EP1730608B1 - Procédé de génération d'un signal d'horloge atomique a piégeage cohérent de population et horloge atomique correspondante - Google Patents

Procédé de génération d'un signal d'horloge atomique a piégeage cohérent de population et horloge atomique correspondante Download PDF

Info

Publication number
EP1730608B1
EP1730608B1 EP05744396A EP05744396A EP1730608B1 EP 1730608 B1 EP1730608 B1 EP 1730608B1 EP 05744396 A EP05744396 A EP 05744396A EP 05744396 A EP05744396 A EP 05744396A EP 1730608 B1 EP1730608 B1 EP 1730608B1
Authority
EP
European Patent Office
Prior art keywords
pulse
atomic clock
response signal
atomic
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05744396A
Other languages
German (de)
English (en)
Other versions
EP1730608A1 (fr
Inventor
Noël DIMARCQ
Stéphane GUERANDEL
Thomas Zanon
David Holleville
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1730608A1 publication Critical patent/EP1730608A1/fr
Application granted granted Critical
Publication of EP1730608B1 publication Critical patent/EP1730608B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • G04F5/145Apparatus for producing preselected time intervals for use as timing standards using atomic clocks using Coherent Population Trapping

Definitions

  • CPT clocks for "Coherent Population Trapping” Atomic clocks with consistent population trapping, designated CPT clocks for "Coherent Population Trapping" are known from the state of the art.
  • the atomic clocks use an interaction medium, generally formed by cesium or rubidium atoms excited by a radio-electric signal generated by a local oscillator LO and a synthesizer S at an excitation frequency and formed by a signal microwave at 6.8 GHz respectively 9.2 GHz for rubidium and cesium.
  • the atoms of the interaction medium are excited between two energy levels e and f represented in figure 1b .
  • This mode of excitation is called Rabi's interrogation mode if the interaction is continuous and Ramsey interrogation mode if the interrogation is based on two short interactions separated by a dead time.
  • the response signal from the interaction has an amplitude depending on the tuning to the resonance of the excitation signal. Detection of the response signal can be performed by optical absorption, magnetic selection, optical fluorescence or magnetic detection.
  • a system for controlling the local oscillator from the response signal makes it possible to obtain at the output of this oscillator a periodic signal S u , having qualities of accuracy and frequency stability comparable to those of the resonance frequency. e ⁇ f.
  • the CPT clocks also use an interaction medium illuminated by two laser waves and implement a continuous interrogation mode.
  • the interaction medium consisting of sodium is spatially separated into two distinct interaction zones, separated by a distance of 30 cm.
  • the laser beams make it possible to generate a Raman transition resonance at 1 772 MHz, the central fringe of the Ramsey fringe pattern being reduced to a width of 650 Hz, thanks to an interaction produced in the interaction zones.
  • CPT type atomic clocks implement a continuous mode interrogation, by means of two coherent laser waves in phase.
  • Each laser wave is quasi-resonant with an optical transition of the atoms 2 ⁇ e and 2 ⁇ f and the difference between the frequencies of the two waves is close to the atomic reference frequency f ⁇ e.
  • the atoms of the interaction medium are trapped in a coherent superposition of the states f and e corresponding to a black state.
  • the coherent superposition of atomic states is also associated with a magnetization generating an electromagnetic wave oscillating at the frequency of the transition e ⁇ f in the microwave domain.
  • Fluorescence absorption or emission is minimal and the field of the electromagnetic wave emitted has a maximum amplitude at resonance.
  • the atomic clock signal corresponds to the variation of the amplitude of the signal detected by absorption, fluorescence or microwave emission, as a function of the value of the frequency difference of the laser waves.
  • the above-mentioned low amplitude atomic clock signals are detected under degraded signal-to-noise ratio conditions, which again results in a degradation of the frequency stability of the atomic clock.
  • the object of the present invention is to remedy the technical problem of the optical saturation of the interaction media of the atomic clocks, in particular CPT or other clocks, while maintaining non-degraded signal-to-noise ratio conditions.
  • Another object of the present invention is, furthermore, through a specific processing of the response signal generated by the interrogation of the interaction medium in the current CPT atomic clocks, to obtain an increase in the contrast of the fringes of the interference in Ramsey mode and a decrease in slow amplitude variations or drifts of the atomic clock signal, generated in particular by the irreducible fluctuations of the operating parameters, such as the frequency and the amplitude of the interrogation lasers of the interaction medium.
  • Another object of the invention is, finally, the implementation of a method for generating a clock signal CPT and a corresponding clock CPT allowing a miniaturization of this type of clock for the production clocks in which the interaction cell does not exceed a volume of a few mm 3 .
  • the method for generating a coherent population-entrapped atomic clock signal uses a first and a second phase-coherent laser wave, each substantially resonant with an optical transition of the atomic atoms. an interaction medium.
  • the coherent superposition of the atomic states corresponding to the coherent trapping of the atomic population makes it possible to generate a response signal exhibiting a amplitude resonant at the resonance and representative of the atomic clock signal corresponding to the amplitude variation of the detected signal as a function of the value of the frequency difference of the first and second in-phase coherent laser waves.
  • the response signal is detected and superimposed by linear combination of the response signal generated during this current pulse and at least one pulse preceding this current pulse, to generate a resulting compensated atomic clock signal, the spectral width of which is minimized.
  • the pulsed interrogation atomic clock which is the subject of the present invention, comprises at least one interrogation optical module making it possible to generate a coherent first and second phase-coherent laser beam, each substantially resonant with an optical transition of the atomic atoms.
  • an interaction medium an interaction cell comprising this interaction medium, illuminated in operation by the first and second coherent laser beams in phase, to generate a response signal having an extreme amplitude at resonance and corresponding to the amplitude variation of the detected signal as a function of the frequency difference of the first and second coherent laser beams in phase and a detection module of this response signal adapted to the wavelength and amplitude of the response signal .
  • a pulse modulating block of the intensity of the first and second laser beams between a high level and a low intensity level is placed on the path of the first and second laser beams, upstream of the interaction cell, to synchronously generate a first and a second pulsed laser beam.
  • the interaction between the first respectively the second laser beam and the interaction medium is substantially limited to the duration of each successive pulse corresponding to a high intensity level and the signal of The response generated during a current pulse depends on the atomic state generated during at least one pulse preceding this current pulse and the evolution of that atomic state during the low intensity period between these pulses.
  • the detection module comprises a summation module by linear combination of the response signal generated during this current pulse and the response signal generated during at least one pulse preceding this current pulse.
  • the summation module by linear combination makes it possible to generate a resulting compensated atomic clock signal whose spectral width is minimized.
  • the method and the atomic clock with coherent trapping of population objects of the present invention find application to the industrial implementation of timepieces or frequency reference embedded very small footprint, used in particular in space applications.
  • the method which is the subject of the present invention is implemented from a first laser wave L 1 and a second laser wave L 2 consistent in phase.
  • each of the aforementioned laser waves is substantially in resonance with an optical transition of the atoms of an interaction medium, the laser waves L 1 and L 2 being deemed to be emitted at a frequency f 1 and f 2 and at their wavelength corresponding in vacuum or air, the frequency difference of the aforementioned laser waves being noted ⁇ f 12 .
  • the laser waves L1 and L2 are polarized either circularly or linearly orthogonally.
  • the coherent superposition of the atomic states corresponding to the coherent trapping of the atomic population as represented in FIG. figure 1b generates a response signal in the microwave domain having a amplitude at resonance and representative of the atomic clock signal corresponding to the amplitude variation of the detected response signal as a function of the value of the frequency difference ⁇ f 12 of the first and second coherent laser waves in phase L 1 and L 2 .
  • the mode of interaction of the first and second waves with the interaction medium corresponds to the continuous interaction mode known from the state of the art from the physical point of view.
  • this consists at least in a step A of sequentially pulsing modulating the intensity of the first and second laser waves L 1 , L 2 according to a given form factor, between a high level and a low intensity level.
  • the laser waves L 1 and L 2 are represented which are synchronously modulated by successive pulses, the successive pulses being deemed to have a rank r, r-1, ..., rp with respect to a growing time scale t.
  • the current pulse is deemed to have a rank r, the pulse immediately preceding this current pulse rank r-1 and successive previous pulses being deemed to have an earlier rank successively up to r-p.
  • the interaction between the first and second laser waves L 1 , L 2 and in particular the pulsed shape thereof and the interaction medium is substantially limited to the duration of each successive pulse S r , S r-1 to S rp corresponding to a high level of intensity.
  • the response signal generated during a current pulse depends on the atomic state generated during at least one pulse preceding this current pulse, that is to say the previous pulses of rank r-1 to rp and the evolution of this atomic state during the duration of low level of intensity separating the aforementioned pulses.
  • the object process of the invention consists particularly remarkably to detect in step B and superimpose by linear combination in step C the response signal generated during the current pulse response signal noted S r of rank r corresponding to that of the illumination pulse of the same rank and at least one pulse preceding this current pulse to generate the resulting compensated atomic clock signal, whose spectral width is minimized.
  • step B the detection operation is represented in step B, the response signal being deemed to consist of the corresponding response signal S r of rank r and the successive successive response signals S r-1 to S rp .
  • step C of the figure 2a The linear combination superposition operation is represented in step C of the figure 2a and illustrated by the following linear combination formula:
  • S HC represents the resulting compensated atomic clock signal obtained by the aforementioned linear combination C k designating a positive and / or negative weighting coefficient applied to each successive response signal pulse S k .
  • the pulse modulation process of the laser waves L 1 and L 2 is advantageously carried out by pulse train, the frequency of the modulation pulses being between 0.2 Hz and 10 4 Hz.
  • the high intensity level of each pulse for a given pulse train has a duration h and the low intensity level has a duration b.
  • the frequency range of the modulated laser wave pulses represented in point 1 of the figure 2b and finally response signal of successive rows r, r-1, rp is given by the value 1 / h + b for the different values of h and b and the form factor defined by the value h / h + b is then between 10 -6 and 10 -1 .
  • pulses I of modulated laser waves represented in point 1) can be obtained by an electronic control signal having exactly the temporal and / or frequency characteristics of those represented in point 1) of FIG. figure 2b above.
  • duration interval b separating the current pulse of rank r from the pulse preceding this current pulse or any previous pulse of rank r-1 to rp in a pulse train of modulation, one indicates that this duration b is less than the life time of the hyperfine coherence existing between the two clock levels.
  • the two clock levels concerned are the levels e and f which determine the frequency of the resulting atomic clock signal and that this life time depends essentially on the interaction medium considered.
  • One of the remarkable aspects of the process that is the subject of the present invention is in particular that the latter is capable of being implemented from interaction media consisting either of atomic populations the cells contained by cold atoms and, in particular, cooled by laser.
  • the interrogation process is advantageously constituted by a Ramsey interrogation mode with at least two pulses.
  • the thermal atoms are delivered in the form of steam or jet.
  • Obtaining the laser-cooled atoms involves interacting the thermal atoms with correctly tuned laser waves with respect to optical transitions of the atoms.
  • the radiation pressure induced by the laser waves makes it possible to rapidly reduce the kinetic energy of the atoms.
  • samples of cooled atoms are obtained with very low erratic speeds, of the order of 1 cm / s, corresponding to a temperature of 10 -6 K, much lower than that of thermal atoms, of the order of a few hundred meters per second at a temperature of 300 K.
  • the kinetic energy of the atoms or the variation of kinetic energy thereof is proportional to the temperature decrease from the initial value 300 K to 10 -6 K, the coefficient of proportionality depending on the Boltzmann constant.
  • the aforementioned detection process is advantageously chosen from the group of detection processes comprising optical absorption, Optical fluorescence, microwave detection as a function of the frequency of the interrogation signal.
  • the method which is the subject of the present invention can be implemented in many situations taking into account the nature of the interaction medium chosen, the interrogation mode being however preferentially the Ramsey interrogation mode with at least two pulses, as mentioned previously in the description.
