EP1727617A1 - Corrugated criss-crossing packing structure - Google Patents

Corrugated criss-crossing packing structure

Info

Publication number
EP1727617A1
EP1727617A1 EP05739589A EP05739589A EP1727617A1 EP 1727617 A1 EP1727617 A1 EP 1727617A1 EP 05739589 A EP05739589 A EP 05739589A EP 05739589 A EP05739589 A EP 05739589A EP 1727617 A1 EP1727617 A1 EP 1727617A1
Authority
EP
European Patent Office
Prior art keywords
structure according
packing
channels
lining
primary surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05739589A
Other languages
German (de)
French (fr)
Inventor
Jean-Yves Thonnelier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1727617A1 publication Critical patent/EP1727617A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30276Sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30276Sheet
    • B01J2219/30284Sheet twisted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30276Sheet
    • B01J2219/30288Sheet folded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30296Other shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30408Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/3221Corrugated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32213Plurality of essentially parallel sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32224Sheets characterised by the orientation of the sheet
    • B01J2219/32227Vertical orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32237Sheets comprising apertures or perforations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32237Sheets comprising apertures or perforations
    • B01J2219/32241Louvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32248Sheets comprising areas that are raised or sunken from the plane of the sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32255Other details of the sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32408Metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/72Packing elements

Definitions

  • the present invention relates to a corrugated-cross packing structure.
  • it relates to a cross-corrugated packing structure for material and / or heat transfer installations between a gas phase and a liquid phase, and more particularly distillation such as cryogenic distillation.
  • the invention finds a particularly advantageous application in the field of cryogenic distillation, in particular for separating gases from the air or also for separating mixtures containing hydrogen and carbon monoxide.
  • the cross-corrugated packing structure is the benchmark for organized packing. It consists of a set of modules or "packs" each of which is formed by a stack of surfaces, or bands, waved obliquely alternately in one direction and in the other.
  • each surface also called waves
  • the undulations of each surface are formed by parallel channels made from smooth or textured sheets, generally metallic, perforated or not.
  • a surface for cross-corrugated lining can be economically produced from a sheet of aluminum of standard quality by simple mechanical operations such as bending and perforation.
  • the corrugated surfaces are contained in general vertical planes.
  • the modules are most often rotated 90 ° around the axis of the column from one module to the next.
  • the wavy-cross structure has imposed itself to date as the only one allowing the construction of columns of any size without deterioration of the intrinsic efficiency observed in small size.
  • the technical problem to be solved by the object of the present invention is to provide a cross-corrugated packing structure for cryogenic distillation plants, comprising a first surface, called primary surface, having a plurality of parallel channels, which would allow decisively pushing the limits inherent in currently known structures, including that described in WO 97/16247.
  • the solution to the technical problem posed consists, according to the present invention, in that the secondary elements are formed separately from the first surface. The secondary elements can be removable.
  • the invention dissociates these two functions which are then separated into a primary corrugated-cross structure with a large mesh, necessary and sufficient to ensure the flow rate and the homogeneity of the flows, in particular in large columns, and a secondary structure, attached to the interior of the primary structure, specifically improving gas-liquid exchanges, without seeking an effect of spatial organization. More precisely, knowing that the density of a cross-corrugated lining varies in 1 / h if h is the height of the channels, the invention allows, for a target density which would be obtained with a height h for a conventional structure at a single surface, to achieve the same final density but with a distribution of the surface between the primary surface, wavy-cross, and the secondary surface housed in the channels of the primary surface.
  • FIG. 1 is a perspective view of a first embodiment of a cross-corrugated packing structure according to the invention
  • Figure 2 is a side view of the structure of Figure 1.
  • Figure 3a is a perspective view of a secondary lining element of the structure of FIG. 1.
  • FIG. 3b is a perspective view of a variant of the lining element of FIG. 3a.
  • Figure 4 is a sectional view of a variant of the structure of Figure 1 including fixing tabs.
  • Figure 5 is a perspective view of a second embodiment of cross-corrugated lining structure according to the invention.
  • Figure 6 is a side view of the structure of Figure 5.
  • Figure 7a is a top view of a secondary packing element of the structure of Figure 5.
  • Figure 7b a perspective view of the element secondary lining of Figure 7a.
  • Figure 8 is a side view of a variant of the structure of Figure 5 including fixing tabs.
  • Figure 1 is shown in perspective a portion of corrugated-crossover packing structure intended to equip cryogenic distillation installations, in particular for separating gas mixtures.
  • This structure comprises a first surface 10, or primary surface, having undulations formed, in the example of FIG. 1, by parallel channels 11 whose section has the shape of an equilateral triangle as shown in FIG. 2.
  • the structure of FIG. 1 also includes a second surface 20, or secondary surface, made up of a plurality of secondary packing elements 21, each secondary element 21 being disposed inside a channel 11 of the primary surface 10
  • the secondary packing element 21 has a periodic structure along the channel 11 of the primary surface 10.
  • the secondary elements 21 of Figures 3a and 3b can be made from flat metal strips, or fire it bacon, by cutting, perforating, and / or folding separate from the first surface. More specifically, in the exemplary embodiments of FIGS.
  • the secondary elements 21 are obtained from a strip of height 2r sectioned at regular intervals over half of its height, leaving a heel 211, 211 '.
  • the sectioned parts are alternately folded right and left equilaterally to form the wings 212 ′, 212 ′′.
  • the heel 211 ′ carries equidistant perforations 213.
  • the secondary elements 21 thus obtained are housed inside the channel 11 according to the arrangement shown in FIG. 2.
  • the elementary mesh of the structure is formed by the two sides of the equilateral triangle forming the channel 11.
  • the section per channel 11 of primary surface is proportional to ⁇ 3, r being the radius of the circle circumscribed to the equilateral triangle of FIG. 2.
  • the section of the secondary element 21 is proportional
  • the ratio (1-x) / x is lower, but remains of the order of 1.
  • the primary corrugated primary surface 10 is identical to that of FIG. 1 with an equilateral triangular elementary channel 11.
  • the elementary element 31 of the secondary surface 30 of the lining structure is cut from a strip according to the plane of FIG. 7a, then folded to form corrugations in accordance with FIG. 7b which will be housed in the channel 11
  • the section of the secondary surface 20 is here less than in the previous case.
  • We also introduce a more significant restriction of the section offered to the gas in the first example, the secondary surfaces are strictly parallel to the flow of the gas), we thereby introduce a exchange element between channels, the gas deflected by the inclined surface forming an obstacle being redirected towards the opposite channel.
  • the secondary elements 21 and 31 ' can be snapped into the channel 11 by means of tabs 40, 40' arranged on the secondary elements 21, 31 'and inserted in openings 41 formed through the walls of the channel 11.
  • tabs 40, 40' arranged on the secondary elements 21, 31 'and inserted in openings 41 formed through the walls of the channel 11.
  • Another family of solutions consists in placing twisted strips forming secondary elements with a worm structure. Whatever their shape, the secondary surfaces are therefore individual elements to be housed in each channel.
  • WO 97/1624 constitutes a happy closure of the channels at their ends: once the lining module is constructed, the secondary surface elements will be trapped in the channels, even if they are not physically attached to it. Once the secondary elements have been placed in the channels of a packing strip, one strip out of two must be turned over to mount it crossed with the previous one. The strip to be turned over may be temporarily covered by a flat face, the whole turned over on the other corrugated strip, and the flat face then removed by sliding.

