EP1733181B2 - Palpeur mixte, optique et mecanique et procede de recalage y afferant - Google Patents

Palpeur mixte, optique et mecanique et procede de recalage y afferant Download PDF

Info

Publication number
EP1733181B2
EP1733181B2 EP05753793.8A EP05753793A EP1733181B2 EP 1733181 B2 EP1733181 B2 EP 1733181B2 EP 05753793 A EP05753793 A EP 05753793A EP 1733181 B2 EP1733181 B2 EP 1733181B2
Authority
EP
European Patent Office
Prior art keywords
sensor
optical
mixed
mechanical
fastener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05753793.8A
Other languages
German (de)
English (en)
Other versions
EP1733181A1 (fr
EP1733181B1 (fr
Inventor
Jean-Claude Garuet-Lempirou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kreon Technologies
Original Assignee
Kreon Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34945225&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1733181(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kreon Technologies filed Critical Kreon Technologies
Publication of EP1733181A1 publication Critical patent/EP1733181A1/fr
Application granted granted Critical
Publication of EP1733181B1 publication Critical patent/EP1733181B1/fr
Publication of EP1733181B2 publication Critical patent/EP1733181B2/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines
    • G01B11/007Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines feeler heads therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • G01B5/012Contact-making feeler heads therefor

Definitions

  • the present invention relates to a mixed probe, optical and mechanical and the related registration process.
  • optical probes make it possible to scan a surface very quickly but the rendering is not very precise. Indeed, the optical probes systematically have a loss of precision. This loss of precision comes mainly from the technology used by the device, as well as the calibration step that precedes each measurement made by the device.
  • the present invention aims to overcome some disadvantages of the prior art by providing a probe which is both an optical probe and a mechanical probe, the mechanical probe used to average the precision loss of the optical probe.
  • the user can thus benefit from the scanning speed of the optical probe while benefiting from a better accuracy thanks to the correction provided by the mechanical probe.
  • Another object is achieved by the method of claim 10.
  • the invention relates to a mixed surface probe.
  • This mixed probe comprises a housing (1) supporting a mechanical probe (2) and an optical probe (3).
  • the housing has a fastener (4) whose function is to fix the composite probe according to the invention, by means of an attachment means (41) on the attachment axis (42) of the manipulator arm. a machine allowing three-dimensional displacements (not represented on the figures 1 and 2 ).
  • the axis of the fastener (42) merges with the axis of revolution of the fastener (4) which is also that of the attachment means (41).
  • the mechanical probe (2) comprises in known manner a cylindrical attachment (21) which is extended by a cylindrical key (23) which carries a ball (22) ruby.
  • the ball (22) is crimped onto the key (23).
  • the ball (22) can digitize and measure by contact all the details of the surface of the piece to be measured by storing at the moment of contact the signals of displacement of an arm. manipulator displacing the sensor
  • the axis of the fastener (42) is parallel and coplanar with the axis of revolution of the attachment (21) of the mechanical probe (2) as well as that of the key (23) which The axis of the fastener (42) passes through the center of the ball (22)
  • the mechanical probe (2) and the fastener (4) are both parallel and coplanar with the axis of the ball (22).
  • the optical probe comprises a laser source (31) composed of at least one laser, a camera (32), for example a light-sensitive matrix and an optic.
  • the optics delimits a so-called laser plane (312), the optics are placed in front of the camera matrix (32) and the distance between the camera (32) and the optics is such that section of the surface of the workpiece to be digitized with the laser beam (311) occurring in the laser plane (312) will have a sharp image on a photosensitive matrix (32).
  • the image of the matrix of the camera (32) through the optics is a parallelepiped, which implies that the field of view of the camera (32) through the optics is a cone of pyramidal section whose base is the parallelepiped image of the matrix of the camera (32) through the optic and the vertex is the optical center (O ').
  • the housing of the mixed probe has a particular shape. Indeed, it is cranked in its middle part, so that it presents a form of bean.
  • the mechanical probe (2), and the fastener (4), are located in the part of the housing of the mixed probe which is in a plane substantially perpendicular to the axis of the fastener (42), this plane is horizontal when the mixed feeler is at rest, the other part of the housing being slightly inclined towards the ball (22).
  • the laser source (31) is located upstream of the mechanical probe (2) so that it is between the laser source (31) and the bend of the housing (1).
  • the laser source (31) is also located in the part of the housing of the mixed probe which is horizontal when the mixed probe is at rest.
  • the camera (32) is located in the inclined portion of the housing of the mixed probe. In the elbow of the housing of the mixed probe, there is a spot (5). More generally, the laser plane (312) and the perpendicular to the camera (32) passing through the optical point (O) are intersecting.
  • the transmission cables of the measuring signals (6) of the mechanical probe (2) come out of the housing (1) either via the fastener (4) or, in another embodiment of the invention, via a cable (7) located in the upper part of the housing of the mixed probe.
  • the cable (7) is oriented to be substantially perpendicular to the axis of the fastener (42) to not restrict the movements of the mixed probe.
  • the machine allowing three-dimensional displacements allows the user to know at each instant the position in a three-dimensional space of the mixed probe according to the invention.
  • This three-dimensional machine also makes it possible to drive the mechanical probe (2) by means of known metrology software.
  • the fact that the mechanical probe (2) and the shaft of the fastener (4) are parallel to each other allows the composite probe according to the invention to be controlled by conventional metrology software.
  • conventional metrology software is designed only to control mechanical feelers whose center of the ball (22) coincides with the axis of the attachment that carries them.
  • the mechanical probe (2) is associated with sensors which make it possible to detect the contact of the ball (22) with the part to be measured, for example, these are contact-breaking sensors.
  • the mixed probe according to the invention must allow the simultaneous digitization of the same object by the optical probe and the mechanical probe. Therefore, the laser source (31) and the camera (32) are located on either side of the mechanical probe, so that it is not in the field of view of the camera (32) nor in the field of the laser beam (311) from the laser source (31) these two fields being intersecting. Thus, the mechanical probe (2) does not disturb the operation of the optical probe (3) thus allowing simultaneous operation of the feelers.
  • the laser source (31) emits a laser beam (311) which comes into contact with the material constituting the workpiece to be digitized.
  • the constituent material of the part will diffuse part of the light emitted by the laser source (31). It is this diffused light that will be perceived by the camera (32).
  • the matrix of the camera (32) is located in the part of the housing of the mixed probe which is inclined, which is why the intersection of its field of vision (321), which has a pyramidal shape, with the plane of the laser beam (311) has the shape of a trapezium (33).
  • the camera (32) is positioned on the housing of the mixed probe so as to best recover the beam scattered by the digitized part.