  • the detection processes are then the detection processes by optical absorption, optical fluorescence, microwave detection as a function of the frequency of the aforementioned interrogation signal.
  • the table below establishes the type of atomic clock capable of implementing the method that is the subject of the present invention, indicating the atomic source used to enable the implementation of the method, the interrogation method or mode and the process. detecting the corresponding clock signal.
  • TYPE OF ATOMIC CLOCK ATOMIC SOURCE INTERROGATION MODE CLOCK SIGNAL DETECTION CPT coherent trapping of population on thermal atoms in cells
  • Optical interrogation clock transition in the microwave domain
  • Continuous in existing devices Pulsed interrogation in this type of clock
  • Optical absorption or microwave detection CPT coherent trapping of population on cold atoms
  • Optical interrogation (clock transition in the microwave domain) Pulsed type query.
  • such a clock comprises, in an optical section SO, an interrogation optical module 1 for generating a coherent first and second laser beam in the L 1 , L 2 phase.
  • each of the aforementioned laser beams is substantially in resonance with an optical transition of the atoms of an interaction medium.
  • the pulsed interrogation atomic clock further comprises an interaction cell 3 comprising the aforementioned interaction medium.
  • interaction cell 3 By notion of interaction cell 3, it is indicated that the interaction cell can be constituted in a conventional manner by a transparent envelope to the laser beam L 1 , L 2 and of course, by any device generating the interaction medium, c i.e. thermal atoms and / or laser cooled.
  • the interrogation module 1 generates the two laser beams L 1 and L 2 whose difference in frequency is equal to the resonance frequency, the microwave frequency at 9.2 GHz for cesium and 6.8 GHz for rubidium. for example.
  • the frequencies of the laser diodes are in the neighborhood of 852 nm for the D 2 line and 894 nm for the D 1 line .
  • the aforementioned laser lines can be used for a CPT interaction as described above in the description.
  • the transitions of the line D 1 appear more interesting because they make it possible to reduce, on the one hand, the losses of atoms due to leakage on adjacent transitions, and, on the other hand, light shifts.
  • Different processes can be implemented to generate two radiations, that is to say the laser beams L 1 and L 2 , which induce the coherent entrapment of the atomic population of the interaction medium.
  • the frequency difference between the laser beams L 1 and L 2 is equal to the clock frequency, that is to say the frequency of the atomic clock signal.
  • the phase difference between the phase of the laser beams L 1 and L 2 must have fluctuations as low as possible in order to avoid any destruction of the interference phenomenon.
  • the required transmit power for laser beams is in the milliwatt range.
  • the interrogation optics can be made from a single laser source to which a frequency modulation at several GHz of the modulation type is applied. sidebands, the distance between the sidebands corresponding to the clock frequency. The two previously mentioned lines are thus provided with phase coherence as good as that of the modulation signal.
  • the two lines or laser beams L 1 and L 2 are then physically superimposed in a conventional manner so that the latter follow the same optical path and are subjected to the same successive phase shifts until they are applied to the interaction medium.
  • interaction cell 3 it is indicated that it can be implemented from a pyrex or quartz enclosure.
  • buffer gases may be added to eliminate Doppler line broadening by placing in the Lamb-Dicke regime.
  • the magnetic and thermal environment is tightly controlled to avoid any variation in frequency shift that would affect the accuracy and long-term stability of the atomic clock thus formed.
  • the pulsed interrogation atomic clock comprises, in a detection section SD, also a module 4 for detecting the response signal, the response signal being defined as the signal delivered by the interaction medium of the cell 3 after illumination of the interaction medium by laser beams L 1 and L 2 .
  • the detection module 4 is of course adapted to the wavelength and the amplitude of the response signal to deliver an electronic version of the response signal.
  • the module 4 for detecting the response signal may consist of modules implementing the detection processes as described in the above-mentioned table.
  • the pulsed interrogation atomic clock object of the present invention comprises a module 2 pulse modulation of the intensity of the first and second laser beams L 1 and L 2 between a high level and a low level of intensity.
  • the modulation module 2 is placed in the optical section SO on the path of the first and second laser beam upstream of the interaction cell 3 for generating in synchronism a first and a second pulsed laser beam for illuminating the interaction medium contained in the cell 3, according to the figure 2a .
  • the interaction between the aforementioned laser beams and the interaction medium is substantially limited to the duration of each corresponding successive pulse. at a high level of intensity.
  • the response signal generated during a current pulse of rank r for example depends on the atomic state generated during at least one pulse preceding this current pulse, that is to say pulses of rank r-1 to rp previously mentioned in the description, and, of course, the evolution of this atomic state during the duration of low intensity energy level separating these pulses.
  • the detection module of the response signal 4 can be followed by a processing module 5, the processing module receiving the electronic version of the response signal and performing summation processing by linear combination of the response signal generated during the first response signal. current pulse and during at least one pulse preceding this current pulse, that is to say during the successive previous pulses.
  • the linear combination processing module 5 thus makes it possible to generate a resulting compensated atomic clock signal whose spectral width is minimized and to construct a correction signal S c making it possible to drive the frequency of a local oscillator 6.
  • the processing module 5 in fact delivers the correction signal Sc to the module 6 implanted in an analog section SA and constituted for example by a local oscillator LO and a synthesizer S delivering, on the one hand, a periodic signal servocontrolled in frequency S u , for use as a frequency reference for an external user, and, secondly, a control signal S co of the interrogation optical module 1.
  • This control signal S co may for example consist of a frequency reference for performing the control of the modulation process in lateral bands previously mentioned in the description. to obtain the two laser beams L 1 and L 2 , from a single laser source, for example. It is indicated that the above-mentioned control signal S co may also make it possible to provide control of the wavelength and / or the frequency of the laser beams L 1 and L 2 at the chosen value.
  • the pulsed interrogation atomic clock object of the present invention, is provided with a control unit 7 which can be constituted by a microcomputer connected by a bus link to all the modules such as the module of pulse modulation 2, the module 4 for detecting the response signal, and of course the processing module 5 and the module 6 acting as local oscillator LO and / or synthesizer S.
  • a control unit 7 which can be constituted by a microcomputer connected by a bus link to all the modules such as the module of pulse modulation 2, the module 4 for detecting the response signal, and of course the processing module 5 and the module 6 acting as local oscillator LO and / or synthesizer S.
  • control unit 7 makes it possible to ensure the synchronization of all the aforementioned modules as well as the control of the generated modulation pulse trains, from an electronic control signal, for example, developed by the control unit 7, to control the modulation module 2.
  • L 2 indicates that the latter may be constituted by an acousto-optical modulator, an electro-optical modulator or finally by any other component for modulating the intensity of a light signal whose response time is short enough to ensure such modulation.
  • the low level of intensity corresponds to a substantially zero intensity of each of the laser beams or the radio frequency signal, these being totally absorbed by the modulation module 2 previously mentioned.
  • processing module 5 receives the response signal in the form of an electronic signal delivered by the detection module 4.
  • the processing module 5 can, as represented in FIG. figure 4a , advantageously comprising a sampling module 50 of the response signal generated during the interaction of the current pulse and at least one pulse preceding this current pulse, the aforementioned sampling module 50 being triggered in synchronism with the control of the module 2 for modulating the laser beams L 1 and L 2 .
  • the sampling module 50 is preferably followed by a module 51 for storing the sampled values of the response signal generated during the interaction of each of the aforementioned pulses.
  • the storage module 51 can be followed by a module 52 making it possible to calculate a linear combination of the stored sampled values making it possible to generate the compensated atomic clock signal S HC previously mentioned in the description.
  • a module 53 formed for example by an integrator makes it possible to deliver the correction signal S c to the module 6 constituted by the local oscillator LO and the synthesizer S, for example.
  • the synthesizer S makes it possible to generate a microwave signal whose frequency is close to the resonant frequency of the transition e ⁇ f.
  • control unit 7 may advantageously be constituted by a workstation or a microcomputer comprising a control program of the assembly, so as to ensure the synchronization of the modulation module 2, the detection module 4 of the response signal from the processing module 5 previously described in connection with the figure 4a and, of course, the module 6 constituted by the local oscillator and the synthesizer previously described.
  • control unit 7 may advantageously be programmed to ensure, by means of control software, a reading of the sampled values stored in the storage module 51 at given times. .
  • control unit 7 can then comprise a program for sorting the sampled values stored for for each of the pulses S r and S rp, determining the maximum and / or minimum values of these sampled values for each of the aforementioned successive pulses.
  • a treatment process may advantageously consist, as represented in point 2 of FIG. figure 4b for the current pulse S r of rank r, to determine the sampled value of this pulse which has the maximum value, this maximum value being denoted M r then for the successive pulses of prior rank r-1 to rp, to be determined in each of these the minimum of the corresponding sampled values in its successive pulses.
  • the corresponding minima are denoted m r-1 for the previous impulse immediately preceding the current impulse, this anterior impulse being of rank r-1, then the successive values m r-2 to m rp for previous previous impulses of rank r-2 to rp.
  • the linear combination of the sampled values can then consist in adding the maximum of the sampled values for the current rank pulse. r and to subtract the successive minimum values of the previous pulses of rank r-1 to rp, as represented on the figure 4b , or an average value thereof.
  • the sorting program can then perform the sorting with respect to the origin of each of the pulses, these origins being noted successively or, O r-1 , O rp .
  • the maximum M r of the current pulse of rank r makes it possible to obtain the maximum amplitude value for the detected response signal while the subtraction of the successive sampled values representative of the local minima for the latter, on the contrary, makes it possible to subtract a sampled value representative of the drifts and perturbations introduced by the interaction medium contained in the cell 3, in order to obtain a compensated atomic clock signal whose spectral width is thus minimized and whose contrast can to be significantly improved, thanks to the removal of continuous or slowly variable components representative of the drift of the entire system.
  • the modules 51, 52 and 53 can be replaced by a programmed dedicated signal processor. for this purpose.
  • the width of the oscillation line obtained for the clock signal, width to 3dB with respect to the The maximum amplitude at the top of the oscillation is a few kHz for a central frequency of the order of a few GHz.
  • Such a linewidth is too important to be compatible with the use of such atomic clocks as a reference clock. This can be explained by the fact that in the absence of a buffer gas, the atoms of the interaction medium are subjected to an excessive rapid erratic displacement which widens the resonance phenomenon by Doppler effect and limitation of the transit time and finally, the quality of the radio-electric resonator thus formed.
  • ⁇ f TT varies as 1 / T where T denotes the interaction time between an atom and the laser waves.
  • the figure 4c illustrates the mode of implementation of the method that is the subject of the present invention by virtue of a pulsed interrogation atomic clock in which the interaction medium is constituted by thermal atoms of cesium in the presence of a buffer gas, formed by nitrogen. It represents the amplitude of compensated clock signal S HC as a function of the disagreement of the difference in the frequencies ⁇ f 12 of the two laser waves.
  • the x-axis of the figure 4c is graduated in kHz with respect to a 0 value origin of the Raman mismatch.
  • the distance ⁇ represents the disagreement introduced due to the presence of the buffer gas.
  • This frequency bias can be reduced by using two buffer gases, nitrogen and argon for example, inducing collisional movements of opposite sign.
  • the width of the oscillations remains as low as 25 Hz thanks to the implementation of the treatment and, of course, the pulse modulation of the laser beams L 1 and L 2 used.
  • the interaction medium is constituted by atoms cooled by laser, the speed of the atoms is reduced under the conditions previously mentioned in the description, that is to say at erratic speeds about 1000 times lower than those of thermal atoms.
  • the rubidium atom appears more interesting than the cesium atom because the collisional displacement is at least 50 times lower.
  • the interrogation process is carried out in accordance with the method that is the subject of the present invention, that is to say by pulsed interrogation, it is then possible to very significantly reduce the contribution of the saturation effect. while continuing to detect the signals of sufficient intensity, that is to say with a satisfactory signal-to-noise ratio.

