EP1726355A2 - Gas-gas mixer - Google Patents

Gas-gas mixer Download PDF

Info

Publication number
EP1726355A2
EP1726355A2 EP06008568A EP06008568A EP1726355A2 EP 1726355 A2 EP1726355 A2 EP 1726355A2 EP 06008568 A EP06008568 A EP 06008568A EP 06008568 A EP06008568 A EP 06008568A EP 1726355 A2 EP1726355 A2 EP 1726355A2
Authority
EP
European Patent Office
Prior art keywords
gas
nozzle head
line
main line
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06008568A
Other languages
German (de)
French (fr)
Other versions
EP1726355A3 (en
EP1726355B1 (en
Inventor
Heinz-Dieter Dr. Obermeyer
Harald Dr. Ranke
Hans-Jürgen Dr. Reinhardt
Anton Wellenhofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to PL06008568T priority Critical patent/PL1726355T3/en
Publication of EP1726355A2 publication Critical patent/EP1726355A2/en
Publication of EP1726355A3 publication Critical patent/EP1726355A3/en
Application granted granted Critical
Publication of EP1726355B1 publication Critical patent/EP1726355B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3132Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3132Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices
    • B01F25/31322Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices used simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3133Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit characterised by the specific design of the injector
    • B01F25/31331Perforated, multi-opening, with a plurality of holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/918Counter current flow, i.e. flows moving in opposite direction and colliding

Definitions

  • the invention relates to a method for mixing a first and a second gas, wherein a stream of a first gas is guided in a main line and the second gas is fed via a feed line to a nozzle head and divided into several sub-streams. Furthermore, the invention relates to a device for mixing a first and a second gas with a main conduit for guiding the first gas, a supply line for the second gas, wherein the supply line extends into the interior of the main line and at its end substantially parallel extends to the axis of symmetry of the main line, and a nozzle head which is connected at its rear end to the supply line, wherein the nozzle head has outlet channels for the second gas.
  • oxygen-enriched air is used as the oxidant.
  • the oxygen is injected for this purpose by means of an injector into the air stream, whereby a uniform distribution of the oxygen in the air flow must be achieved as possible. Otherwise, locally increased oxygen concentrations in the subsequent chemical reaction could lead to local temperature peaks, so-called "hot spots", which can have a negative effect on the reaction to be carried out or even lead to damage to the reactor.
  • a main gas of a first gas flowing in a duct section is supplied with a second gas via a supply line.
  • the discharge end of the second gas supply line extends coaxially with the axis of the passage portion and is provided with radially outwardly directed discharge passages.
  • baffles are provided, so that a rotational movement of the introduced second gas is generated about the axis of the channel section.
  • Object of the present invention is to develop a method and an apparatus of the type mentioned, which allow the most homogeneous possible mixture of the two combined gases.
  • This object is achieved by a method for mixing a first and a second gas, wherein a stream of a first gas is guided in a main line and the second gas is fed via a feed line to a nozzle head and divided into several sub-streams, wherein at least a part of the Partial flows are introduced at an angle between 15 ° and 75 ° counter to the flow direction of the first gas in the first gas.
  • the inventive device of the type mentioned above is characterized in that the outlet channels are inclined at an angle between 15 and 75 ° against the axis of symmetry of the main line.
  • the outlet channels are inclined at an angle between 15 ° and 75 °, preferably 30 ° to 60 °, particularly preferably at an angle between 40 ° and 50 °, with respect to the axis of symmetry of the main line.
  • the outlet channels are directed against the flow direction of the first gas.
  • the nozzle head has a plurality of outlet channels for the second gas.
  • the outlet channels are designed so that no swirling flow is imparted to the exiting gas. It has been shown that the two gases mix more homogeneously when the gas supplied via the supply line exits in a straight line from the nozzle head and does not perform any rotational movement.
  • the supply line for the second gas and the nozzle head are designed so that they have a streamlined shape without tendency to flutter. This is achieved in that the front end of the nozzle head is rounded so that it does not experience buoyancy in the flow of the first gas and maintains a stable position. In addition, the flow resistance is reduced by this shaping.
  • the front end of the nozzle head preferably has an elliptical, parabolic or hemispherical profile.
  • the flow resistance is markedly reduced by this shaping, on the other hand it is ensured that the nozzle head in the main flow of the first gas does not experience any buoyancy and thus the flattening of the nozzle head is reduced.
  • the transition to the supply line is preferably sharp-edged, wherein the diameter of the nozzle head at this point is greater than that of the supply line.
  • the transition thus acts as a spoiler lip.
  • the diameter of the feed line at the connection point to the nozzle head is preferably at most 90% of the diameter of the rear end of the nozzle head.
  • the angle between the outside of the nozzle head and the transition to the feed line is between 30 ° and 90 °.
  • the supply line extends to the axis of symmetry of the main line and the axis of symmetry of the nozzle head extends coaxially with the axis of symmetry of the main line.
  • outlet channels For optimum mixing of the two gases, all outlet channels must be flowed through evenly. It has been found that this can be achieved by a uniform distribution of the outlet channels in a row over the circumference of the nozzle head.
  • the outlet openings of the outlet channels are located in the rear third of the nozzle head. In this area, a defined flow has already formed due to the profiling of the nozzle head.
  • a certain flow resistance is caused in the main line for the first gas. It has been shown that a good Flow in the main line is formed when the diameter of the rear end of the nozzle head, that is, the maximum diameter of the nozzle head, which is 0.15 to 0.3 times the diameter of the main line.
  • the cross-sectional areas of the outlet channels are chosen to be small in relation to the cross-sectional area of the feed line.
  • the flow resistance in the outlet channels is large against the flow resistance in the supply line and any pressure fluctuations in the gas supplied via the feed line do not or only slightly affect the throughput through the outlet channels.
  • the exit velocity of the second gas should be well below the speed of sound in order to rule out a transient, highly compressible behavior. Preferably, an exit velocity of less than half the speed of sound is selected.
  • suitable outlet velocities are in the range between 50 m / s and 150 m / s, preferably between 70 m / s and 100 m / s.
  • the regulation of the second gas is preferably carried out only by controlling the total supplied via the supply line current to second gas.
  • the individual individual jets of second gas flowing out through the respective outlet channels are not regulated separately.
  • the invention is particularly suitable for oxygen enrichment of an air stream.
  • Oxygen-enriched air is advantageously used in numerous oxidation processes in the chemical industry, for example in refineries, Claus processes or FCC (fluid catalytic cracking).
  • the air flow is in this case passed through the main line and injected oxygen via the supply line and the nozzle head in the air stream.
  • mixing ratios of second gas to first gas can be produced between 1: 50 to 1: 3, and air flows of up to 200,000 m 3 / h can be enriched with oxygen.
  • the preferred field of application of the invention relates to the admixing of a second gas into a flow of a first gas, wherein the flow of the first gas between 1,000 m 3 / h and 200,000 m 3 / h, more preferably between 5,000 m 3 / h and 100,000 m 3 / h.
  • the device according to the invention is small, stable and can be quickly installed in a pipeline.
  • corresponding flanges are provided for this purpose.
  • a nozzle 3 with flanges 2 is welded in the air leading main line 1.
  • the air flow 15 runs in the figure from right to left.
  • a supply line 4 via which the air flowing in the main line 1 of air can be supplied.
  • the supply line 4 extends to the axis of symmetry 5 of the main line 1, is then angled and ends coaxially with the axis of symmetry. 5
  • a nozzle head 6 With the supply line 4, a nozzle head 6 is connected.
  • the nozzle head 6 is elliptically rounded at its front end 7 facing away from the feed line 4.
  • the transition to the feed line 4 is stepped and sharp-edged.
  • the step-shaped transition shown in the figure with a 90 ° angle between the outside of the nozzle head 6 and the back and transitions with angles between 30 ° and 90 °, preferably 45 °, are possible.
  • the front, the nozzle head 6 facing the end of the supply line 4 has a diameter 9, which is 90% of the rear diameter 10 of the nozzle head 6.
  • the maximum diameter 10 of the nozzle head 6 is 0.15 to 0.3 times the inner diameter of the main line 1 in order to keep the resistance to the flowing air small and to ensure sufficient stability of the nozzle head 6.
  • the interior of the nozzle head 6 is provided with a central chamber 11, which is open to the supply line 4. From the central chamber 11, a bore 12 running coaxially with the axis of symmetry 5 and a plurality of outlet channels 13 extending at an angle of 45 ° to the axis of symmetry 5 emerge.
  • the outlet openings of the outlet channels 13 lie on a lying on the lateral surface of the nozzle head 6 circle.
  • the outlet channels 13 are drilled from the outside into the nozzle head 6 and each deburred at the outer end.
  • the bores for the outlet channels 13 extend in a straight line through the body of the nozzle head 6.
  • the cross-sectional areas of the outlet channels 13 and the central bore 12 are small compared to the cross-sectional area of the feed line 4.
  • the ratio of the cross-sectional area of an outlet channel 13 to that of the feed line 4 is less than 2%. This embodiment ensures that the flow resistance in an outlet channel 13 is great against the flow resistance of the feed line 4. Pressure fluctuations in the supplied via the supply line 4 oxygen flow 14 and pressure fluctuations in the flowing in the main line 3 air 15 affect so not or only slightly on the oxygen flow rate through the outlet channels 13.
  • the velocity of the oxygen 16 flowing out through the outlet channels 13 is preferably less than 50% of the speed of sound in order to avoid transient flow conditions.
  • outlet channels 12, 13 drilled in a straight line through the nozzle head 6, so that the outflowing through the outlet channels 12, 13 oxygen experiences no twist. The formation of vortices in which oxygen does not mix is thus prevented.
  • the outflow direction 16 of 45 ° against the air flow 15 a wide penetration of the mixing jets 16 is secured in the air stream 15. The mixed flow penetrates into the laminar flow layers at the edge of the main line 1 and mixes with the air.