Abstract

The invention relates to a corrugated criss-crossing packing structure for installations that transfer material and/or heat between a gas phase and a liquid phase, comprising a first surface (10), called the primary surface, having a number of parallel channels (11). According to the invention, this structure has a second surface (20), called the secondary surface, comprised of a number of secondary packing elements (21, 31), each secondary packing element being placed inside a channel (11) of said primary surface (10) and being formed separately from the first surface. The invention is for use in cryogenic distillation.

Description

Structure de garnissage ondulé-croisé La présente invention concerne une structure de garnissage ondulé- croisé. En particulier elle concerne une structure de garnissage ondulé-croisé pour installations de transfert de matière et/ou de chaleur entre une phase gaz et une phase liquide, et plus particulièrement la distillation telle que la distillation cryogénique. L'invention trouve une application particulièrement avantageuse dans le domaine de la distillation cryogénique, notamment pour séparer des gaz de l'air ou encore pour séparer des mélanges contenant de l'hydrogène et du monoxyde de carbone. Dans ce type d'applications, la structure de garnissage ondulé-croisé constitue la référence en matière de garnissages organisés. Elle consiste en un ensemble de modules ou « packs » dont chacun est formé d'un empilement de surfaces, ou bandes, ondulées en oblique alternativement dans un sens et dans l'autre. Les ondulations de chaque surface, appelées également ondes, sont constituées par des canaux parallèles réalisés à partir de feuilles lisses ou texturées, généralement métalliques, perforées ou non. A titre d'exemple, une surface pour garnissage ondulé-croisé peut se fabriquer économiquement à partir d'un feuillard d'aluminium de qualité standard par des opérations mécaniques simples telles que pliage et perforation. Dans le cas des colonnes de distillation, les surfaces ondulées sont contenues dans des plans généraux verticaux. Les modules sont le plus souvent tournés de 90° autour de l'axe de la colonne d'un module au suivant. La structure ondulée-croisée s'est imposée à ce jour comme la seule permettant de construire des colonnes de toute dimension sans détérioration de l'efficacité intrinsèque observée en petite taille. En variant la hauteur des ondulations, on peut régler la densité de la structure, exprimée en m2/m3. Ce faisant, on constate une évolution en sens contraire de deux propriétés dont l'optimisation est pourtant également recherchée, à savoir la capacité et l'efficacité. En effet, une structure dense à valeur élevée en terme de m2/m3 donnera un garnissage de haute efficacité mais qui, en s'engorgeant facilement, offrira une faible capacité. Inversement, une structure peu dense permettra la circulation de fortes charges, mais avec une efficacité moindre. En jouant sur la densité, on peut définir divers types de structures de garnissage s'adaptant au mieux aux différents cas envisagés, par exemple : - les structures à haute performance en efficacité sont réservées aux petites colonnes, là où le diamètre n'est pas le paramètre principal, - à l'inverse, pour les appareils de très grande taille, et si l'on souhaite obtenir un maximum de débit dans un diamètre imposé par des contraintes de construction et/ou de transport, la priorité est donnée à la capacité, quitte à consentir une augmentation de la hauteur. Afin de réduire l'effet d'engorgement limitant la capacité des structures de garnissage ondulé-croisé classiquement utilisées, WO 97/16247 propose comme ondulations pour les surfaces des canaux en forme de S dont les génératrices sont incurvées à chaque extrémité pour devenir verticales aux bords supérieur et inférieur du module. Cette forme particulière, qui redresse jusqu'à la verticale les canaux au droit des interfaces entre packs, a permis d'optimiser la courbe « efficacité-capacité » en ce sens que, pour une même structure en termes de forme générale des canaux et de densité, les limites d'engorgement ont été repoussées de 30% environ, sans que l'efficacité n'en soit substantiellement affectée. Toutefois, même si elle a marqué un progrès considérable dans le domaine des garnissages ondulés-croisés, cette dernière structure de canaux en forme de S n'en conserve pas moins les limites intrinsèques, à savoir qu'en augmentant la densité des canaux, pour chercher une meilleure efficacité, on densifie le maillage spatial, et on réduit la capacité, et, inversement, en espaçant le maillage spatial, on augmente la capacité mais en diminuant corrélativement l'aire interfaciale et donc l'efficacité des échanges gaz-liquide. Aussi, le problème technique à résoudre par l'objet de la présente invention est de proposer une structure de garnissage ondulé-croisé pour installations de distillation cryogénique, comprenant une première surface, dite surface primaire, présentant une pluralité de canaux parallèles, qui permettrait de repousser de manière décisive les limites inhérentes aux structures actuellement connues, y compris celle décrite dans WO 97/16247. La solution au problème technique posé consiste, selon la présente invention, en ce que les éléments secondaires sont formés séparément de la première surface. Les éléments secondaires peuvent être amovibles. La conception de ce type de structure à deux surfaces, et non à surface unique comme dans les structures de l'état de la technique, résulte du mérite de la demanderesse qui a su réaliser que les limites des garnissages ondulés- croisés connus sont dues au fait que la surface unique, dite principale dans le cadre de la présente invention, assure simultanément deux fonctions, d'une part, à une échelle « macroscopique », l'organisation spatiale en une infinité de canaux croisés permettant les échanges entre canaux se faisant face, et, d'autre part, à une échelle « microscopique », les échanges de matière entre phase gazeuse et phase liquide. Au contraire, l'invention dissocie ces deux fonctions qui se trouvent alors séparées en une structure primaire ondulée-croisée à large