Description

  • Les horloges atomiques à piégeage cohérent de population, désignées horloges CPT pour « Coherent Population Trapping » sont connues de l'état de la technique.
  • D'une manière générale, ainsi que représenté en figure 1a, les horloges atomiques utilisent un milieu d'interaction, formé en général par des atomes de césium ou de rubidium excités par un signal radio-électrique engendré par un oscillateur local LO et un synthétiseur S à une fréquence d'excitation et formé par un signal micro-onde à 6,8 GHz respectivement 9,2 GHz pour le rubidium et le césium. Les atomes du milieu d'interaction sont excités entre deux niveaux d'énergie e et f représentés en figure 1b. Ce mode d'excitation est désigné mode d'interrogation de Rabi si l'interaction est continue et mode d'interrogation de Ramsey si l'interrogation repose sur deux courtes interactions séparées par un temps mort.
  • Le signal de réponse issu de l'interaction a une amplitude fonction de l'accord à la résonance du signal d'excitation. La détection du signal de réponse peut être effectuée par absorption optique, par sélection magnétique, fluorescence optique ou détection magnétique.
  • Un système d'asservissement de l'oscillateur local à partir du signal de réponse permet d'obtenir en sortie de cet oscillateur un signal périodique Su, présentant des qualités d'exactitude et de stabilité de fréquence comparables à celles de la fréquence de résonance e → f.
  • Reprenant le principe général de l'asservissement précédemment décrit, les horloges CPT utilisent également un milieu d'interaction illuminé par deux ondes laser et mettent en oeuvre un mode d'interrogation continu.
  • Dans un mode de réalisation antérieur, le milieu d'interaction constitué par du sodium est spatialement séparé en deux zones d'interaction distinctes, séparées par une distance de 30 cm.
  • Les faisceaux laser permettent d'engendrer une résonance par transition Raman à 1 772 MHz, la frange centrale du motif de franges de Ramsey étant ramenée à une largeur de 650 Hz, grâce à une interaction produite dans les zones d'interaction.
  • Pour une description plus détaillée de ce type d'horloge atomique on pourra utilement se reporter à l'article intitulé « Observation of Ramsey Fringes Using a simulated, Resonance Raman Transition in a Sodium Atomic Beam » publié par T.E. Thomas, P.R. Hemmer, and S. Ezekiel Research Laboratory of Electronics, Massachusets Institute of Technology, Cambridge, Massachusetts 02 139 et C.C. Leiby, Jr., R.H. Picard, and C.R. Willis, Rome Air Development Center, Hanscom Air Force Base, Massachusetts 01 731 PHYSICAL REVIEW LETTERS Volume 48, Number 13, 29 March 1982.
  • On connait également l'article intitulé "Coherent Population trapping with cold atoms" publié par T.Zanon et al., 2003 IEEE International Frequency Control Symposium. Cet article divulgue un procédé de génération d'un signal d'horloge selon le préambule de la revendication 1 ainsi qu'une horloge atomique selon le préambule de la revendication 7.
  • De manière générale, les horloges atomiques de type CPT mettent en oeuvre une interrogation en mode continu, au moyen de deux ondes laser cohérentes en phase. Chaque onde laser est quasi résonnante avec une transition optique des atomes 2 → e et 2 → f et la différence entre les fréquences des deux ondes est proche de la fréquence de référence atomique f → e. Lorsque l'accord f → e à la résonance est satisfait, les atomes du milieu d'interaction sont piégés dans une superposition cohérente des états f et e correspondant à un état noir. On observe une diminution de l'amplitude de l'absorption des ondes laser, une diminution de l'amplitude du signal de fluorescence. La superposition cohérente d'états atomiques est aussi associée à une aimantation engendrant une onde électromagnétique oscillant à la fréquence de la transition e → f dans le domaine des micro-ondes.
  • L'absorption ou l'émission de fluorescence sont minimales et le champ de l'onde électromagnétique émise a une amplitude maximale à la résonance. Le signal d'horloge atomique correspond à la variation de l'amplitude du signal détecté par absorption, fluorescence ou émission micro-onde, en fonction de la valeur de la différence de fréquence des ondes laser.
  • Dans tous les types d'horloge atomique CPT connus à l'heure actuelle, l'interrogation du milieu d'interaction est continue, les ondes laser interagissant continûment avec les atomes du milieu d'interaction.
  • Toutefois, dans les types d'horloges atomiques précités, une trop forte intensité d'illumination du milieu d'interaction par les ondes laser provoque l'élargissement des raies de résonance obtenues, en raison de la saturation optique des atomes du milieu d'interaction.
  • Cet inconvénient conduit à une dégradation de la stabilité de la fréquence du signal d'horloge atomique.
  • Pour cette raison, dans les horloges atomiques CPT actuellement existantes, on tente de résoudre le problème technique précité en réduisant simplement l'intensité d'illumination du milieu d'interaction par les faisceaux laser utilisés.
  • Une telle mesure ne permet pas de résoudre le problème technique précité car elle se traduit, en fait, par une difficulté accrue de détection des signaux d'horloge atomique, de faible amplitude, issus de l'interaction.
  • Les signaux d'horloge atomique de trop faible amplitude précités sont détectés dans des conditions de rapport signal à bruit dégradées, ce qui se traduit, à nouveau, par une dégradation de la stabilité de la fréquence de l'horloge atomique.
  • La présente invention a pour objet de remédier au problème technique de la saturation optique des milieux d'interaction des horloges atomiques, notamment horloges CPT ou autres, tout en maintenant des conditions de rapport signal à bruit non dégradées.
  • Un autre objet de la présente invention est en outre, grâce à un traitement spécifique du signal de réponse engendré par l'interrogation du milieu d'interaction dans les horloges atomiques CPT actuelles, l'obtention d'une augmentation du contraste des franges d'interférence en mode de Ramsey et d'une diminution des variations lentes d'amplitude ou dérives du signal d'horloge atomique, engendrées notamment par les fluctuations irréductibles des paramètres de fonctionnement, tels que la fréquence et l'amplitude des lasers d'interrogation du milieu d'interaction.
  • Un autre objet de l'invention est, enfin, la mise en oeuvre d'un procédé de génération d'un signal d'horloge CPT et d'une horloge CPT correspondante permettant une miniaturisation de ce type d'horloge en vue de la production industrielle d'horloges dans lesquelles la cellule d'interaction n'excède pas un volume de quelques mm3.
  • Le procédé de génération d'un signal d'horloge atomique à piégeage cohérent de population, objet de la présente invention, met en oeuvre une première et une deuxième onde laser cohérentes en phase, chacune sensiblement en résonance avec une transition optique des atomes d'un milieu d'interaction. La superposition cohérente des états atomiques correspondant au piégeage cohérent de population d'atomes permet d'engendrer un signal de réponse présentant une amplitude extrémale à la résonance et représentative du signal d'horloge atomique correspondant à la variation d'amplitude du signal détecté en fonction de la valeur de la différence de fréquence de la première et de la deuxième onde laser cohérentes en phase.
  • Il est remarquable en ce qu'il consiste au moins à moduler en synchronisme par impulsions successives l'intensité de la première et de la deuxième onde laser, selon un facteur de forme déterminé entre un niveau haut et un niveau bas d'intensité, le signal de réponse engendré pendant une impulsion courante dépendant de l'état atomique engendré pendant au moins une impulsion précédant cette impulsion courante et de l'évolution de cet état atomique pendant la durée de niveau bas d'intensité séparant ces impulsions.
  • Le signal de réponse est détecté et superposé par combinaison linéaire du signal de réponse engendré pendant cette impulsion courante et au moins une impulsion précédant cette impulsion courante, pour engendrer un signal d'horloge atomique compensé résultant, dont la largeur spectrale est minimalisée.
  • L'horloge atomique à interrogation pulsée, objet de la présente invention, comprend au moins un module optique d'interrogation permettant d'engendrer un premier et un deuxième faisceau laser cohérents en phase, chacun sensiblement en résonance avec une transition optique des atomes d'un milieu d'interaction, une cellule d'interaction comportant ce milieu d'interaction, illuminé en fonctionnement par le premier et le deuxième faisceau laser cohérents en phase, pour engendrer un signal de réponse présentant une amplitude extrémale à la résonance et correspondant à la variation d'amplitude du signal détecté en fonction de la différence de fréquence du premier et du deuxième faisceau laser cohérents en phase et un module de détection de ce signal de réponse adapté à la longueur d'onde et à l'amplitude du signal de réponse.
  • Elle est remarquable en ce qu'elle comporte en outre un bloc de modulation par impulsions de l'intensité du premier et du deuxième faisceau laser entre un niveau haut et un niveau bas d'intensité. Ce bloc de modulation est placé sur le trajet du premier et du deuxième faisceau laser, en amont de la cellule d'interaction, pour engendrer en synchronisme un premier et un deuxième faisceau laser pulsé. L'interaction entre le premier respectivement le deuxième faisceau laser et le milieu d'interaction est sensiblement limitée à la durée de chaque impulsion successive correspondant à un niveau haut d'intensité et le signal de réponse engendré pendant une impulsion courante dépend de l'état atomique engendré pendant au moins une impulsion précédant cette impulsion courante et de l'évolution de cet état atomique pendant la durée de niveau bas d'intensité séparant ces impulsions.
  • En outre, le module de détection comprend un module sommateur par combinaison linéaire du signal de réponse engendré pendant cette impulsion courante et du signal de réponse engendré pendant au moins une impulsion précédant cette impulsion courante. Le module sommateur par combinaison linéaire permet d'engendrer un signal d'horloge atomique compensé résultant, dont la largeur spectrale est minimalisée.
  • Le procédé et l'horloge atomique à piégeage cohérent de population objets de la présente invention trouvent application à la mise en oeuvre industrielle de garde-temps ou de référence de fréquence embarqués de très faible encombrement, utilisables notamment dans les applications spatiales.
  • Ils seront mieux compris à la lecture de la description et à l'observation des dessins ci-après dans lesquels, outre les figures 1a et 1b relatives à l'art antérieur :
    • la figure 2a représente, à titre purement illustratif, un organigramme des étapes essentielles de mise en oeuvre du procédé objet de la présente invention ;
    • la figure 2b représente, à titre purement illustratif, au point 1), un chronogramme des signaux d'impulsions de faisceau laser pulsé susceptibles d'être utilisés pour la mise en oeuvre du procédé objet de l'invention décrit en figure 2a, et, au point 2), un chronogramme du signal de réponse obtenu après détection en sortie de la cellule d'interaction ;
    • la figure 3 représente, à titre purement illustratif, un schéma fonctionnel d'une horloge atomique CPT conforme à l'objet de la présente invention, permettant la mise en oeuvre du procédé décrit en liaison avec les figures 2a et 2b;