Abstract

In a process to mix two gases, a first gas (15) flows through a main pipe (1) and the second gas feeds via a secondary pipe (4) to a jet head (6) where it is subdivided into smaller flows (16). The part flows of the second gas are then released at an angle of between 15[deg] and 75[deg] into the oncoming flow of the first gas (15). The secondary gas flows (16) have no rotary vector. The primary gas is air and the secondary has is oxygen. The air is mixed at a rate of 1000-200000 m 3>/hour with oxygen at 5000-100000 m 3>/hour. An independent claim is included for a gas mixing assembly.

Description

Die Erfindung betrifft ein Verfahren zum Mischen eines ersten und eines zweiten Gases, wobei ein Strom eines ersten Gases in einer Hauptleitung geführt wird und das zweite Gas über eine Zuleitung zu einem Düsenkopf geführt und in mehrere Teilströme aufgeteilt wird. Femer bezieht sich die Erfindung auf eine Vorrichtung zum Mischen eines ersten und eines zweiten Gases mit einer Hauptleitung zur Führung des ersten Gases, einer Zuleitung für das zweite Gas, wobei sich die Zuleitung bis in das Innere der Hauptleitung erstreckt und an ihrem Ende im Wesentlichen parallel zur Symmetrieachse der Hauptleitung verläuft, und einem Düsenkopf, der an seinem hinteren Ende mit der Zuleitung verbunden ist, wobei der Düsenkopf Austrittskanäle für das zweite Gas besitzt.The invention relates to a method for mixing a first and a second gas, wherein a stream of a first gas is guided in a main line and the second gas is fed via a feed line to a nozzle head and divided into several sub-streams. Furthermore, the invention relates to a device for mixing a first and a second gas with a main conduit for guiding the first gas, a supply line for the second gas, wherein the supply line extends into the interior of the main line and at its end substantially parallel extends to the axis of symmetry of the main line, and a nozzle head which is connected at its rear end to the supply line, wherein the nozzle head has outlet channels for the second gas.

Bei vielen Oxidationsprozessen in chemischen Reaktoren wird mit Sauerstoff angereicherte Luft als Oxidationsmittel eingesetzt. Der Sauerstoff wird hierzu mittels eines Injektors in den Luftstrom eingedüst, wobei eine möglichst gleichmäßige Verteilung des Sauerstoffs in dem Luftstrom erreicht werden muss. Anderenfalls könnten lokal erhöhte Sauerstoffkonzentrationen bei der anschließenden chemischen Reaktion zu lokalen Temperaturüberhöhungen, sogenannten "hot spots", führen, welche sich negativ auf die durchzuführende Reaktion auswirken können oder gar zu Schäden am Reaktor führen können.In many oxidation processes in chemical reactors, oxygen-enriched air is used as the oxidant. The oxygen is injected for this purpose by means of an injector into the air stream, whereby a uniform distribution of the oxygen in the air flow must be achieved as possible. Otherwise, locally increased oxygen concentrations in the subsequent chemical reaction could lead to local temperature peaks, so-called "hot spots", which can have a negative effect on the reaction to be carried out or even lead to damage to the reactor.

