EP1741016B1 - Current balance arrangement - Google Patents

Current balance arrangement Download PDF

Info

Publication number
EP1741016B1
EP1741016B1 EP05742902A EP05742902A EP1741016B1 EP 1741016 B1 EP1741016 B1 EP 1741016B1 EP 05742902 A EP05742902 A EP 05742902A EP 05742902 A EP05742902 A EP 05742902A EP 1741016 B1 EP1741016 B1 EP 1741016B1
Authority
EP
European Patent Office
Prior art keywords
transistor
current
current mirror
controlled
mirror device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05742902A
Other languages
German (de)
French (fr)
Other versions
EP1741016A1 (en
Inventor
Jakob Jongsma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram AG
Original Assignee
Austriamicrosystems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Austriamicrosystems AG filed Critical Austriamicrosystems AG
Priority to EP10184332.4A priority Critical patent/EP2282249B1/en
Publication of EP1741016A1 publication Critical patent/EP1741016A1/en
Application granted granted Critical
Publication of EP1741016B1 publication Critical patent/EP1741016B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is DC
    • G05F3/10Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Definitions

  • the present invention relates to a current mirror arrangement.
  • Current mirrors can be applied in different circuit techniques or integration techniques, for example in MOS, metal oxide semiconductor, circuit technology.
  • FIG. 1 shows an exemplary, known current mirror, which has two transistors 2, 3 connected to a reference potential terminal 1.
  • the transistors 2, 3 of the current mirror are each of the n-type conductivity and connected directly to each other at their control terminals.
  • the input-side transistor 2 of the current mirror has a controlled path, which is connected with a first terminal to the gate terminal of the transistor 2 and with another terminal to the reference potential terminal 1.
  • the connected to the gate terminal of the transistor 2 terminal of the controlled path of the transistor 2 is further connected via a current source 4 to a supply potential terminal 5.
  • the transistor 3 of FIG. 1 has a controlled path, on the one hand to the reference potential terminal 1 and on the other hand to a terminal of another transistor. 6 connected is.
  • the further transistor 6 is connected to the supply potential connection 5 with a further connection of its controlled path and of the p-conductivity type.
  • the control terminal of the transistor 6 is connected to that terminal of its controlled path, which is connected to the transistor 3.
  • the circuit according to FIG. 1 serves to generate two bias signals, namely on the one hand a bias signal NBIAS for n-MOS devices and on the other hand, a bias signal PBIAS for p-MOS devices.
  • the bias signal NBIAS can be tapped off at the control terminals of the n-channel transistors 2, 3 at an output terminal 7.
  • Another output terminal 8, which is connected to the control terminal of the transistor 6, serves as an output for picking up the PBIAS signal.
  • FIG. 2 shows a development of the circuit of FIG. 1 which largely corresponds to this in the components used and their mode of operation, but is supplemented by a cascode stage 9, 10.
  • the cascode stage 9, 10 comprises two transistors, of which one each is connected in the current paths between the current source 4 and the transistor 2 and between the diode 6 and the transistor 3.
  • the transistors 9, 10 of the cascode stage, of which transistor 9 is connected as a diode in turn together form a current mirror.
  • FIG. 1 Opposite the circuit of FIG. 1 has the current mirror arrangement of FIG. 2 with cascode an improved match of the signals NBIAS and PBIAS with each other. Nevertheless, also in the circuit according to FIG. 2 no exact match of the bias signals for components of the opposite, that is to say complementary, conductivity type ensured.
  • NBIAS and PBIAS signals it is desirable to achieve an exact match between NBIAS and PBIAS signals, for example, to operate transistors of complementary conductivity type in matching operating points and / or to provide circuits with high symmetry and good matching.
  • the object of the present invention is to specify a current mirror arrangement which makes it possible to deliver two bias currents which coincide very precisely with one another and are suitable for driving integrated components of different conductivity types.
  • the proposed principle to provide two transistors of different conductivity type each for delivering a current suitable as a bias signal.
  • the first and the second transistor are driven so that they are not themselves the respective output transistor of a current mirror. Rather, it is according to the invention provided that the output transistor of a current mirror is designed as a controlled current source, which is connected between the first and the second transistor.
  • the proposed current mirror arrangement Due to the interconnection of the proposed current mirror arrangement, it is possible to generate exactly matching currents at the first transistor and the second transistor, which enable the respective activation of complementary components in a highly precise manner. In this case, with additional advantage of the circuit complexity compared to a conventional current mirror arrangement for providing complementary bias signals low. As a result, the proposed principle with relatively small chip area and thus be integrated cost.
  • the controlled current source which forms the output of the current mirror which drives the first and second transistors, is preferably designed as a so-called floating current source, ie for operation with a floating potential.
  • floating potential is sometimes referred to as floating potential.
  • the first transistor, the controlled current source and the second transistor are arranged in a common current path.
  • the controlled current source arranged in the middle between the two transistors, which itself has floating potential, ensures that the currents through the first and second transistors are identical and thus a further improved match between the two emitted bias currents of the current mirror arrangement is present.
  • the two conductivity types of the transistors are preferably a p-conductivity type and an n-conductivity type. This means that the first transistor is preferably a p-channel transistor and the second transistor is a complementary n-channel transistor.
  • the first transistor and the second transistor are preferably each connected as a diode.
  • the first current and the second current are each tapped at the load connection of the first and second transistor connected to the controlled current source.
  • control connection of the respective transistor is connected to this tap node to form a diode.
  • the common current path which comprises the series connection of the first transistor, controlled current source and second transistor, is preferably connected between a supply potential terminal and a reference potential terminal.
  • the controlled current source itself is preferably also designed as a transistor, namely as a current source transistor, whose controlled path forms a series circuit with the controlled paths of the first and second transistors.
  • the controlled current source preferably forms the current mirror with a diode-connected transistor, wherein the diode-connected transistor is further preferably arranged in a further current path, that of an input-side Power source is powered.
  • the current source in the further current path serves as a reference current source.
  • the further current path further preferably includes a further diode, which is connected between the input-side transistor of the current mirror and the reference potential or supply potential connection.
  • a further transistor may be provided, which together with the second transistor forms a feedback current mirror, wherein the second transistor is connected as a diode.
  • the two current mirrors of this further developed current mirror arrangement form together a so-called Wilson current mirror.
  • the current mirror arrangement is preferably produced in integrated circuit construction.
  • the current mirror arrangement is preferably integrated in unipolar circuit technology, for example a metal-insulator-semiconductor structure.
  • the current mirror arrangement is preferably constructed in complementary MOS circuit technology.
  • the proposed current mirror arrangement also works in the complementary circuit variant, which means that all n-channel conductivity type MOS transistors are replaced by p-channel devices and vice versa.
  • FIG. 3 shows a current mirror arrangement according to the proposed principle with a first transistor 11, which is of a p-type conductivity, and with a second transistor 12, which is of an n-type conductivity.
  • the first and the second transistor 11, 12 each have a control terminal and one controlled path each. Between each one terminal of the controlled paths of the transistors 11, 12, a current source 13 is connected.
  • the free connection of the controlled path of the transistor 11 is connected to a supply potential terminal 14 and the free connection of the controlled path of the second transistor 12 to a reference potential terminal 15 interconnected.
  • the connected to the current source 13 terminals of the controlled paths of the transistors 11, 12 are connected to the respective control terminal of the associated transistor 11, 12 to form a diode and at the same time form outputs 16, 17 of the current mirror assembly.
  • the first output 16 is designed to deliver a first current PBIAS, while the second output 17 is designed to deliver a second, the first complementary current NBIAS.
  • First and second currents serve as complementary BIAS signals.
  • the current source 13 is designed as a floating current source, that is to say with a floating potential.
  • a further current path is provided, which is designed to be traversed by a reference current I REF .
  • a reference current I REF To couple these two current paths is a in FIG. 3 not explicitly drawn current mirror provided, which is indicated by the fact that the controlled current source 13 is traversed by the n-times the reference current I REF of the first current path.
  • the letter n represents the mirror ratio of the current mirror.
  • the proposed circuit has a low component cost and is inexpensive to integrate with a small chip area and therefore.
  • FIG. 4 A development of the circuit of FIG. 3 for generating identical n-MOS and p-MOS currents by means of a current mirror arrangement FIG. 4 ,
  • the circuit of FIG. 4 agrees in the components used, their advantageous interconnection and operation largely with that of FIG. 3 and will not be repeated at this point.
  • the floating powered controlled current source 13 is at FIG. 4 is formed as a transistor 13 ', which forms the current mirror 18, 13' with an input transistor 18.
  • the input transistor 18 is connected as a diode.
  • the transistor 18 is of the n-channel type.
  • a current source 19 is provided, which connects a supply potential terminal 14 to a terminal of the controlled path of the diode transistor 18, which is also connected to its gate terminal.
  • Another transistor diode 20, also of the n-conductivity type connects the transistor 18 to the reference potential terminal 15.
  • the reference current source 19, the transistor 18 and the diode 20 together form a series circuit.
  • FIG. 5 shows a further embodiment of a development of a current mirror arrangement according to the proposed Principle.
  • the circuit of FIG. 5 agrees in the components used, their interconnection with each other and their advantageous operation largely with that of FIG. 4 and will not be described again at this point.
  • the transistors 12, 20 ' together form a feedback current mirror, which together with the current mirror 18, 13', which operates in the forward direction, forms a Wilson current mirror.
  • the Wilson current mirror 18, 13 '; 12, 20 ' forms a closed loop.
  • bias signals PBIAS, NBIAS which can be tapped off at the outputs 16, 17 exactly match one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Description

