaltungsaufwand gegenüber einer herkömmlichen Stromspiegelanordnung zur Bereitstellung von komplementären Bias-Signalen gering. Dadurch kann das vorgeschlagene Prinzip mit verhältnismäßig geringer Chipfläche und somit kostengünstig integriert werden.Due to the interconnection of the proposed current mirror arrangement, it is possible to generate exactly matching currents at the first transistor and the second transistor, which enable the respective activation of complementary components in a highly precise manner. In this case, with additional advantage of the circuit complexity compared to a conventional current mirror arrangement for providing complementary bias signals low. As a result, the proposed principle with relatively small chip area and thus be integrated cost.
Die gesteuerte Stromquelle, die den Ausgang des den ersten und zweiten Transistor ansteuernden Stromspiegels bildet, ist bevorzugt als so genannte floatende Stromquelle, also zum Betrieb mit schwebendem Potenzial, ausgelegt. Ein schwebendes Potenzial wird gelegentlich auch als schwimmendes Potenzial bezeichnet.The controlled current source, which forms the output of the current mirror which drives the first and second transistors, is preferably designed as a so-called floating current source, ie for operation with a floating potential. Floating potential is sometimes referred to as floating potential.
Der erste Transistor, die gesteuerte Stromquelle und der zweite Transistor sind in einem gemeinsamen Strompfad angeordnet. Dabei stellt die in der Mitte zwischen den beiden Transistoren angeordnete, gesteuerte Stromquelle, die selbst floatendes Potenzial hat, sicher, dass die Ströme durch ersten und zweiten Transistor identisch groß sind und somit eine noch weiter verbesserte Übereinstimmung zwischen den beiden abgegebenen Bias-Strömen der Stromspiegelanordnung vorliegt.The first transistor, the controlled current source and the second transistor are arranged in a common current path. The controlled current source arranged in the middle between the two transistors, which itself has floating potential, ensures that the currents through the first and second transistors are identical and thus a further improved match between the two emitted bias currents of the current mirror arrangement is present.
Bei den beiden Leitfähigkeitstypen der Transistoren handelt es sich bevorzugt um einen p-Leitfähigkeitstyp und einen n-Leitfähigkeitstyp. Das bedeutet, dass der erste Transistor bevorzugt ein p-Kanal-Transistor und der zweite Transistor ein dazu komplementärer n-Kanal-Transistor ist.The two conductivity types of the transistors are preferably a p-conductivity type and an n-conductivity type. This means that the first transistor is preferably a p-channel transistor and the second transistor is a complementary n-channel transistor.
Der erste Transistor und der zweite Transistor sind bevorzugt je als Diode verschaltet.The first transistor and the second transistor are preferably each connected as a diode.
In einer vorteilhaften Weiterbildung wird der erste Strom und der zweite Strom jeweils an dem mit der gesteuerten Stromquelle verbundenen Lastanschluss des ersten bzw. zweiten Transistors abgegriffen.In an advantageous development, the first current and the second current are each tapped at the load connection of the first and second transistor connected to the controlled current source.
Mit diesem Abgriffsknoten ist jeweils weiter bevorzugt der Steueranschluss des jeweiligen Transistors zur Bildung einer Diode verbunden.In each case, the control connection of the respective transistor is connected to this tap node to form a diode.
Der gemeinsame Strompfad, der die Serienschaltung von erstem Transistor, gesteuerter Stromquelle und zweitem Transistor umfasst, ist bevorzugt zwischen einen Versorgungspotenzialanschluss und einen Bezugspotenzialanschluss geschaltet.The common current path, which comprises the series connection of the first transistor, controlled current source and second transistor, is preferably connected between a supply potential terminal and a reference potential terminal.
Die gesteuerte Stromquelle selbst ist bevorzugt ebenfalls als Transistor, nämlich als Stromquellentransistor, ausgebildet, dessen gesteuerte Strecke mit den gesteuerten Strecken des ersten und zweiten Transistors eine Serienschaltung bildet.The controlled current source itself is preferably also designed as a transistor, namely as a current source transistor, whose controlled path forms a series circuit with the controlled paths of the first and second transistors.
Die gesteuerte Stromquelle bildet bevorzugt mit einem als Diode verschalteten Transistor den Stromspiegel, wobei der als Diode verschaltete Transistor weiter bevorzugt in einem weiteren Strompfad angeordnet ist, der von einer eingangsseitigen Stromquelle gespeist wird. Die Stromquelle in dem weiteren Strompfad dient dabei als Referenzstromquelle.The controlled current source preferably forms the current mirror with a diode-connected transistor, wherein the diode-connected transistor is further preferably arranged in a further current path, that of an input-side Power source is powered. The current source in the further current path serves as a reference current source.