  • the spot (5) located in the elbow of the housing of the mixed probe, allows the user to know if the part of the part which he scans is well in the field of vision of the camera (32) and therefore to know if he is recovering information or not.
  • the spot (5) is arranged so that it can ideally fulfill this function.
  • the mechanical probe (2) also scans the same portion of the workpiece.
  • the interest for the user to use the combined probe according to the invention lies in the fact that it will be able to benefit from the advantages of optical scanning (its speed and maneuverability) and those of mechanical scanning (its precision). Indeed, this is made possible by the fact that the mixed probe according to the invention uses a method of resetting the reference associated with the image obtained by the optical probe on the reference associated with the image obtained by the mechanical probe for a same scanned object. Measurements made by the mechanical probe being more accurate than those made by the optical probe, it is possible to correct the image obtained by the optical probe and thus obtain a more accurate although an optical probe. As mentioned earlier, optical probes are less accurate than mechanical probes because of the very technology they use. Indeed, the optical probes use a discrete technology whereas the mechanical probes use an analog technology.
  • the optical probes record precision losses in particular during a calibration step (80) of the optical probe during the manufacturing phase.
  • this "factory" calibration makes it possible to identify a so-called calibration matrix (801).
  • This calibration matrix (801) makes it possible to pass from the reference frame of the camera (32) where the coordinates are expressed in pixels, in a reference frame linked to the mixed probe where the coordinates are expressed in the conventional units of the mechanical coordinates.
  • the mixed probe is installed on its support (81) at the user. When the latter wishes to make a measurement using the combination probe according to the invention, it must carry out a calibration (82, 83) of the optical (3) and mechanical (2) probes.
  • Calibration of optical and mechanical probes consists of a mixed measurement, ie mechanical (85) and optical (84), of a part or a standard which is very often a metal ball.
  • This measurement makes it possible to identify a mechanical positioning matrix (830) which expresses the position of the mechanical probe (2) in the reference linked to the fastener (4) and which allows the passage of the reference linked to the center of the ball (22). ) of the mechanical probe (2) to the reference linked to the fastener (4).
  • This measurement also gives access to a so-called optical positioning matrix (823) which expresses the position of the optical sensor (3) in the reference linked to the clip (4) and which allows the passage between the reference frame of the sensor (3) and the reference linked to the fastener (4).
  • the user retrieves two images of the standard, one performed by the mechanical probe (2), the other performed by the optical probe.
  • the two images representing the same object, it would be normal that they overlap perfectly. This is not the case because the image coming from the optical sensor (3) is a cloud of points of precision less than that of the image coming from the mechanical probe (2) which is an almost identical reproduction of the piece that was scanned. This is why the calibration step does not give direct access to the optical positioning matrix (823) which must be corrected in order to allow the registration of the optical image on the mechanical image.
  • the comparison of the references is carried out in a simple manner according to known methods: isostatic or hyperstatic processes, such as for example the process described hereinafter.
  • isostatic or hyperstatic processes such as for example the process described hereinafter.
  • three points are measured by which passes a plane and only one, two points are measured by which passes a line and only one, finally, a point is measured which is used to block the repository.
  • the plane and the right define an orientation and a direction in the repository which makes possible the comparison with another repository. All the points that have been placed in the repository are perfectly defined since they are the product of a mechanical probing.
  • a scatter plot is used to determine a plane
  • another cloud of points is used to determine a line
  • a small group of points is used to determine the blocking point. of the repository.
  • the plane, the line and the blocking point are determined with less precision than during the mechanical probing, this is due to the fact that the optical probe provides a scatter plot and not a more accurate image of the scanned object. as does a mechanical probing.
  • only the average positions of the plane, the line and the blocking point are known.
  • the comparison (820) of the reference frames provides a matrix called “optical correction” matrix (821).
  • the matrix "optical correction” (821) is the tool that will allow the user during the scanning of an object, other than the standard, to reset the reference linked to the image obtained by the optical sensor (3). ) on the reference linked to the image obtained by the mechanical probe (2) and thus to be able to obtain an image from an optical probe which has a higher accuracy than would have provided a conventional optical probe.
  • the images of the digitized part recovered at the end of the mixed measurement (86) are expressed in the repository of the three-dimensional machine.
  • the three-dimensional machine knows at every moment the position of the fastener (4) in its repository called "machine reference".
  • the three-dimensional machine therefore provides a "machine” matrix that expresses the position of the fastener in the "machine repository” and which allows the passage of the repository linked to the fastener to the repository linked to the machine.
  • a simple matrix product between the "machine” matrix and the mechanical positioning matrix (830) makes it possible to obtain the coordinates of the image in the "machine reference” thus enabling the user to be able to use the data resulting from the digitization of the room.
  • the calibration matrix (801)
  • This product allows the passage of the repository of the camera where the coordinates are expressed in pixels to the reference linked to the fastener (4) where the coordinates are expressed in conventional units.
  • a second step it is necessary to realize the product of the matrix result of the preceding product by the matrix "machine”, this makes it possible to obtain the coordinates of the image in the "machine reference” thus allowing the user to be able to exploit the data resulting from the digitization of the part.
  • the data usable by the user are already available at the end of the calibration steps (82, 83).
  • the probe according to the invention combines a mechanical probe (2) with an optical sensor (3).
  • This alliance allows the user to feel in mechanics or palpate in optics. If he decides to palpate in optics, he can by means of a resetting process average the losses of the optical probe. It suffices for this to achieve a mixed probing, ie optical and mechanical, of the same piece called standard. By comparing the references linked to the standard and obtained by each of the two probes, it will be possible to reset the optical reference, resulting from a less accurate probing, on the mechanical reference, resulting from a more accurate probing.
  • the user of the mixed probe according to the invention will be able to obtain, after a simple optical probing, an image closer to the reality, more precise, of the digitized part than that which he would have obtained with a classic optical probe.
  • the probe according to the invention offers, thanks to its mix and the method of registration that accompanies it, a scanning both fast and precise, thus combining the advantages of each of the two probing techniques that are optics and mechanics.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Dental Preparations (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Surgical Instruments (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)
  • Gas-Insulated Switchgears (AREA)