Die vorliegende Erfindung betrifft eine Stromspiegelanordnung.The present invention relates to a current mirror arrangement.

Stromspiegel sind als Grundschaltungen mit Transistoren bekannt und beispielsweise in U. Tietze, Ch. Schenk: "Halbleiter-Schaltungstechnik", 10. Auflage 1993, S. 62 bis 63 , beschrieben.Current mirrors are known as basic circuits with transistors and, for example, in U. Tietze, Ch. Schenk: "semiconductor circuit technology", 10th edition 1993, pp 62 to 63 , described.

Stromspiegel können in unterschiedlichen Schaltungstechniken oder Integrationstechniken, beispielsweise in MOS, Metal Oxide Semiconductor, -Schaltungstechnik angewandt werden.Current mirrors can be applied in different circuit techniques or integration techniques, for example in MOS, metal oxide semiconductor, circuit technology.

Figur 1 zeigt einen beispielhaften, bekannten Stromspiegel, der zwei gegen einen Bezugspotenzialanschluss 1 geschaltete Transistoren 2, 3 aufweist. Die Transistoren 2, 3 des Stromspiegels sind jeweils vom n-Leitfähigkeitstyp und an ihren Steueranschlüssen unmittelbar miteinander verbunden. Der eingangsseitige Transistor 2 des Stromspiegels hat eine gesteuerte Strecke, die mit einem ersten Anschluss mit dem Gate-Anschluss des Transistors 2 und mit einem weiteren Anschluss mit dem Bezugspotenzialanschluss 1 verbunden ist. Der mit dem Gate-Anschluss des Transistors 2 verbundene Anschluss der gesteuerten Strecke des Transistors 2 ist weiterhin über eine Stromquelle 4 an einen Versorgungspotenzialanschluss 5 geschaltet. FIG. 1 shows an exemplary, known current mirror, which has two transistors 2, 3 connected to a reference potential terminal 1. The transistors 2, 3 of the current mirror are each of the n-type conductivity and connected directly to each other at their control terminals. The input-side transistor 2 of the current mirror has a controlled path, which is connected with a first terminal to the gate terminal of the transistor 2 and with another terminal to the reference potential terminal 1. The connected to the gate terminal of the transistor 2 terminal of the controlled path of the transistor 2 is further connected via a current source 4 to a supply potential terminal 5.