Der weitere Strompfad umfasst aus Symmetriegründen weiter bevorzugt eine weitere Diode, die zwischen den eingangsseitigen Transistor des Stromspiegels und Bezugspotenzial- oder Versorgungspotenzialanschluss geschaltet wird.For reasons of symmetry, the further current path further preferably includes a further diode, which is connected between the input-side transistor of the current mirror and the reference potential or supply potential connection.
Anstelle der weiteren Diode im weiteren Strompfad kann in einer alternativen Ausführungsform ein weiterer Transistor vorgesehen sein, der gemeinsam mit dem zweiten Transistor einen Rückkopplungs-Stromspiegel bildet, wobei der zweite Transistor als Diode verschaltet ist. Die beiden Stromspiegel dieser weitergebildeten Stromspiegelanordnung bilden miteinander einen so genannten Wilson-Stromspiegel.Instead of the further diode in the further current path, in an alternative embodiment, a further transistor may be provided, which together with the second transistor forms a feedback current mirror, wherein the second transistor is connected as a diode. The two current mirrors of this further developed current mirror arrangement form together a so-called Wilson current mirror.
Die Stromspiegel-Anordnung ist bevorzugt in integrierter Schaltungsbauweise hergestellt.The current mirror arrangement is preferably produced in integrated circuit construction.
Insbesondere ist die Stromspiegelanordnung bevorzugt in unipolarer Schaltungstechnik integriert, beispielsweise einer Metall-Isolator-Halbleiter-Struktur.In particular, the current mirror arrangement is preferably integrated in unipolar circuit technology, for example a metal-insulator-semiconductor structure.
Die Stromspiegelanordnung ist bevorzugt in komplementärer MOS-Schaltungstechnik aufgebaut.The current mirror arrangement is preferably constructed in complementary MOS circuit technology.
Die vorgeschlagene Stromspiegelanordnung funktioniert alternativ auch in der komplementären Schaltungsvariante, das bedeutet, dass alle MOS-Transistoren vom n-Kanal-Leitfähigkeitstyp durch Bauteile mit p-Kanal ersetzt werden und umgekehrt.Alternatively, the proposed current mirror arrangement also works in the complementary circuit variant, which means that all n-channel conductivity type MOS transistors are replaced by p-channel devices and vice versa.
Die Erfindung wird nachfolgend anhand von mehreren Ausführungsbeispielen in Zusammenhang mit den Figuren näher erläutert.The invention will be explained in more detail with reference to several embodiments in conjunction with the figures.
Es zeigen dabei:
- Figur 1
- eine Stromspiegelanordnung gemäß Stand der Technik,
- Figur 2
- eine Stromspiegelanordnung gemäß Stand der Technik mit Kaskode-Stufe,
- Figur 3
- das Grundprinzip der vorgeschlagenen Stromspiegelanordnung anhand eines Schaltplans,
- Figur 4
- eine Weiterbildung der Schaltung von
Figur 3 anhand eines Schaltplans und Figur 5- eine Weiterbildung der Schaltung von
Figur 3 mit Wilson-Stromspiegel.
- FIG. 1
- a current mirror arrangement according to the prior art,
- FIG. 2
- a current mirror arrangement according to the prior art with cascode stage,
- FIG. 3
- the basic principle of the proposed current mirror arrangement based on a circuit diagram,
- FIG. 4
- a development of the circuit of
FIG. 3 based on a circuit diagram and - FIG. 5
- a development of the circuit of
FIG. 3 with Wilson current mirror.
Zusätzlich zu dem Strompfad 11, 13, 12 ist ein weiterer Strompfad vorgesehen, der dazu ausgelegt ist, von einem Referenzstrom IREF durchflossen zu werden. Zur Kopplung dieser beiden Strompfade ist ein in
Durch die Verschaltung gemäß
Eine Weiterbildung der Schaltung von
Die floatend betriebene, gesteuerte Stromquelle 13 ist bei
Man erkennt, dass ausgehend von einer Stromspiegelanordnung mit Kaskode-Stufe, wie in
Anstelle des als Diode verschalteten Transistors 20 ist bei
Auch für das Ausführungsbeispiel gemäß
Im Rahmen der Erfindung können alle gezeigten Ausführungsbeispiele auch in komplementärer Ausführung realisiert sein, das bedeutet, dass alle Transistoren vom n-Leitfähigkeitstyp durch p-MOS-Bauteile und umgekehrt ersetzt werden.In the context of the invention, all embodiments shown can also be realized in complementary execution, which means that all transistors of the n-conductivity type are replaced by p-MOS components and vice versa.