Description

  • La présente invention concerne un palpeur mixte, optique et mécanique et le procédé de recalage y afférant.
  • Il est connu dans l'art antérieur deux types de palpeurs : des palpeurs uniquement optiques ou des palpeurs uniquement mécaniques.
  • Les palpeurs optiques permettent de numériser très rapidement une surface mais le rendu est peu précis. En effet, les palpeurs optiques présentent systématiquement une perte de précision. Cette perte de précision vient essentiellement de la technologie employée par l'appareil, ainsi que de l'étape d'étalonnage qui précède chacune des mesures effectuées par l'appareil.
  • Les palpeurs mécaniques quant à eux sont très précis mais ceci se traduit par une certaine lenteur lors de la prise de mesures. Dans certains domaines d'utilisation des palpeurs, comme par exemple celui du design automobile, il n'est pas nécessaire de connaître la surface numérisée avec une grande précision, mais il est souhaitable que la numérisation soit la plus rapide possible. Dans ces conditions, le palpeur optique semblerait la meilleure solution puisqu'il propose une numérisation rapide. Toutefois, bien que certaines mesures ne nécessitent pas une connaissance précise de la surface numérisée, le palpeur optique n'offre pas une précision suffisamment intéressante. Ceci est dû au fait que les palpeurs optiques créent une perte de précision comme il a été dit plus haut. C'est l'une des raisons pour lesquelles les palpeurs mécaniques sont toujours utilisés dans des domaines dont la classe de précision rendrait pourtant l'usage des palpeurs optiques possibles.
  • La présente invention a pour but de pallier certains inconvénients d e l'art antérieur en proposant un palpeur qui soit à la fois un palpeur optique et un palpeur mécanique, le palpeur mécanique servant à moyenner les pertes de précision du palpeur optique. L'utilisateur pourra ainsi bénéficier de la rapidité de numérisation du palpeur optique tout en bénéficiant d'une meilleure précision grâce à la correction apportée par le palpeur mécanique.
  • Ce but est atteint par un palpeur mixte selon la revendication 1.
  • Un autre but est atteint par le procédé selon la revendication 10.
  • D'autres particularités et avantages de la présente invention apparaîtront plus clairement à la lecture de la description ci-après, faite en référence aux dessins annexés, dans lesquels :
    • la figure 1 représente une vue générale du palpeur mixte selon l'invention,
    • la figure 2 représente le palpeur mixte selon l'invention en fonctionnement ainsi que la délimitation du champ de vision de la caméra du capteur optique,
    • la figure 3 représente l'organigramme de fonctionnement du procédé de recalage selon l'invention,
    • la figure 4 représente le palpeur mixte fixé sur un bras manipulateur, les différents référentiels mis en jeu étant représentés,
    • la figure 5 représente une étape de la comparaison des référentiels issus de la mesure mécanique et de la mesure optique,
    • la figure 6 représente l'ajustement des deux référentiels une fois la comparaison effectuée.
    • L'annexe 1 représente les produits matriciels qui permettent les changements de référentiels nécessaires pour l'obtention des mesures exploitables par l'utilisateur.
  • L'invention concerne un palpeur de surfaces mixte. Ce palpeur mixte comporte un boîtier (1) supportant un palpeur mécanique (2) ainsi qu'un palpeur optique (3). Le boîtier possède une attache (4) qui a pour rôle de fixer le palpeur mixte selon l'invention, par le biais d'un moyen d'attachement (41) sur l'axe d'attache (42) du bras manipulateur d'une machine permettant des déplacements tridimensionnels (non représentées sur les figures 1 et 2). L'axe de l'attache (42) se confond avec l'axe de révolution de l'attache (4) qui est aussi celui du moyen d'attachement (41). Le palpeur mécanique (2) comporte de façon connue un attachement cylindrique (21) qui se prolonge par une touche cylindrique (23) laquelle porte une bille (22) en rubis. La bille (22) est sertie sur la touche (23. La bille (22) peut numériser et mesurer par contact tous les détails de la surface de la pièce à mesurer par la mémorisation au moment du contact des signaux de déplacement d'un bras manipulateur déplaçant le capteur. L'axe de l'attache (42) est parallèle et coplanaire avec l'axe de révolution de l'attachement (21) du palpeur mécanique (2) ainsi qu'avec celui de la touche (23) qui le prolonge. L'axe de l'attache (42) passe par le centre de la bille (22). Le palpeur mécanique (2) et l'attache (4) sont, tous deux, parallèles et coplanaires à l'axe d'attache (42). Le palpeur optique comporte une source laser (31) composée d'au moins un laser, une caméra (32), par exemple une matrice photosensible et une optique. Le faisceau (311) issu de la source laser (31) délimite un plan dit plan laser (312). L'optique est placée devant la matrice de la caméra (32). La distance qui sépare la caméra (32) de l'optique est telle que l'intersection de la surface de la pièce à numériser avec le faisceau laser (311) qui a lieu dans le plan laser (312) aura une image nette sur matrice photosensible (32). L'image de la matrice de la caméra (32) à travers l'optique est un parallélépipède, ce qui implique que le champ de vision de la caméra (32) à travers l'optique est un cône de section pyramidale dont la base est le parallélépipède image de la matrice de la caméra (32) à travers l'optique et le sommet est le centre optique (O').
  • Dans un mode de réalisation préféré, le boîtier du palpeur mixte a une forme particulière. En effet, il est coudé dans sa partie médiane, de sorte qu'il présente une forme de haricot. Le palpeur mécanique (2), et l'attache (4), se situent dans la partie du boîtier du palpeur mixte qui est dans un plan sensiblement perpendiculaire à l'axe de l'attache (42), ce plan est horizontal lorsque le palpeur mixte est au repos, l'autre partie du boîtier étant légèrement inclinée en direction de la bille (22). La source laser (31) se situe en amont du palpeur mécanique (2) de sorte que celui-ci est compris entre la source laser (31) et le coude du boîtier (1). La source laser (31) est, elle aussi, située dans la partie du boîtier du palpeur mixte qui est horizontale lorsque le palpeur mixte est au repos. La caméra (32) se situe dans la partie inclinée du boîtier du palpeur mixte. Dans le coude du boîtier du palpeur mixte, se situe un spot (5). De manière plus générale, le plan laser (312) et la perpendiculaire à la caméra (32) passant parle point optique (O) sont sécants. Les câbles de transmission des signaux de mesure (6) du palpeur mécanique (2) sortent du boîtier (1) soit par le biais de l'attache (4) soit, dans un autre mode de réalisation de l'invention, par le biais d'un câble (7) situé dans la partie supérieure du boîtier du palpeur mixte. Le câble (7) est orienté pour être sensiblement perpendiculaire à l'axe de l'attache (42) pour ne pas restreindre les mouvements du palpeur mixte.
