EP1725221A2 - Verwendung von mrp4-inhibitoren zur behandlung und/oder prophylaxe kardiovaskulärer erkrankungen - Google Patents

Verwendung von mrp4-inhibitoren zur behandlung und/oder prophylaxe kardiovaskulärer erkrankungen

Info

Publication number
EP1725221A2
EP1725221A2 EP04797661A EP04797661A EP1725221A2 EP 1725221 A2 EP1725221 A2 EP 1725221A2 EP 04797661 A EP04797661 A EP 04797661A EP 04797661 A EP04797661 A EP 04797661A EP 1725221 A2 EP1725221 A2 EP 1725221A2
Authority
EP
European Patent Office
Prior art keywords
platelets
substance
mrp4
prophylaxis
adp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04797661A
Other languages
English (en)
French (fr)
Inventor
Andreas Greinacher
Heyo K. Kroener
Gabriele Jedlitschky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitaet Greifswald
Original Assignee
Ernst Moritz Arndt Universitaet Greifswald
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ernst Moritz Arndt Universitaet Greifswald filed Critical Ernst Moritz Arndt Universitaet Greifswald
Publication of EP1725221A2 publication Critical patent/EP1725221A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • MRP4 inhibitors for the treatment and / or prophylaxis of cardiovascular diseases
  • the present invention relates to the use of inhibitors of de' s multidrug resistance protein 4 (MRP4) in platelets for the treatment and / or prophylaxis of cardiovascular diseases.
  • MRP4 multidrug resistance protein 4
  • Cardiovascular diseases such as heart attacks, strokes and other arterial vascular occlusions as well as the primary and secondary prophylaxis of arterial thromboembolic complications are carried out in practice according to different approaches.
  • the Long-term therapy with oral platelet aggregation inhibitors has one. essential in the treatment of patients with arteriosclerosis both in the context of the secondary ais and primary prevention.
  • Therapy with the cyclooxygenase inhibitor acetylsalicylic acid (ASA) deserves special mention.
  • ASA cyclooxygenase inhibitor acetylsalicylic acid
  • ADP-mediated platelet activation has become of great clinical importance because ADP is one of the most important enhancer substances for platelet activation.
  • the platelet activator ADP is released, for example, from activated platelets and red blood cells. It induces the further activation and aggregation of platelets.
  • Non-steroidal anti-inflammatory drugs such as diclofenac or ibuprofen, inhibit the ADP release that usually starts after platelet activation.
  • ADP receptor antagonists such as clopidogrel, inhibit the binding of ADP to its receptor on platelets and thus ADP-induced platelet aggregation.
  • Adverse effects such as gastrointestinal side effects (e.g.
  • the object of the present invention is therefore to provide alternative medicaments for the primary and secondary prophylaxis of thromboembolic complications, in particular of Heart attack, stroke and other arterial occlusions, or for the general treatment of cardiovascular diseases.
  • the object is achieved according to the invention by using inhibitors of the multidrug resistance protein 4 (MRP4) expressed in platelets.
  • MRP4 multidrug resistance protein 4
  • MRP4 also referred to as ABC pump or ABC transporter ABCC4
  • ABC pump also referred to as ABC transporter ABCC4
  • Transport proteins that mediate the accumulation of ADP in the granules are not yet known.
  • MRP4 has now been identified as a transporter for ADP, i.e. Via MRP 4, ADP is only stored in the concentrations in the dense granules of the platelets that are necessary for the activation of further platelets when they are released during platelet activation.
  • ADP Since stored in delta granules ADP plays a central role in the self-amplification of platelet activation, provides inhibition of the transporter protein MRP4 is a new approach for the 'treatment of the aforementioned diseases.
  • MRP 4 reduces the total amount of ADP in the platelets. This inhibits one of the most important mechanisms of self-reinforcement of platelet activation and thus also of excessive platelet activation.
  • This therapeutic principle which has not yet been used, inhibits the formation of large clots in the arteries and thus the formation Arterial occlusions that cause acute coronary syndrome, stroke and occlusions in peripheral arterial disease.
  • the present invention therefore relates to the use of one or more inhibitors of multidrug resistance protein 4 (MRP4) in platelets for the production of a pharmaceutical preparation for the treatment of disorders of platelet function and for the treatment and / or prophylaxis of cardiovascular diseases.
  • MRP4 multidrug resistance protein 4
  • MRP4 inhibitors are used e.g. Peptides, peptide analogs, peptidomimetics and cyclooxygenase inhibitors, especially non-steroidal, anti-inflammatory active substances, are proposed, which are either applied directly as active substances or as so-called “prodrugs”, from which the active substance arises through the body's own metabolism.
  • Peptides, peptide analogs, peptidomimetics and cyclooxygenase inhibitors especially non-steroidal, anti-inflammatory active substances
  • Peptides, peptide analogs, peptidomimetics and cyclooxygenase inhibitors especially non-steroidal, anti-inflammatory active substances
  • amphiphilic organic, neutral or anionic compounds with a molecular weight of approximately 200 to 1000 daltons (Da) which inhibit the MRP4-mediated transport of nucleotides (release from platelets).