In der EP 0 474 524 B1 wird eine Vorrichtung zum Mischen zweier Gasströme vorgeschlagen. Einem in einem Kanalabschnitt strömenden Hauptstrom eines ersten Gases wird über eine Zuleitung ein zweites Gas zugeführt. Das Ausstoßende der Zuleitung für das zweite Gas erstreckt sich koaxial zu der Achse des Kanalabschnitts und ist mit radial nach außen gerichteten Austrittskanälen versehen. Femer sind Umlenkbleche vorgesehen, so dass eine Rotationsbewegung des eingeleiteten zweiten Gases um die Achse des Kanalabschnitts erzeugt wird.In the EP 0 474 524 B1 a device for mixing two gas streams is proposed. A main gas of a first gas flowing in a duct section is supplied with a second gas via a supply line. The discharge end of the second gas supply line extends coaxially with the axis of the passage portion and is provided with radially outwardly directed discharge passages. Furthermore, baffles are provided, so that a rotational movement of the introduced second gas is generated about the axis of the channel section.

Aufgabe vorliegender Erfindung ist es, ein Verfahren und eine Vorrichtung der eingangs genannten Art zu entwickeln, die eine möglichst homogene Mischung der beiden zusammengeführten Gase ermöglichen.Object of the present invention is to develop a method and an apparatus of the type mentioned, which allow the most homogeneous possible mixture of the two combined gases.

Diese Aufgabe wird durch ein Verfahren zum Mischen eines ersten und eines zweiten Gases gelöst, wobei ein Strom eines ersten Gases in einer Hauptleitung geführt wird und das zweite Gas über eine Zuleitung zu einem Düsenkopf geführt und in mehrere Teilströme aufgeteilt wird, wobei zumindest ein Teil der Teilströme unter einem Winkel zwischen 15° und 75° entgegen der Strömungsrichtung des ersten Gases in das erste Gas eingeleitet werden.This object is achieved by a method for mixing a first and a second gas, wherein a stream of a first gas is guided in a main line and the second gas is fed via a feed line to a nozzle head and divided into several sub-streams, wherein at least a part of the Partial flows are introduced at an angle between 15 ° and 75 ° counter to the flow direction of the first gas in the first gas.

Die erfindungsgemäße Vorrichtung der eingangs genannten Art zeichnet sich dadurch aus, dass die Austrittskanäle um einen Winkel zwischen 15 und 75° gegen die Symmetrieachse der Hauptleitung geneigt sind.The inventive device of the type mentioned above is characterized in that the outlet channels are inclined at an angle between 15 and 75 ° against the axis of symmetry of the main line.

Erfindungsgemäß sind die Austrittskanäle um einen Winkel zwischen 15° und 75°, bevorzugt 30° bis 60°, besonders bevorzugt um einen Winkel zwischen 40° und 50°, gegen die Symmetrieachse der Hauptleitung geneigt. Die Austrittskanäle sind dabei gegen die Strömungsrichtung des ersten Gases gerichtet. Durch schräg gegen die Hauptströmung des ersten Gases gerichtete Austrittskanäle wird erreicht, dass das abgestrahlte zweite Gas weit in die Hauptströmung eindringt und gleichzeitig gut mit der Hauptströmung durchmischt wird. Durch das schräge Abstrahlen des zweiten Gases wird eine verlängerte Mischstrecke erzeugt, so dass das zweite Gas bis in die laminare Randströmung des ersten Gases vordringt und sich auch mit dieser mischt.According to the invention, the outlet channels are inclined at an angle between 15 ° and 75 °, preferably 30 ° to 60 °, particularly preferably at an angle between 40 ° and 50 °, with respect to the axis of symmetry of the main line. The outlet channels are directed against the flow direction of the first gas. By obliquely directed against the main flow of the first gas outlet channels is achieved that the radiated second gas far penetrates into the main flow and at the same time is well mixed with the main flow. Due to the oblique emission of the second gas, an extended mixing section is produced, so that the second gas penetrates into the laminar edge flow of the first gas and also mixes with it.

Der Düsenkopf besitzt mehrere Austrittskanäle für das zweite Gas. Bevorzugt sind die Austrittskanäle so ausgeführt, dass dem austretenden Gas keine Drallströmung aufgeprägt wird. Es hat sich gezeigt, dass sich die beiden Gase homogener mischen, wenn das über die Zuleitung zugeführte Gas geradlinig aus dem Düsenkopf austritt und keine Rotationsbewegung ausführt.The nozzle head has a plurality of outlet channels for the second gas. Preferably, the outlet channels are designed so that no swirling flow is imparted to the exiting gas. It has been shown that the two gases mix more homogeneously when the gas supplied via the supply line exits in a straight line from the nozzle head and does not perform any rotational movement.

Vorzugsweise werden die Zuleitung für das zweite Gas und der Düsenkopf so gestaltet, dass diese eine strömungsgünstige Form ohne Neigung zum Flattern besitzen. Dies wird dadurch erreicht, dass das vordere Ende des Düsenkopfs abgerundet ausgeführt ist, so dass dieser in der Strömung des ersten Gases keinen Auftrieb erfährt und eine stabile Lage beibehält. Zudem wird durch diese Formgebung der Strömungswiderstand verringert.Preferably, the supply line for the second gas and the nozzle head are designed so that they have a streamlined shape without tendency to flutter. This is achieved in that the front end of the nozzle head is rounded so that it does not experience buoyancy in the flow of the first gas and maintains a stable position. In addition, the flow resistance is reduced by this shaping.

Das vordere Ende des Düsenkopfes besitzt bevorzugt ein elliptisches, parabelförmiges oder halbkugelförmiges Profil. Durch diese Formgebung wird zum einen der Strömungswiderstand deutlich verringert, zum anderen wird sichergestellt, dass der Düsenkopf in der Hauptströmung des ersten Gases keinen Auftrieb erfährt und so die Flattemeigung des Düsenkopfes verringert wird. Je nach Anwendungsfall kann es aber auch günstig sein, das vordere Ende des Düsenkopfes eben auszuführen.The front end of the nozzle head preferably has an elliptical, parabolic or hemispherical profile. On the one hand, the flow resistance is markedly reduced by this shaping, on the other hand it is ensured that the nozzle head in the main flow of the first gas does not experience any buoyancy and thus the flattening of the nozzle head is reduced. Depending on the application, however, it may also be favorable to make the front end of the nozzle head flat.

