EP1730459B1 - Dispositif de circuit de refroidissement - Google Patents

Dispositif de circuit de refroidissement Download PDF

Info

Publication number
EP1730459B1
EP1730459B1 EP04718903A EP04718903A EP1730459B1 EP 1730459 B1 EP1730459 B1 EP 1730459B1 EP 04718903 A EP04718903 A EP 04718903A EP 04718903 A EP04718903 A EP 04718903A EP 1730459 B1 EP1730459 B1 EP 1730459B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
line
cooling
cooling medium
consumer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04718903A
Other languages
German (de)
English (en)
Other versions
EP1730459A1 (fr
Inventor
Achim Mathar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otto Junker GmbH
Original Assignee
Otto Junker GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otto Junker GmbH filed Critical Otto Junker GmbH
Publication of EP1730459A1 publication Critical patent/EP1730459A1/fr
Application granted granted Critical
Publication of EP1730459B1 publication Critical patent/EP1730459B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/005Auxiliary systems, arrangements, or devices for protection against freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium

Definitions

  • a cooling circuit device with cross-flow heat exchanger is already out of the DE 196 13 910 A1 known. With the cross-flow heat exchanger presented there, the heat exchanger tubes can be emptied quickly during downtimes and prevents freezing of the heat exchange fluid and be preserved in this way the heat exchanger from destruction.
  • a disadvantage of the known device is that after switching off the cross-flow heat exchanger, a further supply of a consumer with cooling water is no longer present. This is also not necessary in the disclosed refrigeration cycle device, as long as it is used in areas where postcooling can be dispensed with. This is z. B. in the plastics industry in refrigerated injection molding machines the case.
  • the cooling circuit device captivates by its simple construction with only one pump. After switching off the heat exchanger, the consumer can still be cooled with water without the aid of a second pump circuit. The water consumption can be minimized and the use of glycol can be dispensed with completely. Usually, about 35% glycol must be added as antifreeze, so that frost protection can be guaranteed down to minus 20 ° C.
  • One cycle requires approx. 2000 l of water mixed with glycol. Glycol is too expensive, adversely increases the conductivity of water by about 35 microsiemens and must also be disposed of in an environmentally friendly manner.
  • glycol-water mixtures Since the thermal capacity of glycol-water mixtures is worse than that of water, a plant working with glycol-water mixture has to be made larger than a system working with tap water alone.
  • a plant working with glycol-water mixture In the device according to the invention can be dispensed with an external heating.
  • These external heaters which are intended to prevent freezing of the heat exchanger at low temperatures, work with electricity. It must not come with these systems to any power failure, otherwise the very expensive heat exchangers would be destroyed.
  • the short-circuited auxiliary circuit guarantees after-cooling of the consumers.
  • a cooling circuit device can be used in particular in the metal sector with furnaces as consumers.
  • the object is achieved in a cooling method of the type mentioned above, that is taken in special operation of the heat exchanger from the cooling circuit and circulates the cooling medium only in a makeshift circuit between the cooling medium tank and consumers or consumers.
  • Fig. 1 is a cooling circuit device according to the prior art DE 196 13 910 A1 (Fig. 2 there) presented.
  • the cross-flow heat exchanger 1 is connected via a drain line 2 with a cold container 3. From there, the cooled water flows into one Warm container 4. Subsequently, the warmed water is pumped again via an inlet line 5 to the cross-flow heat exchanger 1 with the pump 6. The consumer himself is not shown in the refrigeration cycle device.
  • the cross-flow heat exchanger 1 is provided with a ventilation device 7. During operation, a small amount of heat exchange fluid continuously exits from the ventilation stub 8. This is collected by the funnel 9 and returned via the overflow line 10 to the cold container 3.
  • the cross-flow heat exchanger of the prior art DE 196 13 910 A1 (Fig. 1 there).
  • This cross-flow heat exchanger 1 which can also be used in the present invention, comprises a frame 12 which is supported on six legs 11 and which supports a housing 13. On the top of the housing electric motor driven fans 14 are provided. These ensure a bottom-up flow through the cross-flow heat exchanger 1 with air safely. The air flowing through is indicated by arrows.
  • the heat exchange fluid (eg, water) is supplied to the crossflow heat exchanger 1 via an inflow element 15. This leaves the cross-flow heat exchanger 1 via a drain element 16.
  • inlet element 15 and drain element 16 each have a collector 17 or 18, in each of which a connecting flange 19 having a connecting flange 19 and 20 opens.