  • these include: dipyridamole, indomethacin, ibuprofen, inhibitors of organic anion transporters such as sample oath and sulfinpyrazone, pphosphodiesterase inhibitors, in particular structural analogues of cyclic nucleotides such as sildenafil, treguensin, zaprinast, and the leukotriene receptor antagonist MK571 (3 (7-chloro-2-guinolinyl) ethenyl) phenyl) - ((3-dimethylamino-3-oxopropyl) thio) methyl) thio) propanoiae aeid; see.
  • MRP4 acts as an ADP transporter protein in granules of human platelets can now be used to search for active substances that inhibit this function of the protein MRP4.
  • the invention therefore also relates to a method for identifying a substance which inhibits the ADP transporter protein MRP4 in platelets - i.e. an active ingredient for the treatment of the aforementioned diseases - in which one
  • the substance to be examined is brought into contact with platelets in vivo or in vitro, a platelet activator is added and the change in the concentration of an activation marker compared to activated platelets which are not brought into contact with the substance to be measured is measured (in vivo or in vitro), and man
  • the change in labeled (eg with radioactivity), ingested cAMP or cGMP or labeled ADP in comparison to membrane vesicles or granules is measured (eg by measuring the radioactivity of ingested [ 3 H] cAMP or [ 3 H] cGMP) that are not brought into contact with the substance to be examined,
  • the substance inhibits the ADP transporter protein MRP4 in platelets if the substance in a) and / or b) in each case leads to a reduction in the determined measured value.
  • the aforementioned method further comprises a further step in which c) the substance to be examined is brought into contact with platelets in vivo or in vitro and the ADP concentration in the platelets is determined before and after,
  • the substance inhibiting the ADP transporter protein MRP4 in platelets if the substance in a) and / or b) and / or c) in each case leads to a reduction in the determined measured value.
  • the method can also be carried out by performing step a) on platelet granule membranes (cf. Example 5).
  • d) are administered to a test animal or a test subject, the ADP content of the platelets of the test animal or test subject being determined before and after administration of the substance.
  • An ADP content that decreases after or as a result of the treatment indicates an MRP4-inhibiting effect of the investigated substance.
  • a substance which inhibits the ADP transporter protein in platelets is used in the context of the present invention understood a substance that is suitable for reducing the ADP accumulation in granules, ie to block them in whole or in part. These substances are not limited to substances with a specific mechanism of action.
  • the substances can be organic chemical compounds as well as oligopeptides or antibodies.
  • MRP4 multidrug resistance protein 4
  • platelets from non-human sources such as e.g. Mice, rats, rabbits, primates, transgenic animals, knock-out animals can be used.
  • the active ingredients identified in this way should then preferably be tested for their action on human platelets.
  • the present invention further provides a method of manufacturing a pharmaceutical composition for the treatment and / or prophylaxis of cardiovascular diseases, including therapy, primary prophylaxis and / or secondary prophylaxis of acute coronary syndrome, angina pectoris, heart attack, stroke or peripheral arterial occlusive disease, as well as during and after stenting I implantation into vessels, provided one
  • the aforementioned method for identifying substances which inhibit the ADP transporter protein MRP4 in platelets is carried out and the substances thus identified are formulated with pharmaceutically acceptable auxiliaries and / or carriers.
  • the invention thus relates to the use of a substance which inhibits the ADP transporter protein MRP4 in platelets by the abovementioned method for producing a pharmaceutical preparation for the treatment and / or prophylaxis of the abovementioned diseases.
  • MRP4 acts as an ADP transporter in granules of human platelets
  • alternative protocols for the therapy, primary and / or secondary prophylaxis of the aforementioned diseases are provided.
  • Individual therapy control is possible by titration of the inhibition of ADP uptake.
  • ADP receptor antagonists By determining the platelet ADP content, an individual measurement of the effect of the drug is possible. So far this has been the case with the previous substances, e.g. ADP receptor antagonists, not possible.
  • the vasopressin analog DDAVP and transfusion of platelets can antagonize the drug effect. This is not possible with GPIIb / IIIa antagonists in the acute phase, nor with the current ADP receptor antagonists because the transfused platelets are immediately inhibited by the drug.
  • MRP4 intracellular localization of MRP4 in human platelets was demonstrated by immunoblotting and immunofluorescence microscopy and a functional assay.
  • the MRP4-specific antibody (rabbit) showed a strong signal at the expected molecular mass of approximately 170 kDa in homogenates of isolated platelets and indicated an MRP4 enrichment in membrane fractions which were separated via a sucrose density gradient.
  • the MRP4 function, the 3 H-labeled cyclic GMP (cGMP), a known MRP4 substrate was detected was in fractions' low density, which contain most plasma membrane proteins, can also be detected such as higher in fractions of density, where intracellular granules.
  • cGMP 3 H-labeled cyclic GMP
  • Antibodies showed an accumulation of MRP4 in intracellular granules and a weak signal on the plasma membrane.
  • MRP4-positive granules differed from granules which were positively stained compared to P-selectin, which is predominantly expressed on alpha granules.
  • the MRP4 positive granules showed an accumulation of the fluorescent dye mepacrin, which is known to be transported in delta granules.
  • washed platelets are incubated on glass plates coated with collagen and adhere to them.
  • any other substances that bind to glass or plastic surfaces and bind to the platelets can be added to collagen, or the platelets are bound directly to a carrier surface.