maille, nécessaire et suffisante pour assurer le débit et l'homogénéité des écoulements, notamment dans les colonnes de grande taille, et une structure secondaire, rapportée à l'intérieur de la structure primaire, améliorant spécifiquement les échanges gaz-liquide, sans rechercher un effet d'organisation spatiale. Plus précisément, sachant que la densité d'un garnissage ondulé-croisé varie en 1/h si h est la hauteur des canaux, l'invention permet, pour une densité-cible qui serait obtenue avec une hauteur h pour une structure classique à une seule surface, d'aboutir à la même densité finale mais avec une répartition de la surface entre la surface primaire, ondulée-croisée, et la surface secondaire logée dans les canaux de la surface primaire. On peut ainsi imaginer une surface primaire de structure ondulée de hauteur 2h, fournissant donc la moitié de la surface totale visée, et une surface secondaire fournissant l'autre moitié, ou plus généralement, comme le prévoit l'invention, une répartition entre (1 -x) de surface primaire et x de surface secondaire (0<x< 1 ). La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée. La figure 1 est une vue en perspective d'un premier mode de réalisation d'une structure de garnissage ondulé-croisé conforme à l'invention La figure 2 est une vue de côté de la structure de la figure 1. La figure 3a est une vue en perspective d'un élément secondaire de garnissage de la structure de la figure 1. La figure 3b est une vue en perspective d'une variante de l'élément de garnissage de la figure 3a. La figure 4 est une vue en coupe d'une variante de la structure de la figure 1 incluant des languettes de fixation. La figure 5 est une vue en perspective d'un deuxième mode de réalisation structure de garnissage ondulé-croisé conforme à l'invention. La figure 6 est une vue de côté de la structure de la figure 5. La figure 7a est une vue de dessus d'un élément secondaire de garnissage de la structure de la figure 5. La figure 7b une vue en perspective de l'élément secondaire de garnissage de la figure 7a. La figure 8 est une vue de côté d'une variante de la structure de la figure 5 incluant des languettes de fixation. Sur la figure 1 est représentée en perspective une portion de structure de garnissage ondulé-croisé destinée à équiper des installations de distillation cryogénique, notamment pour séparer des mélanges gazeux. Cette structure comprend une première surface 10, ou surface primaire, présentant des ondulations constituées, dans l'exemple de la figure 1 , par des canaux parallèles 11 dont la section a la forme d'un triangle équilatéral ainsi que le montre la figure 2. La structure de la figure 1 comprend également une deuxième surface 20, ou surface secondaire, constituée d'une pluralité d'éléments secondaires 21 de garnissage, chaque élément secondaire 21 étant disposé à l'intérieur d'un canal 11 de la surface primaire 10. Comme on peut le voir sur la figure 3a, et sur la variante de la figure 3b, l'élément secondaire 21 de garnissage présente une structure périodique le long du canal 11 de la surface primaire 10. D'une manière générale, les éléments secondaires 21 des figures 3a et 3b peuvent être réalisés à partir de bandes métalliques planes, ou feu il lards, par découpage, perforage, et/ou pliage distinctes de la première surface. Plus précisément, dans les exemples de réalisation des figures 3a et 3b, les éléments secondaires 21 sont obtenus à partir d'un feuillard de hauteur 2r sectionné à intervalles réguliers sur la moitié de sa hauteur en laissant un talon 211 , 211'. Les parties sectionnées sont alternativement pliées à droite et à gauche de manière équilatérale pour former les ailes 212', 212". Dans le cas de la figure 3b, le talon 211' porte des perforations 213 équidistantes. Les éléments secondaires 21 ainsi obtenus sont logés à l'intérieur du canal 11 selon la disposition montrée sur la figure 2. Dans ce mode de réalisation, la maille élémentaire de la structure est constituée par les deux côtés du triangle équilatéral réalisant le canal 11. Compte tenu du fait que chaque face du canal participe à deux canaux, la section par canal 11 de surface primaire est proportionnelle à π 3, r étant le rayon du cercle circonscrit au triangle équilatéral de la figure 2. D'autre part, la section de l'élément secondaire 21 est proportionnelle à 2r. La répartition de section entre surface primaire 10 et surface secondaire 20 se fait donc dans un rapport de (1 -x) à x avec x voisin de 0,5, ici x=0,464. Dans la variante de la figure 3b, le rapport (1-x)/x est plus faible, mais reste de l'ordre de 1. Selon le mode de réalisation de la figure 5, la surface primaire 10 ondulée de base est identique à celle de la figure 1 avec un canal élémentaire 11 triangulaire équilatéral. Par contre, l'élément élémentaire 31 de la surface secondaire 30 de la structure de garnissage est découpé dans un feuillard selon le plan de la figure 7a, puis plié pour former des ondulations conformément à la figure 7b qui viendront se loger dans le canal 11. La section de la surface secondaire 20 est ici moindre que dans le cas précédent. On introduit aussi une restriction plus importante de la section offerte au gaz (dans le premier exemple, les surfaces secondaires sont strictement parallèles à l'écoulement du gaz), on introduit par là même un élément d'échange entre canaux, le gaz dévié par la surface inclinée formant obstacle étant réorienté vers le canal en vis-à-vis. Comme l'indiquent les figures 4 et 8, les éléments secondaires 21 et 31' peuvent être encliquetés dans le canal 11 au moyen de languettes 40, 40' aménagées sur les éléments secondaires 21 , 31' et insérées dans des ouvertures 41 pratiquées à travers les parois du canal 11. Bien entendu, il existe de très nombreuses variantes aux formes de base qui viennent d'être décrites en regard des dessins annexés, soit par variation des pas de pliage et des angles, ou encore en ajoutant sur la structure secondaire des plis supplémentaires formant des volets déflecteurs. Une autre famille de solution consiste à placer des bandes vrillées formant des éléments secondaires à structure de vis sans fin. Quelle que soit leur forme, les