    • la figure 4a représente, à titre illustratif, un schéma détaillé d'un module de traitement du signal de réponse après détection, dans un mode de réalisation préférentiel non limitatif, ce module de traitement du signal de réponse étant plus particulièrement adapté à l'exécution d'un traitement numérique dédié ;
    • la figure 4b représente, à titre illustratif, un chronogramme d'exécution d'opérations sur des valeurs échantillonnées d'impulsions successives de signal de réponse, plus particulièrement sur une impulsion courante et au moins une impulsion précédant cette impulsion courante, les opérations conduites sur les valeurs échantillonnées précitées permettant en particulier d'améliorer sensiblement la pureté spectrale et le contraste du signal d'horloge atomique compensé résultant obtenu, suite à l'exécution de ces opérations ;
    • la figure 4c représente, à titre illustratif, un diagramme amplitude-fréquence du désaccord Raman, désaccord de la différence de fréquence entre les deux ondes laser et du motif de franges de Ramsey obtenu en sortie du module de traitement dédié représenté en figure 3, après application d'une superposition par combinaison linéaire du signal de réponse engendré pendant une impulsion courante et au moins une impulsion précédant cette impulsion courante.
  • Le procédé de génération d'un signal d'horloge atomique à piégeage cohérent de population objet de la présente invention sera maintenant décrit en liaison avec les figures 2a et 2b.
  • D'une manière générale, on rappelle que, conformément aux principes du mode opératoire des horloges atomiques CPT, le procédé objet de la présente invention est mis en oeuvre à partir d'une première onde laser L1 et d'une deuxième onde laser L2 cohérentes en phase.
  • En référence à la figure 1b, chacune des ondes laser précitées est sensiblement en résonance avec une transition optique des atomes d'un milieu d'interaction, les ondes laser L1 et L2 étant réputées émises à une fréquence f1 et f2 et à leur longueur d'onde correspondante dans le vide ou l'air, la différence de fréquence des ondes laser précitées étant notée Δf12. De préférence, les ondes laser L1 et L2 sont polarisées soit circulairement soit linéairement de manière orthogonale.
  • La superposition cohérente des états atomiques correspondants au piégeage cohérent de population d'atomes tel que représenté en figure 1b engendre un signal de réponse dans le domaine micro-onde présentant une amplitude extrémale à la résonance et représentative du signal d'horloge atomique correspondant à la variation d'amplitude du signal de réponse détecté en fonction de la valeur de la différence de fréquence Δf12 de la première et la deuxième ondes laser cohérente en phase L1 et L2.
  • On comprend, en particulier, que le mode d'interaction de la première et de la deuxième ondes avec le milieu d'interaction correspond au mode d'interaction en continu connu de l'état de la technique du point de vue physique.
  • Toutefois, et selon un aspect particulièrement remarquable du procédé objet de l'invention, celui-ci consiste au moins en une étape A à moduler en synchronisme par impulsions successives l'intensité de la première et de la deuxième ondes laser L1, L2 selon un facteur de forme déterminé, entre un niveau haut et un niveau bas d'intensité.
  • Sur la figure 2a, à l'étape A de celle-ci, on a représenté les ondes laser L1 et L2 modulées en synchronisme par impulsions successives, les impulsions successives étant réputées présentées un rang r, r-1, ..., r-p vis-à-vis d'une échelle de temps croissante t.
  • Par convention, l'impulsion courante est réputée avoir un rang r, l'impulsion précédant immédiatement cette impulsion courante le rang r-1 et les impulsions précédentes successives étant réputées avoir un rang antérieur successivement jusqu'à r-p.
  • On comprend en outre que les ondes laser L1 et L2 sont superposées sur le même chemin optique, ce qui permet bien entendu d'obtenir des impulsions d'ondes laser modulées cohérentes et en phase dans des conditions qui seront explicitées ultérieurement dans la description.
  • Ainsi, on comprend que l'interaction entre la première respectivement la deuxième ondes laser L1, L2 et en particulier la forme pulsée de celles-ci et le milieu d'interaction est limitée sensiblement à la durée de chaque impulsion successive Sr, Sr-1 à Sr-p correspondant à un niveau haut d'intensité.
  • En conséquence, le signal de réponse engendré pendant une impulsion courante, l'impulsion de rang r précédemment décrite, dépend de l'état atomique engendré pendant au moins une impulsion précédant cette impulsion courante, c'est-à-dire les impulsions précédentes de rang r-1 à r-p et de l'évolution de cet état atomique pendant la durée de niveau bas d'intensité séparant les impulsions précitées.
  • Suite à la modulation par impulsions successives de l'intensité de la première et de la deuxième ondes laser L1, L2 et bien entendu à l'illumination du milieu d'interaction par les impulsions d'ondes laser ainsi obtenues, le procédé objet de l'invention consiste de manière particulièrement remarquable à détecter à l'étape B et superposer par combinaison linéaire à l'étape C le signal de réponse engendré pendant l'impulsion courante, signal de réponse noté Sr de rang r correspondant à celui de l'impulsion d'illumination de même rang et au moins une impulsion précédant cette impulsion courante pour engendrer le signal d'horloge atomique compensé résultant, dont la largeur spectrale est minimalisée.
  • Sur la figure 2a, l'opération de détection est représentée à l'étape B, le signal de réponse étant réputé consister en le signal de réponse Sr correspondant de rang r et les signaux de réponse successifs antérieurs Sr-1 à Sr-p.
  • L'opération de superposition par combinaison linéaire est représentée à l'étape C de la figure 2a et illustrée par la formule de combinaison linéaire ci-après : S HC = k = r - p k = r C k x S k
    Figure imgb0001
  • Dans la formule précitée, on indique que SHC représente le signal d'horloge atomique compensé résultant obtenu par la combinaison linéaire précitée Ck désignant un coefficient de pondération positif et/ou négatif appliqué à chaque impulsion de signal de réponse successive Sk.
  • Par convention, ainsi qu'il sera d'ailleurs décrit ultérieurement de manière plus détaillée relativement à une horloge atomique CPT conforme à l'objet de la présente invention, le coefficient de pondération Ck relatif au rang k=r de l'impulsion courante peut être pris égal à 1, les coefficients de rang k=r, repéré par rapport à l'impulsion courante pour les impulsions antérieures, pouvant alors être pris égaux successivement à des valeurs différentes négatives par exemple afin de corriger et compenser le signal d'horloge atomique finalement obtenu. Le rang final de sommation par combinaison linéaire k=r peut être déterminé expérimentalement ou pris comme paramètre.
  • En référence à la figure 2b, on indique que le processus de modulation par impulsions des ondes laser L1 et L2 est avantageusement effectué par train d'impulsions, la fréquence des impulsions de modulation étant comprise entre 0,2 Hz et 104 Hz.
  • En référence à la figure 2b précitée et à l'axe temporel t, le niveau haut d'intensité de chaque impulsion pour un train d'impulsions donné a une durée h et le niveau bas d'intensité a une durée b.
  • Dans ces conditions, la plage de fréquences des impulsions d'ondes laser modulées représentées au point 1 de la figure 2b et finalement de signal de réponse de rangs r, r-1, r-p successifs est donné par la valeur 1/h+b pour les différentes valeurs de h et de b et le facteur de forme défini par la valeur h/h+b est alors compris entre 10-6 et 10-1.
  • On comprend bien entendu que les impulsions I d'ondes laser modulées représentées au point 1) peuvent être obtenues par un signal électronique de commande présentant exactement les caractéristiques temporelles et/ou fréquentielles de celles représentées au point 1) de la figure 2b précitées.
  • En ce qui concerne le choix de l'intervalle de durée b séparant l'impulsion courante de rang r de l'impulsion précédant cette impulsion courante ou toute impulsion antérieure de rang r-1 à r-p dans un train d'impulsions de modulation, on indique que cette durée b est inférieure au temps de vie de la cohérence hyperfine existant entre les deux niveaux d'horloge.
  • En référence à la figure 1b, on rappelle que les deux niveaux d'horloge concernés sont les niveaux e et f qui déterminent la fréquence du signal d'horloge atomique résultant et que ce temps de vie dépend essentiellement du milieu d'interaction considéré.
  • L'un des aspects remarquables du procédé objet de la présente invention est en particulier que ce dernier est susceptible d'être mis en oeuvre à partir de milieux d'interaction constitués soit par des populations d'atomes thermiques contenus dans une cellule soit au contraire par des populations constituées par des atomes froids et, en particulier, refroidis par laser.
  • Le processus d'interrogation est avantageusement constitué par un mode d'interrogation de Ramsey avec au moins deux impulsions.
  • Pour ce qui concerne la technique de mise en oeuvre des milieux d'interaction précités, on indique que les atomes thermiques sont délivrés sous forme de vapeur ou de jet. L'obtention des atomes refroidis par laser consiste à faire interagir les atomes thermiques avec des ondes laser correctement accordées par rapport à des transitions optiques des atomes. La pression de radiation induite par les ondes laser permet de réduire rapidement l'énergie cinétique des atomes. On obtient ainsi des échantillons d'atomes refroidis de très faibles vitesses erratiques, de l'ordre de 1 cm/s, correspondant à une température de 10-6 K, très inférieure à celle des atomes thermiques, de l'ordre de quelques centaines de mètres par seconde, à la température de 300 K.
  • En ce qui concerne le mode de mise en oeuvre d'une cellule de refroidissement laser des atomes permettant l'interaction d'un ou deux faisceaux laser modulés en impulsion, un tel mode de mise en oeuvre, connu de l'état de la technique, ne sera pas décrit en détail. On pourra, dans ce but, se reporter utilement à la demande de brevet français publiée sous le numéro 2 730 845 au nom du CNRS.
  • Dans le processus de refroidissement, on rappelle que l'énergie cinétique des atomes ou la variation d'énergie cinétique de ceux-ci est proportionnelle à l'abaissement de température de la valeur initiale 300 K à 10-6 K, le coefficient de proportionnalité dépendant de la constante de Boltzmann.
  • En ce qui concerne le processus de détection du signal de réponse et en particulier des impulsions de signal de réponse successives Sr à Sr-p, le processus de détection précité est avantageusement choisi parmi le groupe des processus de détection comprenant l'absorption optique, la fluorescence optique, la détection micro-onde en fonction de la fréquence du signal d'interrogation.
  • On comprend que le procédé objet de la présente invention peut être mis en oeuvre dans de nombreuses situations compte tenu de la nature du milieu d'interaction choisi, le mode d'interrogation étant toutefois préférentiellement le mode d'interrogation de Ramsey avec au moins deux impulsions, ainsi que mentionné précédemment dans la description. Les processus de détection sont alors les processus de détection par absorption optique, la fluorescence optique, la détection micro-onde en fonction de la fréquence du signal d'interrogation précité.