  • a heat exchange element 21 is arranged within the housing 13 of the cross-flow heat exchanger 1. This comprises a plurality of mutually parallel tubes 22 and at right angles to these extending heat exchange fins 23. Half of the tubes 22 is connected to the collector 17 of the inflow element 15, the other half with the collector 18 of the discharge element 16.
  • the heat exchange element 21 is in the housing 13 arranged inclined with respect to the horizontal; Thus, the tubes 22 have an identical inclination relative to the horizontal.
  • a collector 24 is arranged on the inflow element 15 and the discharge element 16 opposite side of the cross-flow heat exchanger 1. At these are all Tubes 22 connected. In addition, a vent pipe 8 is connected to the collector 24.
  • the heat exchange medium flows via the inflow element 15 into the tubes 22 connected to its collector 17 and exits from these at their mouth into the collector 24. From this it enters into those tubes 22, which communicate with the collector 18 of the drainage element 16.
  • the crossflow heat exchanger 1 For emptying the crossflow heat exchanger 1, for example, for downtime, are arranged at the headers 17 and 18 of the inflow and outflow element 15, 16 arranged drains 25 after previously the circulation pump of the heating or cooling circuit has been put out of service. Due to the inclination of all the tubes 12, the heat exchange fluid flows through the ventilation stub 8 into the collector 24, and the heat exchange fluid flows out both to the inflow element 15 and to the outflow element 16 and leaves the heat exchange element 21 through the outlets 25.
  • the flow switch 26 shown in FIG. 1 and the antifreeze thermostat 27 can be used to initiate an automatic emptying.
  • a cooling circuit device according to the invention with main and auxiliary circuit is shown.
  • the main circuit comprises a top-mounted cross-flow heat exchanger 101, similar to that illustrated in FIG.
  • the air flowing through the crossflow heat exchanger 101 is indicated by arrows.
  • the circulation flow direction of the water in the main circuit and in the auxiliary circuit is indicated by arrows.
  • a water-filled cooling medium tank 102 which is connected to the cross-flow heat exchanger 101 via a drain line 103.
  • This discharge line 103 ends below the water level in the cooling medium tank 102. It should end below the water level to oxygen uptake of Cooling water to a minimum.
  • a collector 105 is provided, to which on the one hand the heat exchanger tubes 106 and on the other hand a ventilation device 107 are connected.
  • the ventilation device 107 has a ventilation water line 109.
  • the aeration water line 109 connects the aeration device 107 with the cooling medium tank 102.
  • the aeration water line 109 ends above the water level, so that air and no water enters the cross-flow heat exchanger 101. Instead of the aeration water line 109 may also be provided a vent valve. In the area shortly before and the outflow line 103 in the area shortly after the heat exchanger 101, the inflow line 104 has a slight gradient or a gradient of at least 2%.
  • the cooling medium tank 102 is again connected to the crossflow heat exchanger 101 by means of the inflow line 104 and via an intermediate pump 110 and an intermediate consumer 111.
  • the cooling medium tank 102 is preferably made of plastic.
  • the cooling medium tank 102 is provided with a vent fitting 112 with a safety pressure valve and with an overflow 113, which opens briefly at pressure increases ⁇ 0.1 bar. Water is used as cooling medium.
  • the water is heated and is supplied through the inflow line 104 to the higher arranged cross-flow heat exchanger 101 and cooled there.
  • the cooled water flows via the discharge line 103 to the cooling medium tank 102 and is brought from there by means of the downstream pump 110 to the consumer 111 again.
  • the cross-flow heat exchanger 101 In the event that the cross-flow heat exchanger 101 has to be turned off, z. As for maintenance or frost hazard, the cross-flow heat exchanger 101 is vented. Part of the water in the crossflow heat exchanger 101 then flows due to gravity through the discharge line 103 to the cooling medium tank 102. Thus, the part of the water, which is in the adjoining the inflow line 104 heat exchange tubes 106 is provided, an intermediate line 114 is provided with check valve 115 which ends with its lower end in the cooling medium tank 102 below the water level and is connected to the upper end with the inflow line 104 before the cross-flow heat exchanger 101. The intermediate line 114 should end with its lower end in the cooling medium tank 102 below the water level in order to reduce the oxygen uptake of the cooling water to a minimum.
  • the check valve 115 of the intermediate line 114 is closed.
  • the water drain through the intermediate line 114 to the cooling medium tank 102 is then not possible.
  • the check valve 115 is opened and the cooled water can flow due to gravity from the section of the inflow line 104 just before the cross-flow heat exchanger 101 via the intermediate line 114 into the cooling medium tank 102.