  • La machine permettant les déplacements tridimensionnels permet à l'utilisateur de connaître à chaque instant la position dans un espace tridimensionnel du palpeur mixte selon l'invention. Cette machine tridimensionnelle, connue de l'art antérieur, permet également de piloter le palpeur mécanique (2) par le biais de logiciels de métrologie connus. Le fait que le palpeur mécanique (2) et l'arbre de l'attache (4) soient parallèles entre eux permet au palpeur mixte selon l'invention de pouvoir être commandé par des logiciels de métrologie classiques. En effet, les logiciels de métrologie classiques ne sont conçus que pour piloter des palpeurs mécaniques dont le centre de la bille (22) est confondu avec l'axe de l'attachement qui les porte. Le palpeur mécanique (2) est associé à des capteurs qui permettent de détecter le contact de la bille (22) avec la pièce à mesurer, ce sont par exemple des capteurs à rupture de contact.
  • Le palpeur mixte selon l'invention doit permettre la numérisation simultanée d'un même objet par le palpeur optique et par le palpeur mécanique. C'est pourquoi, la source laser (31) et la caméra (32) sont situées de part et d'autre du palpeur mécanique, de sorte que celui-ci ne se trouve pas dans le champ de vision de la caméra (32) ni dans le champ du faisceau laser (311) issu de la source laser (31) ces deux champs étant sécants. Ainsi, le palpeur mécanique (2) ne perturbe pas le fonctionnement du palpeur optique (3) permettant ainsi un fonctionnement simultané des palpeurs.
  • Lorsque le palpeur mixte selon l'invention est en fonctionnement, la source laser (31) émet un faisceau laser (311) lequel entre en contact avec la matière constitutive de la pièce à numériser. Quand le faisceau laser entre en contact avec la pièce à numériser, la matière constitutive de la pièce va diffuser une partie de la lumière émise par la source laser (31). C'est cette lumière diffusée que va percevoir la caméra (32). La matrice de la caméra (32) se trouve dans la partie du boîtier du palpeur mixte qui est inclinée, c'est pourquoi l'intersection de son champ de vision (321), qui a une forme pyramidale, avec le plan du faisceau laser (311) présente la forme d'un trapèze (33). La caméra (32) est positionnée sur le boîtier du palpeur mixte de façon à pouvoir récupérer au mieux le faisceau diffusé par la pièce numérisée. Le spot (5), situé dans le coude du boîtier du palpeur mixte, pe rmet à l'utilisateur de savoir si la partie de la pièce qu'il numérise se situe bien dans le champ de vision de la caméra (32) et donc de savoir si il récupère ou non de l'information. Le spot (5) est disposé de sorte à pouvoir remplir idéalement cette fonction. Simultanément à cette prise de mesure optique, le palpeur mécanique (2) numérise également la même portion de la pièce.
  • L'intérêt pour l'utilisateur d'utiliser le palpeur mixte selon l'invention réside dans le fait qu'il va pouvoir bénéficier des avantages de la numérisation optique (sa rapidité et sa maniabilité) et de ceux de la nu mérisation mécanique (sa précision). En effet, ceci est rendu possible par le fait que le palpeur mixte selon l'invention utilise un procédé de recalage du référentiel associé à l'image obtenue par le palpeur optique sur le référentiel associé à l'image obtenue par le palpeur mécanique pour un même objet numérisé. Les mesures effectuées par le palpeur mécanique étant plus précise que celles effectuées par le palpeur optique, il est possible de corriger l'image obtenue par le palpeur optique et d'en obtenir ainsi une plus précise bien qu'issue d'un palpeur optique. Comme il l'a été dit précédemment, les palpeurs optiques sont moins précis que les palpeurs mécaniques à cause la technologie même qu'ils utilisent. En effet, les palpeurs optiques utilisent une technologie discrète alors que les palpeurs mécaniques utilisent une technologie analogique. De plus, les palpeurs optiques enregistrent des pertes de précision notamment lors d'une étape de calibration (80) du palpeur optique au cours de la phase de fabrication. Toutefois, cette calibration "usine" permet d'identifier une matrice dite matrice de calibration (801). Cette matrice de calibration (801) permet de passer du référentiel de la caméra (32) où les coordonnées sont exprimées en pixels, dans un référentiel lié au palpeur mixte où les coordonnées sont exprimées dans les unités classiques des coordonnées mécaniques. Une fois sorti de l'usine, le palpeur mixte est installé sur son support (81) chez l'utilisateur. Lorsque celui-ci souhaite effectuer une mesure à l'aide du palpeur mixte selon l'invention, il doit procéder à un étalonnage (82, 83) des palpeurs optique (3) et mécanique (2). L'étalonnage des palpeurs optique et mécanique consiste en une mesure mixte, c'est à dire mécanique (85) et optique (84), d'une pièce ou d'un étalon qui est bien souvent une bille métallique. Cette mesure permet d'identifier une matrice de positionnement mécanique (830) qui exprime la position du palpeur mécanique (2) dans le référentiel lié à l'attache (4) et qui permet le passage du référentiel lié au centre de la bille (22) du palpeur mécanique (2) au référentiel lié à l'attache (4). Cette mesure donne également accès à une matrice dite de positionnement optique (823) qui exprime la positon du capteur optique (3) dans le référentiel lié à l'attache (4) et qui permet le passage entre le référentiel du capteur (3) et le référentiel lié à l'attache (4). A l'issue de l'étalonnage, l'utilisateur récupère deux images de l'étalon, l'une effectuée par le palpeur mécanique (2), l'autre effectuée par le palpeur optique. Les deux images représentant le même objet, il serait normal qu'elles se superposent parfaitement. Ce n'est pas le cas, car l'image issue du capteur optique (3) est un nuage de points de précision inférieure à celle de l'image issue du palpeur mécanique (2) qui est une reproduction presque à l'identique de la pièce qui a été numérisée. C'est pourquoi l'étape d'étalonnage ne donne pas un accès direct à la matrice de positionnement optique (823) celle-ci devant être corrigée afin de permettre le recalage de l'image optique sur l'image mécanique. Afin de pouvoir obtenir à terme