  • the platelets are fixed, e.g. with 1% paraformaldehyde solution, and the cell membrane is opened by chemicals, e.g. saponin, in such a way that substances that cannot cross the membrane (antibodies,
  • Receptor binding partner to intracellular structures.
  • the platelets are then incubated either with a directly fluorescence-labeled antibody against MRP4, or with an ' unlabeled antibody and in a second step with a labeled secondary antibody which recognizes the primary antibody, for example goat anti rabbit FITC.
  • a labeled secondary antibody which recognizes the primary antibody, for example goat anti rabbit FITC.
  • the localization of the antibody binding is made possible by the coincubation with a monoclonal or polyclonal antibody with known specificity for marker proteins of the platelet granules.
  • the coloring is evaluated with fluorescence microscopy.
  • the platelets are fixed and incubated with directly or indirectly gold-labeled antibodies against MRP4 and the binding of the antibodies to structures of the dense granules is detected.
  • platelets are washed in physiological saline, solubilized using standard methods and the lysate separated on a gel according to standard methods according to the molecular weight.
  • the proteins in the gel are transferred to a nitrocellulose membrane by applying a voltage gradient.
  • the membrane is then incubated with the primary or secondary labeled antibodies against MRP4 and the binding of the antibodies made visible by: fluorescence, chemical reaction (horseradish-peroxidase reaction) or by radioactive labeling.
  • the pellet obtained is resuspended in 1 ml of solution C (NaCl solution (0.9%) with lxPBS pH 7.2 to pH 6.5) and made up to a volume of 30 ml with solution C. This step is repeated three times, the platelets only being resuspended on the last wash. The storage then takes place in aliquots of 100 ⁇ l at -20 ° C. To minimize the erythrocyte concentration of the platelet concentrate, the loose, white pellet of platelets is removed after the first centrifugation with a 'Pasteur pipette and thus separated from the more strongly sedimenting erythrocytes.
  • This disruption method is used for washed platelets.
  • the stock solutions of the protease inhibitors leupeptin, aprotinin and phenylmethylsulfonyl fluoride are each added in a ratio of 1: 1000 to the cell suspension with a volume of around 500 ⁇ l.
  • the disruption takes place with the Sonopuls device in a cycle of 5 ⁇ 10s with a force of 50% with cooling breaks of 2 min between the individual cycles. This is followed by centrifugation at 100,000 ⁇ g for 30 min at 4 ° C.
  • the pellet obtained is resuspended in 50 ⁇ l of 5 mM Tris solution, pH 7.4 and the protein content is determined Freezing / thawing
  • the washed platelets are in a cell suspension with a total volume of around 500 ⁇ l.
  • the digestion is carried out by freezing in liquid nitrogen and thawing in a water bath at 37 ° C. This cycle is carried out five times in total. This is followed by centrifugation at 100,000 ⁇ g for 30 min at 4 ° C.
  • the pellet obtained is resuspended in 50 ⁇ l of 5 mM Tris solution, pH 7.4, and the protein content is determined.
  • the suspension obtained by cell disruption with the help of freezing and thawing is free of cytosolic proteins and thus contains the plasma membranes and other cell organelles, such as mitochondria and granules. It is processed into branch vesicles as follows.
  • the membrane suspension is transferred to the dounce potter (tight) and diluted to approximately twice the volume with Tris sucrose buffer.
  • the protease inhibitors leupeptin and aprotinin are then added in a volume ratio of the stock solution to the suspension of 1: 1000.
  • These protease inhibitors are competitive inhibitors, whereas PMSF, which has already been added during the digestion, irreversibly inhibits.
  • a third of the suspension is placed on a sucrose gradient.
  • the 4 ml tubes belonging to the swing-out rotor SW55 of the Beckman centrifuge are loaded as follows. First, 1.5 ml of a 60% sucrose solution in 5mM HEPES, pH 7.4 (m / m) . placed therein. Then 1.5 ml of a 30% sucrose solution in 5 mM HEPES, pH 7.4 (m / m) are added. 0.5 ml of the membrane suspension is layered over these two sucrose solutions. The subsequent centrifugation with the swing out rotor is carried out at 200,000 ⁇ g for 60 min at 4 ° C.
  • membrane vesicles which are created by shear forces when opening with a needle that is as thin as possible.
  • the method of manufacturing membrane vesicles always produces a certain proportion (around 30%) of inside-out membrane vesicles.
  • the special thing about the inside-out membrane vesicles is that the membrane is oriented the other way round to the plasma membrane. An outward transporter of the plasma membrane would be inside an inside-out vesicle transport. Since the MRP4 is still present in the plasma membrane, inside-out vesicles offer the possibility of a functional test.
  • there are vesicles in the cytoplasm in platelets and other cells which result from constrictions in the plasma membrane and are also aligned inside-out and could therefore absorb substances through transport processes.
  • a tritium-labeled substrate is added to the inside-out vesicles, which can be transported depending on the ATP.
  • AMP and ATP ATP-containing creatine kinase
  • the ATP-dependent inward transport becomes measurable, from which the AMP value, which reflects diffusion processes, is subtracted.
  • the substances in the inside-out vesicles are placed on a filter with a diameter of 0.22 ⁇ m, so that excess radioactivity is removed by washing. The result is detected by counting the radioactive decays on the filters (see FIG. 1).