  • the water continues to circulate without the cross-flow heat exchanger 101, so it is connected via a three-way valve 116 that is disposed in the inflow line 104 behind the load 111 and before the intermediate line 112, such that the water via a short line 117 directly into the cooling medium tank 102nd flows.
  • a three-way valve 116 that is disposed in the inflow line 104 behind the load 111 and before the intermediate line 112, such that the water via a short line 117 directly into the cooling medium tank 102nd flows.
  • the short line 117 terminates below the water level in the cooling medium tank 102.
  • the short line 117 should end below the water level in order to reduce the oxygen uptake of the cooling water to a minimum.
  • the water circulates between the load 111 and the cooling medium tank 102 due to the pumping power.
  • the water level in the cooling medium tank 102 is controlled by a level monitor 125.
  • An advantage of the presented cooling circuit device consists in its attenuated Temperaturanmination- and cooling behavior through the intermediate cooling medium tank 102.
  • This cooling medium tank 102 takes on consumers, especially stoves, sudden changes in temperature well.
  • the control settings are greatly simplified and the switching of the Minimized fans (14).
  • great efforts must otherwise be made in terms of control technology in order to get a handle on this problem.
  • FIG. 4 shows a cross-flow heat exchanger 101 and a cooling circuit arrangement according to FIG. 3.
  • two parallel consumers 111 'and 111 are shown here in the form of two ovens, the coils of the ovens dissipating heat.
  • a check valve 118 and an emergency water valve 119 are arranged in the respective supply section of the inflow line 104 in front of the respective consumer 111 ', 111 "Should the temperature of the water at one or both consumers 111' and 111" rise too high, the pump fails or a power failure occur, can quickly cool water - usually normal water of the municipal utility - fed through the emergency water valve 119 in front of the consumers 111 'and 111 "and drain after the cooling of the consumers 111' and 111" via the overflow 113 in an outflow channel 108.
  • the task of the check valve 118 is to bring the emergency water to them in emergency water mode for cooling the consumers, i.
  • the emergency water can also be used to keep the water level at the respective furnace coil at a certain level. In the event of an unforeseen drop in the water level, the oven coil to be cooled would otherwise be destroyed from top to bottom.
  • one temperature control valve 120 is arranged in the respective supply section of the inflow line 104 after the respective consumer 111 ', 111 "The temperature of the heated water is determined at this temperature control valve 120. This should be ⁇ 70 ° C.
  • the inflow water quantity can correspond to the respective consumption be controlled by throttling or extension of the water flows at the respective consumer 111 ', 111 "not shown control valves. Such a temperature control can also be used in a single consumer become.
  • the temperature of the water in the respective sections of the feed lines 104 directly behind the ovens should be as high as possible.
  • the temperature of the water after cooling in the heat exchanger 101 should be at least 20 ° C.
  • the temperature of the cooled water is detected by a temperature sensing means 124, particularly a PT100.
  • the switchgear 121 is connected in series with the refrigeration cycle.
  • the switchgear 121 is arranged via its own heat exchanger 122 with the inflow line 104 between the pump 110 and the stoves 111 ', 111 ".
  • the switchgear 121 heats the water assigned to it.This water can be mixed with 0.3% corrosive agent (inhibitor). It is also possible to work with demineralized water, this heated water flowing to the heat exchanger 122 of the switchgear where it is cooled by the cool water of the inflow line 104.
  • Such in-line switching of the heat exchanger 122 is recommended for switchgear 121 with lower power.
  • the advantage of in-line switching is that the circulating amounts of water and thus the pump power can be kept low. It is also theoretically possible to switch the heat exchanger 122 of the switchgear 121 parallel to the consumers; but that is expensive. It must also be ensured that a constant cooling capacity is achieved at the costly switchgear.
  • a switchgear of very high power should be separated by a separate, d. H. from the furnace cycle independent circuit, are regulated.
  • FIG. 4 also shows a heat recovery device 123 in the form of a heat exchanger connected in series behind the furnaces.
  • This heat recovery device 123 is optional, i. H. can be switched on if necessary.
  • About the heat exchanger recovered heat can, for. B. are used for heating circuits or hot water circuits.
  • the presented in Fig, 4 cooling circuit is z. B. used in furnaces in which 3000 KW heat loss must be carried away during operation. At the weekend, when the oven can not be used, heat losses must continue to be dissipated that are steadily losing weight on z. B. to 190 KW. Accordingly, the cooling circuit must be downshifted. It may take 12 hours for a furnace lining to cool down.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (11)