Am hinteren Ende des Düsenkopfs erfolgt der Übergang auf die Zuleitung bevorzugt scharfkantig, wobei der Durchmesser des Düsenkopfs an dieser Stelle größer als der der Zuleitung ist. Der Übergang wirkt damit als Abrisskante. Vorzugsweise beträgt der Durchmesser der Zuleitung an der Verbindungsstelle zum Düsenkopf maximal 90% des Durchmessers des hinteren Endes des Düsenkopfes. Vorzugsweise beträgt der Winkel zwischen der Außenseite des Düsenkopfs und dem Übergang zur Zuleitung zwischen 30° und 90°.At the rear end of the nozzle head, the transition to the supply line is preferably sharp-edged, wherein the diameter of the nozzle head at this point is greater than that of the supply line. The transition thus acts as a spoiler lip. The diameter of the feed line at the connection point to the nozzle head is preferably at most 90% of the diameter of the rear end of the nozzle head. Preferably, the angle between the outside of the nozzle head and the transition to the feed line is between 30 ° and 90 °.

Von Vorteil erstreckt sich die Zuleitung bis zur Symmetrieachse der Hauptleitung und die Symmetrieachse des Düsenkopfs verläuft koaxial mit der Symmetrieachse der Hauptleitung.Advantageously, the supply line extends to the axis of symmetry of the main line and the axis of symmetry of the nozzle head extends coaxially with the axis of symmetry of the main line.

Für eine optimale Durchmischung der beiden Gase müssen alle Austrittskanäle gleichmäßig durchströmt werden. Es hat sich gezeigt, dass dies durch eine gleichmäßige Verteilung der Austrittskanäle in einer Reihe über den Umfang des Düsenkopfes erreicht werden kann. Vorzugsweise befinden sich die Austrittsöffnungen der Austrittskanäle im hinteren Drittel des Düsenkopfes. In diesem Bereich hat sich aufgrund der Profilierung des Düsenkopfes bereits eine definierte Strömung ausgebildet.For optimum mixing of the two gases, all outlet channels must be flowed through evenly. It has been found that this can be achieved by a uniform distribution of the outlet channels in a row over the circumference of the nozzle head. Preferably, the outlet openings of the outlet channels are located in the rear third of the nozzle head. In this area, a defined flow has already formed due to the profiling of the nozzle head.

Es ist aber auch möglich, das zweite Gas über mehrere Reihen von Austrittskanälen in dem Düsenkopf in die Hauptströmung des ersten Gases einzudüsen. Weiter hat es sich als günstig erwiesen, einen zentralen, auf der Symmetrieachse der Hauptleitung liegenden Austrittskanal vorzusehen, aus dem ein Teil des zweiten Gases entgegen der Strömungsrichtung des ersten Gases ausströmt.But it is also possible to inject the second gas via several rows of outlet channels in the nozzle head in the main flow of the first gas. Furthermore, it has proved to be favorable to provide a central outlet channel lying on the axis of symmetry of the main line, from which part of the second gas flows out against the flow direction of the first gas.

Durch den Düsenkopf wird in der Hauptleitung für das erste Gas ein bestimmter Strömungswiderstand hervorgerufen. Es hat sich insoweit gezeigt, dass sich eine gute Strömung in der Hauptleitung ausbildet, wenn der Durchmesser des hinteren Endes des Düsenkopfes, das heißt der maximale Durchmesser des Düsenkopfes, das 0,15- bis 0,3-fache des Durchmessers der Hauptleitung beträgt.Through the nozzle head, a certain flow resistance is caused in the main line for the first gas. It has been shown that a good Flow in the main line is formed when the diameter of the rear end of the nozzle head, that is, the maximum diameter of the nozzle head, which is 0.15 to 0.3 times the diameter of the main line.

Die Querschnittsflächen der Austrittskanäle werden klein im Verhältnis zur Querschnittsfläche der Zuleitung gewählt. Damit ist umgekehrt der Strömungswiderstand in den Austrittskanälen groß gegen den Strömungswiderstand in der Zuleitung und eventuelle Druckschwankungen in dem über die Zuleitung zugeführten Gas wirken sich nicht oder nur geringfügig auf den Durchsatz durch die Austrittskanäle aus.The cross-sectional areas of the outlet channels are chosen to be small in relation to the cross-sectional area of the feed line. Thus, conversely, the flow resistance in the outlet channels is large against the flow resistance in the supply line and any pressure fluctuations in the gas supplied via the feed line do not or only slightly affect the throughput through the outlet channels.

Die Austrittsgeschwindigkeit des zweiten Gases sollte deutlich unterhalb der Schallgeschwindigkeit liegen, um ein instationäres, stark kompressibles Verhalten auszuschließen. Vorzugsweise wird eine Austrittsgeschwindigkeit von weniger als der halben Schallgeschwindigkeit gewählt. Geeignete Austrittsgeschwindigkeiten liegen bei atmosphärischen Bedingungen im Bereich zwischen 50 m/s und 150 m/s, bevorzugt zwischen 70 m/s und 100 m/s.The exit velocity of the second gas should be well below the speed of sound in order to rule out a transient, highly compressible behavior. Preferably, an exit velocity of less than half the speed of sound is selected. At atmospheric conditions, suitable outlet velocities are in the range between 50 m / s and 150 m / s, preferably between 70 m / s and 100 m / s.

Die Regelung des zweiten Gases erfolgt vorzugsweise nur durch eine Regelung des gesamten über die Zuleitung zugeführten Stromes an zweitem Gas. Die einzelnen, durch die jeweiligen Austrittskanäle ausströmenden Einzelstrahlen an zweitem Gas werden nicht separat geregelt.The regulation of the second gas is preferably carried out only by controlling the total supplied via the supply line current to second gas. The individual individual jets of second gas flowing out through the respective outlet channels are not regulated separately.

Die Erfindung eignet sich insbesondere zur Sauerstoffanreicherung eines Luftstroms. Sauerstoffangereicherte Luft wird mit Vorteil in zahlreichen Oxidationsprozessen in der chemischen Industrie eingesetzt, so beispielsweise in Raffinerien, bei Claus-Verfahren oder FCC (Fluid Catalytic Cracking). Der Luftstrom wird in diesem Fall durch die Hauptleitung geleitet und Sauerstoff über die Zuleitung und den Düsenkopf in den Luftstrom eingedüst.The invention is particularly suitable for oxygen enrichment of an air stream. Oxygen-enriched air is advantageously used in numerous oxidation processes in the chemical industry, for example in refineries, Claus processes or FCC (fluid catalytic cracking). The air flow is in this case passed through the main line and injected oxygen via the supply line and the nozzle head in the air stream.