  • ⁇ g protein of the membrane vesicle suspension are diluted to 55 ⁇ l with Tris-sucrose buffer.
  • 7.5 ⁇ l creatine kinase, 6.8 ⁇ l ATP or AMP and 7.5 ⁇ l of a [ 3 H] -cGMP stock dilution are used for the [ 3 H] -cGMP (1 ⁇ Ci / ⁇ l) in a ratio of 2: 5 is diluted with Tris sucrose buffer.
  • the "final concentration of the [ 3 H] -cGMP corresponds to 4 ⁇ M with a radioactivity of 2.7 ⁇ Ci / 75 ⁇ l.
  • the 55 ⁇ l of the membrane suspension and the radioactive batch are simultaneously warmed for one minute at 37 ° C. in a thermal shaker before pipetting 20 ⁇ l of the radioactive batch into the membrane suspension and the transport experiment is started.
  • 20 ⁇ l samples are taken after 1, 10 and 20 min.
  • the samples taken are pipetted into 1 ml of ice-cooled tris-sucrose solution, the total volume being immediately placed on a nitrocellulose filter.
  • the free radioactivity is removed by rinsing with 5 ml of cold Tris sucrose solution with a vacuum.
  • the individual filters are transferred to vials and 10 ml of scintillation fluid (eg from Roth, Zinsser) are added.
  • the platelet function after inhibition of the MRP4 transporter can be measured with platelet aggregation according to Born (Platelets. In: Human Blood Coagulation, Hae ostasis and Thrombosis, 2nd Ed. Biggs, Editor Blackwell Scientific Publications, London 1976, pp. 168-201) , Platelets are added to a platelet activator and the change in the concentration of an activation marker is measured. The experiment is repeated under identical conditions, but the platelets are first brought into contact with a substance to be investigated before the platelet activator is added.
  • a test animal or a human subject is treated with the MRP4 inhibiting substance and the platelets obtained from this experimental animal or human subject are examined with the same method and either with platelets from untreated experimental animals or untreated subjects or with the platelets from the experimental animal or the human Subjects compared before treatment.
  • the measured values obtained in both tests are compared, the substance indicating an MRP4 inhibitor if the addition of the test substance leads to a reduction in the determined measured value compared to the platelet aggregation test without test substance.
  • Inducers ADP, collagen, ristocetin, adrenaline
  • the inductors are available as lyophilisates and are prepared for use according to the manufacturer's instructions and can be stored in aliquots at below -20 ° C until use.
  • inducer concentrations (final concentrations) are used: ADP (2.5 ⁇ mol / 1, 5 mmol / 1, 10 mmol / 1, 20 mmol / 1) collagen (1 ⁇ g / ml, 4 ⁇ g / ml) ristocetin (0, 5 mg / ml; 1.5 mg / ml) adrenaline (5 ⁇ mol / 1, 10 ⁇ mol / 1)
  • the inductors are thawed shortly before use, mixed vigorously (vortexer) and during use at 4 ° C on ice stored (adrenaline stored at room temperature during the performance).
  • PRP is first obtained from a healthy blood donor by differential centrifugation of a citrate-anticoagulated, freshly drawn whole blood sample (20 min, 120 x g). The donor is said not to have taken any platelet-reducing medication 10 days before blood collection.
  • the PRP is transferred to a clean poly tube and adjusted to a platelet count of 300,000 / ⁇ l with PPP from the same donor, which is obtained from PRP by high-speed centrifugation (5 min, 860 x g).
  • the set PRP is stored at 37 ° C until use, the tube is closed with parafilm.
  • Device settings and measurement a) Settings on the APACT 600 sec. Measuring time, stirring speed 1000 rpm, temperature of the heating block 37 ° C. Warm-up time of the device approx. 10 to 15 min.
  • Verification of the device with PRP 180 ⁇ l PRP are mixed with 20 ⁇ l 0.9% NaCl solution pH 7.2 in the cuvette equipped with a stirring magnet, placed in the measuring channel and measured (corresponds to 0% light transmission).
  • the cuvette is removed from the measuring channel at the end of the measuring time.
  • the measurements are then repeated as described under b) to d) for each additional inductor.
  • 20 ⁇ l of physiological NaCl solution are pipetted into the PRP instead of the inductor and the measurement is carried out.
  • the measurement of the platelet function of a healthy normal subject serves as a control of the nature of the inductors and the functionality of the aggregometer.
  • the platelet function of, for example, subjects with Va thrombocytopathy is then measured.
  • the potential MRP4 inhibitors to be investigated are added to the cuvettes before adding the respective inductors.
  • Example 3 The vesicle transport studies described in Example 3 are carried out to investigate whether the substance to be examined acts specifically on the MRP4 transporter protein.
  • Platelet function after inhibition of the MRP4 transporter can also be determined by expression of activation markers (e.g. PAC-1, CD 63, P-Selectin) in the flow cytometry.
  • activation markers e.g. PAC-1, CD 63, P-Selectin
  • Flow cytometry is a method for characterizing cells based on their size and granularity. It is also used for the quantitative determination of surface molecules and intracellular proteins with the help of fluorescence-labeled antibodies.
  • the marked cells which are in suspension, are individually guided past an argon laser (cf. FIG. 2).