  1. Dispositif de circuit de refroidissement,
    comprenant
    a) un échangeur de chaleur (101) pouvant être vidé,
    b) un réservoir de réfrigérant (102),
    c) une conduite d'amenée (104) allant du réservoir de réfrigérant (102) à l'échangeur de chaleur (101),
    d) une conduite d'évacuation (103) allant de l'échangeur de chaleur (101) au réservoir de réfrigérant (102),
    e) une pompe (110) montée dans la conduite d'amenée (104), pour pomper le réfrigérant dans la direction de l'échangeur de chaleur (101),
    caractérisé par
    f) un consommateur (111) monté dans la conduite d'amenée (104), qui est disposé après la pompe (110),
    g) une conduite courte (117) qui débouche dans le réservoir de réfrigérant (102) avec son extrémité inférieure et qui est connectée par son extrémité supérieure par le biais d'une soupape à trois voies (116) ou de deux soupapes à deux voies à la conduite d'amenée (104) entre le consommateur (111) et l'échangeur de chaleur (101) et
    h) une conduite intermédiaire (114) avec une soupape d'arrêt (115) qui débouche dans le réservoir de réfrigérant (102) avec son extrémité inférieure et qui est connectée par son extrémité supérieure à la conduite d'amenée (104) entre la soupape à trois voies (116) et l'échangeur de chaleur (101) ou entre les deux soupapes à deux voies et l'échangeur de chaleur (101).
  2. Dispositif de circuit de refroidissement (101) selon la revendication 1, caractérisé en ce que
    a) on prévoit comme échangeur de chaleur un échangeur de chaleur à écoulement transversal (101) disposé au point le plus haut,
    a1) comprenant une pluralité de tubes (106) d'échange de chaleur pouvant être parcourus par l'écoulement et disposés suivant une inclinaison, autour desquels peut circuler un courant de chauffage ou de refroidissement orienté transversalement par rapport à eux, et dont les uns sont connectés à la conduite d'amenée (104) et les autres à une conduite d'évacuation (103) disposée du même côté de l'échangeur de chaleur à écoulement transversal (101),
    a2) les tubes d'échange de chaleur (106) raccordés à la conduite d'amenée (104) et ceux raccordés à la conduite d'évacuation (103) s'étendant essentiellement parallèlement les uns aux autres de telle sorte que les tubes d'échange de chaleur (106) connectés à la conduite d'amenée (104) présentent une pente ascendante dans la direction d'écoulement du circuit et que les tubes d'échange de chaleur (106) connectés à la conduite d'évacuation (103) présentent une pente descendante et
    a3) du côté de l'échangeur de chaleur à écoulement transversal (101) opposé à la conduite d'amenée et à la conduite d'évacuation (103, 104) est prévu un collecteur (105) auquel sont raccordés d'une part les tubes d'échange de chaleur (106) et d'autre part un dispositif de ventilation (107).
  3. Dispositif de circuit de refroidissement selon la revendication 2, caractérisé en ce que le dispositif de ventilation (107) est connecté par le biais d'une conduite d'eau de ventilation (109) au réservoir de réfrigérant (102).