Es hat sich gezeigt, dass erfindungsgemäß Mischverhältnisse von zweitem Gas zu erstem Gas zwischen 1 zu 50 bis 1 zu 3 hergestellt werden können und Luftströme von bis zu 200.000 m3/h mit Sauerstoff angereichert werden können. Der bevorzugte Anwendungsbereich der Erfindung betrifft das Zumischen eines zweiten Gases in einen Strom eines ersten Gases, wobei der Strom des ersten Gases zwischen 1.000 m3/h und 200.000 m3/h, besonders bevorzugt zwischen 5.000 m3/h und 100.000 m3/h, beträgt.It has been shown that, according to the invention, mixing ratios of second gas to first gas can be produced between 1: 50 to 1: 3, and air flows of up to 200,000 m 3 / h can be enriched with oxygen. The preferred field of application of the invention relates to the admixing of a second gas into a flow of a first gas, wherein the flow of the first gas between 1,000 m 3 / h and 200,000 m 3 / h, more preferably between 5,000 m 3 / h and 100,000 m 3 / h.

Die erfindungsgemäße Vorrichtung ist klein, stabil und kann schnell in eine Rohrleitung eingebaut werden. Vorzugsweise sind hierzu entsprechende Flansche vorgesehen.The device according to the invention is small, stable and can be quickly installed in a pipeline. Preferably, corresponding flanges are provided for this purpose.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von dem in der Zeichnung dargestellten Ausführungsbeispiel näher erläutert. Hierbei zeigt die:

Figur
eine erfindungsgemäße Vorrichtung zur Anreicherung eines Hauptstroms mit einem zweiten Gas, insbesondere zur Anreicherung eines Luftstroms mit Sauerstoff.
The invention and further details of the invention are explained in more detail below with reference to the embodiment shown in the drawing. Hereby shows:
figure
a device according to the invention for the enrichment of a main flow with a second gas, in particular for the enrichment of an air flow with oxygen.

In die Luft führende Hauptleitung 1 ist ein Stutzen 3 mit Flanschen 2 angeschweißt. Der Luftstrom 15 verläuft in der Figur von rechts nach links. In die Hauptleitung 1 ragt durch den Stutzen 3 radial eine Zuleitung 4, über die der in der Hauptleitung 1 strömenden Luft Sauerstoff zugeführt werden kann. Die Zuleitung 4 erstreckt sich bis zur Symmetrieachse 5 der Hauptleitung 1, ist dann abgewinkelt und endet koaxial mit der Symmetrieachse 5.In the air leading main line 1, a nozzle 3 with flanges 2 is welded. The air flow 15 runs in the figure from right to left. In the main line 1 projects through the nozzle 3 radially a supply line 4, via which the air flowing in the main line 1 of air can be supplied. The supply line 4 extends to the axis of symmetry 5 of the main line 1, is then angled and ends coaxially with the axis of symmetry. 5

Mit der Zuleitung 4 ist ein Düsenkopf 6 verbunden. Der Düsenkopf 6 ist.an seinem vorderen, der Zuleitung 4 abgewandten Ende 7 elliptisch abgerundet. Am hinteren Ende 8 des Düsenkopfs 6 ist der Übergang zur Zuleitung 4 stufenförmig und scharfkantig ausgebildet. Anstelle des in der Figur dargestellten stufenförmigen Übergangs mit einem 90°- Winkel zwischen der Außenseite des Düsenkopfes 6 und dessen Rückseite, sind auch Übergänge mit Winkeln zwischen 30° und 90°, bevorzugt 45°, möglich.With the supply line 4, a nozzle head 6 is connected. The nozzle head 6 is elliptically rounded at its front end 7 facing away from the feed line 4. At the rear end 8 of the nozzle head 6, the transition to the feed line 4 is stepped and sharp-edged. Instead of the step-shaped transition shown in the figure with a 90 ° angle between the outside of the nozzle head 6 and the back, and transitions with angles between 30 ° and 90 °, preferably 45 °, are possible.

Das vordere, dem Düsenkopf 6 zugewandte Ende der Zuleitung 4 besitzt einen Durchmesser 9, der 90% des hinteren Durchmessers 10 des Düsenkopfes 6 beträgt.The front, the nozzle head 6 facing the end of the supply line 4 has a diameter 9, which is 90% of the rear diameter 10 of the nozzle head 6.

Der maximale Durchmesser 10 des Düsenkopfs 6 beträgt das 0,15- bis 0,3-fache des inneren Durchmessers der Hauptleitung 1, um den Widerstand für die strömende Luft klein zu halten und eine ausreichende Stabilität des Düsenkopfes 6 zu gewährleisten.The maximum diameter 10 of the nozzle head 6 is 0.15 to 0.3 times the inner diameter of the main line 1 in order to keep the resistance to the flowing air small and to ensure sufficient stability of the nozzle head 6.

Durch die Anordnung und Formgebung des Düsenkopfs 6 bildet sich eine gleichmäßige Luftströmung um den Düsenkopf 6 aus. Der Auftrieb des Düsenkopfs 6 in dem Luftstrom und die Neigung der Zuleitung 4 und des Düsenkopfs 6, in der Luftströmung zu flattern, werden minimiert.Due to the arrangement and shaping of the nozzle head 6, a uniform air flow around the nozzle head 6 is formed. The buoyancy of the nozzle head 6 in the air flow and the tendency of the feed line 4 and the nozzle head 6 to flutter in the air flow are minimized.

Das Innere des Düsenkopfs 6 ist mit einer zentralen Kammer 11 versehen, die zur Zuleitung 4 hin offen ist. Von der zentralen Kammer 11 gehen eine koaxial mit der Symmetrieachse 5 verlaufende Bohrung 12 sowie mehrere unter einem Winkel von 45° zur Symmetrieachse 5 verlaufende Austrittskanäle 13 aus. Die Austrittsöffnungen der Austrittskanäle 13 liegen auf einem auf der Mantelfläche des Düsenkopfs 6 liegenden Kreis.The interior of the nozzle head 6 is provided with a central chamber 11, which is open to the supply line 4. From the central chamber 11, a bore 12 running coaxially with the axis of symmetry 5 and a plurality of outlet channels 13 extending at an angle of 45 ° to the axis of symmetry 5 emerge. The outlet openings of the outlet channels 13 lie on a lying on the lateral surface of the nozzle head 6 circle.