  • the resulting fluorescent and scattered light is detected by various photo detectors.
  • the light scattered by the cell in the direction of the laser beam is picked up by the FSC detector (Forward Scatter, FSC) and provides information about the size of the measured cell.
  • the sideward scatter (SSC) correlates with the granularity of the cell. Additional properties of the cells, such as the expression of one or more surface molecules, are registered via various other detectors.
  • the intensity and color of the fluorescence is recorded by a computer for each individual cell.
  • the signals from the photodetectors are transferred via Photo multiplier reinforced.
  • the corresponding data is analyzed using the WinMDI 2.8 computer program.
  • Activated and resting platelets differ morphologically. Activated platelets are characterized by the formation of microparticles and large platelet aggregates, which leads to a shift in platelets in the FSC / SSC (Matzdorff et al. 1998, J. Lab. Clin. Med. 131 (6): 507-17).
  • Resting platelets have a uniform size and therefore form a defined point cloud when considering size and granularity in the flow cytometer. In addition to changing the shape of the platelets, there is surface exposure of P-selectin.
  • the measurements are carried out analogously to the investigation of the platelet aggregation according to Born (see under A) by platelet activation in each case in comparison with and without the substance to be investigated, the substance indicates an MRP4 inhibitor if the addition of the test substance leads to a lower platelet activation and thus to a shift of the FSC / SCC ratio towards FSC compared to the measurement without test substance.
  • Example 3 The vesicle transport studies described in Example 3 are carried out to investigate whether the substance to be examined acts specifically on the MRP4 transporter protein.
  • Platelet function after inhibition of the MRP4 transporter can also be determined by lumia aggregometry.
  • the release of ADP / ATP is measured in lumiaggregometry using the luciferin-luciferase test (cf. Mondoro et al., Blood 96 (2000) 2487-2495 and White et al., Thromb. Haemost. 67 (1992) 572).
  • the measurements are carried out analogously to the examination of the platelet aggregation according to Born (see under A) or the flow cytometry (see under B) by platelet activation in each case in comparison with and without the substance to be investigated, or of test animals treated with the substance or human test subjects in comparison to test animals or human subjects not treated with the substance, the substance indicating an MRP4 inhibitor if the addition of the test substance leads to a lower platelet activation and thus to a lower luminescence value compared to the measurement without test substance.
  • the experiment is repeated under identical conditions, but the platelets are first brought into contact with a substance to be investigated.
  • the measured values obtained in both experiments are compared, the substance indicating an MRP4 inhibitor if the addition of the test substance leads to a reduction in the release of ADP / ATP compared to the lumiaggregometry without test substance.
  • other methods of quantifying ADP in platelets can also be used, such as extraction of ADP and detection using the luciferin-luciferase method, or quantification using chromatographic methods such as HPLC.
  • Example 3 The vesicle transport studies described in Example 3 are carried out to investigate whether the substance to be examined acts specifically on the MRP4 transporter protein.
  • ADP can be a substrate for MRP4-mediated, ATP-dependent transport
  • a time-dependent increase in vesicle-associated [ 3 H] ADP was observed at a rate of 6.74 + 1.9 pmol x mg x protein -1 x min -1 (mean + standard deviation of three different experiments Triple determination) observed.
  • Dense platelet vesicles (100 ⁇ g of protein) were treated with [H] ADP (1 ⁇ mol / l) ' in the presence of 0.4 mmol / 1 ATP or 0.4 mmol / 1 ATP + 1 mmol / 1 orthovanadate for 2 minutes incubated, and the difference in vesicle-associated radioactivity was calculated. 'The compounds listed were added at the indicated concentrations to the incubations with and without orthovanadate. The difference is given as a percentage of the control (mean + standard deviation of 3 determinations). The control value of the vanadate-sensitive [ 3 H] ADP transport was 3.0 ⁇ 0.4 pmol / mg protein -1 after 2 minutes in these experiments.
  • A, B Vesicles were preincubated for 45 minutes at 4 ° C in standard incubation buffer containing 250 mmol / l sucrose (A) or in 1 mol / 1 sucrose containing buffer (B).
  • C, D ADP transport in the absence (C) or presence (D) of 100 ⁇ mol / 1 dipyridamole.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von Inhibitoren des Multidrug-Resistenzproteins 4 (MRP4) in Thrombozyten zur Behandlung und/oder Prophylaxe kardiovaskulärer Erkrankungen.

Description

Verwendung von MRP4-Inhibitoren zur Behandlung und/oder Prophylaxe kardiovaskulärer Erkrankungen
Die vorliegende Erfindung' betrifft die Verwendung von Inhibitoren de's Multidrug-Resistenzproteins 4 (MRP4) in Thrombozyten zur Behandlung und/oder Prophylaxe kardiovaskulärer Erkrankungen.