  4. Dispositif de circuit de refroidissement selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on prévoit comme consommateur (111) deux consommateurs ou plus montés en parallèle (111', 111").
  5. Dispositif de circuit de refroidissement selon l'une quelconque des revendications précédentes, caractérisé en ce que l'apport en réfrigérant au consommateur (111) ou aux consommateurs (111' , 111") peut être régulé individuellement par des soupapes de régulation.
  6. Dispositif de circuit de refroidissement selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on dispose au niveau de la conduite d'amenée (104) entre le consommateur (111) / les consommateurs (111', 111") et l'échangeur de chaleur (101) un dispositif de récupération de chaleur commutable (123).
  7. Dispositif de circuit de refroidissement selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on prévoit directement avant le consommateur (111) ou les consommateurs (111', 111") une conduite d'amenée d'eau de secours.
  8. Dispositif de circuit de refroidissement selon l'une quelconque des revendications précédentes, caractérisé en ce que derrière le consommateur (111) ou les consommateurs (111', 111") la conduite d'amenée (104) est munie d'une soupape de régulation de la température (120).
  9. Dispositif de circuit de refroidissement selon l'une quelconque des revendications précédentes, caractérisé en ce que la conduite d'amenée (104) présente au moins dans la région avant l'échangeur de chaleur (101) une légère pente ascendante d'au moins 2% et la conduite d'évacuation (103) présente au moins dans la région après l'échangeur de chaleur (101) une légère pente descendante d'au moins 2%.
  10. Procédé de refroidissement comprenant un dispositif de circuit de refroidissement selon l'une quelconque des revendications précédentes,
    dans lequel
    a) en fonctionnement normal, le réfrigérant provenant du consommateur (111) ou des consommateurs (111', 111") s'écoule dans un circuit principal à travers l'échangeur de chaleur (101), est refroidi par celui-ci et est à nouveau acheminé par le biais du réservoir de réfrigérant (102) au consommateur (111) ou aux consommateurs (111', 111") et
    b) en fonctionnement spécial, le réfrigérant contenu dans l'échangeur de chaleur (101) est évacué,
    caractérisé en ce que
    c) en fonctionnement spécial, l'échangeur de chaleur (101) est enlevé du circuit de refroidissement: et le réfrigérant ne circule plus que dans un circuit auxiliaire entre le réservoir de réfrigérant (102) et le consommateur (111) ou les consommateurs (111', 111").
  11. Procédé de refroidissement selon la revendication 10, caractérisé en ce que la température du réfrigérant réchauffé, vu dans la direction du circuit, est détectée derrière le consommateur (111) ou les consommateurs (111', 111") et en cas de températures excessives, la quantité de fluide circulant par unité de temps est augmentée et en cas de température trop faible, elle est diminuée.
EP04718903A 2004-03-10 2004-03-10 Dispositif de circuit de refroidissement Expired - Fee Related EP1730459B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2004/000469 WO2005088217A1 (fr) 2004-03-10 2004-03-10 Dispositif de circuit de refroidissement