Auch der Transistor 3 von Figur 1 hat eine gesteuerte Strecke, die einerseits mit dem Bezugspotenzialanschluss 1 und andererseits mit einem Anschluss eines weiteren Transistors 6 verbunden ist. Der weitere Transistor 6 ist mit einem weiteren Anschluss seiner gesteuerten Strecke mit dem Versorgungspotenzialanschluss 5 verbunden und vom p-Leitfähigkeitstyp. Der Steueranschluss des Transistors 6 ist mit demjenigen Anschluss seiner gesteuerten Strecke verbunden, der mit dem Transistor 3 verbunden ist.Also, the transistor 3 of FIG. 1 has a controlled path, on the one hand to the reference potential terminal 1 and on the other hand to a terminal of another transistor. 6 connected is. The further transistor 6 is connected to the supply potential connection 5 with a further connection of its controlled path and of the p-conductivity type. The control terminal of the transistor 6 is connected to that terminal of its controlled path, which is connected to the transistor 3.

Die Schaltung gemäß Figur 1 dient zur Erzeugung zweier Bias-Signale, nämlich einerseits eines Bias-Signals NBIAS für n-MOS-Bauteile und andererseits eines Bias-Signals PBIAS für p-MOS-Bauteile. Das Bias-Signal NBIAS ist an den Steueranschlüssen der n-Kanal-Transistoren 2, 3 an einem Ausgangsanschluss 7 abgreifbar. Ein weiterer Ausgangsanschluss 8, der mit dem Steueranschluss des Transistors 6 verbunden ist, dient als Ausgang zum Abgreifen des PBIAS-Signals.The circuit according to FIG. 1 serves to generate two bias signals, namely on the one hand a bias signal NBIAS for n-MOS devices and on the other hand, a bias signal PBIAS for p-MOS devices. The bias signal NBIAS can be tapped off at the control terminals of the n-channel transistors 2, 3 at an output terminal 7. Another output terminal 8, which is connected to the control terminal of the transistor 6, serves as an output for picking up the PBIAS signal.

Figur 2 zeigt eine Weiterbildung der Schaltung von Figur 1, die dieser in den verwendeten Bauteilen und deren Funktionsweise weitgehend entspricht, jedoch um eine Kaskode-Stufe 9, 10 ergänzt ist. Die Kaskode-Stufe 9, 10 umfasst zwei Transistoren, von denen je einer in die Strompfade zwischen Stromquelle 4 und Transistor 2 sowie zwischen Diode 6 und Transistor 3 geschaltet sind. Dabei bilden die Transistoren 9, 10 der Kaskode-Stufe, von denen Transistor 9 als Diode verschaltet ist, selbst wiederum gemeinsam einen Stromspiegel. FIG. 2 shows a development of the circuit of FIG. 1 which largely corresponds to this in the components used and their mode of operation, but is supplemented by a cascode stage 9, 10. The cascode stage 9, 10 comprises two transistors, of which one each is connected in the current paths between the current source 4 and the transistor 2 and between the diode 6 and the transistor 3. In this case, the transistors 9, 10 of the cascode stage, of which transistor 9 is connected as a diode, in turn together form a current mirror.

Gegenüber der Schaltung von Figur 1 hat die Stromspiegelanordnung von Figur 2 mit Kaskode eine verbesserte Übereinstimmung der Signale NBIAS und PBIAS miteinander. Gleichwohl ist auch bei der Schaltung gemäß Figur 2 keine exakte Übereinstimmung der Bias-Signale für Bauteile vom entgegengesetzten, das heißt komplementären, Leitfähigkeitstyp gewährleistet.Opposite the circuit of FIG. 1 has the current mirror arrangement of FIG. 2 with cascode an improved match of the signals NBIAS and PBIAS with each other. Nevertheless, also in the circuit according to FIG. 2 no exact match of the bias signals for components of the opposite, that is to say complementary, conductivity type ensured.

Vielmehr können auch die Bias-Signale bei der Schaltung von Figur 2 bemerkenswert voneinander abweichen.Rather, the bias signals in the circuit of FIG. 2 remarkably different from each other.

Es ist jedoch in vielen Anwendungen wünschenswert, eine exakte Übereinstimmung zwischen NBIAS- und PBIAS-Signal zu erzielen, um beispielsweise Transistoren von komplementärem Leitfähigkeitstyp in je übereinstimmenden Arbeitspunkten zu betreiben und/oder Schaltungen mit hoher Symmetrie und gutem Matching zu schaffen.However, in many applications, it is desirable to achieve an exact match between NBIAS and PBIAS signals, for example, to operate transistors of complementary conductivity type in matching operating points and / or to provide circuits with high symmetry and good matching.

In dem Dokument US 5,694,073 ist eine Temperatur- und Versorgungsspannung erfassende Schaltung angegeben. Es werden zwei interne Referenzströme IREFP, IREFN in je einem Strompfad erzeugt und in je einer Verstärkerstufe verarbeitet. Dort werden Bias-Ströme IBIASN, IBIASP erzeugt, die je einer Kompensationsstufe zugeführt werden.In the document US 5,694,073 is a temperature and supply voltage detecting circuit specified. Two internal reference currents IREFP, IREFN are each generated in one current path and processed in one amplifier stage each. There are generated bias currents IBIASN, IBIASP, which are each fed to a compensation stage.

Aufgabe der vorliegenden Erfindung ist es, eine Stromspiegelanordnung anzugeben, die es ermöglicht, zwei Bias-Ströme abzugeben, die sehr genau miteinander übereinstimmen und zur Ansteuerung von integrierten Bauteilen unterschiedlichen Leitfähigkeitstyps geeignet sind.The object of the present invention is to specify a current mirror arrangement which makes it possible to deliver two bias currents which coincide very precisely with one another and are suitable for driving integrated components of different conductivity types.

Erfindungsgemäß wird die Aufgabe durch eine Stromspiegelanordnung gelöst, aufweisend die Merkmale des Patentanspruchs 1.According to the invention the object is achieved by a current mirror arrangement, comprising the features of patent claim 1.

Es entspricht dem vorgeschlagenen Prinzip, zwei Transistoren vorzusehen, die von unterschiedlichem Leitfähigkeitstyp sind und je zur Abgabe eines Stroms dienen, der als Bias-Signal geeignet ist. Der erste und der zweite Transistor werden dabei so angesteuert, dass sie nicht selbst der jeweilige Ausgangstransistor eines Stromspiegels sind. Vielmehr ist erfindungsgemäß vorgesehen, dass der Ausgangstransistor eines Stromspiegels als gesteuerte Stromquelle ausgeführt ist, die zwischen den ersten und den zweiten Transistor geschaltet ist.It is the proposed principle to provide two transistors of different conductivity type each for delivering a current suitable as a bias signal. The first and the second transistor are driven so that they are not themselves the respective output transistor of a current mirror. Rather, it is according to the invention provided that the output transistor of a current mirror is designed as a controlled current source, which is connected between the first and the second transistor.