Die Behandlung kardiovaskulärer Erkrankungen, wie Herzinfarkt, Schlaganfall und anderen arteriellen Gefäßverschlüssen sowie der Primär- und Sekundärprophylaxe arterieller thromboembolischer Komplikationen erfolgt in der Praxis nach unterschiedlichen Ansätzen. Beispielsweise bei der Behandlung des akuten koronaren Syndro s mit GPIIb/IIIa-Blockern. Die Langzeittherapie mit oralen Thrombozyten-Aggregationshemmern hat eine . wesentliche Bedeutung bei der Behandlung von Patienten mit Arteriosklerose sowohl im Rahmen der Sekundärais auch der Primär-Prävention. Insbesondere zu erwähnen ist die Therapie mit dem Cyclooxygenasehemmer Acetylsalicylsäure (ASS) . Die Therapie mit sogenannten ADP-Rezeptor-Antagonisten hat zunehmenden Eingang in die medizinische Praxis gefunden. Die Beeinflussung der ADP-vermittelten Thrombozytenaktivierung hat eine so große klinische Bedeutung erlangt, weil ADP eine der wichtigsten Verstärker-Substanzen der Thrombozyten- Aktivierung ist. Der Plättchenaktivator ADP wird beispielsweise von aktivierten Plättchen und roten Blutkörperchen freigesetzt. Er induziert die weitere Aktivierung und Aggregation von Thrombozyten. Nicht-steroidale Antiphlogistika (NSAD) wie Diclofenac oder Ibuprofen, hemmen die nach Aktivierung von Plättchen normalerweise einsetzende ADP-Freisetzung. ADP-Rezeptor-Antagonisten, wie z.B. Clopidogrel hemmen die Bindung von ADP an dessen Rezeptor auf Thrombozyten und damit die ADP-induzierte Plättchenaggregation . Unerwünschte Wirkungen, wie gastrointestinale Nebenwirkungen (z.B. Durchfall, Übelkeit und Erbrechen) > schwere gastrointestinale Blutungen, Neutropenien oder Thrombozytopenien, die bei einigen ADP-Rezeptor- Antagonisten beobachtet werden, verlangen nach alternativen Behandlungsstrategien. Ein weiterer wesentlicher Nachteil der bislang eingesetzten Substanzen ist, dass für keine der Substanzen ein Gegenmittel zur Verfügung steht. Dies führt bei der Notwendigkeit eines invasiven Eingriffes, wie einer Operation und bei Blutungen zu großen Problemen.
Aufgabe der vorliegenden Erfindung ist es daher, alternative Arzneimittel zur Primär- und Sekundärprophylaxe thromboembolischer Komplikationen, insbesondere von Herzinfarkt, Schlaganfall und anderen arteriellen Gefäßverschlüssen, bzw. zur allgemeinen Behandlung kardiovaskulärer Erkrankungen bereitzustellen.
Die Aufgabe wird erfindungsgemäß durch die Verwendung von Inhibitoren des in Thombozyten exprimierten Multidrug- Resistenzproteins 4 (MRP4) gelöst.
Im Rahmen der vorliegenden Erfindung wurde überraschenderweise festgestellt, dass in humanen Plättchen MRP4 (auch als ABC- Pumpe oder ABC-Transporter ABCC4 bezeichnet) exprimiert wird und sowohl auf der extrazellulären Membran, als auch intrazellulär in Granula (Transmitter-Speichergranula) lokalisiert ist. Transportproteine, die die Akkumulation von ADP in den Granula vermitteln, sind bislang nicht bekannt. MRP4 wurde- nunmehr als Transporter für ADP identifiziert, d.h. über MRP 4 wird ADP erst in den Konzentrationen in den dichten Granula der Thrombozyten gespeichert, die bei der Freisetzung während der Thrombozytenaktivierung notwendig sind zur Aktivierung weitere Thrombozyten.
Da in delta-Granula gespeichertes ADP eine zentrale Rolle bei der Selbstverstärkung der Plättchenaktivierung spielt, stellt die Inhibierung des MRP4-Transporterproteins einen neuen Ansatz zur' Behandlung der vorgenannten Erkrankungen dar.
Durch die Hemmung von MRP 4 wird die Gesamtmenge an ADP in den Thrombozyten reduziert. Hierdurch wird einer der wichtigsten Mechanismen der Selbstverstärkung der Thrombozytenaktivierung gehemmt und damit auch der überschiessenden Thrombozytenaktivierung. Durch dieses bislang nicht angewendete Therapieprinzip wird die Entstehung großer Gerinnsel in den Arterien gehemmt und damit die Enstehung arterieller Gefäßverschlüsse, die ursächlich sind für das akute Koronarsyndrom, den Schlaganfall und Gefäßverschlüsse bei peripherer arterieller Verschlusserkrankung.
