EP1725806A1 - Station de remplissage de dioxyde de carbone liquide vers un teservoir mobile - Google Patents

Station de remplissage de dioxyde de carbone liquide vers un teservoir mobile

Info

Publication number
EP1725806A1
EP1725806A1 EP04816576A EP04816576A EP1725806A1 EP 1725806 A1 EP1725806 A1 EP 1725806A1 EP 04816576 A EP04816576 A EP 04816576A EP 04816576 A EP04816576 A EP 04816576A EP 1725806 A1 EP1725806 A1 EP 1725806A1
Authority
EP
European Patent Office
Prior art keywords
carbon dioxide
mobile tank
filling
pressure
filling station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04816576A
Other languages
German (de)
English (en)
Inventor
Carinne Kempen
Serge Morel-Jean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1725806A1 publication Critical patent/EP1725806A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D11/00Clutches in which the members have interengaging parts
    • F16D11/08Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially
    • F16D11/10Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially with clutching members movable only axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/04Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways with a shaft carrying a number of rotatable transmission members, e.g. gears, each of which can be connected to the shaft by a clutching member or members between the shaft and the hub of the transmission member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/037Quick connecting means, e.g. couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/05Vessel or content identifications, e.g. labels
    • F17C2205/055Vessel or content identifications, e.g. labels by magnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/043Localisation of the filling point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/046Localisation of the filling point in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/044Methods for emptying or filling by purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/01Intermediate tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0421Mass or weight of the content of the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0443Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/031Treating the boil-off by discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0171Trucks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/12Devices using other cold materials; Devices using cold-storage bodies using solidified gases, e.g. carbon-dioxide snow