  • Le tableau ci-après établit le type d'horloge atomique susceptible de mettre en oeuvre le procédé objet de la présente invention en indiquant la source atomique utilisée pour permettre la mise en oeuvre du procédé, le processus ou mode d'interrogation ainsi que le processus de détection du signal d'horloge correspondant.
    TYPE D'HORLOGE ATOMIQUE SOURCE ATOMIQUE MODE D'INTERROGATION DETECTION DU SIGNAL D'HORLOGE
    CPT (piégeage cohérent de population sur des atomes thermiques en cellule) Vapeur thermique avec ou sans gaz tampon Interrogation optique (transition d'horloge dans le domaine micro-onde) Continu dans les dispositifs existants Interrogation pulsée dans ce type d'horloge Absorption optique ou détection micro-onde
    CPT (piégeage cohérent de population sur des atomes froids) Vapeur + refroidissement laser Interrogation optique (transition d'horloge dans le domaine micro-onde) Interrogation de type pulsé. Absorption optique ou détection micro-onde
  • En référence au tableau précité on indique que les horloges atomiques de type CPT permettent la mise en oeuvre du procédé objet de l'invention selon la figure 2a.
  • Une description plus détaillée d'une horloge atomique à interrogation pulsée conforme à l'objet de la présente invention sera maintenant donnée en liaison avec la figure 3 et les figures suivantes.
  • D'une manière générale, on indique que l'architecture de l'horloge atomique à interrogation pulsée conforme à l'objet de la présente invention correspond à celle qui est représentée en figure 3.
  • En particulier, une telle horloge comprend, dans une section optique SO, un module optique d'interrogation 1 permettant d'engendrer un premier et un deuxième faisceau laser cohérents en phase L1, L2. Ainsi que cité précédemment, chacun des faisceaux laser précités est sensiblement en résonance avec une transition optique des atomes d'un milieu d'interaction.
  • L'horloge atomique à interrogation pulsée comporte en outre une cellule d'interaction 3 comportant le milieu d'interaction précité.
  • Par notion de cellule d'interaction 3, on indique que la cellule d'interaction peut être constituée de manière classique par une enveloppe transparente au faisceau laser L1, L2 et bien entendu, par tout dispositif générateur du milieu d'interaction, c'est-à-dire d'atomes thermiques et/ou refroidis par laser.
  • Le module d'interrogation 1 engendre les deux faisceaux laser L1 et L2 dont la différence de fréquence est égale à la fréquence de résonance, la fréquence micro-onde à 9,2 GHz pour le césium et 6,8 GHz pour le rubidium par exemple.
  • Dans le cas du césium, les fréquences des diodes laser sont au voisinage de 852 nm pour la raie D2 et 894 nm pour la raie D1.
  • Les raies laser précitées peuvent être utilisées pour une interaction CPT telle que décrite précédemment dans la description.
  • Grâce à leur plus grand écart hyperfin dans l'état excité, les transitions de la raie D1 apparaissent plus intéressantes car elles permettent de réduire, d'une part, les pertes d'atomes à cause des fuites sur des transitions adjacentes, et, d'autre part, les déplacements lumineux.
  • Il est en outre possible de mettre en oeuvre des atomes de rubidium pour lesquels la raie D2 est à 780 nm et la raie D1 est à 795 nm, les fréquences correspondantes f2 et f1 étant accessibles facilement avec des diodes laser du commerce.
  • Différents processus peuvent être mis en oeuvre pour engendrer deux radiations, c'est-à-dire les faisceaux laser L1 et L2, lesquels induisent le piégeage cohérent de la population d'atomes du milieu d'interaction. La différence de fréquence entre les faisceaux laser L1 et L2 est égale à la fréquence d'horloge, c'est-à-dire la fréquence du signal d'horloge atomique. La différence de phase entre la phase des faisceaux laser L1 et L2 doit présenter des fluctuations aussi faibles que possibles afin d'éviter toute destruction du phénomène d'interférence. La puissance d'émission requise pour les faisceaux laser est de l'ordre du milliwatt.
  • Dans un mode de mise en oeuvre spécifique, on indique que l'optique d'interrogation peut être réalisée à partir d'une source laser unique à laquelle on applique une modulation de fréquence à plusieurs GHz de type modulation à bandes latérales, la distance entre les bandes latérales correspondant à la fréquence d'horloge. On dispose ainsi des deux raies précédemment mentionnées avec une cohérence de phase aussi bonne que celle du signal de modulation.
  • Les deux raies ou faisceaux laser L1 et L2 sont alors superposés physiquement de manière classique afin que ces derniers suivent le même chemin optique et soient soumis aux mêmes déphasages successifs jusqu'à leur application sur le milieu d'interaction.
  • En ce qui concerne la cellule d'interaction 3, on indique que celle-ci peut être mise en oeuvre à partir d'une enceinte en pyrex ou en quartz.
  • En outre, des gaz tampon peuvent être ajoutés afin d'éliminer l'élargissement des raies par effet Doppler en se plaçant dans le régime de Lamb-Dicke. L'environnement magnétique et thermique est contrôlé de manière stricte pour éviter toute variation de déplacement de fréquence qui affecterait l'exactitude et la stabilité à long terme de l'horloge atomique ainsi constituée.
  • L'horloge atomique à interrogation pulsée comporte, dans une section de détection SD, également un module 4 de détection du signal de réponse, le signal de réponse étant défini comme le signal délivré par le milieu d'interaction de la cellule 3 après illumination du milieu d'interaction par les faisceaux laser L1 et L2. Le module de détection 4 est bien entendu adapté à la longueur d'onde et à l'amplitude du signal de réponse pour délivrer une version électronique du signal de réponse.
  • De manière plus spécifique, le module 4 de détection du signal de réponse peut être constitué par des modules mettant en oeuvre les processus de détection tels que décrits au tableau précédemment cité.
  • Selon un aspect particulièrement remarquable de l'horloge atomique à interrogation pulsée objet de la présente invention, celle-ci comporte un module 2 de modulation par impulsions de l'intensité du premier et du deuxième faisceaux laser L1 et L2 entre un niveau haut et un niveau bas d'intensité.
  • Bien entendu, ainsi que représenté sur la figure 3, le module 2 de modulation est placé dans la section optique SO sur le trajet des premier et deuxième faisceaux laser en amont de la cellule d'interaction 3 pour engendrer en synchronisme un premier et un deuxième faisceaux laser pulsés permettant d'illuminer le milieu d'interaction contenu dans la cellule 3, selon la figure 2a.
  • Du fait de l'illumination du milieu d'interaction précité par le premier et le deuxième faisceaux laser ou signal radiofréquence pulsés, l'interaction entre les faisceaux laser précités et le milieu d'interaction est sensiblement limitée à la durée de chaque impulsion successive correspondant à un niveau haut d'intensité.
  • En conséquence, le signal de réponse engendré pendant une impulsion courante de rang r par exemple dépend de l'état atomique engendré pendant au moins une impulsion précédant cette impulsion courante, c'est-à-dire des impulsions de rang r-1 à r-p précédemment mentionnés dans la description, et, bien entendu, de l'évolution de cet état atomique pendant la durée de niveau bas d'énergie d'intensité séparant ces impulsions.
  • En outre, ainsi que représenté sur la figure 3, le module de détection du signal de réponse 4 peut être suivi d'un module 5 de traitement, le module 5 de traitement recevant la version électronique du signal de réponse et effectuant un traitement de sommation par combinaison linéaire du signal de réponse engendré pendant l'impulsion courante et pendant au moins une impulsion précédant cette impulsion courante, c'est-à-dire pendant les impulsions antérieures successives. Le module 5 de traitement par combinaison linéaire permet ainsi d'engendrer un signal d'horloge atomique compensé résultant dont la largeur spectrale est minimalisée et de construire un signal de correction Sc permettant de piloter la fréquence d'un oscillateur local 6.
  • Sur la figure 3, le module 5 de traitement délivre en fait le signal de correction Sc au module 6 implanté dans une section analogique SA et constitué par exemple par un oscillateur local LO et un synthétiseur S délivrant, d'une part, un signal périodique asservi en fréquence Su, pour utilisation comme référence de fréquence pour un utilisateur externe, et, d'autre part, un signal de commande Sco du module optique d'interrogation 1.
  • Ce signal de commande Sco peut par exemple consister en une référence de fréquence permettant d'effectuer la commande du processus de modulation en bandes latérales précédemment mentionnées dans la description pour obtenir les deux faisceaux laser L1 et L2, à partir d'une source laser unique par exemple. On indique que le signal de commande Sco précité peut également permettre d'assurer une commande d'asservissement de la longueur d'ondes et/ou de la fréquence des faisceaux laser L1 et L2 à la valeur choisie.
  • Le mode de mise en oeuvre de ce processus de commande d'asservissement ne sera pas décrit en détails car il correspond à un mode de mise en oeuvre connu de l'état de la technique.
  • Bien entendu, ainsi que représenté en outre en figure 3, l'horloge atomique à interrogation pulsée, objet de la présente invention, est munie d'une unité de commande 7 qui peut être constituée par un micro-ordinateur relié par une liaison par bus à l'ensemble des modules tels que le module de modulation par impulsion 2, le module 4 de détection du signal de réponse, et, bien entendu le module 5 de traitement et le module 6 jouant le rôle d'oscillateur local LO et/ou de synthétiseur S.
  • On comprend en particulier que l'unité de commande 7 permet d'assurer la synchronisation de l'ensemble des modules précités ainsi que la commande des trains d'impulsions de modulation engendrés, à partir d'un signal de commande électronique, par exemple, élaboré par l'unité de commande 7, pour commander le module 2 de modulation.
  • En ce qui concerne le module 2 de modulation par impulsions de l'intensité du premier et du deuxième faisceaux laser L1, L2 on indique que ce dernier peut être constitué par un modulateur acousto-optique, un modulateur électro-optique ou finalement par tout autre composant de modulation de l'intensité d'un signal lumineux dont le temps de réponse est suffisamment bref pour assurer une telle modulation.
  • D'une manière plus spécifique, on indique que le niveau bas d'intensité correspond à une intensité sensiblement nulle de chacun des faisceaux laser ou du signal radiofréquence, ceux-ci étant totalement absorbés par le module 2 de modulation précédemment mentionné.
  • Une description plus détaillée du module de traitement 5 de sommation par combinaison linéaire du signal de réponse sera maintenant donnée en liaison avec la figure 4a et la figure 4b.
  • D'une manière générale, on comprend que le module 5 de traitement précité reçoit le signal de réponse sous sa forme de signal électronique délivré par le module de détection 4.
  • Pour assurer le traitement des impulsions successives Sr reçues, le module 5 de traitement peut, ainsi que représenté en figure 4a, comporter avantageusement un module d'échantillonnage 50 du signal de réponse engendré pendant l'interaction de l'impulsion courante et d'au moins une impulsion précédant cette impulsion courante, le module 50 d'échantillonnage précité étant déclenché en synchronisme avec la commande du module 2 de modulation des faisceaux laser L1 et L2.