surfaces secondaires sont donc des éléments individuels à loger dans chaque canal. La forme en S des nouveaux garnissages telles que décrite dans la demande internationale n° WO 97/1624 constitue une heureuse fermeture des canaux à leurs extrémités : une fois le module de garnissages construit, les éléments de surface secondaire seront emprisonnés dans les canaux, même s'ils n'y sont pas physiquement attachés. Une fois les élément secondaires posés dans les canaux d'une bande de garnissage, il faut retourner une bande sur deux pour la monter croisée avec la précédente. La bande à retourner peut être couverte temporairement par une face plane, le tout retourné sur l'autre bande ondulée, et que la face plane alors retirée par glissement The present invention relates to a corrugated-cross packing structure. In particular, it relates to a cross-corrugated packing structure for material and / or heat transfer installations between a gas phase and a liquid phase, and more particularly distillation such as cryogenic distillation. The invention finds a particularly advantageous application in the field of cryogenic distillation, in particular for separating gases from the air or also for separating mixtures containing hydrogen and carbon monoxide. In this type of application, the cross-corrugated packing structure is the benchmark for organized packing. It consists of a set of modules or "packs" each of which is formed by a stack of surfaces, or bands, waved obliquely alternately in one direction and in the other. The undulations of each surface, also called waves, are formed by parallel channels made from smooth or textured sheets, generally metallic, perforated or not. By way of example, a surface for cross-corrugated lining can be economically produced from a sheet of aluminum of standard quality by simple mechanical operations such as bending and perforation. In the case of distillation columns, the corrugated surfaces are contained in general vertical planes. The modules are most often rotated 90 ° around the axis of the column from one module to the next. The wavy-cross structure has imposed itself to date as the only one allowing the construction of columns of any size without deterioration of the intrinsic efficiency observed in small size. By varying the height of the undulations, we can adjust the density of the structure, expressed in m 2 / m 3 . In doing so, we observe an evolution in the opposite direction of two properties whose optimization is however also sought, namely capacity and efficiency. Indeed, a dense structure with a high value in terms of m 2 / m 3 will give a high-efficiency packing but which, by clogging easily, will offer a low capacity. Conversely, a sparse structure will allow the circulation of heavy loads, but with less efficiency. By playing on the density, we can define various types of packing structures that best adapt to the different cases considered, for example: - structures with high performance in efficiency are reserved for small columns, where the diameter is not the main parameter, - conversely, for very large devices, and if one wishes to obtain a maximum flow in a diameter imposed by construction and / or transport constraints, priority is given to the capacity, even if it means agreeing to an increase in height. In order to reduce the congestion effect limiting the capacity of the classically used corrugated-cross packing structures, WO 97/16247 proposes as corrugations for the surfaces of the S-shaped channels whose generatrices are curved at each end to become vertical at upper and lower edges of the module. This particular shape, which straightens the channels vertically at the interfaces between the packs, has made it possible to optimize the “efficiency-capacity” curve in the sense that, for the same structure in terms of general shape of the channels and density, the waterlogging limits have been pushed back by around 30%, without the efficiency being substantially affected. However, although it has marked considerable progress in the field of cross-corrugated linings, this latter S-shaped channel structure nevertheless retains the intrinsic limits, namely that by increasing the density of the channels, for to seek better efficiency, the spatial mesh is densified, and the capacity is reduced, and, conversely, by spacing the spatial mesh, the capacity is increased but by correlatively reducing the interfacial area and therefore the efficiency of gas-liquid exchanges. Also, the technical problem to be solved by the object of the present invention is to provide a cross-corrugated packing structure for cryogenic distillation plants, comprising a first surface, called primary surface, having a plurality of parallel channels, which would allow decisively pushing the limits inherent in currently known structures, including that described in WO 97/16247. The solution to the technical problem posed consists, according to the present invention, in that the secondary elements are formed separately from the first surface. The secondary elements can be removable. The design of this type of structure with two surfaces, and not with a single surface as in the structures of the state of the art, results from the merit of the applicant who has been able to realize that the limits of the known wavy-crossed linings are due to the fact that the single surface, said to be main in the context of the present invention, simultaneously performs two functions, on the one hand, on a "macroscopic" scale, the spatial organization in an infinity of crossed channels allowing exchanges between channels taking place face, and, on the other hand, on a "microscopic" scale, the exchanges of matter between gas phase and liquid phase. On the contrary, the invention dissociates these two functions which are then separated into a primary corrugated-cross structure with a large mesh, necessary and sufficient to ensure the flow rate and the homogeneity of the flows, in particular in large columns, and a secondary structure, attached to the interior of the primary structure, specifically improving gas-liquid exchanges, without seeking an effect of spatial organization. More