Definitions

  • the present invention relates to a filling station for liquid carbon dioxide to a mobile tank.
  • the invention finds a particularly advantageous application in the field of supplying liquid carbon dioxide (CO 2 ) for mobile tanks supplying the refrigeration units installed on isothermal trucks and requiring a rapid descent in temperature so as not to interrupt the chain of cold.
  • CO 2 liquid carbon dioxide
  • this prior pressure relief causes vaporization of the liquid carbon dioxide.
  • the filling time of the mobile tank is, in general, directly dependent on the pressure difference between the pressure in the mobile tank and the supply pressure of LCO2 in the storage tank.
  • the prior pressure relief therefore has the effect of slowing the transfer time from LCO2 to the mobile tank.
  • the smaller the pressure difference the longer the filling time.
  • the filling time is a key factor for the transport customer.
  • the driver of the vehicle transporting the mobile tank must connect two hoses to connect the LCO2 power transfer line and the gas vent, and open two manual valves located on the mobile tank before filling, this which is time and reliability constraining.
  • the equipment which has just been described with reference to the state of the art does not allow rapid transfer of the LCO 2 or an estimation of the degassing losses.
  • a constant concern of customers is to reduce the total filling time of the mobile tank to gain productivity and to know precisely the actual consumption of LC0 2 as well as the vaporization losses during filling.
  • this known equipment mainly consists of pressure reducers, which do not provide a high reliability of the overall installation, nor the possibility of managing the alarms and faults that may occur.
  • a first technical problem to be solved by the object of the present invention is to provide a filling station for liquid carbon dioxide to a mobile tank, comprising a storage tank for liquid carbon dioxide and a transfer line capable of bringing said liquid carbon dioxide from the storage tank to the mobile tank, which would make it possible to obtain a rapid transfer of LCO 2 from the storage tank to the mobile tank, and this in an automated, reliable and simple manner for the user who 'is the transporter whose transfer of LCO 2 is not the main job.
  • the solution to the first technical problem posed consists, according to the present invention, in that said filling station comprises a circulation line of carbon dioxide gas capable of maintaining downstream of the mobile tank a set pressure higher than the solidification temperature of the carbon dioxide.
  • the filling station object of the invention, makes it possible to obtain a high pressure difference between the liquid carbon dioxide storage tank and the gaseous vent of the mobile tank, hence a rapid transfer speed of the quantity of CO 2 required.
  • said gaseous carbon dioxide circulation line comprises a gas discharge valve controlled to open when the pressure downstream of the mobile tank is greater than said set value.
  • the invention preferably provides that said gas discharge valve is controlled by a pressure transmitter sensor.
  • a second technical problem which the present invention proposes to solve is to measure the quantity of carbon dioxide vaporized, lost during filling, so that it can be counted and deducted from the quantity of liquid CO 2 transferred, thus offering the customer better precision in knowing the actual volume transferred.
  • the invention recommends that the said gaseous carbon dioxide circulation line also comprises a buffer capacity connected to the said evacuation valve and capable of storing the carbon dioxide evacuated from the mobile tank during filling.
  • said buffer capacity comprises means for measuring the volume of carbon dioxide evacuated from the mobile tank during filling.
  • the measurement of the volume of carbon dioxide evacuated from the mobile tank during filling is carried out on the basis of the pressure difference in the buffer capacity between the start and the end of filling.
  • the buffer capacity therefore performs the functions of temporarily storing the quantity of the gaseous CO 2 vent, of measuring it, then of discharging it into the atmosphere in a delayed manner.
  • FIG. 1 is shown schematically a filling station of liquid carbon dioxide to a mobile tank 20.
  • This station comprises a tank 10 for storing liquid CO 2 , the storage pressure of which can vary between 14 and 20 bars.
  • a transfer line 100 is provided for bringing the liquid CO 2 from the storage tank 10 to the mobile tank 20 under a pressure of the same order of magnitude as the storage pressure increased by the hydrostatic height of the LCO 2 storage which allows the sub- cooling of the transferred LCO 2 and limits the inputs heat in the transfer line 100 and the flexible hoses 110, 210 for respective connection to the mobile tank 20 of the transfer line 100 and the line 200 for circulation of gaseous CO 2 .
  • the operation of the filling station in FIG. 1 is as follows.
  • the driver of the vehicle transporting the mobile tank 20 identifies himself at a recognition terminal 2, for example by introducing a magnetic card and validating a personal code.
  • the recognition terminal 2 also includes a modem for a telephone line ensuring the remote transmission of information to the customer.
  • the driver then connects the two hoses 110 and 210 to the mobile tank 20 and opens the two manual valves 120, 220 placed on this tank.
  • Terminal 2 for recognition gives authorization for filling with liquid CO2.
  • the filling valve 130 for supplying LCO 2 is authorized to open.
  • a second step of pressurizing the hose 210 and the mobile tank 20 The pressure in the mobile tank 20 is not directly measured, but the pressure transmitter sensor 230 measures the pressure downstream of the mobile tank 20 and the flexible 240.
  • this pressure is less than the CO 2 solidification pressure, this means that the mobile tank 20 is empty.
  • the mobile tank pressurization valve 240 opens 20 until the pressure measured by the pressure transmitter 230 exceeds the solidification pressure of the CO 2, i.e. 5.18 bars, until reaching a set pressure. which can typically be 8 bars. Filling with liquid is not authorized as long as the risk of carbon dioxide snow formation exists, a phenomenon always present with a pressure lower than the solidification pressure of CO 2 . Then, if the pressures measured by the pressure transmitter 230 and another transmitter 140 disposed on the transfer line 100 are both greater than the CO 2 solidification pressure, the passage to the filling step is authorized. Otherwise, the automat of distributor 1 generates a fault signal after a time delay and the driver is notified of the incident.
  • the distributor 1 includes the automation part of control / command, in particular the indicators and the emergency stop as well as the connection of the hoses after use.
  • the filling valve 130 for supplying LCO 2 opens, while the valve 240 for pressurizing the mobile tank 20 is closed.
  • the valve 250 for evacuating the gas phase from the mobile tank 20 to the atmosphere is controlled to open by the pressure transmitter 230 as soon as the pressure measured by said transmitter 230 downstream from the mobile tank 20 is greater than the pressure set point, around 8 bars as we have seen. Since the filling step is rapid at the start and then slowed down towards the end of filling, the CO 2 flow rate of the gas phase varies in the same proportions.
  • valve 250 for evacuating the gaseous phase of the mobile tank 20 is doubled, the two valves being open at the start of filling, then only one towards the end of filling.
  • the valve 250 for evacuating the gas phase is a proportional valve controlled by PID (Proportional Integral Derivative) regulation from the pressure transmitter 230 which opens as a function of the quantity of gas to be evacuated. The liquid filling step continues until the flow of PID (Proportional Integral Derivative) regulation from the pressure transmitter 230 which opens as a function of the quantity of gas to be evacuated. The liquid filling step continues until the flow of PID (Proportional Integral Derivative) regulation from the pressure transmitter 230 which opens as a function of the quantity of gas to be evacuated. The liquid filling step continues until the flow of