Aufgrund der Verschaltung der vorgeschlagenen Stromspiegelanordnung ist es möglich, an dem ersten Transistor und dem zweiten Transistor exakt miteinander übereinstimmende Ströme zu generieren, die die jeweilige Ansteuerung komplementärer Bauteile in hochpräziser Weise ermöglichen. Dabei ist mit zusätzlichem Vorteil der Schaltungsaufwand gegenüber einer herkömmlichen Stromspiegelanordnung zur Bereitstellung von komplementären Bias-Signalen gering. Dadurch kann das vorgeschlagene Prinzip mit verhältnismäßig geringer Chipfläche und somit kostengünstig integriert werden.Due to the interconnection of the proposed current mirror arrangement, it is possible to generate exactly matching currents at the first transistor and the second transistor, which enable the respective activation of complementary components in a highly precise manner. In this case, with additional advantage of the circuit complexity compared to a conventional current mirror arrangement for providing complementary bias signals low. As a result, the proposed principle with relatively small chip area and thus be integrated cost.

Die gesteuerte Stromquelle, die den Ausgang des den ersten und zweiten Transistor ansteuernden Stromspiegels bildet, ist bevorzugt als so genannte floatende Stromquelle, also zum Betrieb mit schwebendem Potenzial, ausgelegt. Ein schwebendes Potenzial wird gelegentlich auch als schwimmendes Potenzial bezeichnet.The controlled current source, which forms the output of the current mirror which drives the first and second transistors, is preferably designed as a so-called floating current source, ie for operation with a floating potential. Floating potential is sometimes referred to as floating potential.

Der erste Transistor, die gesteuerte Stromquelle und der zweite Transistor sind in einem gemeinsamen Strompfad angeordnet. Dabei stellt die in der Mitte zwischen den beiden Transistoren angeordnete, gesteuerte Stromquelle, die selbst floatendes Potenzial hat, sicher, dass die Ströme durch ersten und zweiten Transistor identisch groß sind und somit eine noch weiter verbesserte Übereinstimmung zwischen den beiden abgegebenen Bias-Strömen der Stromspiegelanordnung vorliegt.The first transistor, the controlled current source and the second transistor are arranged in a common current path. The controlled current source arranged in the middle between the two transistors, which itself has floating potential, ensures that the currents through the first and second transistors are identical and thus a further improved match between the two emitted bias currents of the current mirror arrangement is present.

Bei den beiden Leitfähigkeitstypen der Transistoren handelt es sich bevorzugt um einen p-Leitfähigkeitstyp und einen n-Leitfähigkeitstyp. Das bedeutet, dass der erste Transistor bevorzugt ein p-Kanal-Transistor und der zweite Transistor ein dazu komplementärer n-Kanal-Transistor ist.The two conductivity types of the transistors are preferably a p-conductivity type and an n-conductivity type. This means that the first transistor is preferably a p-channel transistor and the second transistor is a complementary n-channel transistor.

Der erste Transistor und der zweite Transistor sind bevorzugt je als Diode verschaltet.The first transistor and the second transistor are preferably each connected as a diode.

In einer vorteilhaften Weiterbildung wird der erste Strom und der zweite Strom jeweils an dem mit der gesteuerten Stromquelle verbundenen Lastanschluss des ersten bzw. zweiten Transistors abgegriffen.In an advantageous development, the first current and the second current are each tapped at the load connection of the first and second transistor connected to the controlled current source.

Mit diesem Abgriffsknoten ist jeweils weiter bevorzugt der Steueranschluss des jeweiligen Transistors zur Bildung einer Diode verbunden.In each case, the control connection of the respective transistor is connected to this tap node to form a diode.

Der gemeinsame Strompfad, der die Serienschaltung von erstem Transistor, gesteuerter Stromquelle und zweitem Transistor umfasst, ist bevorzugt zwischen einen Versorgungspotenzialanschluss und einen Bezugspotenzialanschluss geschaltet.The common current path, which comprises the series connection of the first transistor, controlled current source and second transistor, is preferably connected between a supply potential terminal and a reference potential terminal.

Die gesteuerte Stromquelle selbst ist bevorzugt ebenfalls als Transistor, nämlich als Stromquellentransistor, ausgebildet, dessen gesteuerte Strecke mit den gesteuerten Strecken des ersten und zweiten Transistors eine Serienschaltung bildet.The controlled current source itself is preferably also designed as a transistor, namely as a current source transistor, whose controlled path forms a series circuit with the controlled paths of the first and second transistors.

Die gesteuerte Stromquelle bildet bevorzugt mit einem als Diode verschalteten Transistor den Stromspiegel, wobei der als Diode verschaltete Transistor weiter bevorzugt in einem weiteren Strompfad angeordnet ist, der von einer eingangsseitigen Stromquelle gespeist wird. Die Stromquelle in dem weiteren Strompfad dient dabei als Referenzstromquelle.The controlled current source preferably forms the current mirror with a diode-connected transistor, wherein the diode-connected transistor is further preferably arranged in a further current path, that of an input-side Power source is powered. The current source in the further current path serves as a reference current source.

Der weitere Strompfad umfasst aus Symmetriegründen weiter bevorzugt eine weitere Diode, die zwischen den eingangsseitigen Transistor des Stromspiegels und Bezugspotenzial- oder Versorgungspotenzialanschluss geschaltet wird.For reasons of symmetry, the further current path further preferably includes a further diode, which is connected between the input-side transistor of the current mirror and the reference potential or supply potential connection.

Anstelle der weiteren Diode im weiteren Strompfad kann in einer alternativen Ausführungsform ein weiterer Transistor vorgesehen sein, der gemeinsam mit dem zweiten Transistor einen Rückkopplungs-Stromspiegel bildet, wobei der zweite Transistor als Diode verschaltet ist. Die beiden Stromspiegel dieser weitergebildeten Stromspiegelanordnung bilden miteinander einen so genannten Wilson-Stromspiegel.Instead of the further diode in the further current path, in an alternative embodiment, a further transistor may be provided, which together with the second transistor forms a feedback current mirror, wherein the second transistor is connected as a diode. The two current mirrors of this further developed current mirror arrangement form together a so-called Wilson current mirror.