precisely, knowing that the density of a cross-corrugated lining varies in 1 / h if h is the height of the channels, the invention allows, for a target density which would be obtained with a height h for a conventional structure at a single surface, to achieve the same final density but with a distribution of the surface between the primary surface, wavy-cross, and the secondary surface housed in the channels of the primary surface. We can thus imagine a primary surface of wavy structure with a height of 2 hours, thus providing half of the total surface targeted, and a secondary surface providing the other half, or more generally, as provided by the invention, a distribution between (1 -x) of primary surface and x of secondary surface (0 <x <1). The description which follows with reference to the appended drawings, given by way of nonlimiting examples, will make it clear what the invention consists of and how it can be implemented. Figure 1 is a perspective view of a first embodiment of a cross-corrugated packing structure according to the invention Figure 2 is a side view of the structure of Figure 1. Figure 3a is a perspective view of a secondary lining element of the structure of FIG. 1. FIG. 3b is a perspective view of a variant of the lining element of FIG. 3a. Figure 4 is a sectional view of a variant of the structure of Figure 1 including fixing tabs. Figure 5 is a perspective view of a second embodiment of cross-corrugated lining structure according to the invention. Figure 6 is a side view of the structure of Figure 5. Figure 7a is a top view of a secondary packing element of the structure of Figure 5. Figure 7b a perspective view of the element secondary lining of Figure 7a. Figure 8 is a side view of a variant of the structure of Figure 5 including fixing tabs. In Figure 1 is shown in perspective a portion of corrugated-crossover packing structure intended to equip cryogenic distillation installations, in particular for separating gas mixtures. This structure comprises a first surface 10, or primary surface, having undulations formed, in the example of FIG. 1, by parallel channels 11 whose section has the shape of an equilateral triangle as shown in FIG. 2. The structure of FIG. 1 also includes a second surface 20, or secondary surface, made up of a plurality of secondary packing elements 21, each secondary element 21 being disposed inside a channel 11 of the primary surface 10 As can be seen in FIG. 3a, and in the variant of FIG. 3b, the secondary packing element 21 has a periodic structure along the channel 11 of the primary surface 10. In general, the secondary elements 21 of Figures 3a and 3b can be made from flat metal strips, or fire it bacon, by cutting, perforating, and / or folding separate from the first surface. More specifically, in the exemplary embodiments of FIGS. 3a and 3b, the secondary elements 21 are obtained from a strip of height 2r sectioned at regular intervals over half of its height, leaving a heel 211, 211 '. The sectioned parts are alternately folded right and left equilaterally to form the wings 212 ′, 212 ″. In the case of FIG. 3b, the heel 211 ′ carries equidistant perforations 213. The secondary elements 21 thus obtained are housed inside the channel 11 according to the arrangement shown in FIG. 2. In this embodiment, the elementary mesh of the structure is formed by the two sides of the equilateral triangle forming the channel 11. Taking into account that each face of the channel participates in two channels, the section per channel 11 of primary surface is proportional to π 3, r being the radius of the circle circumscribed to the equilateral triangle of FIG. 2. On the other hand, the section of the secondary element 21 is proportional The distribution of section between primary surface 10 and secondary surface 20 is therefore made in a ratio of (1 -x) to x with x close to 0.5, here x = 0.464. In the variant of f igure 3b, the ratio (1-x) / x is lower, but remains of the order of 1. According to the embodiment of FIG. 5, the primary corrugated primary surface 10 is identical to that of FIG. 1 with an equilateral triangular elementary channel 11. On the other hand, the elementary element 31 of the secondary surface 30 of the lining structure is cut from a strip according to the plane of FIG. 7a, then folded to form corrugations in accordance with FIG. 7b which will be housed in the channel 11 The section of the secondary surface 20 is here less than in the previous case. We also introduce a more significant restriction of the section offered to the gas (in the first example, the secondary surfaces are strictly parallel to the flow of the gas), we thereby introduce a exchange element between channels, the gas deflected by the inclined surface forming an obstacle being redirected towards the opposite channel. As shown in Figures 4 and 8, the secondary elements 21 and 31 'can be snapped into the channel 11 by means of tabs 40, 40' arranged on the secondary elements 21, 31 'and inserted in openings 41 formed through the walls of the channel 11. Of course, there are very numerous variants to the basic shapes which have just been described with reference to the appended drawings, either by varying the folding steps and the angles, or even by adding to the secondary structure additional folds forming deflector flaps. Another family of solutions consists in placing twisted strips forming secondary elements with a worm structure. Whatever their shape, the secondary surfaces are therefore individual elements to be housed in each channel. The S-shape of the new linings as described in international application No. WO 97/1624 constitutes a happy closure of the channels at their ends: once the lining module is constructed, the secondary surface elements will be trapped in the channels, even if they are not physically attached to it. Once the secondary elements have been placed in the channels of a packing strip, one strip out of two must be turned over to mount it crossed with the previous one. The strip to be turned over may be temporarily covered by a flat face, the whole turned over on the other corrugated strip, and the flat face then removed by sliding.