  • the variation in flow rate is calculated by the distributor 1 automaton, typically by calculating the slope of the flow rate. If this variation becomes small, the distributor 1's automaton closes the filling 130 and evacuation 250 valves.
  • the driver is warned that he can close the two manual valves 120, 220 placed on the mobile tank 20.
  • the driver presses a purge push button which activates the opening of the solenoid valves 150, 260 of the hose purge 110, 210 until the pressure measured by the pressure transmitters 140 and 230 respectively in each flexible reaches a pressure close to but above atmospheric pressure.
  • the driver can then disconnect the hoses 110, 210 without danger, since the risk of sudden vaporization of CO2 and burns is eliminated.
  • An emergency stop is placed on the distributor 1 which, if activated, puts all the valves in the safety position.
  • the valves 170, 280 on the hoses 210, 220 open to depressurize them, if the driver has not pressed the purge push button.
  • the amount of LCO 2 transferred into the mobile tank 20 is calculated between the start and the end of filling by weighing difference of a system 11 of scales placed under the storage tank 10 measuring the weight of LCO 2 contained in the tank 10 and precise enough to calculate the amount of LCO transferred. It will be observed that in the filling station of FIG.
  • FIG. 2 illustrates a second embodiment of a filling station which differs from the filling station of FIG.
  • the filling station of Figure 2 operates as follows. The step of identifying the driver and connecting the hoses 110, 210 is carried out as for the station in FIG. 1. If the filling authorization is given by the recognition terminal 2, then follows a setting step. buffer capacity pressure 30. The pressurizing valve 240 for inflating the buffer capacity
  • the pressure transmitter 31 in the capacity 30 opens until the pressure measured by the pressure transmitter 31 in the capacity 30 reaches a set value between 6 and 20 bars, typically 8 bars, greater than the solidification pressure of the CO 2 of 5.18 bars. If the pressure does not reach the desired value, the PLC of dispenser 1 generates a fault after a delay, and the next step cannot start. This step is generally not carried out until the first start of the installation when the buffer capacity 30 is empty. Thereafter, the pressure transmitter 31 verifies that the pressure reaches the chosen nominal set value. If the automat of the distributor 1 gives the authorization, the second step of pressurizing the flexible 210 and the mobile tank 20 can take place. Similarly to the embodiment of FIG.
  • the pressure in the mobile tank 20 is not directly measured, but the pressure transmitter 230 measures the pressure downstream from the mobile tank 20 and the hose 210. If this pressure is lower than the CO 2 solidification pressure, this means that the mobile tank 20 is empty.
  • the valve 270 for pressurizing the mobile tank 20 opens until the pressure measured by the pressure transmitter 230 exceeds the solidification pressure of CO 2 . Liquid filling is not authorized as long as the risk of carbon dioxide snow formation in the mobile tank exists. Then, if the pressures measured by the pressure transmitters 140, 230 are both greater than the solidification pressure of the
  • the automat of distributor 1 you can go to the liquid filling step. Otherwise, the automat of distributor 1 generates a fault after a time delay and the driver is notified of the incident. If the liquid filling step is authorized, the filling valve 130 for supplying LCO 2 opens. The discharge valve 270 is controlled to open as soon as the pressure downstream of the mobile tank 20 measured by the pressure transmitter 230 is greater than the set pressure in the buffer capacity 30 measured by the pressure transmitter 31. Buffer capacity 30 recovers the gas phase generated by the transfer of LCO 2 during filling of the mobile tank. As in the case of the station in FIG. 1, the flow of LCO 2 transferred slows down as the mobile tank 30 is filled. indicating the end of filling.
  • the variation in flow rate is also calculated by the distributor 1 automaton, for example by calculating the slope of the flow rate. If this variation becomes small, the distributor 1's automaton closes the filling 130 and evacuation 270 valves. The driver is warned of the end of filling, he can therefore close the two manual valves 120, 220 placed on the tank 20
  • the driver presses a purge push button which actuates the opening of the solenoid valves 150, 260 for purging the hoses 110, 210, until the pressure measured respectively by the pressure transmitters 140 and 230 in each hose reaches a pressure close to but greater than atmospheric pressure.
  • the driver can then disconnect the hoses 110, 210 without danger, since the risk of sudden vaporization of C02 and burns is eliminated.
  • the depressurization of the buffer capacity 30 can then take place.
  • the distributor automaton 1 authorizes the solenoid valve 250 for depressurizing the buffer capacity 30 to open.
  • the depressurization solenoid valve 250 opens until the pressure measured by the pressure transmitter 31 in the capacity 30 reaches the initial set value set during the pressurization step. ** An emergency stop is placed on valve 1 which, if activated, puts all the valves in the safety position.
  • the valves 170, 280 on the hoses 210, 220 open to depressurize them, if the driver has not pressed the purge push button.
  • a valve 32 protects the buffer capacity 30 if the pressure is too high.
  • the amount of LCO 2 transferred into the mobile tank 20 is calculated between the start and the end of filling by weighing difference of the weighing system 11.
  • the quantity of CO 2 vaporized and recovered in the buffer capacity 30 is estimated by theoretical calculation of the pressure difference measured by the transmitter 31 between the start and the end of filling. Information from the delivered quantity transmitted to the customer via terminal 2 takes into account the loss of gaseous CO 2 .
  • the buffer capacity 30 has a double function: - pressurizing the mobile tank 20 at a pressure higher than the solidification pressure of CO 2 before filling it. This avoids the formation of carbon dioxide snow which would prevent any filling of the mobile tank 20 if it were frozen. - recover and temporarily store the vent of gaseous CO 2 vaporized during filling of the mobile tank 20, with estimation of this stored quantity.
  • the quantity of CO 2 vaporized is then evacuated in a delayed manner and independent of the filling phase, for example at the end of filling, thus making it possible to deflate the buffer capacity 30 to the desired pressure at a defined flow rate to avoid noise. generated by the deflation phase.
  • the volume of the buffer capacity 30 depends on the volume of the mobile tank 20 and is between 1 to 4 times the volume of the mobile tank 20, typically from 2 to 3.
  • This design also makes it possible to leave the line 100 of transfer in LCO 2 under pressure without the need to purge the hoses 110, 210.
  • the purge forces it to relax at atmospheric pressure and therefore risks causing the formation of carbon dioxide snow which occurs at a pressure below 5.18 bar.
  • the filling station is always ready to start without having to wait for the natural sublimation of carbon dioxide snow. This ensures a higher filling rate of tanks.
  • the pressure in the hose 110 is controlled by the pressure transmitter 140 which opens the purge valve 150 to release the overpressure due to the vaporization of the trapped liquid and prevent the pressure from reaching the set pressure of the safety valve 170 .
  • the pressure in the hose 210 is controlled by the pressure transmitter 230 which opens the purge valve 260 to discharge overpressure and prevent the pressure from reaching the set pressure of the safety valve 280.
  • This also has the advantage of eliminating the manual valves 120, 220 of the mobile tank 20 and simplifying the maneuvers for the driver. It is possible to install a single connection 330 to the mobile tank