  • Le module 50 d'échantillonnage est préférentiellement suivi d'un module 51 de mémorisation des valeurs échantillonnées du signal de réponse engendré pendant l'interaction de chacune des impulsions précitées.
  • Enfin, le module 51 de mémorisation peut être suivi d'un module 52 permettant d'assurer le calcul d'une combinaison linéaire des valeurs échantillonnées mémorisées permettant d'engendrer le signal d'horloge atomique compensé SHC précédemment mentionné dans la description. A partir de ce dernier un module 53 formé par exemple par un intégrateur permet de délivrer le signal de correction Sc au module 6 constitué par l'oscillateur local LO et le synthétiseur S, par exemple.
  • Le synthétiseur S permet d'engendrer un signal micro-ondes dont la fréquence est voisine de la fréquence de résonance de la transition e → f.
  • Enfin, l'unité de commande 7 peut avantageusement être constituée par un poste de travail ou un micro-ordinateur comportant un programme de commande de l'ensemble, de façon à assurer la synchronisation du module 2 de modulation, du module 4 de détection du signal de réponse, du module 5 de traitement précédemment décrit en liaison avec la figure 4a et, bien entendu, du module 6 constitué par l'oscillateur local et le synthétiseur précédemment décrits.
  • En particulier, dans un mode de réalisation non limitatif, on indique que l'unité de commande 7 peut être avantageusement programmée pour assurer, grâce à un logiciel de commande, une lecture des valeurs échantillonnées mémorisées dans le module de mémorisation 51 à des instants déterminés.
  • En particulier, dans ces conditions, l'unité de commande 7 peut alors comporter un programme de tri des valeurs échantillonnées mémorisées pour déterminer pour chacune des impulsions Sr à Sr-p les valeurs maximales et/ou minimales de ces valeurs échantillonnées pour chacune des impulsions successives précitées.
  • Ainsi, dans un mode de mise en oeuvre non limitatif de l'horloge atomique objet de la présente invention, on indique qu'un processus de traitement peut consister avantageusement, ainsi que représenté au point 2 de la figure 4b, pour l'impulsion courante Sr de rang r, à déterminer la valeur échantillonnée de cette impulsion qui présente la valeur maximale, cette valeur maximale étant notée Mr puis pour les impulsions successives de rang antérieur r-1 à r-p, à déterminer dans chacune de celles-ci le minimum des valeurs échantillonnées correspondantes dans ses impulsions successives.
  • Ainsi, les minima correspondants sont notés mr-1 pour l'impulsion antérieure précédant immédiatement l'impulsion courante, cette impulsion antérieure étant de rang r-1, puis les valeurs successives mr-2 à mr-p pour des impulsions antérieures précédentes de rang r-2 jusqu'à r-p.
  • Selon un mode de mise en oeuvre non limitatif préférentiel de l'horloge atomique à interrogation pulsée objet de la présente invention, on indique que la combinaison linéaire des valeurs échantillonnées peut alors consister à additionner le maximum des valeurs échantillonnées pour l'impulsion courante de rang r et de retrancher les valeurs minimales successives des impulsions antérieures de rang r-1 à r-p, ainsi que représenté sur la figure 4b, ou une valeur moyenne de celles-ci.
  • On comprend que le programme de tri peut alors effectuer le tri par rapport à l'origine de chacune des impulsions, ces origines étant notées successivement or, Or-1, Or-p.
  • Ainsi, grâce à la mise en oeuvre du processus de traitement réalisé par le module de traitement 5 représenté en figure 3, 4a et 4b, on comprend, en particulier, que le maximum Mr de l'impulsion courante de rang r permet d'obtenir la valeur maximale d'amplitude pour le signal de réponse détectée alors que la soustraction des valeurs échantillonnées successives, représentatives des minima locaux pour ces dernières, permet au contraire de retrancher une valeur échantillonnée représentative des dérives et perturbations introduites par le milieu d'interaction contenu dans la cellule 3, pour obtenir un signal d'horloge atomique compensé dont la largeur spectrale est ainsi minimalisée et dont le contraste peut être sensiblement amélioré, grâce à la suppression des composantes continues ou lentement variables représentatives de la dérive de l'ensemble du système.
  • Bien entendu, et dans un but d'augmenter la rapidité de traitement et l'obtention de réponse en temps réel pour la partie numérique du module 5 de traitement, les modules 51, 52 et 53 peuvent être remplacés par un processeur de signal dédié programmé à cet effet.
  • Des justificatifs théoriques et expérimentaux relatifs aux performances obtenues grâce à la mise en oeuvre du procédé et d'une horloge atomique à interrogation pulsée conformes à l'objet de la présente invention seront maintenant donnés ci-après en liaison avec la figure 4c.
  • Lorsqu'on considère une horloge atomique du type horloge CPT à atomes thermiques dans laquelle le milieu d'interaction est exempt de gaz tampon, la largeur de la raie d'oscillation obtenue pour le signal d'horloge, largeur à 3dB par rapport à l'amplitude maximale au sommet de l'oscillation, est de quelques kHz pour une fréquence centrale de l'ordre de quelques GHz. Une telle largeur de raie est trop importante pour être compatible avec une utilisation de telles horloges atomiques comme horloge de référence. Ceci peut être expliqué en raison du fait qu'en l'absence de gaz tampon, les atomes du milieu d'interaction sont soumis à un déplacement erratique rapide trop important qui élargit le phénomène de résonance par effet Doppler et limitation du temps de transit et, finalement, la qualité du résonateur radio-électrique ainsi constitué.
  • Lorsque, au contraire un gaz tampon est utilisé dans ce même type d'horloge, le régime de Lamb-Dicke est atteint et la largeur de raie du signal d'horloge atomique est principalement limitée par la relaxation de la cohérence dans l'état fondamental et l'élargissement dû à la saturation laser. Des largeurs de raie de l'ordre de 100 Hz ont jusqu'ici été obtenues. Des stabilités à court terme de la fréquence du signal utilisateur Su de l'ordre de 5 à 15 10-12 après 1 seconde d'intégration ont été mesurées avec une détection optique ou micro-onde du signal d'horloge précité. La stabilité à long terme est essentiellement limitée par les fluctuations de fréquence induites par les collisions avec le gaz tampon. Le déplacement de fréquence correspondant vis-à-vis du désaccord Raman est directement relié à la pression de gaz tampon qui est elle-même fonction de la température du milieu d'interaction et donc de la cellule.
  • La largeur de raie ΔfCPT du signal de résonance et du signal d'horloge dans une horloge de ce type à une valeur donnée par la relation (1). Δf CPT = Δf TT + Δf collision + Δf Doppler + Δf saturation
    Figure imgb0002
  • Dans cette relation :
    • ΔfTT décrit l'élargissement dû au temps de transit limité des atomes du milieu d'interaction à travers les faisceaux laser.
  • Pour une interrogation continue, ΔfTT varie comme 1/T où T désigne le temps d'interaction entre un atome et les ondes laser.
  • Pour une interrogation pulsée conformément à la mise en oeuvre du procédé et de l'horloge à interrogation pulsée objet de la présente invention, ΔfTT varie comme 1/2b où b désigne le temps mort entre deux impulsions consécutives d'un train d'impulsions ;
    • Δfcollision est l'élargissement de la raie résultant de l'amortissement de la cohérence dû aux collisions entre atomes ;
    • ΔfDoppler est l'élargissement par effet Doppler du premier ordre ;
    • Δfsaturation est l'élargissement par saturation lié aux intensités réelles des faisceaux laser illuminant le milieu d'interaction.
  • Pour une horloge atomique CPT dont le milieu d'interaction est constitué par des atomes thermiques sous forme d'une vapeur :
    • ΔfDoppler et ΔfTT sont négligeables en raison de la présence du gaz tampon ;
    • Δfsaturation peut être réduit en ajustant la puissance laser mais au détriment du rapport signal à bruit, ainsi que mentionné précédemment dans l'introduction à la description pour les dispositifs de l'art antérieur à interrogation continue ;
    • Δfcollision est la source prédominante de l'élargissement de la raie constitutive du signal d'horloge atomique obtenu.
  • La figure 4c illustre le mode de mise en oeuvre du procédé objet de la présente invention grâce à une horloge atomique à interrogation pulsée dans laquelle le milieu d'interaction est constitué par des atomes thermiques de césium en présence d'un gaz tampon, formé par de l'azote. Elle représente l'amplitude du signal d'horloge compensé SHC en fonction du désaccord de la différence des fréquences Δf12 des deux ondes laser.
  • L'axe des abscisses de la figure 4c est gradué en kHz vis-à-vis d'une valeur 0 origine du désaccord Raman. La distance δ représente le désaccord introduit en raison de la présence du gaz tampon. Ce biais de fréquence peut être réduit en utilisant deux gaz tampon, azote et argon par exemple, induisant des déplacements collisionnels de signe opposé.
  • En référence à la figure précitée, on constate que pour l'amplitude maximale mesurée en millivolts sur l'axe des ordonnées, la largeur des oscillations reste aussi faible que 25 Hz grâce à la mise en oeuvre du traitement et, bien entendu, de la modulation par impulsions des faisceaux laser L1 et L2 utilisés. Lorsque, au contraire et selon un aspect particulièrement remarquable du procédé et de l'horloge atomique à interrogation pulsée conformes à l'objet de la présente invention, le milieu d'interaction est constitué par des atomes refroidis par laser, la vitesse des atomes est réduite dans les conditions précédemment mentionnées dans la description, c'est-à-dire à des vitesses erratiques environ 1000 fois plus faibles que celles des atomes thermiques.
  • Dans ces conditions, il est alors possible d'obtenir des longs temps d'interaction entre les faisceaux laser d'illumination et le milieu d'interaction sans l'utilisation d'un gaz tampon, ce qui permet d'annuler ainsi le déplacement δ précédemment mentionné en liaison avec la figure 4c de résonance et l'élargissement de fréquences dû aux collisions.
  • Ainsi, pour une horloge à interrogation pulsée, horloge atomique CPT à atomes froids, les paramètres précités sont alors traités de la façon ci-après :
    • ΔfDoppler et ΔfTT sont négligeables grâce aux faibles vitesses des atomes froids, refroidis par laser ;
    • Δfcollision est également négligeable lorsque la densité d'atomes froids est suffisamment faible.
  • A ce titre, l'atome de rubidium apparaît plus intéressant que l'atome de césium car le déplacement collisionnel est au moins 50 fois plus faible.
  • Ainsi, on constate que c'est l'élargissement par saturation Δfsaturation qui limite la largeur de raie d'une horloge atomique dont le milieu d'interaction est constitué par des atomes refroidis par laser.
  • Lorsque, en outre, le processus d'interrogation est effectué conformément au procédé objet de la présente invention, c'est-à-dire par interrogation pulsée, il est alors possible de réduire de manière très significative la contribution de l'effet de saturation tout en continuant de détecter les signaux d'intensité suffisante, c'est-à-dire avec un rapport signal à bruit satisfaisant.