Publications (2)

Publication Number Publication Date
EP1730459A1 EP1730459A1 (fr) 2006-12-13
EP1730459B1 true EP1730459B1 (fr) 2007-08-22

Family

ID=34957279

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04718903A Expired - Fee Related EP1730459B1 (fr) 2004-03-10 2004-03-10 Dispositif de circuit de refroidissement

Country Status (2)

Country Link
EP (1) EP1730459B1 (fr)
WO (1) WO2005088217A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019110236A1 (de) * 2019-04-18 2020-10-22 Güntner Gmbh & Co. Kg Wärmeübertrageranordnung mit wenigstens einem Mehrpass-Wärmeübertrager und Verfahren zum Betrieb einer Wärmeübertrageranordnung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1189571B (de) * 1954-12-22 1965-03-25 Licencia Talalmanyokat Verfahren und Vorrichtung zur Verhinderung des Einfrierens von Waermeaustauschern bei Frostgefahr
FR2365769A1 (fr) * 1976-09-28 1978-04-21 Chausson Usines Sa Procede et dispositif pour faire varier la capacite de refroidissement d'une tour seche
HU193135B (en) * 1985-10-24 1987-08-28 Energiagazdalkodasi Intezet Auxiliary plant for operating air-cooled equipments particularly preventing winter injuries and air-cooled cooling tower provided with such auxiliary plant
DE19613910B4 (de) 1996-04-06 2005-03-10 Tino Cabero Querstromwärmetauscher sowie Heiz- oder Kühleinrichtung umfassend einen Querstromwärmetauscher
DE10307065B4 (de) * 2003-02-19 2007-10-04 Otto Junker Gmbh Kühlkreislaufvorrichtung und Kühlverfahren

Also Published As

Publication number Publication date
WO2005088217A1 (fr) 2005-09-22
EP1730459A1 (fr) 2006-12-13

Similar Documents

Publication Publication Date Title
EP2114465B1 (fr) Dispositif de pasteurisation avec pompe à chaleur intégrée, et procédé correspondant
EP3540327B1 (fr) Installation de pompe à chaleur
DE102014215074B4 (de) Temperieranordnung für Getriebeöl eines Kraftfahrzeugs sowie Verfahren zum Temperieren von Getriebeöl eines Kraftfahrzeugs
EP3583369B1 (fr) Système de refroidissement
EP3417213B1 (fr) Appareil de froid pourvu d'une pluralité de compartiments de stockage
EP1600314B1 (fr) Arrangement et procédé d'operation dans un circuit de réfrigérant
DE102007054703B4 (de) Wärmetauscher
AT504135A4 (de) Verfahren zur wärmerückgewinnung
DE102010044535B4 (de) Warmwasserbereitungsanlage und Verfahren zum Betreiben einer Warmwasserbereitungsanlage
EP3956619B1 (fr) Ensemble échangeur de chaleur comprenant au moins un échangeur de chaleur à plusieurs passages
DE10307065B4 (de) Kühlkreislaufvorrichtung und Kühlverfahren
EP1730459B1 (fr) Dispositif de circuit de refroidissement
EP3136005A1 (fr) Installation de chauffage et son procede de fonctionnement
DE102019119229A1 (de) Sicherheitsablass einer Wärmepumpenaußeneinheit
EP3988881B1 (fr) Procédé de fonctionnement d'un agencement d'échangeur de chaleur
EP3695179B1 (fr) Meuble réfrigéré à commande hydraulique intégrée et système de refroidissement
DE19613910A1 (de) Querstromwärmetauscher sowie Heiz- oder Kühleinrichtung umfassend einen Querstromwärmetauscher
DE19748985A1 (de) Kühlanlage
EP2339247B1 (fr) Procédé de chauffage d'eau non potable
EP2129975B1 (fr) Centrale thermique
DE102010018086A1 (de) Wärmeübertragungseinrichtung
EP3943819A1 (fr) Système de ventilation à air chaud à récupération de chaleur
EP1788314A1 (fr) Système de chauffage avec plusieurs sources de chaleur
AT505443A2 (de) Vorrichtung zur entnahme von wärme aus einem wärmeträgerspeicher
WO2023078880A1 (fr) Ensemble compresseur pour un système de pile à combustible, en particulier pour un système de pile à combustible pour véhicules utilitaires

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR IT

17P Request for examination filed

Effective date: 20061004

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): FR IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR IT

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080526

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200325

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200324

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210310