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

10 Station de remplissage de dioxyde de carbone liquide vers un réservoir mobile (20), comprenant un réservoir (10) de stockage de dioxyde de carbone liquide et une ligne (100) de transfert apte à amener ledit dioxyde de carbone liquide du réservoir (10) de stockage au réservoir mobile (20). Selon l'invention, ladite station de remplissage comprend une ligne 15 (200) de circulation de dioxyde de carbone gazeux apte à maintenir en aval du réservoir mobile (20) une pression de consigne supérieure à la pression de solidification du dioxyde de carbone. Application à la fourniture de dioxyde de carbone liquide pour des réservoirs mobiles alimentant les groupes frigorifiques installés sur les camions (20) isothermes.

Description

STATION DE REMPLISSAGE DE DIOXYDE DE CARBONE LIQUIDE VERS UN RESERVOIR MOBILE
La présente invention concerne une station de remplissage de dioxyde de carbone liquide vers un réservoir mobile. L'invention trouve une application particulièrement avantageuse dans le domaine de la fourniture de dioxyde de carbone (CO2) liquide pour des réservoirs mobiles alimentant les groupes frigorifiques installés sur les camions isothermes et nécessitant une descente en température rapide pour ne pas interrompre la chaîne du froid. On connaît de la demande internationale WO 99/20934 une station de remplissage de dioxyde de carbone liquide (LCO2) vers un réservoir mobile dans laquelle le transfert de LCO2 est effectué par détente préalable dans la ligne de transfert provenant d'un réservoir de stockage liquide vers le réservoir mobile, ceci afin de bénéficier d'une meilleure capacité frigorifique d'utilisation du dioxyde de carbone. Cependant, cette détente préalable de pression entraîne une vaporisation du dioxyde de carbone liquide. Le plus souvent, la perte de CO2 ainsi vaporisé au cours du remplissage n'est pas estimée et donc non déduite de la facture du client. D'autre part, le temps de remplissage du réservoir mobile est, de manière générale, directement dépendant de la différence de pression entre la pression dans le réservoir mobile et la pression d'alimentation en LCO2 dans le réservoir de stockage. La détente préalable de pression a donc pour effet de ralentir le temps de transfert du LCO2 vers le réservoir mobile. Plus cette différence de pression sera faible, plus le temps de remplissage sera long. Or, le temps de remplissage est un facteur clé pour le client transporteur. Par ailleurs, le chauffeur du véhicule transportant le réservoir mobile doit connecter deux flexibles pour raccorder la ligne de transfert d'alimentation en LCO2 ainsi que l'évent gazeux, et ouvrir deux vannes manuelles situées sur le réservoir mobile avant de commencer le remplissage, ce qui est contraignant du point de vue temps et fiabilité. En résumé, l'équipement qui vient d'être décrit en référence à l'état de la technique ne permet pas un transfert rapide du LCO2 ni une estimation des pertes par dégazage. Or, une préoccupation constante des clients est de diminuer le temps total de remplissage du réservoir mobile pour gagner en productivité et de connaître avec précision la consommation réelle en LC02 ainsi que les pertes par vaporisation pendant le remplissage. D'autre part, on remarquera que cet équipement connu est principalement constitué de détendeurs de pression, lesquels n'assurent pas une fiabilité élevée de l'installation globale, ni la possibilité de gestion des alarmes et défauts pouvant survenir. Aussi, un premier problème technique à résoudre par l'objet de la présente invention est de proposer une station de remplissage de dioxyde de carbone liquide vers un réservoir mobile, comprenant un réservoir de stockage de dioxyde de carbone liquide et une ligne de transfert apte à amener ledit dioxyde de carbone liquide du réservoir de stockage au réservoir mobile, qui permettrait d'obtenir un transfert rapide du LCO2 depuis le réservoir de stockage jusqu'au réservoir mobile, et ceci de manière automatisée, fiable et simple pour l'utilisateur qu'est le transporteur dont le transfert de LCO2 n'est pas le métier principal. La solution au premier problème technique posé consiste, selon la présente invention, en ce que ladite station de remplissage comprend une ligne de circulation de dioxyde de carbone gazeux apte à maintenir en aval du réservoir mobile une pression de consigne supérieure à la température de solidification du dioxyde de carbone. Ainsi, comme on le verra en détail plus loin, la station de remplissage, objet de l'invention, permet d'obtenir une différence de pression élevée entre le réservoir de stockage de dioxyde de carbone liquide et l'évent gazeux du réservoir mobile, d'où une vitesse de transfert rapide de la quantité de CO2 requise. Il faut pour cela que la pression de consigne soit suffisamment faible tout en restant supérieure à la pression de solidification du dioxyde de carbone. Selon un mode de réalisation particulier de l'invention, ladite ligne de circulation de dioxyde de carbone gazeux comprend une vanne d'évacuation de gaz commandée à l'ouverture lorsque la pression en aval du réservoir mobile est supérieure à ladite valeur de consigne. L'invention prévoit, de préférence, que ladite vanne d'évacuation de gaz est commandée par un capteur transmetteur de pression. Un deuxième problème technique que se propose de résoudre la présente invention est de mesurer la quantité de dioxyde de carbone vaporisée, perdue durant le remplissage, de manière à pouvoir la comptabiliser et la déduire de la quantité de CO2 liquide transférée, offrant ainsi au client une meilleure précision dans la connaissance du volume réel transféré. Pour résoudre ce deuxième problème technique, l'invention préconise que ladite ligne de circulation de dioxyde de carbone gazeux comprend également une capacité tampon reliée à la dite vanne d'évacuation et apte à stocker le dioxyde de carbone évacué du réservoir mobile au cours du remplissage. Il est également prévu que, selon l'invention, ladite capacité tampon comprend des moyens de mesure du volume de dioxyde de carbone évacué du réservoir mobile au cours du remplissage. Dans un mode de mise en œuvre particulier, la mesure du volume de dioxyde de carbone évacué du réservoir mobile au cours du remplissage est effectuée à partir de la différence de pression dans la capacité tampon entre le début et la fin du remplissage. La capacité tampon assure donc les fonctions de stocker momentanément la quantité de l'évent de CO2 gazeux, de la mesurer, puis de l'évacuer dans l'atmosphère de manière différée. La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée. La figure 1 est un schéma d'une première station de remplissage conforme à l'invention. La figure 2 est un schéma d'une deuxième station de remplissage conforme à l'invention. La figure 3 est un schéma d'une variante de réalisation des connexions au réservoir mobile montré aux figures 1 et 2. Sur la figure 1 est représentée de manière schématique une station de remplissage de dioxyde de carbone liquide vers un réservoir mobile 20. Cette station comprend un réservoir 10 de stockage de CO2 liquide dont la pression de stockage peut varier entre 14 et 20 bars. Une ligne 100 de transfert est prévue pour