Claims

REVENDICATIONS
1. Structure de garnissage ondulé-croisé pour installations de transfert de matière et/ou de chaleur entre une phase gaz et une phase liquide, comprenant une première surface (10), dite surface primaire, présentant une pluralité de canaux parallèles (11), ladite structure comprenant une deuxième surface (20), dite surface secondaire, constituée d'une pluralité d'éléments secondaires (21; 31) de garnissage, chaque élément secondaire de garnissage étant disposé à l'intérieur d'un canal (11) de ladite surface primaire (10) caractérisée en ce que les éléments secondaires sont formés séparément de la première surface.1. Corrugated-cross packing structure for material and / or heat transfer installations between a gas phase and a liquid phase, comprising a first surface (10), called primary surface, having a plurality of parallel channels (11), said structure comprising a second surface (20), called secondary surface, consisting of a plurality of secondary packing elements (21; 31), each secondary packing element being arranged inside a channel (11) of said primary surface (10) characterized in that the secondary elements are formed separately from the first surface.
2. Structure de garnissage selon la revendication 1, caractérisée en ce que . lesdits éléments secondaires (21; 31) de garnissage présentent une structure périodique le long des canaux (11) de la surface primaire (10).2. A packing structure according to claim 1, characterized in that. said secondary packing elements (21; 31) have a periodic structure along the channels (11) of the primary surface (10).
3. Structure de garnissage selon la revendication 2, caractérisée en ce que lesdits éléments secondaires (21; 31) de garnissage sont réalisés à partir de bandes métalliques planes.3. A lining structure according to claim 2, characterized in that said secondary elements (21; 31) of lining are made from flat metal strips.
4. Structure de garnissage selon la revendication 3, caractérisée en ce que lesdites bandes métalliques planes sont découpées et/ou perforées et/ou pliées.4. lining structure according to claim 3, characterized in that said flat metal strips are cut and / or perforated and / or folded.
5. Structure de garnissage selon la revendication 4, caractérisée en ce que lesdites bandes métalliques sont pliées alternativement à gauche et à droite en forme de Y.5. A lining structure according to claim 4, characterized in that said metal strips are folded alternately to the left and to the right in the shape of a Y.
6. Structure de garnissage selon la revendication 5, caractérisée le talon de la forme en Y porte des perforations périodiques (213).6. Upholstery structure according to claim 5, characterized in the heel of the Y-shape carries periodic perforations (213).
7. Structure de garnissage selon la revendication 4, caractérisée en ce que lesdites bandes métalliques planes sont découpées et pliées de manière à former des ondulations. 7. lining structure according to claim 4, characterized in that said flat metal strips are cut and folded so as to form corrugations.
8. Structure de garnissage selon la revendication 3, caractérisée en ce que lesdites bandes métalliques planes sont vrillées.8. A lining structure according to claim 3, characterized in that said flat metal strips are twisted.
9. Structure de garnissage selon l'une quelconque des revendications 1 à 8, caractérisée en ce que lesdits éléments secondaires (21, 31') de garnissage portent des languettes (40, 40') de fixation par encliquetage dans les canaux (11 ) de la surface primaire.9. A packing structure according to any one of claims 1 to 8, characterized in that said secondary packing elements (21, 31 ') carry tabs (40, 40') for snap fastening in the channels (11) of the primary surface.
10. Structure de garnissage selon l'une quelconque des revendications 1 à 9, caractérisée en ce que les canaux de la surface primaire présentent une forme en S.10. A packing structure according to any one of claims 1 to 9, characterized in that the channels of the primary surface have an S shape.
11. Structure de garnissage selon l'une quelconque des revendications 1 à 10, caractérisée par une répartition de section (1-x)/x entre surface primaire et surface secondaire avec x voisin de 0,5. 11. Lining structure according to any one of claims 1 to 10, characterized by a section distribution (1-x) / x between primary surface and secondary surface with x close to 0.5.
EP05739589A 2004-03-16 2005-03-10 Corrugated criss-crossing packing structure Withdrawn EP1727617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0450520A FR2867697B1 (en) 2004-03-16 2004-03-16 UPRIGHT-CRANE TRIM STRUCTURE
PCT/FR2005/050154 WO2005092491A1 (en) 2004-03-16 2005-03-10 Corrugated criss-crossing packing structure