Die Stromspiegel-Anordnung ist bevorzugt in integrierter Schaltungsbauweise hergestellt.The current mirror arrangement is preferably produced in integrated circuit construction.

Insbesondere ist die Stromspiegelanordnung bevorzugt in unipolarer Schaltungstechnik integriert, beispielsweise einer Metall-Isolator-Halbleiter-Struktur.In particular, the current mirror arrangement is preferably integrated in unipolar circuit technology, for example a metal-insulator-semiconductor structure.

Die Stromspiegelanordnung ist bevorzugt in komplementärer MOS-Schaltungstechnik aufgebaut.The current mirror arrangement is preferably constructed in complementary MOS circuit technology.

Die vorgeschlagene Stromspiegelanordnung funktioniert alternativ auch in der komplementären Schaltungsvariante, das bedeutet, dass alle MOS-Transistoren vom n-Kanal-Leitfähigkeitstyp durch Bauteile mit p-Kanal ersetzt werden und umgekehrt.Alternatively, the proposed current mirror arrangement also works in the complementary circuit variant, which means that all n-channel conductivity type MOS transistors are replaced by p-channel devices and vice versa.

Die Erfindung wird nachfolgend anhand von mehreren Ausführungsbeispielen in Zusammenhang mit den Figuren näher erläutert.The invention will be explained in more detail with reference to several embodiments in conjunction with the figures.

Es zeigen dabei:

Figur 1
eine Stromspiegelanordnung gemäß Stand der Technik,
Figur 2
eine Stromspiegelanordnung gemäß Stand der Technik mit Kaskode-Stufe,
Figur 3
das Grundprinzip der vorgeschlagenen Stromspiegelanordnung anhand eines Schaltplans,
Figur 4
eine Weiterbildung der Schaltung von Figur 3 anhand eines Schaltplans und
Figur 5
eine Weiterbildung der Schaltung von Figur 3 mit Wilson-Stromspiegel.
It shows:
FIG. 1
a current mirror arrangement according to the prior art,
FIG. 2
a current mirror arrangement according to the prior art with cascode stage,
FIG. 3
the basic principle of the proposed current mirror arrangement based on a circuit diagram,
FIG. 4
a development of the circuit of FIG. 3 based on a circuit diagram and
FIG. 5
a development of the circuit of FIG. 3 with Wilson current mirror.

Figuren 1 und 2 wurden bereits in der Beschreibungseinleitung erläutert. Deren Beschreibung soll daher an dieser Stelle nicht noch einmal wiederholt werden. Figures 1 and 2 were already explained in the introduction to the description. Their description should therefore not be repeated again at this point.

Figur 3 zeigt eine Stromspiegelanordnung gemäß dem vorgeschlagenen Prinzip mit einem ersten Transistor 11, der von einem p-Leitfähigkeitstyp ist, und mit einem zweiten Transistor 12, der von einem n-Leitfähigkeitstyp ist. Der erste und der zweite Transistor 11, 12 haben je einen Steueranschluss und je eine gesteuerte Strecke. Zwischen je einen Anschluss der gesteuerten Strecken der Transistoren 11, 12 ist eine Stromquelle 13 geschaltet. Der freie Anschluss der gesteuerten Strecke des Transistors 11 ist mit einem Versorgungspotenzialanschluss 14 und der freie Anschluss der gesteuerten Strecke des zweiten Transistors 12 mit einem Bezugspotenzialanschluss 15 verschaltet. Die mit der Stromquelle 13 verbundenen Anschlüsse der gesteuerten Strecken der Transistoren 11, 12 sind mit dem jeweiligen Steueranschluss des zugehörigen Transistors 11, 12 zur Bildung einer Diode verbunden und bilden zugleich Ausgänge 16, 17 der Stromspiegelanordnung. Der erste Ausgang 16 ist ausgelegt zur Abgabe eines ersten Stroms PBIAS, während der zweite Ausgang 17 zur Abgabe eines zweiten, zum ersten komplementären Stroms NBIAS ausgelegt ist. Erster und zweiter Strom dienen als komplementäre BIAS-Signale. Gemäß Figur 1 ist die Stromquelle 13 als floatende Stromquelle, also mit schwebendem Potenzial, ausgeführt. FIG. 3 shows a current mirror arrangement according to the proposed principle with a first transistor 11, which is of a p-type conductivity, and with a second transistor 12, which is of an n-type conductivity. The first and the second transistor 11, 12 each have a control terminal and one controlled path each. Between each one terminal of the controlled paths of the transistors 11, 12, a current source 13 is connected. The free connection of the controlled path of the transistor 11 is connected to a supply potential terminal 14 and the free connection of the controlled path of the second transistor 12 to a reference potential terminal 15 interconnected. The connected to the current source 13 terminals of the controlled paths of the transistors 11, 12 are connected to the respective control terminal of the associated transistor 11, 12 to form a diode and at the same time form outputs 16, 17 of the current mirror assembly. The first output 16 is designed to deliver a first current PBIAS, while the second output 17 is designed to deliver a second, the first complementary current NBIAS. First and second currents serve as complementary BIAS signals. According to FIG. 1 the current source 13 is designed as a floating current source, that is to say with a floating potential.

Zusätzlich zu dem Strompfad 11, 13, 12 ist ein weiterer Strompfad vorgesehen, der dazu ausgelegt ist, von einem Referenzstrom IREF durchflossen zu werden. Zur Kopplung dieser beiden Strompfade ist ein in Figur 3 nicht explizit eingezeichneter Stromspiegel vorgesehen, was dadurch angedeutet ist, dass die gesteuerte Stromquelle 13 von dem n-fachen Referenzstrom IREF des ersten Strompfades durchflossen ist. Der Buchstabe n repräsentiert dabei das Spiegelverhältnis des Stromspiegels.In addition to the current path 11, 13, 12, a further current path is provided, which is designed to be traversed by a reference current I REF . To couple these two current paths is a in FIG. 3 not explicitly drawn current mirror provided, which is indicated by the fact that the controlled current source 13 is traversed by the n-times the reference current I REF of the first current path. The letter n represents the mirror ratio of the current mirror.