amener le CO2 liquide du réservoir 10 de stockage au réservoir mobile 20 sous une pression du même ordre de grandeur que la pression de stockage augmentée de la hauteur hydrostatique du stockage de LCO2 qui permet le sous-refroidissement du LCO2 transféré et limite les entrées de chaleur dans la ligne 100 de transfert et les flexibles 110, 210 de raccordement respectif au réservoir mobile 20 de la ligne 100 de transfert et de la ligne 200 de circulation de CO2 gazeux. Le fonctionnement de la station de remplissage de la figure 1 est le suivant. Dans une première étape, le chauffeur du véhicule transportant le réservoir mobile 20 s'identifie au niveau d'une borne 2 de reconnaissance, par exemple par introduction d'une carte magnétique et validation d'un code personnel. La borne 2 de reconnaissance comprend en outre un modem pour ligne téléphonique assurant la télétransmission des informations au client. Le chauffeur connecte ensuite les deux flexibles 110 et 210 au réservoir mobile 20 et ouvre les deux vannes manuelles 120, 220 placées sur ce réservoir. La borne 2 de reconnaissance donne l'autorisation de remplissage en CO2 liquide. La vanne 130 de remplissage pour l'alimentation en LCO2 est autorisée à s'ouvrir. Suit alors une deuxième étape de mise en pression du flexible 210 et du réservoir mobile 20. La pression dans le réservoir mobile 20 n'est pas directement mesurée, mais le capteur transmetteur 230 de pression mesure la pression en aval du réservoir mobile 20 et du flexible 240. Si cette pression est inférieure à la pression de solidification du CO2, cela signifie que le réservoir mobile 20 est vide. La vanne 240 de mise en pression du réservoir mobile 20 s'ouvre jusqu'à ce que la pression mesurée par le transmetteur 230 de pression dépasse la pression de solidification du C02, soit 5,18 bars, jusqu'à atteindre une pression de consigne qui peut être typiquement de 8 bars. Le remplissage en liquide n'est pas autorisé tant que le risque de formation de neige carbonique existe, phénomène toujours présent avec une pression inférieure à la pression de solidification du CO2. Puis, si les pressions mesurées par le transmetteur 230 de pression et un autre transmetteur 140 disposé sur la ligne 100 de transfert sont toutes les deux supérieures à la pression de solidification du CO2, le passage à l'étape de remplissage est autorisée. Sinon, l'automate du distributeur 1 génère un signal de défaut après une temporisation et le chauffeur est averti de l'incident. Rappelons que le distributeur 1 comprend la partie automatisme de contrôle/commande, notamment les voyants et l'arrêt d'urgence ainsi que le raccordement des flexibles après utilisation. Si la troisième étape de remplissage du liquide est autorisée, la vanne 130 de remplissage pour l'alimentation en LCO2 s'ouvre, tandis que la vanne 240 de mise en pression du réservoir mobile 20 est fermée. La vanne 250 d'évacuation de la phase gazeuse du réservoir mobile 20 vers l'atmosphère est commandée à l'ouverture par le transmetteur 230 de pression dès que la pression mesurée par ledit transmetteur 230 en aval du réservoir mobile 20 est supérieure à la pression de consigne, d'environ 8 bars comme on l'a vu. Etant donné que l'étape de remplissage est rapide au début puis ralentie vers la fin de remplissage, le débit de CO2 de la phase gazeuse varie dans les mêmes proportions. On peut donc prévoir dans une première variante que la vanne 250 d'évacuation de la phase gazeuse du réservoir mobile 20 soit doublée, les deux vannes étant ouvertes au début du remplissage, puis une seule vers la fin de remplissage. Selon une deuxième variante, la vanne 250 d'évacuation de la phase gazeuse est une vanne proportionnelle pilotée par régulation PID (Proportionnelle Intégrale Dérivée) à partir du transmetteur 230 de pression qui s'ouvre en fonction de la quantité à de gaz évacuer. L'étape de remplissage du liquide se poursuit jusqu'à ce que le débit de
LCO2 transféré ralentit. La variation de débit est calculée par l'automate du distributeur 1 , typiquement par calcul de la pente du débit. Si cette variation devient faible, l'automate du distributeur 1 ferme les vannes de remplissage 130 et d'évacuation 250. Le chauffeur est averti qu'il peut fermer les deux vannes manuelles 120, 220 placées sur le réservoir mobile 20. A la fin du remplissage, le chauffeur appuie sur un bouton poussoir de purge qui actionne l'ouverture des électro-vannes 150, 260 de purge des flexibles 110, 210 jusqu'à ce que la pression mesurée respectivement par les transmetteurs de pression 140 et 230 dans chaque flexible atteigne une pression proche mais supérieure à la pression atmosphérique. Le chauffeur peut ensuite déconnecter les flexibles 110, 210 sans danger, car le risque de vaporisation brutale de CO2 et de brûlure est écarté. Un arrêt d'urgence est placé sur le distributeur 1 qui, s'il est actionné, met toutes les vannes en position de sécurité. Les soupapes 170, 280 sur les flexibles 210, 220 s'ouvrent pour dépressuriser ceux-ci, si le chauffeur n'a pas appuyé sur le bouton poussoir de purge. La quantité de LCO2 transférée dans le réservoir mobile 20 est calculée entre le début et la fin du remplissage par différence de pesée d'un système 11 de pesons placés sous le réservoir 10 de stockage mesurant le poids de LCO2 contenu dans le réservoir 10 et suffisamment précis pour calculer la quantité de LCO transférée. On observera que dans la station de remplissage de la figure 1 le réservoir mobile 20 est mis en pression directement à partir de la phase gazeuse du stockage de LCO2 et que l'évacuation du CO2 vaporisé issu du réservoir mobile 20 lors du remplissage du liquide se fait directement dans l'atmosphère. La différence de pression entre le réservoir mobile 20 et l'évent assurée par la vanne 250 d'évacuation de la phase gazeuse du réservoir mobile 20 est élevée, comprise entre 3 et 12 bars, et telle qu'elle permet d'obtenir ainsi une vitesse de remplissage très rapide, permettant au transporteur un net gain de temps lors du remplissage. La figure 2 illustre un deuxième mode de réalisation d'une station de remplissage qui se distingue de la station de remplissage de la figure 1 par la présence dans la ligne 200 de circulation de gaz d'une capacité tampon 30 reliée à une vanne 270 d'évacuation de la phase gazeuse du réservoir mobile 20 et apte à stocker le CO2 gazeux évacué du réservoir mobile 20 au cours du remplissage. La station de remplissage de la figure 2 fonctionne de la manière suivante. L'étape d'identification du chauffeur et de connexion des flexibles 110, 210 s'effectue comme pour la station de la figure 1. Si l'autorisation de remplissage est donnée par la borne 2 de reconnaissance, suit alors une étape de mise en pression de la capacité tampon 30. La vanne 240 de mise en pression servant à gonfler la capacité tampon