Claims (10)

  1. Procédé de génération d'un signal d'horloge atomique à piégeage cohérent de population, à partir d'une première et d'une deuxième onde laser cohérentes en phase, chacune sensiblement en résonance avec une transition optique des atomes d'un milieu d'interaction, la superposition cohérente des états atomiques correspondant au piégeage cohérent de population d'atomes engendrant un signal de réponse présentant une amplitude extrémale à la résonance et représentative du signal d'horloge atomique correspondant à la variation d'amplitude du signal détecté en fonction de la valeur de la différence de fréquence de la première et la deuxième onde laser cohérentes en phase, caractérisé en ce que celui-ci consiste au moins à :
    - moduler en synchronisme par impulsions successives l'intensité de la première et la deuxième onde laser, selon un facteur de forme déterminé entre un niveau haut et un niveau bas d'intensité, l'interaction entre la première respectivement la deuxième onde laser et le milieu d'interaction étant limitée sensiblement à la durée de chaque impulsion successive correspondant à un niveau haut d'intensité, ledit signal de réponse engendré pendant une impulsion courante dépendant de l'état atomique engendré pendant au moins une impulsion précédant cette impulsion courante et de l'évolution de cet état atomique pendant la durée de niveau bas d'intensité séparant lesdites impulsions :
    - détecter et superposer par combinaison linéaire ledit signal de réponse engendré pendant ladite impulsion courante et au moins une impulsion précédant cette impulsion courante, pour engendrer un signal d'horloge atomique compensé résultant, dont la largeur spectrale est minimalisée.
  2. Procédé selon la revendication 1, caractérisé en ce que la modulation par impulsions est effectuée par trains d'impulsions, la fréquence des impulsions de modulation étant comprise entre 0,2 Hz et 104 Hz.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les impulsions de modulation présentent un facteur de forme compris entre 10-6 et 10-1.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la durée de niveau bas d'intensité séparant ladite impulsion courante de ladite impulsion précédant cette impulsion courante est inférieure au temps de vie de la cohérence hyperfine existant entre deux niveaux d'horloge.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que ledit milieu d'interaction est formé par une pluralité d'atomes thermiques ou refroidis par laser.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'étape consistant à détecter ledit signal d'horloge est choisie comme l'un des processus de détection parmi le groupe des processus de détection comprenant l'absorption optique, la fluorescence optique, la détection micro-onde, en fonction de la différence de fréquence de la première et de la deuxième onde laser cohérentes en phase.
  7. Horloge atomique à interrogation pulsée, comportant au moins :
    un moyen optique d'interrogation (1) permettant d'engendrer un premier et un deuxième faisceau laser cohérents en phase (L1, L2), chacun sensiblement en résonance avec une transition optique des atomes d'un milieu d'interaction (3);
    - une cellule d'interaction (3) comportant ledit milieu d'interaction, illuminé en fonctionnement par le premier et le deuxième faisceau laser cohérents en phase, pour engendrer un signal de réponse présentant une amplitude extrémale à la résonance et correspondant à la variation d'amplitude du signal détecté en fonction de la différence de fréquence du premier et du deuxième faisceau laser cohérents en phase ;
    - des moyens de détection (4) dudit signal de réponse, lesdits moyens de détection étant adaptés à la longueur d'onde et à l'amplitude du signal de réponse, caractérisé en ce que ladite horloge atomique comporte en outre :
    des moyens de modulation (2) par impulsions de l'intensité du premier et du deuxième faisceau laser entre un niveau haut et un niveau bas d'intensité, lesdits moyens de modulation étant placés sur le trajet desdits premier et deuxième faisceau laser en amont de ladite cellule d'interaction (3) pour engendrer en synchronisme un premier et un deuxième faisceau laser pulsé, l'interaction entre le premier respectivement le deuxième faisceau laser et le milieu d'interaction étant sensiblement limitée à la durée de chaque impulsion successive correspondant à un niveau haut d'intensité, ledit signal de réponse engendré pendant une impulsion courante dépendant de l'état atomique engendré pendant au moins une impulsion précédant cette impulsion courante et de l'évolution de cet état atomique pendant la durée de niveau bas d'énergie d'intensité séparant lesdites impulsions, et en ce que
    lesdits moyens de détection comprennent en outre des moyens sommateur (5) par combinaison linéaire du signal de réponse engendré pendant cette impulsion courante et du signal de réponse engendré pendant au moins une impulsion précédant cette impulsion courante, lesdits moyens sommateurs par combinaison linéaire permettant d'engendrer un signal d'horloge atomique compensé résultant, dont la largeur spectrale est minimalisée.
  8. Horloge atomique selon la revendication 7. caractérisée en ce que lesdits moyens de modulation par impulsion de l'intensité du premier et du deuxième faisceau laser entre un niveau haut d'intensité et un niveau bas comportent au moins un modulateur acousto-optique.
  9. Horloge atomique selon l'une des revendications 7 ou 8, caractérisé en ce que lesdits moyens de détection comprennent en outre :
    - des moyens d'échantillonnage du signal de réponse engendré pendant l'interaction de l'impulsion courante et d'au moins une impulsion précédant cette impulsion courante ;
    - des moyens de mémorisation des valeurs échantillonnées du signal de réponse engendré pendant l'interaction de chacune desdites impulsions.
  10. Horloge atomique selon la revendication 9, caractérisé en ce que lesdits moyens de détection comprennent en outre :
    - des moyens de lecture des valeurs échantillonnées à des instants déterminés mémorisés dans lesdits moyens de mémorisation :
    - des moyens de calcul d'une combinaison linéaire desdites valeurs échantillonnées mémorisées permettant d'engendrer ledit signal d'horloge atomique compensé.
EP05744396A 2004-03-30 2005-03-29 Procédé de génération d'un signal d'horloge atomique a piégeage cohérent de population et horloge atomique correspondante Not-in-force EP1730608B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0403289A FR2868558B1 (fr) 2004-03-30 2004-03-30 Procede de generation d'un signal d'horloge atomique a piegeage coherent de population et horloge atomique correspondante
PCT/FR2005/000754 WO2005101141A1 (fr) 2004-03-30 2005-03-29 Procédé de génération d'un signal d'horloge atomique a piégeage cohérent de population et horloge atomique correspondante