Durch die Verschaltung gemäß Figur 3 ist sichergestellt, dass die Ströme in dem p-Kanal-Transistor 11 und in dem n-Kanal-Transistor 12 identisch groß sind und damit auch die von den Transistoren bereitgestellten und an den Ausgängen 16, 17 abgreifbaren, komplementären Bias-Signale PBIAS, NBIAS exakt identisch groß sind. Die vorgeschlagene Schaltung hat dabei einen geringen Bauteilaufwand und ist mit geringer Chipfläche und daher kostengünstig integrierbar.Due to the interconnection according to FIG. 3 it is ensured that the currents in the p-channel transistor 11 and in the n-channel transistor 12 are identical, and thus also provided by the transistors and at the outputs 16, 17 can be tapped, complementary bias signals PBIAS, NBIAS exactly the same size. The proposed circuit has a low component cost and is inexpensive to integrate with a small chip area and therefore.

Eine Weiterbildung der Schaltung von Figur 3 zur Erzeugung identischer n-MOS- und p-MOS-Ströme mittels einer Stromspiegelanordnung zeigt Figur 4. Die Schaltung von Figur 4 stimmt in den verwendeten Bauteilen, deren vorteilhafter Zusammenschaltung und Funktionsweise weitgehend mit derjenigen von Figur 3 überein und wird insoweit an dieser Stelle nicht noch einmal wiederholt.A development of the circuit of FIG. 3 for generating identical n-MOS and p-MOS currents by means of a current mirror arrangement FIG. 4 , The circuit of FIG. 4 agrees in the components used, their advantageous interconnection and operation largely with that of FIG. 3 and will not be repeated at this point.

Die floatend betriebene, gesteuerte Stromquelle 13 ist bei Figur 4 als Transistor 13' ausgebildet, der mit einem Eingangstransistor 18 den Stromspiegel 18, 13' bildet. Der Eingangstransistor 18 ist als Diode verschaltet. Ebenso wie der Transistor 13', der als Stromquelle arbeitet, ist der Transistor 18 vom n-Kanal-Typ. Zur Bereitstellung des Referenzstroms IREF ist eine Stromquelle 19 vorgesehen, die einen Versorgungspotenzialanschluss 14 mit einem Anschluss der gesteuerten Strecke des Diodentransistors 18 verbindet, der auch mit dessen Gate-Anschluss verbunden ist. Eine weitere Transistordiode 20, ebenfalls vom n-Leitfähigkeitstyp, verbindet den Transistor 18 mit dem Bezugspotenzialanschluss 15. Somit bilden die Referenzstromquelle 19, der Transistor 18 und die Diode 20 miteinander eine Serienschaltung.The floating powered controlled current source 13 is at FIG. 4 is formed as a transistor 13 ', which forms the current mirror 18, 13' with an input transistor 18. The input transistor 18 is connected as a diode. As well as the transistor 13 ', which operates as a current source, the transistor 18 is of the n-channel type. To provide the reference current I REF , a current source 19 is provided, which connects a supply potential terminal 14 to a terminal of the controlled path of the diode transistor 18, which is also connected to its gate terminal. Another transistor diode 20, also of the n-conductivity type, connects the transistor 18 to the reference potential terminal 15. Thus, the reference current source 19, the transistor 18 and the diode 20 together form a series circuit.

Man erkennt, dass ausgehend von einer Stromspiegelanordnung mit Kaskode-Stufe, wie in Figur 2 gezeigt, nur geringfügige Modifikationen und keinerlei zusätzliche Bauteile erforderliche sind, um gleichwohl mit Vorteil Bias-Ströme, die exakt miteinander übereinstimmen und zum Betrieb komplementärer Bauteile geeignet sind, gemäß der Schaltung von Figur 4 zu erzeugen.It can be seen that starting from a current mirror arrangement with cascode stage, as in FIG. 2 shown, only minor modifications and no additional components are required to nonetheless advantageously bias currents that match exactly and are suitable for operating complementary components, according to the circuit of FIG. 4 to create.

Figur 5 zeigt ein weiteres Ausführungsbeispiel einer Weiterbildung einer Stromspiegelanordnung gemäß vorgeschlagenem Prinzip. Die Schaltung von Figur 5 stimmt in den verwendeten Bauteilen, deren Verschaltung miteinander sowie ihrer vorteilhaften Funktionsweise weitgehend mit der von Figur 4 überein und wird insoweit an dieser Stelle nicht noch einmal beschrieben. FIG. 5 shows a further embodiment of a development of a current mirror arrangement according to the proposed Principle. The circuit of FIG. 5 agrees in the components used, their interconnection with each other and their advantageous operation largely with that of FIG. 4 and will not be described again at this point.

Anstelle des als Diode verschalteten Transistors 20 ist bei Figur 5 der Steueranschluss des dort mit Bezugszeichen 20' versehenen Transistors mit dem Gate-Anschluss des zweiten Transistors 12 verbunden. Dadurch bilden die Transistoren 12, 20' miteinander einen Feedback-Stromspiegel, der zusammen mit dem Stromspiegel 18, 13', der in Vorwärtsrichtung arbeitet, einen Wilson-Stromspiegel bildet. Der Wilson-Stromspiegel 18, 13'; 12, 20' bildet einen geschlossenen Regelkreis.Instead of the diode-connected transistor 20 is at FIG. 5 the control terminal of the transistor provided there with reference numeral 20 'connected to the gate terminal of the second transistor 12. As a result, the transistors 12, 20 'together form a feedback current mirror, which together with the current mirror 18, 13', which operates in the forward direction, forms a Wilson current mirror. The Wilson current mirror 18, 13 '; 12, 20 'forms a closed loop.

Auch für das Ausführungsbeispiel gemäß Figur 5 gilt, dass die an den Ausgängen 16, 17 abgreifbaren Bias-Signale PBIAS, NBIAS exakt miteinander übereinstimmen.Also for the embodiment according to FIG. 5 It is true that the bias signals PBIAS, NBIAS which can be tapped off at the outputs 16, 17 exactly match one another.