30 s'ouvre jusqu'à ce que la pression mesurée par le transmetteur 31 de pression dans la capacité 30 atteigne une valeur de consigne comprise entre 6 et 20 bars, typiquement 8 bars, supérieure à la pression de solidification du CO2 de 5,18 bars. Si la pression n'atteint pas la valeur souhaitée, l'automate du distributeur 1 génère un défaut après une temporisation, et l'étape suivante ne peut pas démarrer. Cette étape n'est en général réalisée qu'au premier démarrage de l'installation lorsque la capacité tampon 30 est vide. Par la suite, le transmetteur 31 de pression vérifie que la pression atteint la valeur de consigne nominale choisie. Si l'automate du distributeur 1 en donne l'autorisation, la deuxième étape de mise en pression du flexible 210 et du réservoir mobile 20 peut avoir lieu. De manière similaire au mode de réalisation de la figure 1, la pression dans le réservoir mobile 20 n'est pas directement mesurée, mais le transmetteur 230 de pression mesure la pression en aval du réservoir mobile 20 et du flexible 210. Si cette pression est inférieure à la pression de solidification du CO2, cela signifie que le réservoir mobile 20 est vide. La vanne 270 de mise en pression du réservoir mobile 20 s'ouvre jusqu'à ce que la pression mesurée par le transmetteur 230 de pression dépasse la pression de solidification du CO2. Le remplissage en liquide n'est pas autorisé tant que le risque de formation de neige carbonique dans le réservoir mobile existe. Puis, si les pressions mesurées par les transmetteurs 140, 230 de pression sont toutes les deux supérieures à la pression de solidification du
CO2, on peut passer à l'étape de remplissage du liquide. Sinon, l'automate du distributeur 1 génère un défaut après une temporisation et le chauffeur est averti de l'incident. Si l'étape de remplissage du liquide est autorisée, la vanne 130 de remplissage pour l'alimentation en LCO2 s'ouvre. La vanne 270 d'évacuation est commandée à l'ouverture dès que la pression en aval du réservoir mobile 20 mesurée par le transmetteur 230 de pression est supérieure à la pression de consigne dans la capacité tampon 30 mesurée par le transmetteur 31 de pression. La capacité tampon 30 récupère la phase gazeuse générée par le transfert de LCO2 lors du remplissage du réservoir mobile. Comme dans le cas de la station de la figure 1 , le débit de LCO2 transféré ralentit au fur et à mesure du remplissage du réservoir mobile 30 indiquant la fin du remplissage. La variation de débit est également calculée par l'automate du distributeur 1 , par calcul de la pente du débit par exemple. Si cette variation devient faible, l'automate du distributeur 1 ferme les vannes de remplissage 130 et d'évacuation 270. Le chauffeur est averti de la fin du remplissage, il peut donc fermer les deux vannes manuelles 120, 220 placées sur le réservoir 20. Là aussi, à la fin du remplissage, le chauffeur appuie sur un bouton poussoir de purge qui actionne l'ouverture des électro-vannes 150, 260 de purge des flexibles 110, 210, jusqu'à ce que la pression mesurée respectivement par les transmetteurs de pression 140 et 230 dans chaque flexible atteigne une pression proche mais supérieure à la pression atmosphérique. Le chauffeur peut ensuite déconnecter les flexibles 110, 210 sans danger, car le risque de vaporisation brutale de C02 et de brûlure est écarté. La dépressurisation de la capacité tampon 30 peut alors s'effectuer.
Quand la vanne 130 de remplissage est fermée, l'automate du distributeur 1 donne l'autorisation à l'électro-vanne 250 de dépressurisation de la capacité tampon 30 de s'ouvrir. L'électro-vanne 250 de dépressurisation s'ouvre jusqu'à la pression mesurée par le transmetteur 31 de pression dans la capacité 30 atteigne la valeur de consigne initiale fixée lors de l'étape de mise sous pression. ** Un arrêt d'urgence est placé sur le distributeur 1 qui, s'il est actionné, met toutes les vannes en position de sécurité. Les soupapes 170, 280 sur les flexibles 210, 220 s'ouvrent pour dépressuriser ceux-ci, si le chauffeur n'a pas appuyé sur le bouton poussoir de purge. Une soupape 32 protège la capacité tampon 30 si la pression est trop élevée. La quantité de LCO2 transférée dans le réservoir mobile 20 est calculée entre le début et la fin du remplissage par différence de pesée du système 11 de pesons. La quantité de CO2 vaporisée et récupérée dans la capacité tampon 30 est estimée par calcul théorique de la différence de pression mesurée par le transmetteur 31 entre le début et la fin du remplissage. L'information de la quantité délivrée transmise au client via la borne 2 tient compte de la perte en CO2 gazeux. En résumé, la capacité tampon 30 a une double fonction : - mettre en pression le réservoir mobile 20 à une pression supérieure à la pression de solidification du CO2 avant remplissage de celui-ci. Cela permet d'éviter la formation de neige carbonique qui empêcherait tout remplissage du réservoir mobile 20 s'il était pris en glace. - récupérer et stocker momentanément l'évent de CO2 gazeux vaporisé lors du remplissage du réservoir mobile 20, avec estimation de cette quantité stockée. La quantité de CO2 vaporisée est ensuite évacuée de manière différée et indépendante de la phase de remplissage, par exemple à la fin du remplissage, permettant ainsi de dégonfler la capacité tampon 30 jusqu'à la pression souhaitée à un débit défini pour éviter le bruit généré par la phase de dégonflage. Le volume de la capacité tampon 30 dépend du volume du réservoir mobile 20 et est compris entre 1 à 4 fois le volume du réservoir mobile 20, typiquement de 2 à 3. Comme le montre la figure 3, il est possible d'installer des flexibles à raccords rapides munis d'un double clapet 310, 320 de sécurité qui assure un haut niveau d'étanchéité et protège ainsi le chauffeur des risques liés à la haute pression et aux brûlures lors de la déconnexion des flexibles. Cette conception permet aussi de laisser en pression la ligne 100 de transfert en LCO2 sans avoir besoin de purger les flexibles 110, 210. En effet, la purge oblige à détendre à la pression atmosphérique et risque donc de provoquer la formation de neige carbonique qui survient à une pression inférieure à 5,18 bars. En évitant la purge à la pression atmosphérique, la station de remplissage est toujours prête à démarrer sans avoir à attendre la sublimation naturelle de la neige carbonique. Ceci permet d'assurer une cadence de remplissage de réservoirs plus importante. La pression dans le flexible 110 est contrôlée par le transmetteur 140 de pression qui ouvre la vanne 150 de purge pour évacuer la surpression due à la vaporisation du liquide emprisonné et éviter que la pression n'atteigne la pression de tarage de la soupape 170 de sécurité. De la même manière, la pression dans le flexible 210 est contrôlée par le transmetteur 230 de pression qui ouvre la vanne 260 de purge pour évacuer toute surpression et éviter que la pression n'atteigne la pression de tarage de la soupape 280 de sécurité. Ceci a aussi pour avantage de supprimer les vannes manuelles 120, 220 du réservoir mobile 20 et simplifier les manœuvres pour le chauffeur. II est possible d'installer une connexion unique 330 au réservoir mobile
20, typiquement avec des flexibles co-axiaux 110, 210 assemblés. La phase CO2 gazeuse circule dans le flexible extérieur et la phase CO2 liquide circule dans le flexible intérieur. Ceci a pour avantage : - de récupérer le froid du CO2 gazeux, d'éviter les entrées de chaleur pouvant entraîner des pertes par vaporisation du LCO et de sous-refroidir le LCO2 avant remplissage du réservoir mobile, - de n'assurer qu'une seule connexion pour le chauffeur et simplifier la manœuvre.