Aus Untersuchungen von Patienten mit genetischen Defekten der dichten Granula (Synonyme: Dense Granules, Delta-Granula) ist bekannt, dass deren Thrombozyten ADP nicht speichern und daher bei der Thrombozytenaktivierung auch nicht freisetzen können. Diese Patienten zeigen nur eine geringe Blutungsneigung. Dies liegt wahrscheinlich daran, dass aus anderen Zellen freigesetztes ADP immer noch an die Thrombozyten binden kann. Über das hier erstmals beschriebene Therapieprinzip der Hemmung der MRP4 vermittelten Speicherung von ADP in den Thrombozyten wird medikamentös der Phänotyp dieser genetisch bedingten Erkrankungen erreicht. Dieser im Rahmen der vorliegenden Erfindung vorgeschlagene Therapieansatz ist völlig neu. Keines der bislang zur Verfügung stehenden Medikamente zur Hemmung der Thrombozytenfunktion zielt in seinem Wirkprinzip auf die Reduktion der Menge an in Thrombozyten gespeichertem ADP. Dieser Therapieansatz ist auch sicherer, als bisher zur Verfügung stehende Therapieansätze der Thromboyztenfunktionshemmung. Aus der Therapie der Patienten mit angeborenem Mangel an in Thrombozyten gespeichertem ADP ist bekannt, dass das Vasopressin-Analogon DDAVP innerhalb von Minuten eine Normalisierung der Blutungsneigung erzielt. Ebenso ergibt sich aus dem Wirkprinzip, dass der ADP Gehalt von transfundierten Thrombozyten durch einen MRP4-Inhibitor nicht reduziert wird und damit im Gegensatz zu GPIIb/IIIa Inhibitoren und im Gegensatz zu ADP-Rezeptorantagonisten transfundierte Thrombozyten wirksam zur Behandlung schwerer Blutungen eingesetzt werden können. Gegenstand der vorliegenden Erfindung ist daher die Verwendung eines oder mehrerer Inhibitoren des Multidrug- Resistenzproteins 4 (MRP4) in Thrombozyten zur Herstellung eines pharmazeutischen Präparats zur Behandlung von Störungen der Thrombozyten-Funktion sowie zur Behandlung und/oder Prophylaxe kardiovaskulärer Erkrankungen. Dies schließt die Therapie, Primärprophylaxe und/oder Sekundärprophylaxe von akutem Coronarsyndrom, Angina Pectoris, Herzinfarkt, Schlaganfall oder peripherer arterieller Verschlußkrankheit, sowie vor, während und nach Stent-Implantation in Gefäße, ein.
Als MRP4-Inhibitoren werden erfindungsgemäß z.B. Peptide, Pep- tidanaloga, Peptidomimetika und Cyclooxygenase-Inhibitoren, vor allem nicht-steroidale, antiinflammatorische Wirkstoffe, vorgeschlagen, die entweder direkt als Wirkstoff appliziert werden, oder als sogenannte „Prodrug", aus der der Wirkstoff durch den körpereigenen Stoffwechsel entsteht. Ein anderer in Frage kommender Wirkstoff ist beispielsweise Dipyridamol.
Gemäß einer Ausführungsform der Erfindung werden amphiphile organische, neutrale oder anionische Verbindungen mit einem Molekulargewicht von ca. 200 bis 1000 Dalton (Da) verwendet, die den MRP4-vermittelten Transport von Nukleotiden (Freisetzung aus Thrombozyten) hemmen. Hierzu gehören: Dipyridamol, Indomethacin, Ibuprofen, Inhibitoren von organischen Anionen-Transportern wie Probeneeid und Sulfinpyrazon, Pphosphodiesterase-Inhibitoren, insbesondere Strukturanaloga von cyclischen Nukleotiden wie Sil- denafil, Treguensin, Zaprinast, und der Leukotrien- Rezeptorantagonist MK571 (3 (3 (2 (7-chloro-2-guinolinyl) ethenyl) - phenyl) - ( (3-dimethyl-amino-3-oxopropyl) -thio) -methyl) thio) -propa- noie aeid; vgl. Jones et al. (1989) Can. J. Physiol. Pharmacol . 67, 17 28, Lalloo et at. BMC Med. 2 (2004) 16 sowie die in diesen Artikeln zitierten Publikationen) . Die Erkenntnis, dass MRP4 als ADP-Transporterprotein in Granula humaner Thrombozyten fungiert, kann nunmehr genutzt werden, um nach Wirkstoffen zu suchen die diese Funktion des Proteins MRP4 hemmen.
Gegenstand der Erfindung ist daher auch ein Verfahren zur Identifizierung einer Substanz, die das ADP-Transporterprotein MRP4 in Thrombozyten hemmt - d.h. eines Wirkstoffs zur Behandlung der vorgenannten Erkrankungen - bei dem man
a) die zu untersuchende Substanz mit Thrombozyten in vivo oder in vitro in Kontakt bringt, einen Thrombozyten- Aktivator zugibt und man die Veränderung der Konzentration eines Aktivierungsmarkers im Vergleich zu aktivierten Thrombozyten mißt, die nicht mit der zu untersuchenden Substanz in Kontakt gebracht werden (in vivo oder in vitro) , und man
b) in MRP4-enthaltenden Membran-Vesikeln oder Granula, die man ebenfalls mit der zu untersuchenden Substanz in Kontakt bringt, die Veränderung von markiertem (z.B. mit Radioaktivität) , aufgenommenem cAMP oder cGMP oder markiertem ADP im Vergleich zu Membran-Vesikeln oder Granula mißt (z.B. durch Messen der Radioaktivität von aufgenommenem [3H]cAMP oder [3H]cGMP), die nicht mit der zu untersuchenden Substanz in Kontakt gebracht werden,
wobei die Substanz das ADP-Transporterprotein MRP4 in Thrombozyten hemmt, wenn die Substanz in a) und/oder b) jeweils zu einer Verminderung des bestimmten Meßwerts führt.