Selbstverständlich dienen die gezeigten Ausführungsbeispiele nicht zur Beschränkung der Erfindung, sondern lediglich zu illustrativen Zwecken.Of course, the embodiments shown are not intended to limit the invention, but only for illustrative purposes.
- 11
- BezugspotenzialanschlussReference potential terminal
- 22
- Transistortransistor
- 33
- Transistortransistor
- 44
- Stromquellepower source
- 55
- VersorgungspotenzialanschlussSupply potential terminal
- 66
- Transistortransistor
- 77
- Ausgangoutput
- 88th
- Ausgangoutput
- 99
- Diodediode
- 1010
- Transistortransistor
- 1111
- Transistortransistor
- 1212
- Transistortransistor
- 1313
- gesteuerte Stromquellecontrolled power source
- 13'13 '
- Transistortransistor
- 1414
- VersorgungspotenzialanschlussSupply potential terminal
- 1515
- BezugspotenzialanschlussReference potential terminal
- 1616
- Ausgangoutput
- 1717
- Ausgangoutput
- 1818
- Diodediode
- 1919
- ReferenzstromquelleReference current source
- 20'20 '
- Transistortransistor
Claims (10)
- A current mirror device, comprising- a first transistor (11) which is of a first conductivity type and designed for delivering a first BIAS current (PBIAS),- a second transistor (12) which is of a second conductivity type and designed for delivering a second BIAS current (NBIAS),- a controlled current source (13) which is connected between the first transistor (11) and the second transistor (12) and forms the output of a current mirror,- a transistor (18) being part of the current mirror (18, 13') and connected as a diode being arranged together with a reference current source (19) in an additional current path,- the additional current path (19, 18) comprising an additional diode (20) and- the first transistor (11), the controlled current source (13) and the second transistor (12) being arranged in a common current path connected between a supply terminal and a reference potential terminal (14, 15).
- The current mirror device according to claim 1,
characterized in that
the controlled current source (13) is designed for operating with floating potential. - The current mirror device according to claim 1 or 2,
characterized in that
the first conductivity type and the second conductivity type are complementary to each other. - The current mirror device according to any of the claims 1 to 3,
characterized in that
the first transistor (11) and the second transistor (12) are each connected as a diode. - The current mirror device according to any of the claims 1 to 4,
characterized in that
the first transistor (11) comprises a control terminal which is connected to a terminal of the controlled branch of the first transistor (11) as well as to a terminal of the controlled current source (13) and at which an output (16) for delivering the first current (PBIAS) is formed, and in that the second transistor (12) comprises a control terminal which is connected to a terminal of the controlled branch of the second transistor (12) as well as to an additional terminal of the controlled current source (13) and at which an output (17) for delivering the second current (NBIAS) is formed. - The current mirror device according to any of the claims 1 to 5,
characterized in that
the controlled current source (13) is a current source transistor (13') whose controlled branch forms a series connection together with the controlled branches of the first and second transistors (11, 12). - The current mirror device according to any of the claims 1 to 6,
characterized in that
the controlled current source (13') forms the current mirror together with a transistor (18) connected as a diode. - The current mirror device according to any of the claims 1 to 7,
characterized in that
the additional current path (19, 18) comprises a transistor (20') which forms a feedback current mirror (12, 20') together with the second transistor (12), the second transistor (12) being connected as a diode. - The current mirror device according to any of the claims 1 to 8,
characterized in that
the current mirror device is manufactured in integrated circuit design. - The current mirror device according to any of the claims 1 to 9,
characterized in that
the current mirror device is integrated in complementary metal oxide semiconductor circuit technology.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10184332.4A EP2282249B1 (en) | 2004-04-30 | 2005-04-15 | Current mirror system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004021232A DE102004021232A1 (en) | 2004-04-30 | 2004-04-30 | Current mirror arrangement |