Publications (2)

Publication Number Publication Date
EP1730608A1 EP1730608A1 (fr) 2006-12-13
EP1730608B1 true EP1730608B1 (fr) 2011-05-04

Family

ID=34945087

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05744396A Not-in-force EP1730608B1 (fr) 2004-03-30 2005-03-29 Procédé de génération d'un signal d'horloge atomique a piégeage cohérent de population et horloge atomique correspondante

Country Status (8)

Country Link
US (1) US7501906B2 (fr)
EP (1) EP1730608B1 (fr)
JP (1) JP4801044B2 (fr)
CN (1) CN100587629C (fr)
AT (1) ATE508396T1 (fr)
DE (1) DE602005027826D1 (fr)
FR (1) FR2868558B1 (fr)
WO (1) WO2005101141A1 (fr)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944317B2 (en) * 2008-08-11 2011-05-17 Honeywell International Inc. Cold atom micro primary standard
US7965147B2 (en) * 2008-08-11 2011-06-21 Honeywell International Inc. Physics package design for a cold atom primary frequency standard
US8237514B2 (en) 2009-02-06 2012-08-07 Seiko Epson Corporation Quantum interference device, atomic oscillator, and magnetic sensor
JP5381400B2 (ja) * 2009-02-06 2014-01-08 セイコーエプソン株式会社 量子干渉装置、原子発振器、および磁気センサー
JP5589166B2 (ja) 2009-11-12 2014-09-17 セイコーエプソン株式会社 原子発振器
CN102377431B (zh) * 2010-08-06 2013-07-31 北京大学 相干布局数囚禁原子钟及其实现方法
CN102063054B (zh) * 2011-02-22 2012-09-05 合肥威师智能电子电器厂 Cpt原子钟
US8854146B2 (en) 2012-01-31 2014-10-07 Honeywell International Inc. Systems and methods for external frit mounted components
US8879059B2 (en) * 2012-02-16 2014-11-04 The Charles Stark Draper Laboratory, Inc. Methods and apparatus for controlled generation of hyperfine polarizations and coherences
JP6124536B2 (ja) * 2012-08-30 2017-05-10 株式会社リコー 原子発振器及びcpt共鳴の励起方法
US9285249B2 (en) 2012-10-04 2016-03-15 Honeywell International Inc. Atomic sensor physics package with metal frame
CN103067004B (zh) * 2012-12-17 2016-03-30 江汉大学 双泡式原子钟
JP6346446B2 (ja) 2013-02-14 2018-06-20 株式会社リコー 原子発振器、cpt共鳴の検出方法及び磁気センサ
US9410885B2 (en) 2013-07-22 2016-08-09 Honeywell International Inc. Atomic sensor physics package having optically transparent panes and external wedges
US10171095B2 (en) 2013-09-27 2019-01-01 Seiko Epson Corporation Atomic oscillator, electronic apparatus, moving object, and manufacturing method of atomic oscillator
CN103929175B (zh) * 2013-11-15 2017-01-18 北京无线电计量测试研究所 一种cpt原子频标的量子系统装置
CN104199274B (zh) * 2014-09-24 2017-03-22 北京市计量检测科学研究院 一种铷钟频率修正值的预估方法
JP6511298B2 (ja) * 2015-03-12 2019-05-15 株式会社リコー Cpt共鳴発生方法、cpt共鳴検出方法、cpt共鳴発生装置、原子発振器、磁気センサ
US10520900B2 (en) * 2016-12-28 2019-12-31 Texas Instruments Incorporated Methods and apparatus for magnetically compensated chip scale atomic clock
CN108233161B (zh) * 2017-12-18 2020-07-14 北京无线电计量测试研究所 一种实现高对比度窄线宽cpt谱线的装置
CN110824888B (zh) * 2018-08-09 2021-02-02 中国计量科学研究院 应用于原子喷泉钟的信号获取方法及装置
CN109188888B (zh) * 2018-08-16 2020-09-29 山东师范大学 基于多普勒效应的提高原子钟精度的实验装置及方法
US20220377160A1 (en) * 2019-11-08 2022-11-24 Rambler Wheels, Llc Continuous time adjustment daylight saving time method and apparatus
CN110928174B (zh) * 2019-12-17 2022-01-11 中国科学院国家授时中心 一种原子钟鉴频信号探测系统
CN111006661B (zh) * 2019-12-18 2021-09-07 中国科学院武汉物理与数学研究所 一种消除冷原子干涉仪死时间的测量方法和测量装置
CN114637181B (zh) * 2022-02-25 2023-04-25 北京大学 一种cpt原子钟伺服器芯片的数字控制系统
CN117331005B (zh) * 2023-12-01 2024-02-09 兰州空间技术物理研究所 一种二能级磁共振Ramsey跃迁花样的三轴测量方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234483A (en) * 1964-03-20 1966-02-08 Itt High stability gas cell frequency standard
FR2581261B1 (fr) * 1985-04-30 1987-08-07 Cepe Resonateur a cesium a pompage optique et detection par diode laser
US5517157A (en) * 1993-04-27 1996-05-14 Ball Corporation Evanescent-field interrogator for atomic frequency standards
CA2478347C (fr) * 2002-04-09 2008-06-10 California Institute Of Technology Horloge atomique fondee sur un oscillateur opto-electronique
WO2005054907A2 (fr) * 2003-11-26 2005-06-16 Kernco, Inc. Etalon de frequence atomique a excitation optique amelioree

Also Published As

Publication number Publication date
CN100587629C (zh) 2010-02-03
JP2007530965A (ja) 2007-11-01
EP1730608A1 (fr) 2006-12-13
US7501906B2 (en) 2009-03-10
ATE508396T1 (de) 2011-05-15
WO2005101141A1 (fr) 2005-10-27
DE602005027826D1 (de) 2011-06-16
US20070200643A1 (en) 2007-08-30
JP4801044B2 (ja) 2011-10-26
FR2868558B1 (fr) 2006-06-30
FR2868558A1 (fr) 2005-10-07
CN1973248A (zh) 2007-05-30

Similar Documents

Publication Publication Date Title
EP1730608B1 (fr) Procédé de génération d'un signal d'horloge atomique a piégeage cohérent de population et horloge atomique correspondante
EP2791620B1 (fr) Mesure par interferometrie atomique
EP0455530B1 (fr) Dispositif de mesure à fibre optique, gyromètre, centrale de navigation et de stabilisation, capteur de courant
EP2708856A1 (fr) Dispositif et procédé pour la mesure de la distribution de grandeurs physiques dans une fibre optique
FR2729754A1 (fr) Dispositif et procede pour accroitre la resolution d'une information de vitesse angulaire detectee d'un gyroscope a laser en anneau
CH465907A (fr) Interféromètre d'exploration pour l'analyse d'une lumière de composition spectrale inconnue
EP0027763B1 (fr) Procédé et appareil de mesure de distance par interférométrie laser à deux longueurs d'ondes
FR2582825A1 (fr) Procede et dispositif pour la mesure du temps de propagation d'une onde
US8515290B2 (en) Method for coupling two pulsed lasers having an adjustable difference of the pulse frequencies, which is not equal to zero
FR2490808A1 (fr) Interferometre et dispositif comportant cet interferometre
EP3523644B1 (fr) Détecteur de gaz et procède de mesure d'une concentration gazeuse par l'effet photo-acoustique
FR2725791A1 (fr) Procede et appareil de determination de facteur de bruit d'amplificateur optique
US3885874A (en) Laser plasma diagnostic using ring resonators
EP2738628B1 (fr) Montre bracelet avec oscillateur atomique
EP2656454B1 (fr) Laser impulsionnel femtoseconde stabilise et procede de stabilisation
EP2726853A1 (fr) Dispositif de gestion d'impulsions en spectroscopie pompe - sonde
EP2498150A1 (fr) Horloge atomique
EP1995575B1 (fr) Système d'analyse de fréquence de dispositifs resonnants
FR2729755A1 (fr) Gyroscope a laser en anneau et procede pour corriger des erreurs dues au blocage
CN115356742B (zh) 一种基于相位拼接的高精度外调fmcw激光测距系统及方法
FR2826446A1 (fr) Capteur inertiel a atomes lents
EP4214482A1 (fr) Procede et appareil de controle du retard entre deux impulsions lumineuses a l'echelle attoseconde
FR2672388A1 (fr) Procede et appareil pour determiner une caracteristique de verrouillage d'un gyroscope a laser en anneau en mesurant l'amplitude d'une composante de rayonnement de retrodiffusion dudit laser.
EP4075156A1 (fr) Procédé d exploitation d'un magnétomètre a pompage optique champ nul opéré dans un champ ambiant non nul
EP4256291A1 (fr) Dispositif d'analyse spectrale large bande d'un signal d'intérêt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100318

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602005027826

Country of ref document: DE

Date of ref document: 20110616

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005027826

Country of ref document: DE

Effective date: 20110616

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110905

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110805

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110815

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110904

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005027826

Country of ref document: DE

Effective date: 20120207

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNR

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180316

Year of fee payment: 14

Ref country code: CH

Payment date: 20180315

Year of fee payment: 14

Ref country code: DE

Payment date: 20180309

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180329

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005027826

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190329

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331