un recalage de l'image optique par rapport à l'image mécanique, il faut procéder à une comparaison (820) des référentiels liés à l'étalon et déterminés par le palpeur mécanique (2) et par le palpeur optique (3). La comparaison des réfé rentiels s'effectue de façon simple selon des procédés connus : procédés isostatiques ou hyperstatiques, comme par exemple le procédé décrit ci-après. Afin de calculer le référentiel de l'étalon déterminé par le palpeur mécanique (2), trois points sont mesurés par lesquels passe un plan et un seul, deux points sont mesurés par lesquels passe une droite et une seule, enfin, un point est mesuré qui sert à bloquer le référentiel. Le plan et la droite permettent de définir une orientation et une direction dans le référentiel ce qui rend possible la comparaison avec un autre référentiel. Tous les points qui ont été placés dans le référentiel sont parfaitement définis puisqu'ils sont le produit d'un palpage mécanique. Dans le référentiel de l'étalon déterminé par le palpeur optique (3), un nuage de points sert à déterminer un plan, un autre nuage de points sert à déterminer une droite, et un petit groupe de points sert à déterminer le point de blocage du référentiel. Ici, le plan, la droite et le point de blocage sont déterminés avec moins de précision que lors du palpage mécanique, ceci est dû au fait que le palpage optique fourni un nuage de points et non pas une image plus précise de l'objet numérisé comme le fait un palpage mécanique. Dans le cas du référentiel obtenu par palpage optique, seules les positions moyennes du plan, de la droite et du point de blocage sont connues. Ce sont ces positions moyennes du plan, de la droite et du point de blocage obtenues par palpage optique qu'il faut recaler sur les positions, bien déterminées, du plan, de la droite, et du point de blocage du référentiel obtenues par palpage mécanique. La comparaison (820) des référentiels fourni une matrice dite matrice "correction optique " (821). La matrice "correction optique" (821) est l'outil qui permettra à l'utilisateur lors de la numérisation d'un objet, autre que l'étalon, de recaler le référentiel lié à l'image obtenue par le capteur optique (3) sur le référentiel lié à l'image obtenue par le palpeur mécanique (2) et ainsi de pouvoir obtenir une image à partir d'un palpeur optique qui possède une précision supérieure à celle qu'aurait fourni un palpeur optique classique. Une fois la matrice "correction optique" (321) identifiée, il est possible de choisir les corrections que l'on veut apporter à la matrice de positionnement optique, on peut par exemple choisir de recaler une direction de l'espace préférentiellement aux deux autres. Ceci constitue l'étape d'affinage (822) de la matrice de positionnement optique (823). Par un simple produit matriciel entre la matrice "correction optique" (821) et la matrice positionnement optique (823) obtenue à l'issue de l'étalonnage, il est possible d'obtenir la matrice positionnement optique corrigée. C'est cette matrice positionnement optique corrigée qui sera utilisée lors de la numérisation du prochain objet (86).
  • Les images de la pièce numérisée récupérées à l'issue de la mesure mixte (86), sont exprimées dans le référentiel de la machine tridimensionnelle. La machine tridimensionnelle connaît à chaque instant la position de l'attache (4) dans son référentiel dit "référentiel machine". La machine tridimensionnelle fourni donc une matrice "machine" qui exprime la position de l'attache dans le "référentiel machine" et qui permet le passage du référentiel lié à l'attache au référentiel lié à la machine. Un simple produit matriciel entre la matrice "machine" et la matrice de positionnement mécanique (830) permet d'obtenir les coordonnées de l'image dans le "référentiel machine" permettant ainsi à l'utilisateur de pouvoir exploiter les données issues de la numérisation de la pièce. En ce qui concerne les données issues du palpage optique, il faut dans un premier temps réaliser le produit de la matrice positionnement optique (823) par la matrice calibration (801). Ce produit permet le passage du référentiel de la caméra où les coordonnées sont exprimées en pixels au référentiel lié à l'attache (4) où les coordonnées sont exprimées en unités classiques. Dans un second temps, il faut réaliser le produit de la matrice résultat du produit précédent par la matrice "machine", ceci permet d'obtenir les coordonnées de l'image dans le "référentiel machine" permettant ainsi à l'utilisateur de pouvoir exploiter les données issues de la numérisation de la pièce. Les données exploitables par l'utilisateur sont déjà disponibles à l'issue des étapes d'étalonnage (82, 83).
  • Le palpeur selon l'invention allie un palpeur mécanique (2) à un capteur optique (3). Cette alliance permet à l'utilisateur soit de palper en mécanique soit de palper en optique. Si il décide de palper en optique, il pourra par le biais d'un procédé de recalage moyenner les pertes du palpeur optique. Il suffit pour cela de réaliser un palpage mixte, c'est à dire optique et mécanique, d'une même pièce dite étalon. En comparant les référentiels liés à l'étalon et obtenus par chacun des deux palpeurs, il sera possible de recaler le référentiel optique, issu d'un palpage moins précis, sur le référentiel mécanique, issu d'un palpage plus précis. En utilisant ce recalage, l'utilisateur du palpeur mixte selon l'invention pourra obtenir à l'issue d'un simple palpage optique une image plus proche de la réalité, plus précise, de la pièce numérisée que celle qu'il aurait obtenu avec un palpeur optique classique. Le palpeur selon l'invention offre, grâce à sa mixité et au procédé de recalage qui l'accompagne, une numérisation à la fois rapide et précise alliant ainsi les avantages de chacune des deux techniques de palpage que sont l'optique et le mécanique.
  • Il doit être évident, pour les personnes versées dans l'art, que la présente invention permet des modes de réalisation sous de nombreuses autres formes spécifiques sans l'éloigner du domaine d'application de l'invention comme revendiqué. Par conséquent, les présents modes de réalisation doivent être considérés à titre d'illustration, mais peuvent être modifiés dans le domaine défini par la portée des revendications jointes, et l'invention ne doit pas être limitée aux détails donnés ci-dessus.
  • Annexe 1 Otique :
  • Figure imgb0001
  • Mécanique :
  • x y z = Coordonnées de lʹattache dans le référentiel de la machine Coordonnées du centre de la bille du palpeur mécanique dans le référentiel de lʹattache 830 0 0 0
    Figure imgb0002