PCT/EP2005/004038 WO2005109144A1 (en) | 2004-04-30 | 2005-04-15 | Current balance arrangement |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10184332.4A Division-Into EP2282249B1 (en) | 2004-04-30 | 2005-04-15 | Current mirror system |
EP10184332.4A Division EP2282249B1 (en) | 2004-04-30 | 2005-04-15 | Current mirror system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1741016A1 EP1741016A1 (en) | 2007-01-10 |
EP1741016B1 true EP1741016B1 (en) | 2012-09-19 |
Family
ID=34967876
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10184332.4A Not-in-force EP2282249B1 (en) | 2004-04-30 | 2005-04-15 | Current mirror system |
EP05742902A Not-in-force EP1741016B1 (en) | 2004-04-30 | 2005-04-15 | Current balance arrangement |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10184332.4A Not-in-force EP2282249B1 (en) | 2004-04-30 | 2005-04-15 | Current mirror system |
Country Status (5)
Country | Link |
---|---|
US (1) | US7872463B2 (en) |
EP (2) | EP2282249B1 (en) |
JP (1) | JP2007535744A (en) |
DE (1) | DE102004021232A1 (en) |
WO (1) | WO2005109144A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8878511B2 (en) * | 2010-02-04 | 2014-11-04 | Semiconductor Components Industries, Llc | Current-mode programmable reference circuits and methods therefor |
US8680840B2 (en) * | 2010-02-11 | 2014-03-25 | Semiconductor Components Industries, Llc | Circuits and methods of producing a reference current or voltage |
JP5500108B2 (en) * | 2011-03-16 | 2014-05-21 | 富士通セミコンダクター株式会社 | Current mirror circuit and amplifier circuit having the same |
US9563222B2 (en) * | 2014-05-08 | 2017-02-07 | Varian Medical Systems, Inc. | Differential reference signal distribution method and system |
CN209248374U (en) * | 2018-12-05 | 2019-08-13 | 北京矽成半导体有限公司 | The fixed delay circuit not influenced by temperature voltage |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5652420A (en) * | 1979-10-03 | 1981-05-11 | Toshiba Corp | Constant-current circuit |
US5034626A (en) * | 1990-09-17 | 1991-07-23 | Motorola, Inc. | BIMOS current bias with low temperature coefficient |
KR930010834A (en) * | 1991-11-25 | 1993-06-23 | 프레데릭 얀 스미트 | Reference current loop |
GB9223338D0 (en) * | 1992-11-06 | 1992-12-23 | Sgs Thomson Microelectronics | Low voltage reference current generating circuit |
JP3436971B2 (en) * | 1994-06-03 | 2003-08-18 | 三菱電機株式会社 | Voltage controlled current source and bias generation circuit using the same |
FR2724025B1 (en) * | 1994-08-31 | 1997-01-03 | Sgs Thomson Microelectronics | INTEGRATED CIRCUIT WITH QUICK START FUNCTION OF VOLTAGE OR REFERENCE CURRENT SOURCES |
US5640122A (en) | 1994-12-16 | 1997-06-17 | Sgs-Thomson Microelectronics, Inc. | Circuit for providing a bias voltage compensated for p-channel transistor variations |
US5694073A (en) * | 1995-11-21 | 1997-12-02 | Texas Instruments Incorporated | Temperature and supply-voltage sensing circuit |
US5680038A (en) * | 1996-06-20 | 1997-10-21 | Lsi Logic Corporation | High-swing cascode current mirror |
JP3853911B2 (en) * | 1997-06-25 | 2006-12-06 | 沖電気工業株式会社 | Constant current circuit and differential amplifier circuit using the same |
US6133749A (en) * | 1999-01-04 | 2000-10-17 | International Business Machines Corporation | Variable impedance output driver circuit using analog biases to match driver output impedance to load input impedance |
US6232831B1 (en) * | 1999-12-02 | 2001-05-15 | National Instruments Corporation | Electrical power supply with floating current source suitable for providing bias voltage and current to an amplified transducer |
US6515538B2 (en) * | 2000-04-19 | 2003-02-04 | Nec Compound Semiconductor Devices, Ltd. | Active bias circuit having wilson and widlar configurations |
FR2834396B1 (en) * | 2002-01-03 | 2004-02-27 | Cit Alcatel | VERY WIDE LOAD PUMP OUTPUT VOLTAGE RANGE |
ITTO20020816A1 (en) * | 2002-09-19 | 2004-03-20 | Atmel Corp | QUICK DYNAMIC LOW VOLTAGE CURRENT MIRROR WITH |
JP2004274207A (en) * | 2003-03-06 | 2004-09-30 | Renesas Technology Corp | Bias voltage generator circuit and differential amplifier |
DE102004042354B4 (en) * | 2004-09-01 | 2008-06-19 | Austriamicrosystems Ag | Current mirror arrangement |
DE102007007579B4 (en) * | 2007-02-15 | 2015-05-21 | Infineon Technologies Ag | transmitter circuit |
US20090066498A1 (en) * | 2007-09-07 | 2009-03-12 | Infineon Technologies Ag | Tire localization systems and methods |
US8077025B2 (en) * | 2007-09-18 | 2011-12-13 | Infineon Technologies, Ag | Intelligent tire systems and methods |
-
2004
- 2004-04-30 DE DE102004021232A patent/DE102004021232A1/en not_active Ceased
-
2005