Claims

REVENDICATIONS
1. Station de remplissage de dioxyde de carbone liquide vers un réservoir mobile (20), comprenant un réservoir (10) de stockage de dioxyde de carbone liquide et une ligne (100) de transfert apte à amener ledit dioxyde de carbone liquide du réservoir (10) de stockage au réservoir mobile (20), caractérisée en ce que ladite station de remplissage comprend une ligne (200) de circulation de dioxyde de carbone gazeux apte à maintenir en aval du réservoir mobile (20) une pression de consigne supérieure à la pression de solidification du dioxyde de carbone.
2. Station de remplissage selon la revendication 1 , caractérisée en ce que ladite ligne (100) de circulation de dioxyde de carbone gazeux comprend une vanne (250 ; 270) d'évacuation de gaz commandée à l'ouverture lorsque la pression en aval du réservoir mobile (20) est supérieure à ladite valeur de consigne.
3. Station de remplissage selon la revendication 2, caractérisée en ce que ladite vanne (250 ; 270) d'évacuation de gaz est commandée par un capteur transmetteur (230) de pression.
4. Station de remplissage selon l'une des revendications 2 ou 3, caractérisée en ce que la vanne d'évacuation (250 ; 270) est une vanne double. '' 5. Station de remplissage selon l'une des revendications 2 ou 3, caractérisée en ce que la vanne d'évacuation (250 ; 270) est une vanne proportionnelle pilotée. 6. Station de remplissage selon l'une des revendications 2 ou 3, caractérisée en ce que ladite ligne (200) de circulation de dioxyde de carbone gazeux comprend également une capacité tampon (30) reliée à la dite vanne (270) d'évacuation et apte à stocker le dioxyde de carbone évacué du réservoir mobile (20) au cours du remplissage. 7. Station de remplissage selon la revendication 6, caractérisée en ce que ladite capacité tampon (30) comprend des moyens de mesure du volume de dioxyde de carbone évacué du réservoir mobile (20) au cours du remplissage. 8. Station de remplissage selon la revendication 7, caractérisée en ce que la mesure du volume de dioxyde de carbone évacué du réservoir mobile (20) au cours du remplissage est effectuée à partir de la différence de pression dans la capacité tampon (30) entre le début et la fin du remplissage. 9. Station de remplissage selon l'une quelconque des revendications 1 à 8, caractérisée en ce que le réservoir mobile (20) est relié à la ligne (100) de transfert et à la ligne (200) de circulation par des raccords flexibles (110, 210) à double clapet (310 ; 320) de sécurité. 10. Station de remplissage selon l'une quelconque des revendications 1 à 8, caractérisée en ce que le réservoir mobile (20) est relié à la ligne (100) de transfert et à la ligne (200) de circulation par une connexion unique (330). 11. Station de remplissage selon la revendication 10, caractérisée en ce que ladite connexion unique (330) est réalisée au moyen de flexibles coaxiaux assemblés. 12. Station de remplissage selon l'une quelconque des revendications 1 à 11, caractérisée en ce que le volume de la capacité tampon 30 est compris entre 1 à 4 fois le volume du réservoir mobile 20.
EP04816576A 2004-01-09 2005-01-03 Station de remplissage de dioxyde de carbone liquide vers un teservoir mobile Withdrawn EP1725806A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0450054A FR2865018B1 (fr) 2004-01-09 2004-01-09 Station de remplissage de dioxyde de carbone liquide vers un reservoir mobile
PCT/FR2004/050723 WO2005075882A1 (fr) 2004-01-09 2005-01-03 Station de remplissage de dioxyde de carbone liquide vers un reservoir mobile

Publications (1)

Publication Number Publication Date
EP1725806A1 true EP1725806A1 (fr) 2006-11-29

Family

ID=34685047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04816576A Withdrawn EP1725806A1 (fr) 2004-01-09 2005-01-03 Station de remplissage de dioxyde de carbone liquide vers un teservoir mobile

Country Status (3)