Claims (18)

  1. Palpeur mixte comportant:
    - un boîtier (1) supportant un palpeur mécanique (2) à bille (22),
    - un capteur optique (3) logé dans le boîtier (1) composé d'une source laser (31) dont le faisceau laser (311) est destiné à palper la pièce à numériser et d'une caméra (32) destinée à récupérer le faisceau diffusé par la matière de la pièce à numériser,
    - une attache (4) destinée à être montée dans un moyen de fixation, l'attache (4) permet de fixer le palpeur selon l'invention sur une machine permettant des déplacements tridimensionnels,
    caractérisé en ce que l'axe de révolution (42) de l'attache (4) passe par le centre de la bille (22), et en ce que le boîtier possède l'attache permettant de fixer le palpeur mixte sur une machine permettant des déplacements tridimensionnels, en ce que la source laser (31) et la caméra (32) se trouvent de part et d'autre du palpeur mécanique (2), la source laser (31) se situant dans la partie du boîtier (1) sensiblement perpendiculaire à l'axe de l'attache (42) et la caméra (32) se situant dans la partie inclinée du boîtier (1) du palpeur mixte; en ce que le palpeur mécanique (2) ne se trouve pas dans le champ de vision de la caméra (32) permettant le fonctionnement simultané du palpeur mécanique (2) et du capteur optique (3).
  2. Palpeur mixte selon la revendication 1, caractérisé en ce que la position du centre de la bille (22) du palpeur mécanique (2) par rapport à l'axe de révolution (42) de l'attache (4) est défini pour permettre des déplacements tridimensionnels pilotées par des logiciels de métrologie classiques conçus pour commander des palpeurs mécaniques dont l'axe de l'attachement qui porte le palpeur passe par le centre de la bille (22) du palpeur.
  3. Palpeur mixte selon la revendication 1, caractérisé en ce que le plan laser (312) et l'axe optique sont sécants.
  4. Palpeur mixte selon la revendication 1, caractérisé en ce que le palpeur mécanique (2) se situe dans une partie du boîtier (1) sensiblement perpendiculaire à l'axe de l'attache (42) l'autre partie du boîtier (1) formant un angle orienté en direction de la bille (22) du palpeur mécanique (2).
  5. Palpeur mixte selon une des revendications 1 et 3 à 4 caractérisé en ce que la position de la caméra (32) dans le boîtier du palpeur mixte est déterminée de sorte que la lumière diffusée par la pièce à numériser vers la caméra provient d'une zone à l'intersection du champ de vision (321) de la caméra (32), avec le plan du faisceau laser (311).
  6. Palpeur mixte selon la revendication 5, caractérisé en ce que un spot (5) est situé dans le coude du boîtier (1) du palpeur mixte dont le rôle est de guider l'utilisateur au cours de la mesure optique, le spot (5) étant positionné dans le champ de vision de la caméra.
  7. Palpeur mixte selon la revendication 5, caractérisé en ce que l'intersection du champ de vision pyramidal de la caméra (32) avec le plan contenant le faisceau laser (311) forme un trapèze (33).
  8. Palpeur mixte selon la revendication 1, caractérisé en ce que les câbles de transmission des mesures (6) du palpeur mécanique (2) sortent dans la partie supérieure du boîtier (1) du palpeur mixte et sont reliés à une électronique de contrôle de la machine qui supporte le palpeur.
  9. Palpeur mixte selon la revendication 1, caractérisé en ce que l'axe de révolution (42) de l'attache (4) est parallèle et coplanaire avec l'axe de révolution d'un attachement cylindrique (21) ainsi qu'avec celui d'une touche (23).
  10. Procédé de recalage pour palpeur mixte comportant
    - un boîtier (1) supportant un palpeur mécanique (2) à bille (22),
    - un capteur optique (3) logé dans le boîtier (1) composé d'une source laser (31) dont le faisceau laser (311) est destiné à palper la pièce à numériser et d'une caméra (32) destinée à récupérer le faisceau diffusé par la matière de la pièce à numériser,
    - une attache (4) destinée à être montée dans un moyen de fixation, l'attache (4) permet de fixer le palpeur selon l'invention sur une machine permettant des déplacements tridimensionnels,
    caractérisé en ce que l'axe de révolution (42) de l'attache (4) passe par le centre de la bille (22), caractérisé en ce qu'il comporte une étape de calibration (80) du capteur optique (3), une étape de mesure par le capteur optique (82) et par le palpeur mécanique (83) d'un objet étalon qui réalisent une étape d'étalonnage mixte, une boucle de recalage (820 à 823) des mesures du capteur optique par rapport aux mesures du capteur mécanique, une étape de mesure d'un autre objet (86) à partir d'un capteur optique après recalage du référentiel lié à l'image obtenue par le capteur optique sur le référentiel lié à l'image obtenue par le palpeur mécanique.
  11. Procédé de recalage pour palpeur mixte selon la revendication 10, caractérisé en ce que l'étape de calibration (80) permet de récupérer une matrice dite matrice de calibration (801) qui permet de passer du référentiel de la caméra (32) au référentiel lié au palpeur mixte.
  12. Procédé de recalage pour palpeur mixte selon une des revendications 10 ou 11, caractérisé en ce que l'étape d'étalonnage mixte consiste en une mesure par le capteur optique (3) et par le palpeur mécanique (2) d'une pièce étalon, cette mesure permet de récupérer une matrice dite matrice de positionnement optique (823) qui permet de mesurer le référentiel de l'image optique par rapport au référentiel de l'attache (4), cette mesure permet également de récupérer une matrice dite matrice de positionnement mécanique (830) qui permet de mesurer le référentiel de l'image mécanique par rapport au référentiel de l'attache (4).
  13. Procédé de recalage pour palpeur mixte selon la revendication 12, caractérisé en ce que la boucle de recalage comprend une étape de comparaison (820), une étape d'affinage (822).
  14. Procédé de recalage selon la revendication 13, caractérisé en ce que l'étape de comparaison (820) consiste en une comparaison des référentiels liés à chacune des images, optique et mécanique, de l'étalon.
  15. Procédé de recalage pour palpeur mixte selon la revendication 14, caractérisé en ce que la comparaison des référentiels se fait, par le biais d'un procédé isostatique ou hyperstatique.
  16. Procédé de recalage pour palpeur mixte selon une des revendications 14 ou 15, caractérisé en ce que la comparaison (820) permet de récupérer une matrice dite matrice correction optique (821) qui permet le recalage du référentiel lié à l'image obtenue par le capteur optique (3) sur celui lié à l'image obtenue par le palpeur mécanique (2).
  17. Procédé de recalage pour palpeur mixte selon la revendication 13 caractérisé en ce que l'étape d'affinage (822) permet de corriger la matrice positionnement optique (823) à l'aide de la matrice correction optique (821), au cours de cette étape, l'utilisateur peut choisir dans quelle mesure il veut recaler la matrice de positionnement optique (823) et donc son image.
  18. Procédé de recalage pour palpeur mixte selon une des revendications 10 à 17, caractérisé en ce que pour obtenir les coordonnées de l'image numérisée au cours de l'étape de mesure (85) dans le référentiel de la machine tridimensionnelle pour en simplifier le traitement, il faut procéder à un produit matriciel entre la matrice de positionnement mécanique (830) ou optique (823) et une matrice dite matrice machine, cette matrice machine est fournie par la machine tridimensionnelle et permet de passer du référentiel lié à l'attache (4) à celui lié à la machine tridimensionnelle.
EP05753793.8A 2004-04-06 2005-04-05 Palpeur mixte, optique et mecanique et procede de recalage y afferant Active EP1733181B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0403621A FR2868349B1 (fr) 2004-04-06 2004-04-06 Palpeur mixte, optique et mecanique et procede de recalage y afferant
PCT/FR2005/000827 WO2005100908A1 (fr) 2004-04-06 2005-04-05 Palpeur mixte, optique et mecanique et procede de recalage y afferant