Die Austrittskanäle 13 sind von außen in den Düsenkopf 6 gebohrt und jeweils am äußeren Ende entgratet. Die Bohrungen für die Austrittskanäle 13 verlaufen geradlinig durch den Körper des Düsenkopfs 6.The outlet channels 13 are drilled from the outside into the nozzle head 6 and each deburred at the outer end. The bores for the outlet channels 13 extend in a straight line through the body of the nozzle head 6.

Die Querschnittsflächen der Austrittskanäle 13 sowie der zentralen Bohrung 12 sind klein gegen die Querschnittsfläche der Zuleitung 4. Vorzugsweise beträgt das Verhältnis der Querschnittsfläche eines Austrittskanals 13 zu der der Zuleitung 4 weniger als 2 %. Durch diese Ausführungsform wird sichergestellt, dass der Strömungswiderstand in einem Austrittskanal 13 groß gegen den Strömungswiderstand der Zuleitung 4 ist. Druckschwankungen in dem über die Zuleitung 4 zugeführten Sauerstoffstrom 14 und Druckschwankungen in der in der Hauptleitung 3 strömenden Luft 15 wirken sich so nicht oder nur unwesentlich auf den Sauerstoffdurchsatz durch die Austrittskanäle 13 aus.The cross-sectional areas of the outlet channels 13 and the central bore 12 are small compared to the cross-sectional area of the feed line 4. Preferably, the ratio of the cross-sectional area of an outlet channel 13 to that of the feed line 4 is less than 2%. This embodiment ensures that the flow resistance in an outlet channel 13 is great against the flow resistance of the feed line 4. Pressure fluctuations in the supplied via the supply line 4 oxygen flow 14 and pressure fluctuations in the flowing in the main line 3 air 15 affect so not or only slightly on the oxygen flow rate through the outlet channels 13.

Die Geschwindigkeit des durch die Austrittskanäle 13 ausströmenden Sauerstoffs 16 beträgt vorzugsweise weniger als 50 % der Schallgeschwindigkeit, um instationäre Strömungsverhältnisse zu vermeiden.The velocity of the oxygen 16 flowing out through the outlet channels 13 is preferably less than 50% of the speed of sound in order to avoid transient flow conditions.

Zudem sind die Austrittskanäle 12, 13 geradlinig durch den Düsenkopf 6 gebohrt, so dass der durch die Austrittskanäle 12, 13 ausströmende Sauerstoff keinerlei Drall erfährt. Die Bildung von Wirbeln, in denen sich Sauerstoff nicht mischt, wird so verhindert. Durch die Ausströmungsrichtung 16 von 45° gegen die Luftströmung 15 wird ein weites Eindringen der Mischstrahlen 16 in den Luftstrom 15 gesichert. Der Mischstrom dringt bis in die laminaren Strömungsschichten am Rand der Hauptleitung 1 vor und durchmischt sich mit der Luft.In addition, the outlet channels 12, 13 drilled in a straight line through the nozzle head 6, so that the outflowing through the outlet channels 12, 13 oxygen experiences no twist. The formation of vortices in which oxygen does not mix is thus prevented. By the outflow direction 16 of 45 ° against the air flow 15 a wide penetration of the mixing jets 16 is secured in the air stream 15. The mixed flow penetrates into the laminar flow layers at the edge of the main line 1 and mixes with the air.

Claims (12)

Verfahren zum Mischen eines ersten und eines zweiten Gases, wobei ein Strom (15) eines ersten Gases in einer Hauptleitung (1) geführt wird und das zweite Gas über eine Zuleitung (4) zu einem Düsenkopf (6) geführt und in mehrere Teilströme (16) aufgeteilt wird, dadurch gekennzeichnet; dass zumindest ein Teil der Teilströme (16) unter einem Winkel zwischen 15° und 75° entgegen der Strömungsrichtung (15) des ersten Gases in das erste Gas eingeleitet werden.A method for mixing a first and a second gas, wherein a stream (15) of a first gas in a main line (1) is guided and the second gas via a feed line (4) to a nozzle head (6) and into a plurality of partial streams (16 ), characterized; in that at least part of the partial flows (16) are introduced into the first gas at an angle between 15 ° and 75 ° counter to the flow direction (15) of the first gas. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass alle Teilströme (16) unter einem Winkel zwischen 15° und 75° entgegen der Strömungsrichtung (15), des ersten Gases in das erste Gas eingeleitet werden.A method according to claim 1, characterized in that all partial streams (16) are introduced at an angle between 15 ° and 75 ° counter to the flow direction (15) of the first gas in the first gas. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Teilströme (16) keine Rotationsbewegungskomponente aufweisen.Method according to one of claims 1 or 2, characterized in that the partial streams (16) have no rotational movement component. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das erste Gas Luft und das zweite Gas Sauerstoff ist.Method according to one of claims 1 to 3, characterized in that the first gas is air and the second gas is oxygen. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Strom (15) des ersten Gases zwischen 1.000 m3/h und 200.000 m3/h, bevorzugt zwischen 5.000 m3/h und 100.000 m3/h, beträgt.Method according to one of claims 1 to 4, characterized in that the stream (15) of the first gas between 1000 m 3 / h and 200,000 m 3 / h, preferably between 5,000 m 3 / h and 100,000 m 3 / h, is. Vorrichtung zum Mischen eines ersten und eines zweiten Gases - mit einer Hauptleitung (1) zur Führung des ersten Gases, - einer Zuleitung (4) für das zweite Gas, wobei sich die Zuleitung (4) bis in das Innere der Hauptleitung (1) erstreckt und an ihrem Ende im Wesentlichen parallel zur Symmetrieachse (5) der Hauptleitung (1) verläuft, und - einem Düsenkopf (6), der an seinem hinteren Ende (8) mit der Zuleitung (4) verbunden ist, - wobei der Düsenkopf (6) Austrittskanäle (13) für das zweite Gas besitzt, dadurch gekennzeichnet,
dass die Austrittskanäle (13) um einen Winkel zwischen 15° und 75° gegen die Symmetrieachse (5) der Hauptleitung (1) geneigt sind.
Device for mixing a first and a second gas - With a main line (1) for guiding the first gas, - A supply line (4) for the second gas, wherein the supply line (4) extends into the interior of the main line (1) and at its end substantially parallel to the axis of symmetry (5) of the main line (1), and - A nozzle head (6) which is connected at its rear end (8) to the supply line (4), wherein the nozzle head (6) has outlet channels (13) for the second gas, characterized,
in that the outlet channels (13) are inclined at an angle between 15 ° and 75 ° with respect to the axis of symmetry (5) of the main line (1).
Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Durchmesser (10) des hinteren Endes (8) des Düsenkopfes (6) größer als der Durchmesser (9) der Zuleitung (4) ist und der Übergang von dem hinteren Ende (8) des Düsenkopfes (6) zu der Zuleitung (4) scharfkantig erfolgt.Apparatus according to claim 6, characterized in that the diameter (10) of the rear end (8) of the nozzle head (6) is greater than the diameter (9) of the supply line (4) and the transition from the rear end (8) of the nozzle head (6) to the supply line (4) sharp-edged. Vorrichtung nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass das dem hinteren Ende (8) gegenüberliegende vordere Ende (7) des Düsenkopfes (6) abgerundet ist.Device according to one of claims 6 or 7, characterized in that the rear end (8) opposite the front end (7) of the nozzle head (6) is rounded. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass das vordere Ende (7) des Düsenkopfes (6) ein elliptisches, parabelförmiges oder halbkugelförmiges Profil besitzt.Apparatus according to claim 8, characterized in that the front end (7) of the nozzle head (6) has an elliptical, parabolic or hemispherical profile. Vorrichtung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass der Durchmesser (9) der Zuleitung (4) höchstens das 0,9-fache des Durchmessers (10) des hinteren Endes (8) des Düsenkopfes (6) beträgt.Device according to one of claims 6 to 9, characterized in that the diameter (9) of the feed line (4) is at most 0.9 times the diameter (10) of the rear end (8) of the nozzle head (6). Vorrichtung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass der Durchmesser (10) des hinteren Endes (8) des Düsenkopfes (6) das 0,1- bis 0,3-fache des Durchmessers (9) der Hauptleitung (1) beträgt.Device according to one of claims 6 to 10, characterized in that the diameter (10) of the rear end (8) of the nozzle head (6) is 0.1 to 0.3 times the diameter (9) of the main line (1). is. Vorrichtung nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, dass der Düsenkopf (6) einen zentralen, auf der Symmetrieachse (5) der Hauptleitung (1) liegenden Austrittskanal (12) aufweist.Device according to one of claims 6 to 11, characterized in that the nozzle head (6) has a central, on the symmetry axis (5) of the main line (1) lying outlet channel (12).
EP06008568A 2005-05-04 2006-04-25 Gas-gas mixer Active EP1726355B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06008568T PL1726355T3 (en) 2005-05-04 2006-04-25 Gas-gas mixer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005020942A DE102005020942A1 (en) 2005-05-04 2005-05-04 Mixing air and oxygen for use in an industrial oxidation process by angular impingement of sub-divided gas flows