Country Link
EP (1) EP1725806A1 (fr)
FR (1) FR2865018B1 (fr)
WO (1) WO2005075882A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044534B3 (de) 2005-09-17 2007-06-06 Astrium Gmbh Treibstofftank für kryogene Flüssigkeiten
EP1813855A1 (fr) * 2006-01-27 2007-08-01 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé et dispositif de remplissage d'un réservoir sous haute pression avec un gaz liquéfié grâce à la pression hydrostatique
JP4197020B2 (ja) * 2006-08-10 2008-12-17 ダイキン工業株式会社 二酸化炭素を冷媒として用いる冷凍装置における冷媒充填方法
JP5243982B2 (ja) * 2009-01-30 2013-07-24 トキコテクノ株式会社 液化ガス供給システム
FR2962518A1 (fr) * 2010-07-06 2012-01-13 Air Liquide Appareil integre de liquefaction de dioxyde de carbone et de stockage de dioxyde de carbone liquide et procede de regulation en pression de stockage d’un tel appareil
DE102015003340B4 (de) 2015-03-14 2017-02-02 Messer France S.A.S Verfahren und Vorrichtung zum Befüllen eines mobilen Tanks mit flüssigem Kohlendioxid
CN113266761B (zh) * 2021-06-04 2023-09-05 惠州凯美特气体有限公司 液态二氧化碳充装方法及系统
EP4414601A1 (fr) * 2023-02-10 2024-08-14 Horisont Energi AS Système et procédé de maintien de pression d'un réservoir intermédiaire de stockage pendant l'injection de lco2 au niveau d'un terminal récepteur lco2
EP4414600A1 (fr) * 2023-02-10 2024-08-14 Horisont Energi AS Système et procédé de maintien de pression d'un réservoir intermédiaire de stockage pendant l'injection de lco2 au niveau d'un terminal récepteur lco2

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3797263A (en) * 1972-01-07 1974-03-19 Parker Hannifin Corp Dewar filling, purging, and draining system
US4211085A (en) * 1976-11-01 1980-07-08 Lewis Tyree Jr Systems for supplying tanks with cryogen
US4592205A (en) * 1985-01-14 1986-06-03 Mg Industries Low pressure cryogenic liquid delivery system
JPH01501811A (ja) * 1986-11-19 1989-06-22 パブーガス・インターナシヨナル・プロプライアタリイ・リミテツド 液体二酸化炭素の貯蔵及び輸送装置
US5916246A (en) * 1997-10-23 1999-06-29 Thermo King Corporation System and method for transferring liquid carbon dioxide from a high pressure storage tank to a lower pressure transportable tank
DE10142757C1 (de) * 2001-08-31 2003-04-17 Messer Griesheim Gmbh Betankungseinrichtung und Verfahren zur Betankung von kryokraftstoffbetriebenen Fahrzeugen
DE10142758C1 (de) * 2001-08-31 2003-04-17 Messer Griesheim Gmbh Vorrichtung und Verfahren zum Betanken von mit kryogenem Kraftstoff betriebenen Fahrzeugen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005075882A1 *

Also Published As

Publication number Publication date
FR2865018A1 (fr) 2005-07-15
FR2865018B1 (fr) 2006-06-23
WO2005075882A1 (fr) 2005-08-18
WO2005075882A8 (fr) 2006-11-16

Similar Documents

Publication Publication Date Title
FR2896028A1 (fr) Procede et dispositif de remplissage de conteneurs de gaz sous pression
EP2923142B1 (fr) Procédé de remplissage d'un réservoir de gaz liquéfié
DK180963B1 (en) A hydrogen refueling station and method for refueling a hydrogen vehicle
EP1789722A2 (fr) Station de remplissage de dioxyde de carbone liquide vers un reservoir mobile
EP3271636A1 (fr) Procédé et dispositif de remplissage de réservoirs
EP1725806A1 (fr) Station de remplissage de dioxyde de carbone liquide vers un teservoir mobile
JPH06510011A (ja) 天然ガスを供給するための改良された方法及び装置
CA2887105A1 (fr) Procede et dispositif de remplissage d'un reservoir de gaz liquefie
EP3690303A1 (fr) Procédé et un dispositif de remplissage d'un stockage de gaz liquéfié
EP3359867B2 (fr) Procédé de délivrance de liquide cryogénique et installation pour la mise en oeuvre de ce procédé
EP3702661A1 (fr) Procédé et dispositif de remplissage de réservoirs avec du gaz sous pression
JP5466118B2 (ja) 液化ガス充填装置
EP3003546B1 (fr) Reacteur de raffinage et/ou de petrochimie avec système de pilotage de l'alimentation du dispositif de chargement en particules solides
FR3101930A1 (fr) Système de gestion d’un réservoir de Gaz Naturel Liquéfié (GNL) pour véhicule ou unité mobile.
EP0617247A1 (fr) Dispositif de recyclage d'un liquide cryogénique et son application à un appareil de congélation de produits
EP0949448A1 (fr) Installation et procédé de remplissage de bouteilles
FR2896229A1 (fr) Systeme de conditionnement en fluide de reservoirs reutilisables
EP3578869B1 (fr) Procede de gestion d'un systeme de distribution d'un fluide d'interet
EP0591045B1 (fr) Procédé et installation de chargement d'un récipient en air liquide
EP2928741A2 (fr) Distributeur pneumatique de freinage pour vehicule ferroviaire
FR3041624A1 (fr) Procede et station automatises de distribution gravimetrique de gaz condense a l’etat liquide
EP3232113A1 (fr) Procédé et station automatisés de distribution gravimétrique de gaz condensé à l'état liquide
EP2928740B1 (fr) Distributeur pneumatique de freinage pour véhicule ferroviaire
FR2846938A1 (fr) Procede et dispositif permettant de maintenir le pression statique gazeuse a l'interieur d'un aerostat
FR2865017A1 (fr) Systeme de remplissage d'un reservoir avec du dioxyde de carbone liquide sous pression a partir d'une citerne mobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

17Q First examination report despatched

Effective date: 20080807

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090218