Publications (1)

Publication Number Publication Date
EP1727617A1 true EP1727617A1 (en) 2006-12-06

Family

ID=34896781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05739589A Withdrawn EP1727617A1 (en) 2004-03-16 2005-03-10 Corrugated criss-crossing packing structure

Country Status (6)

Country Link
US (1) US8210505B2 (en)
EP (1) EP1727617A1 (en)
JP (1) JP2007529306A (en)
CN (1) CN1929909B (en)
FR (1) FR2867697B1 (en)
WO (1) WO2005092491A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504399A (en) 2005-08-22 2009-02-05 シーメンス・ウォーター・テクノロジーズ・コーポレーション Assembly for water filtration using a tubular manifold to minimize backwash
FR2913353B1 (en) 2007-03-09 2010-05-21 Inst Francais Du Petrole HIGH PERFORMANCE STRUCTURE TRIM FOR FLUID CONTACT COLUMN AND METHOD OF MANUFACTURE.
JP5257485B2 (en) * 2011-05-13 2013-08-07 ダイキン工業株式会社 Heat exchanger
FR2995224B1 (en) * 2012-09-11 2014-09-12 IFP Energies Nouvelles HIGH PERFORMANCE TRIM FOR COLUMN FOR CONTACTING FLUIDS
FR2995223B1 (en) * 2012-09-11 2014-09-12 IFP Energies Nouvelles HIGH PERFORMANCE STRUCTURE TRIM FOR COLUMN FOR CONTACTING FLUIDS
CN104984723B (en) * 2013-08-30 2018-09-28 北京泽华化学工程有限公司 Filling body and its layer part, tower and mixer
PL3062924T3 (en) * 2013-10-30 2017-10-31 Raschig Gmbh Packing element, in particular for mass-transfer- and/or heat-exchange columns or towers
CN106140071A (en) * 2015-04-01 2016-11-23 梁泰安 Fenestration corrugated filler tablet
JP6327271B2 (en) * 2015-04-17 2018-05-23 株式会社デンソー Heat exchanger