Publications (3)

Publication Number Publication Date
EP1733181A1 EP1733181A1 (fr) 2006-12-20
EP1733181B1 EP1733181B1 (fr) 2010-02-24
EP1733181B2 true EP1733181B2 (fr) 2014-03-05

Family

ID=34945225

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05753793.8A Active EP1733181B2 (fr) 2004-04-06 2005-04-05 Palpeur mixte, optique et mecanique et procede de recalage y afferant

Country Status (5)

Country Link
EP (1) EP1733181B2 (fr)
AT (1) ATE458982T1 (fr)
DE (1) DE602005019551D1 (fr)
FR (1) FR2868349B1 (fr)
WO (1) WO2005100908A1 (fr)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006031580A1 (de) 2006-07-03 2008-01-17 Faro Technologies, Inc., Lake Mary Verfahren und Vorrichtung zum dreidimensionalen Erfassen eines Raumbereichs
FR2930819B1 (fr) * 2008-04-30 2012-07-13 Peugeot Citroen Automobiles Sa Procede de determination de la precision d'un capteur de mesure d'un appareil de mesure d'ecart de forme a plateau tournant
US7908757B2 (en) 2008-10-16 2011-03-22 Hexagon Metrology, Inc. Articulating measuring arm with laser scanner
DE102009015920B4 (de) 2009-03-25 2014-11-20 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
DE102009057101A1 (de) 2009-11-20 2011-05-26 Faro Technologies, Inc., Lake Mary Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US8630314B2 (en) 2010-01-11 2014-01-14 Faro Technologies, Inc. Method and apparatus for synchronizing measurements taken by multiple metrology devices
CN102947667A (zh) 2010-01-20 2013-02-27 法罗技术股份有限公司 具有可移除的附件装置的坐标测量机
GB2489370B (en) 2010-01-20 2014-05-14 Faro Tech Inc Coordinate measuring machine having an illuminated probe end and method of operation
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US8832954B2 (en) 2010-01-20 2014-09-16 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
JP2013517502A (ja) 2010-01-20 2013-05-16 ファロ テクノロジーズ インコーポレーテッド 複数の通信チャネルを有する可搬型の関節アーム座標測定機
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US8677643B2 (en) 2010-01-20 2014-03-25 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US9879976B2 (en) 2010-01-20 2018-01-30 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US8875409B2 (en) 2010-01-20 2014-11-04 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8898919B2 (en) 2010-01-20 2014-12-02 Faro Technologies, Inc. Coordinate measurement machine with distance meter used to establish frame of reference
US8615893B2 (en) 2010-01-20 2013-12-31 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine having integrated software controls
DE102010020925B4 (de) 2010-05-10 2014-02-27 Faro Technologies, Inc. Verfahren zum optischen Abtasten und Vermessen einer Umgebung
WO2012033892A1 (fr) 2010-09-08 2012-03-15 Faro Technologies, Inc. Dispositif de balayage laser ou dispositif de poursuite laser équipé d'un projecteur
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
DE102012100609A1 (de) 2012-01-25 2013-07-25 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
DE102012109481A1 (de) 2012-10-05 2014-04-10 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
WO2015110163A1 (fr) 2014-01-23 2015-07-30 Carl Zeiss Industrielle Messtechnik Gmbh Procédé d'évaluation de données de mesure de coordonnées et dispositif
WO2015155209A1 (fr) 2014-04-08 2015-10-15 Nikon Metrology Nv Unité de sonde de mesure pour des applications de métrologie
WO2016044658A1 (fr) 2014-09-19 2016-03-24 Hexagon Metrology, Inc. Machine de mesure de coordonnées portative multi-mode
DE102015103373A1 (de) * 2015-03-09 2015-12-31 Hochschule Aalen Messelement für ein Koordinatenmessgerät
DE102015122844A1 (de) 2015-12-27 2017-06-29 Faro Technologies, Inc. 3D-Messvorrichtung mit Batteriepack
GB201603496D0 (en) * 2016-02-29 2016-04-13 Renishaw Plc Method and apparatus for calibrating a scanning probe
US11022434B2 (en) 2017-11-13 2021-06-01 Hexagon Metrology, Inc. Thermal management of an optical scanning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027269A1 (fr) 2000-09-28 2002-04-04 Carl Zeiss Calibrage d'un capteur d'un appareil de mesure de coordonnees au moyen d'une boule et de deux champs de parametres
WO2003063277A2 (fr) 2002-01-18 2003-07-31 Heiner Ophardt Combinaison distributeur de liquide et cellule electrochimique