Im Rahmen der Erfindung können alle gezeigten Ausführungsbeispiele auch in komplementärer Ausführung realisiert sein, das bedeutet, dass alle Transistoren vom n-Leitfähigkeitstyp durch p-MOS-Bauteile und umgekehrt ersetzt werden.In the context of the invention, all embodiments shown can also be realized in complementary execution, which means that all transistors of the n-conductivity type are replaced by p-MOS components and vice versa.

Selbstverständlich dienen die gezeigten Ausführungsbeispiele nicht zur Beschränkung der Erfindung, sondern lediglich zu illustrativen Zwecken.Of course, the embodiments shown are not intended to limit the invention, but only for illustrative purposes.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
BezugspotenzialanschlussReference potential terminal
22
Transistortransistor
33
Transistortransistor
44
Stromquellepower source
55
VersorgungspotenzialanschlussSupply potential terminal
66
Transistortransistor
77
Ausgangoutput
88th
Ausgangoutput
99
Diodediode
1010
Transistortransistor
1111
Transistortransistor
1212
Transistortransistor
1313
gesteuerte Stromquellecontrolled power source
13'13 '
Transistortransistor
1414
VersorgungspotenzialanschlussSupply potential terminal
1515
BezugspotenzialanschlussReference potential terminal
1616
Ausgangoutput
1717
Ausgangoutput
1818
Diodediode
1919
ReferenzstromquelleReference current source
20'20 '
Transistortransistor

Claims (10)

  1. A current mirror device, comprising
    - a first transistor (11) which is of a first conductivity type and designed for delivering a first BIAS current (PBIAS),
    - a second transistor (12) which is of a second conductivity type and designed for delivering a second BIAS current (NBIAS),
    - a controlled current source (13) which is connected between the first transistor (11) and the second transistor (12) and forms the output of a current mirror,
    - a transistor (18) being part of the current mirror (18, 13') and connected as a diode being arranged together with a reference current source (19) in an additional current path,
    - the additional current path (19, 18) comprising an additional diode (20) and
    - the first transistor (11), the controlled current source (13) and the second transistor (12) being arranged in a common current path connected between a supply terminal and a reference potential terminal (14, 15).
  2. The current mirror device according to claim 1,
    characterized in that
    the controlled current source (13) is designed for operating with floating potential.
  3. The current mirror device according to claim 1 or 2,
    characterized in that
    the first conductivity type and the second conductivity type are complementary to each other.
  4. The current mirror device according to any of the claims 1 to 3,
    characterized in that
    the first transistor (11) and the second transistor (12) are each connected as a diode.
  5. The current mirror device according to any of the claims 1 to 4,
    characterized in that
    the first transistor (11) comprises a control terminal which is connected to a terminal of the controlled branch of the first transistor (11) as well as to a terminal of the controlled current source (13) and at which an output (16) for delivering the first current (PBIAS) is formed, and in that the second transistor (12) comprises a control terminal which is connected to a terminal of the controlled branch of the second transistor (12) as well as to an additional terminal of the controlled current source (13) and at which an output (17) for delivering the second current (NBIAS) is formed.
  6. The current mirror device according to any of the claims 1 to 5,
    characterized in that
    the controlled current source (13) is a current source transistor (13') whose controlled branch forms a series connection together with the controlled branches of the first and second transistors (11, 12).
  7. The current mirror device according to any of the claims 1 to 6,
    characterized in that
    the controlled current source (13') forms the current mirror together with a transistor (18) connected as a diode.
  8. The current mirror device according to any of the claims 1 to 7,
    characterized in that
    the additional current path (19, 18) comprises a transistor (20') which forms a feedback current mirror (12, 20') together with the second transistor (12), the second transistor (12) being connected as a diode.
  9. The current mirror device according to any of the claims 1 to 8,
    characterized in that
    the current mirror device is manufactured in integrated circuit design.
  10. The current mirror device according to any of the claims 1 to 9,
    characterized in that
    the current mirror device is integrated in complementary metal oxide semiconductor circuit technology.
EP05742902A 2004-04-30 2005-04-15 Current balance arrangement Not-in-force EP1741016B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10184332.4A EP2282249B1 (en) 2004-04-30 2005-04-15 Current mirror system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004021232A DE102004021232A1 (en) 2004-04-30 2004-04-30 Current mirror arrangement
PCT/EP2005/004038 WO2005109144A1 (en) 2004-04-30 2005-04-15 Current balance arrangement

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP10184332.4A Division-Into EP2282249B1 (en) 2004-04-30 2005-04-15 Current mirror system
EP10184332.4A Division EP2282249B1 (en) 2004-04-30 2005-04-15 Current mirror system

Publications (2)

Publication Number Publication Date
EP1741016A1 EP1741016A1 (en) 2007-01-10
EP1741016B1 true EP1741016B1 (en) 2012-09-19

Family

ID=34967876

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10184332.4A Not-in-force EP2282249B1 (en) 2004-04-30 2005-04-15 Current mirror system
EP05742902A Not-in-force EP1741016B1 (en) 2004-04-30 2005-04-15 Current balance arrangement

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10184332.4A Not-in-force EP2282249B1 (en) 2004-04-30 2005-04-15 Current mirror system

Country Status (5)

Country Link
US (1) US7872463B2 (en)
EP (2) EP2282249B1 (en)
JP (1) JP2007535744A (en)
DE (1) DE102004021232A1 (en)
WO (1) WO2005109144A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8878511B2 (en) * 2010-02-04 2014-11-04 Semiconductor Components Industries, Llc Current-mode programmable reference circuits and methods therefor
US8680840B2 (en) * 2010-02-11 2014-03-25 Semiconductor Components Industries, Llc Circuits and methods of producing a reference current or voltage
JP5500108B2 (en) * 2011-03-16 2014-05-21 富士通セミコンダクター株式会社 Current mirror circuit and amplifier circuit having the same
US9563222B2 (en) * 2014-05-08 2017-02-07 Varian Medical Systems, Inc. Differential reference signal distribution method and system
CN209248374U (en) * 2018-12-05 2019-08-13 北京矽成半导体有限公司 The fixed delay circuit not influenced by temperature voltage