- 2005-04-15 EP EP10184332.4A patent/EP2282249B1/en not_active Not-in-force
- 2005-04-15 EP EP05742902A patent/EP1741016B1/en not_active Not-in-force
- 2005-04-15 JP JP2007509920A patent/JP2007535744A/en not_active Withdrawn
- 2005-04-15 WO PCT/EP2005/004038 patent/WO2005109144A1/en active Application Filing
- 2005-04-15 US US11/579,023 patent/US7872463B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP2282249A1 (en) | 2011-02-09 |
WO2005109144A1 (en) | 2005-11-17 |
US20080018320A1 (en) | 2008-01-24 |
US7872463B2 (en) | 2011-01-18 |
EP2282249B1 (en) | 2015-10-07 |
DE102004021232A1 (en) | 2005-11-17 |
EP1741016A1 (en) | 2007-01-10 |
JP2007535744A (en) | 2007-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3874974T2 (en) | CMOS POWER OPERATIONAL AMPLIFIER. | |
DE68923937T2 (en) | Constant current source circuit. | |
DE3751661T2 (en) | Operational amplifier circuit with a wide operating range | |
DE60105932T2 (en) | VOLTAGE-LIMITING PRELOAD CIRCUIT FOR REDUCING DEGRADATION EFFECTS IN MOS CASCODE CIRCUITS | |
DE4111103A1 (en) | CMOS BAND GAP REFERENCE CIRCUIT | |
DE10152888A1 (en) | Integrated analog multiplexer used in analog signal processing, has switches that selectively connect multiplexer inputs to inverting input terminal of operational amplifier | |
DE3736380C2 (en) | amplifier | |
DE10142707A1 (en) | Multistage differential amplifier includes current source that additionally feeds current into feedback loop, to prevent current mirror from being switched OFF | |
DE10154170A1 (en) | Differential amplifier with constant transconductance has 2 differential amplifier units with level shifters, constant current source, output currents interconnected for additional output currents | |
EP1741016B1 (en) | Current balance arrangement | |
EP1523703B1 (en) | Band-gap reference circuit | |
DE112005003277B4 (en) | Sense amplifier with a large voltage swing | |
DE3784193T2 (en) | DIFFERENTIAL AMPLIFIER CIRCUIT TO REDUCE RECOVERY TIME. | |
DE19533768C1 (en) | Current sourcing circuit with cross current regulation esp. for CMOS circuit | |
DE69707940T2 (en) | Quiescent current setting for amplifier output stage | |
DE102004042354B4 (en) | Current mirror arrangement | |
DE102004019345B4 (en) | Output stage system | |
DE68928576T2 (en) | Digital amplifier and integrated circuit containing it | |
DE4209858C2 (en) | Transfer conductance amplifier | |
DE102015210217A1 (en) | Apparatus and method for a high precision voltage reference | |
DE102005055415B4 (en) | Circuit arrangement with a gate drive circuit for a power transistor | |
DE3734631C2 (en) | Differential amplifier using MOS transistors of a single channel polarity | |
DE10219003A1 (en) | Integrated circuit has current mirror for providing reference current with node for forming reference current carried by first FET channel from several current components at FET node connection | |
DE102010031575B4 (en) | Amplifier circuit and method | |
EP1430596B1 (en) | Temperature-stabilised amplifier circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20061027 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IE IT |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IE IT |
|
17Q | First examination report despatched |
Effective date: 20080731 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IE IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005013113 Country of ref document: DE Effective date: 20121115 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: AMS AG |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502005013113 Country of ref document: DE Owner name: AMS AG, AT Free format text: FORMER OWNER: AUSTRIAMICROSYSTEMS AG, UNTERPREMSTAETTEN, AT Effective date: 20121218 Ref country code: DE Ref legal event code: R081 Ref document number: 502005013113 Country of ref document: DE Owner name: AMS AG, AT Free format text: FORMER OWNER: AUSTRIAMICROSYSTEMS AG, UNTERPREMSTAETTEN, AT Effective date: 20120919 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130620 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005013113 Country of ref document: DE Effective date: 20130620 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160422 Year of fee payment: 12 Ref country code: IE Payment date: 20160420 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160422 Year of fee payment: 12 Ref country code: FR Payment date: 20160422 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170415 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200420 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005013113 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211103 |