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4327250C5 (de) * 1992-09-25 2008-11-20 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zur Koordinatenmessung an Werkstücken
DE19639780A1 (de) * 1996-09-27 1998-04-02 Leitz Brown & Sharpe Mestechni Verfahren zur Durchführung von optischen und mechanischen Messungen in der Koordinatenmeßtechnik
US5955661A (en) * 1997-01-06 1999-09-21 Kla-Tencor Corporation Optical profilometer combined with stylus probe measurement device
WO2002025206A1 (fr) * 2000-09-20 2002-03-28 Werth Messtechnik Gmbh Dispositif et procede de mesure opto-tactile de structures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027269A1 (fr) 2000-09-28 2002-04-04 Carl Zeiss Calibrage d'un capteur d'un appareil de mesure de coordonnees au moyen d'une boule et de deux champs de parametres
WO2003063277A2 (fr) 2002-01-18 2003-07-31 Heiner Ophardt Combinaison distributeur de liquide et cellule electrochimique

Also Published As

Publication number Publication date
DE602005019551D1 (de) 2010-04-08
WO2005100908A1 (fr) 2005-10-27
ATE458982T1 (de) 2010-03-15
FR2868349A1 (fr) 2005-10-07
FR2868349B1 (fr) 2006-06-23
EP1733181A1 (fr) 2006-12-20
EP1733181B1 (fr) 2010-02-24

Similar Documents

Publication Publication Date Title
EP1733181B2 (fr) Palpeur mixte, optique et mecanique et procede de recalage y afferant
EP2385405B9 (fr) Dispositif de projection panoramique, et procédé mis en oeuvre dans ce dispositif
FR2914422A1 (fr) Procede de detection de defauts de surface d'un substrat et dispositif mettant en oeuvre ledit procede.
FR2534017A1 (fr) Procede et appareil pour realiser l'alignement statique d'arbres et pour controler cet alignement
EP2950235A1 (fr) Procede de projection de donnees virtuelles et dispositif permettant cette projection
FR2631438A1 (fr) Procede de positionnement d'un objet par rapport a un plan, procede de mesure de longueur et dispositifs de mise en oeuvre de ces procedes
EP1808670A2 (fr) Détermination optique des positions relatives d'objets dans l'espace
EP3069185A1 (fr) Dispositif et methode de mise au point tridimensionnelle pour microscope
US20100075442A1 (en) Semiconductor wafer processing apparatus, reference angular position detection method, and semiconductor wafer
EP2047209A1 (fr) Dispositif de caracterisation d'objets uniques
EP3355118B1 (fr) Procédé de mesure du désalignement entre une première et une seconde zones de gravure
WO2012035257A1 (fr) Dispositif et procédé de mesure de la forme d'un miroir ou d'une surface speculaire
WO2010072912A1 (fr) Dispositif de numerisation tridimensionnelle a reconstruction dense
FR2606522A1 (fr) Dispositif et procede optique de mise au point photoelectrique, notamment pour microscopes d'operations chirurgicales
JP2010139326A (ja) 観察装置および観察方法
FR3081593A1 (fr) Procede d'etalonnage d'une camera d'un systeme de determination d'images tridimensionnelles et mire d'etalonnage
EP3686676A1 (fr) Methode d'estimation de la topographie locale d'un echantillon a partir d'images de microscopie electronique a balayage et d'un modele mathematique
FR3069065A1 (fr) Procede et dispositif de determination de l'orientation d'un laser de balayage fixe
FR3098641A1 (fr) Procédé d'analyse par microscopie électronique
JP2007155480A (ja) 表面測定装置
BE1015708A3 (fr) Procede pour mesurer la hauteur de spheres ou d'hemispheres.
FR2616533A1 (fr) Systeme de localisation d'un objet dans l'espace
EP1195575A1 (fr) Dispositif et procédé de détermination de coordonnées surfacique et leurs utilisations et procédé de positionnement d'un ensemble emetteur laser-récepteur
EP3642644A1 (fr) Dispositif pour le diagnostic de systemes optroniques et procede associe
FR2786267A1 (fr) Procede et dispositif de determination de la position de l'axe optique d'une camera par rapport a un repere visible

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090330

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602005019551

Country of ref document: DE

Date of ref document: 20100408

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100224

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100625

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100604

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100525

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

26 Opposition filed

Opponent name: CARL ZEISS INDUSTRIELLE MESSTECHNIK GMBH

Effective date: 20101019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100524

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20140305

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 602005019551

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 602005019551

Country of ref document: DE

Effective date: 20140305

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230420

Year of fee payment: 19

Ref country code: DE

Payment date: 20230420

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230419

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 19