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652420A (en) * 1979-10-03 1981-05-11 Toshiba Corp Constant-current circuit
US5034626A (en) * 1990-09-17 1991-07-23 Motorola, Inc. BIMOS current bias with low temperature coefficient
KR930010834A (en) * 1991-11-25 1993-06-23 프레데릭 얀 스미트 Reference current loop
GB9223338D0 (en) * 1992-11-06 1992-12-23 Sgs Thomson Microelectronics Low voltage reference current generating circuit
JP3436971B2 (en) * 1994-06-03 2003-08-18 三菱電機株式会社 Voltage controlled current source and bias generation circuit using the same
FR2724025B1 (en) * 1994-08-31 1997-01-03 Sgs Thomson Microelectronics INTEGRATED CIRCUIT WITH QUICK START FUNCTION OF VOLTAGE OR REFERENCE CURRENT SOURCES
US5640122A (en) 1994-12-16 1997-06-17 Sgs-Thomson Microelectronics, Inc. Circuit for providing a bias voltage compensated for p-channel transistor variations
US5694073A (en) * 1995-11-21 1997-12-02 Texas Instruments Incorporated Temperature and supply-voltage sensing circuit
US5680038A (en) * 1996-06-20 1997-10-21 Lsi Logic Corporation High-swing cascode current mirror
JP3853911B2 (en) * 1997-06-25 2006-12-06 沖電気工業株式会社 Constant current circuit and differential amplifier circuit using the same
US6133749A (en) * 1999-01-04 2000-10-17 International Business Machines Corporation Variable impedance output driver circuit using analog biases to match driver output impedance to load input impedance
US6232831B1 (en) * 1999-12-02 2001-05-15 National Instruments Corporation Electrical power supply with floating current source suitable for providing bias voltage and current to an amplified transducer
US6515538B2 (en) * 2000-04-19 2003-02-04 Nec Compound Semiconductor Devices, Ltd. Active bias circuit having wilson and widlar configurations
FR2834396B1 (en) * 2002-01-03 2004-02-27 Cit Alcatel VERY WIDE LOAD PUMP OUTPUT VOLTAGE RANGE
ITTO20020816A1 (en) * 2002-09-19 2004-03-20 Atmel Corp QUICK DYNAMIC LOW VOLTAGE CURRENT MIRROR WITH
JP2004274207A (en) * 2003-03-06 2004-09-30 Renesas Technology Corp Bias voltage generator circuit and differential amplifier
DE102004042354B4 (en) * 2004-09-01 2008-06-19 Austriamicrosystems Ag Current mirror arrangement
DE102007007579B4 (en) * 2007-02-15 2015-05-21 Infineon Technologies Ag transmitter circuit
US20090066498A1 (en) * 2007-09-07 2009-03-12 Infineon Technologies Ag Tire localization systems and methods
US8077025B2 (en) * 2007-09-18 2011-12-13 Infineon Technologies, Ag Intelligent tire systems and methods

Also Published As

Publication number Publication date
EP2282249A1 (en) 2011-02-09
WO2005109144A1 (en) 2005-11-17
US20080018320A1 (en) 2008-01-24
US7872463B2 (en) 2011-01-18
EP2282249B1 (en) 2015-10-07
DE102004021232A1 (en) 2005-11-17
EP1741016A1 (en) 2007-01-10
JP2007535744A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
DE3874974T2 (en) CMOS POWER OPERATIONAL AMPLIFIER.
DE68923937T2 (en) Constant current source circuit.
DE3751661T2 (en) Operational amplifier circuit with a wide operating range
DE60105932T2 (en) VOLTAGE-LIMITING PRELOAD CIRCUIT FOR REDUCING DEGRADATION EFFECTS IN MOS CASCODE CIRCUITS
DE4111103A1 (en) CMOS BAND GAP REFERENCE CIRCUIT
DE10152888A1 (en) Integrated analog multiplexer used in analog signal processing, has switches that selectively connect multiplexer inputs to inverting input terminal of operational amplifier
DE3736380C2 (en) amplifier
DE10142707A1 (en) Multistage differential amplifier includes current source that additionally feeds current into feedback loop, to prevent current mirror from being switched OFF
DE10154170A1 (en) Differential amplifier with constant transconductance has 2 differential amplifier units with level shifters, constant current source, output currents interconnected for additional output currents
EP1741016B1 (en) Current balance arrangement
EP1523703B1 (en) Band-gap reference circuit
DE112005003277B4 (en) Sense amplifier with a large voltage swing
DE3784193T2 (en) DIFFERENTIAL AMPLIFIER CIRCUIT TO REDUCE RECOVERY TIME.
DE19533768C1 (en) Current sourcing circuit with cross current regulation esp. for CMOS circuit
DE69707940T2 (en) Quiescent current setting for amplifier output stage
DE102004042354B4 (en) Current mirror arrangement
DE102004019345B4 (en) Output stage system
DE68928576T2 (en) Digital amplifier and integrated circuit containing it
DE4209858C2 (en) Transfer conductance amplifier
DE102015210217A1 (en) Apparatus and method for a high precision voltage reference
DE102005055415B4 (en) Circuit arrangement with a gate drive circuit for a power transistor
DE3734631C2 (en) Differential amplifier using MOS transistors of a single channel polarity
DE10219003A1 (en) Integrated circuit has current mirror for providing reference current with node for forming reference current carried by first FET channel from several current components at FET node connection
DE102010031575B4 (en) Amplifier circuit and method
EP1430596B1 (en) Temperature-stabilised amplifier circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IE IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IE IT

17Q First examination report despatched

Effective date: 20080731

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IE IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013113

Country of ref document: DE

Effective date: 20121115

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AMS AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005013113

Country of ref document: DE

Owner name: AMS AG, AT

Free format text: FORMER OWNER: AUSTRIAMICROSYSTEMS AG, UNTERPREMSTAETTEN, AT

Effective date: 20121218

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005013113

Country of ref document: DE

Owner name: AMS AG, AT

Free format text: FORMER OWNER: AUSTRIAMICROSYSTEMS AG, UNTERPREMSTAETTEN, AT

Effective date: 20120919

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013113

Country of ref document: DE

Effective date: 20130620

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160422

Year of fee payment: 12

Ref country code: IE

Payment date: 20160420

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160422

Year of fee payment: 12

Ref country code: FR

Payment date: 20160422

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200420

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005013113

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103