Publications (3)

Publication Number Publication Date
EP1726355A2 true EP1726355A2 (en) 2006-11-29
EP1726355A3 EP1726355A3 (en) 2007-08-01
EP1726355B1 EP1726355B1 (en) 2011-06-15

Family

ID=36760075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06008568A Active EP1726355B1 (en) 2005-05-04 2006-04-25 Gas-gas mixer

Country Status (6)

Country Link
EP (1) EP1726355B1 (en)
AT (1) ATE512711T1 (en)
DE (1) DE102005020942A1 (en)
ES (1) ES2366797T3 (en)
PL (1) PL1726355T3 (en)
PT (1) PT1726355E (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078899A1 (en) * 2007-12-14 2009-06-25 Dow Technology Investments Llc Oxygen/hydrocarbon rapid (high shear) gas mixer, particularly for the production of ethylene oxide
NL2001803C2 (en) * 2008-07-14 2010-01-18 Kimman Process Solutions B V A device for homogenizing fluids.
US8334395B2 (en) 2007-12-14 2012-12-18 Dow Technology Investments Llc Hydrocarbon/oxygen industrial gas mixer with coarse water droplet environment to reduce ignition potential
US8404190B2 (en) 2007-12-14 2013-03-26 Dow Technology Investments Llc Hydrocarbon/oxygen industrial gas mixer with water mist
EP2574394A1 (en) * 2011-09-29 2013-04-03 Air Liquide Medical Systems Gas injection module, in particular for NO gas administration equipment.
US8500320B2 (en) 2007-12-14 2013-08-06 Dow Technology Investments Llc Low shear gas mixer
US8500894B2 (en) 2007-12-14 2013-08-06 Dow Technology Investments Llc Wet scrubbing for removing particulate solids from oxygen supply line
CN113368716A (en) * 2021-04-29 2021-09-10 中冶长天国际工程有限责任公司 Air-oxygen mixer for oxygen-enriched ignition and control method thereof
WO2023208337A1 (en) 2022-04-27 2023-11-02 Wacker Chemie Ag Devices and methods for mixing gases

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9440903B2 (en) 2012-09-24 2016-09-13 Arkema Inc. Shell and tube oxidation reactor with improved resistance to fouling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1557253A1 (en) 1967-04-13 1970-04-02 Zink Co John Device for mixing fluid media
US4674888A (en) 1984-05-06 1987-06-23 Komax Systems, Inc. Gaseous injector for mixing apparatus
DE3728557A1 (en) 1987-08-27 1989-03-09 Didier Eng Process for the distribution of ammonia in a gas stream and apparatus for carrying out the process
EP0474524B1 (en) 1990-07-27 1995-09-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and device for mixing two gases

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191323350A (en) * 1913-10-15 1914-10-15 Alexander Constantine Ionides An Improved Method of and Means for Mixing the Constituents of a Combustible Gaseous Mixture.
CH345357A (en) * 1955-07-01 1960-03-31 Waagner Biro Ag Device for mixing gaseous and liquid media
EP1319435A3 (en) * 2001-12-12 2004-10-06 Collectplan GmbH Method and apparatus for introducing a first medium in a second medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1557253A1 (en) 1967-04-13 1970-04-02 Zink Co John Device for mixing fluid media
US4674888A (en) 1984-05-06 1987-06-23 Komax Systems, Inc. Gaseous injector for mixing apparatus
DE3728557A1 (en) 1987-08-27 1989-03-09 Didier Eng Process for the distribution of ammonia in a gas stream and apparatus for carrying out the process
EP0474524B1 (en) 1990-07-27 1995-09-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and device for mixing two gases