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3158527A (en) * 1960-06-10 1964-11-24 Crown Zellerbach Corp Plaited structure and method of forming same
GB1341981A (en) * 1971-01-14 1973-12-25 Grimma Masch App Veb Heavy-duty exchangeable packing for columns
US3830684A (en) * 1972-05-09 1974-08-20 Hamon Sobelco Sa Filling sheets for liquid-gas contact apparatus
JPS5818135B2 (en) * 1975-06-23 1983-04-11 東レ株式会社 Ryuutaitsu Urokouzoutai
CH653565A5 (en) * 1981-07-30 1986-01-15 Sulzer Ag DEVICE FOR FABRIC AND / OR DIRECT HEAT EXCHANGE OR MIXING.
JPS6075303A (en) * 1983-06-21 1985-04-27 グリツツ・インコ−ポレイテツド Tower packing grid
DE3414267A1 (en) * 1984-04-14 1985-11-07 Raschig Gmbh, 6700 Ludwigshafen INSTALLATION ELEMENT FOR TUBE OR HEAT EXCHANGE COLUMN
EP0201614B1 (en) * 1985-05-14 1989-12-27 GebràœDer Sulzer Aktiengesellschaft Reactor for carrying out heterogeneous catalytic chemical reactions
US5073236A (en) * 1989-11-13 1991-12-17 Gelbein Abraham P Process and structure for effecting catalytic reactions in distillation structure
FR2675568B1 (en) * 1991-04-19 1993-07-16 Air Liquide PROCESS FOR THE CRYOGENIC SEPARATION OF MIXTURES CONTAINING OXYGEN AND TRIMS ORGANIZED FOR THE IMPLEMENTATION OF THIS PROCESS.
EP0631813B1 (en) * 1993-06-30 1998-01-07 Sulzer Chemtech AG Catalysing fixed-bed reactor
JPH09103671A (en) * 1995-10-09 1997-04-22 Mitsubishi Corp Filler for substance and/or heat exchange column
GB9522086D0 (en) 1995-10-31 1996-01-03 Ici Plc Fluid-fluid contacting apparatus
JPH10281677A (en) * 1997-04-08 1998-10-23 Ishikawajima Harima Heavy Ind Co Ltd Heat exchanger
DE19725378A1 (en) * 1997-06-16 1998-12-17 Gerhard Friedrich Compact fixed bed reactor for catalytic reactions with integrated heat exchange
FR2771025B1 (en) * 1997-11-17 2000-01-28 Air Liquide CORRUGATED STRIP FOR CROSS-CORRUGATED TRIM AND ITS APPLICATION TO ON-BOARD DISTILLATION COLUMNS
US6277340B1 (en) * 1998-01-02 2001-08-21 Abb Lummus Global, Inc. Structured packing and element therefor
US6334985B1 (en) * 1998-08-18 2002-01-01 Uop Llc Static mixing reactor for uniform reactant temperatures and concentrations
CA2288312C (en) * 1998-12-22 2004-01-06 Willem Wiekert Levering Reactive distillation
DE69907616T2 (en) * 1998-12-28 2004-03-11 Nippon Sanso Corp. Vapor-liquid contactor, cryogenic air separation unit and process for gas separation
US6585237B2 (en) * 2000-10-16 2003-07-01 Pradeep Khasherao Pagade Fluid contacting device used as structured packing and static mixer
FR2824895B1 (en) * 2001-05-18 2005-12-16 Air Liquide CORRELATED WIND THRUST FOR PLATE HEAT EXCHANGER, AND PLATE EXCHANGER WITH THESE FINS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005092491A1 *

Also Published As

Publication number Publication date
CN1929909B (en) 2013-07-17
FR2867697B1 (en) 2007-06-01
CN1929909A (en) 2007-03-14
WO2005092491A1 (en) 2005-10-06
FR2867697A1 (en) 2005-09-23
US20080036102A1 (en) 2008-02-14
JP2007529306A (en) 2007-10-25
US8210505B2 (en) 2012-07-03

Similar Documents

Publication Publication Date Title
WO2005092491A1 (en) Corrugated criss-crossing packing structure
EP2134463B1 (en) High-performance structured packing for a fluid contacting column and method of manufacture
EP0434510A1 (en) Arrangement for mass distribution and heat and mass transfer for a column, especially with packings and column with such an arrangement
EP1709380A1 (en) Heat exchanger and a corresponding exchange module
EP3615877B1 (en) Heat exchanger with improved connection of wave shaped packing elements, associated air separation installation and manufacturing process of the heat exchanger
FR2871074A1 (en) BAND FOR TRIM MODULE, TRAPPER MODULE AND CORRESPONDING DISTILLATION PLANT
WO1999054036A1 (en) Improved floating marine structure
EP1179724B1 (en) Heat exchanger with multiple heat exchange blocks with fluid inlet manifold providing uniform distribution, and vaporizer-condenser comprising same
EP2265368A2 (en) Column with heat and/or material exchange packing
EP3254045B1 (en) Heat exchanger comprising a liquid-refrigerant distribution device
CA2985781A1 (en) Distribution plate for an exchange column including a dispersive material in a chimney for the passage of gas
FR3060721B1 (en) HEAT EXCHANGER WITH LIQUID / GAS MIXER DEVICE WITH IMPROVED CHANNEL GEOMETRY
WO2006035149A1 (en) Heat exchange insert for a heat exchange device
WO2001068239A1 (en) Packing module, method for making same, and fluid treating apparatus comprising a corresponding packing
EP3887742A1 (en) Method for manufacturing a heat exchanger comprising a zone to be supported and heat exchanger manufactured using such a method
EP3105520A2 (en) Column for separating air by cryogenic distillation, air separation device comprising such a column and method for producing such a column
FR2827527A1 (en) Module for interface between two cross-corrugated packing modules, useful in fluid treatment column in air distillation unit, comprises bands of sheet metal, with alternating corrugations in fluid circulation direction
WO2018104124A1 (en) Method for producing a structured packing using an additive manufacturing method
WO2003004148A2 (en) Strip for a packing module, corresponding module and installation
FR3113610A1 (en) WIRED PACKING FOR A MATERIAL EXCHANGE DEVICE
FR3060729A1 (en) HEAT EXCHANGER WITH THERMAL INSULATING CHANNEL LIQUID / GAS MIXING DEVICE
WO2014053903A2 (en) Lining structure of a column for placing fluids in contact and lining plate
FR2915111A1 (en) Material and/or heat exchange column, e.g. distillation column for separating air gases, contains stacked modules of structured packing and liquid film retaining element at module interfaces
WO2010100367A1 (en) Air separation apparatus including a plate heat exchanger
FR2826879A1 (en) Strip for distillation column packing module comprises corrugations inclined to flow direction and openings with extended edges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

17Q First examination report despatched

Effective date: 20090107

R17C First examination report despatched (corrected)

Effective date: 20090112

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161126