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8500894B2 (en) 2007-12-14 2013-08-06 Dow Technology Investments Llc Wet scrubbing for removing particulate solids from oxygen supply line
US8334395B2 (en) 2007-12-14 2012-12-18 Dow Technology Investments Llc Hydrocarbon/oxygen industrial gas mixer with coarse water droplet environment to reduce ignition potential
US8404190B2 (en) 2007-12-14 2013-03-26 Dow Technology Investments Llc Hydrocarbon/oxygen industrial gas mixer with water mist
US8404189B2 (en) 2007-12-14 2013-03-26 Dow Technology Investments Llc Oxygen/hydrocarbon rapid (high shear) gas mixer, particularly for the production of ethylene oxide
US8500320B2 (en) 2007-12-14 2013-08-06 Dow Technology Investments Llc Low shear gas mixer
WO2009078899A1 (en) * 2007-12-14 2009-06-25 Dow Technology Investments Llc Oxygen/hydrocarbon rapid (high shear) gas mixer, particularly for the production of ethylene oxide
NL2001803C2 (en) * 2008-07-14 2010-01-18 Kimman Process Solutions B V A device for homogenizing fluids.
EP2145676A1 (en) * 2008-07-14 2010-01-20 Kimman Process Solutions B.V. Device and method for homogenizing fluids
EP2574394A1 (en) * 2011-09-29 2013-04-03 Air Liquide Medical Systems Gas injection module, in particular for NO gas administration equipment.
FR2980718A1 (en) * 2011-09-29 2013-04-05 Air Liquide Medical Systems GAS INJECTION MODULE, IN PARTICULAR FOR INSTALLATION OF NO GASEOUS ADMINISTRATION
CN113368716A (en) * 2021-04-29 2021-09-10 中冶长天国际工程有限责任公司 Air-oxygen mixer for oxygen-enriched ignition and control method thereof
CN113368716B (en) * 2021-04-29 2022-08-16 中冶长天国际工程有限责任公司 Air-oxygen mixer for oxygen-enriched ignition and control method thereof
WO2023208337A1 (en) 2022-04-27 2023-11-02 Wacker Chemie Ag Devices and methods for mixing gases

Also Published As

Publication number Publication date
ATE512711T1 (en) 2011-07-15
PT1726355E (en) 2011-08-30
EP1726355A3 (en) 2007-08-01
DE102005020942A1 (en) 2006-11-09
EP1726355B1 (en) 2011-06-15
ES2366797T3 (en) 2011-10-25
PL1726355T3 (en) 2011-10-31

Similar Documents

Publication Publication Date Title
EP1726355B1 (en) Gas-gas mixer
DE102013100225B4 (en) System for fuel injection for carburation
DE2950216A1 (en) METHOD AND DEVICE FOR INNER MIXING OF TWO LIQUID COMPONENTS
DE102009041812B4 (en) Cutter with a shaft-like basic shape
EP2566607A1 (en) Process and apparatus for addition of a chemical to a process stream
AT504179B1 (en) INTERNAL COMBUSTION ENGINE WITH AN INTAKE SYSTEM
EP1651335B1 (en) Mixing system
WO1999033554A1 (en) Device for the mixing and subsequent atomizing of liquids
EP2089148A1 (en) Process and apparatus for injecting oxygen into a reaction gas flowing through a synthesis reactor
EP1981622B2 (en) Process and device for mixing a gaseous fluid with a large flow-rate gas stream, in particular for introducing a reducing agent into flue gas containing nitrogen oxides
DE10121768B4 (en) Mixing device for gases in fuel cells
EP0751820A1 (en) Combined feed and mixing installation
DE102017202258B3 (en) Nozzle for blowing out compressed air
DE102004024957A1 (en) Device, useful for passing oxygen that is added in pure form into a reaction gas, comprises an oxygen distribution element from two tubes and a multitude of flow pipes before the arrangement for receiving catalyst filling
DE4206715C2 (en) Method and device for introducing a gas into a liquid
EP3831498A1 (en) Bundling nozzle for spraying a fluid, arrangement with a bundling nozzle and method for producing a bundling nozzle
EP1504937B1 (en) Suction nozzle
EP2594331A1 (en) Process and device for gassing liquids
EP2907582B1 (en) Method and nozzle for mixing and spraying medical fluids
DE10324886B4 (en) Mixing element and static mixer with a number of such mixing elements
DE10246153B3 (en) Assembly to feed additives into a molten polymer flow, for preoriented yarn melt spinning, has a planet wheel pump with planet wheels fitted with feed outflows and selective connections to additives/polymer inflows
WO2023117082A1 (en) Liquid abrasive cutting system
WO2019002253A1 (en) Distributor for a fluid
DE102008006151A1 (en) Device for mixing sludge with polymers, comprises sludge mixing tube, motor-driven mixer having mixing blades arranged in vicinity of mixing tube, supply tube, nozzle device placed in area of opening of supply tube, and polymer-distributor
DE102020213695A1 (en) Bundle nozzle for spraying a fluid, arrangement with a bundle nozzle and method for producing a bundle nozzle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070922

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

17Q First examination report despatched

Effective date: 20100312

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006009644

Country of ref document: DE

Effective date: 20110728

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20110816

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2366797

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111025

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110615

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110615

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110916

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110615

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110615

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110615

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006009644

Country of ref document: DE

Effective date: 20120316

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060425

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006009644

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AG, 80331 MUENCHEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502006009644

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0003020000

Ipc: B01F0023100000

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230417

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230424

Year of fee payment: 18

Ref country code: PT

Payment date: 20230422

Year of fee payment: 18

Ref country code: LT

Payment date: 20230413

Year of fee payment: 18

Ref country code: IT

Payment date: 20230428

Year of fee payment: 18

Ref country code: FR

Payment date: 20230417

Year of fee payment: 18

Ref country code: ES

Payment date: 20230517

Year of fee payment: 18

Ref country code: DE

Payment date: 20230418

Year of fee payment: 18

Ref country code: CZ

Payment date: 20230417

Year of fee payment: 18

Ref country code: CH

Payment date: 20230502

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230424

Year of fee payment: 18

Ref country code: SE

Payment date: 20230419

Year of fee payment: 18

Ref country code: PL

Payment date: 20230417

Year of fee payment: 18

Ref country code: FI

Payment date: 20230417

Year of fee payment: 18

Ref country code: AT

Payment date: 20230414

Year of fee payment: 18