Gemäß einer besonderen Ausführungsform umfasst dasvorgenannte Verfahren ferner einen weiteren Schritt, bei dem man c) die zu untersuchende Substanz mit Thrombozyten in vivo oder in vitro in Kontakt bringt und davor und danach die ADP-Konzentration in den Thrombozyten bestimmt,
wobei die Substanz das ADP-Transporterprotein MRP4 in Thrombozyten hemmt, wenn die Substanz in a) und/oder b) und/oder c) jeweils zu einer Verminderung des bestimmten Meßwerts führt.
Die vorgenannten Bestimmungen unter a) und b) bzw. a) und b) und c) können selbstverständlich in beliebiger Reihenfolge durchgeführt werden. Zum initialen Screening kann auch die unter b) genannte Bestimmung zunächst alleine ausgeführt werden .
Alternativ kann das Verfahren auch ausgeführt werden, indem man Schritt a) an Thrombozyten-Granula-Membranen durchführt (vgl. Beispiel 5).
Ferner kann die Substanz zur weiteren Untersuchung ihrer Wirksamkeit in einem Schritt
d) einem Versuchstier oder einem Probanden verabreicht werden, wobei man den ADP-Gehalt der Thrombozyten des Versuchstiers oder des Probanden vor und nach Verabreichung der Substanz bestimmt.
Ein nach der bzw. durch die Behandlung abnehmender ADP-Gehalt weist auf eine MRP4-hemmende Wirkung der untersuchten Substanz hin .
Unter einer Substanz, die das ADP-Transporterprotein in Thrombozyten hemmt wird im Rahmen der vorliegenden Erfindung eine Substanz verstanden, die geeignet ist, die ADP- Anreicherung in Granula zu vermindern, d.h. ganz oder teilweise zu blockieren. Dabei sind diese Substanzen nicht auf Stoffe mit einem bestimmten Wirkmechanismus beschränkt. Bei den Substanzen kann es sich um organisch-chemische Verbindungen ebenso wie um Oligopeptide oder Antikörper handeln.
Unter dem Begriff „Multidrug-Resistenzprotein 4 (MRP4)" wird im Stand der Technik das humane MRP4-Genprodukt und dessen verschiedene Isoformen verstanden, ebenso wie Analoga, Homologe und Orthologe in anderen Spezies. Diese sollen auch erfindungsgemäß eingeschlossen sein. Das humane Gen, das für MRP4 kodiert, wurde zunächst teilweise kloniert und ist auf Chromosom 13 zu finden (GenBank Zugangsnummer U83660, Kool et al., Cancer Res . 57 (1997) 3537-3547).
Zur Durchführung des Verfahrens zur Identifizierung von MRP4- Inhibitoren können daher auch Thrombozyten aus nicht-humanen Quellen, wie z.B. Mäuse, Ratten, Kaninchen, Primaten, transgene Tiere, Knock-out Tiere, verwendet werden. Die so identifizierten Wirkstoffe sollten vorzugsweise anschließend hinsichtlich ihrer Wirkung an humanen Thrombozyten getestet werden.
Mit der vorliegenden Erfindung wird ferner ein Verfahren zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung und/oder Prophylaxe kardiovaskulärer Erkrankungen, einschließlich der Therapie, Primärprophylaxe und/oder Sekundärprophylaxe von akutem Coronarsyndrom, Angina Pectoris, Herzinfarkt, Schlaganfall oder peripherer arterieller Verschlußkrankheit, sowie vor, während und nach Stent- I plantation in Gefäße, bereitgestellt, bei dem man ein vorgenanntes Verfahren zur Identifizierung von Substanzen, die das ADP-Transporterprotein MRP4 in Thrombozyten hemmen, durchführt und man die so identifizierten Substanzen mit pharmazeutisch akzeptablen Hilfs- und/oder Trägerstoffen formuliert .
Die Erfindung betrifft somit die Verwendung einer nach einem vorgenannten Verfahren zur Identifizierung einer das ADP- Transporterprotein MRP4 in Thrombozyten hemmenden Substanz zur Herstellung eines pharmazeutischen Präparats zur Behandlung und/oder Prophylaxe der vorgenannten Erkrankungen.
Mit der erfindungsgemäß gewonnenen Erkenntnis, dass MRP4 in Granula humaner Thrombozyten als ADP-Transporter fungiert, werden alternative Protokolle zur Therapie, Primär- und/oder Sekundärprophylaxe der zuvor genannten Erkrankungen bereitgestellt. Durch Titration der Hemmung der ADP-Aufnähme ist eine individuelle Therapiesteuerung möglich. Durch Bestimmung des ADP-Gehaltes der Thrombozyten ist eine individuelle Messung der Wirkung des Medikamentes möglich. Dies ist bislang mit den bisherigen Substanzen, z.B. ADP- Rezeptor-Antagonisten, nicht möglich. Besteht die Notwendigkeit der invasiven Intervention, kann durch das Vasopressin-Analogon DDAVP und durch die Transfusion von Thrombozyten der Medikamenteffekt antagonisiert werden. Dies ist bei GPIIb/IIIa-Antagonisten in der Akutphase nicht ausreichend möglich, ebenso nicht bei den derzeitigen ADP- Rezeptor-Antagonisten, da die transfundierten Thrombozyten sofort vom Medikament gehemmt werden.
Die vorliegende Erfindung wird nachfolgend anhand von Beispielen erläutert, ohne jedoch darauf beschränkt zu sein. BEISPIELE
Beispiel 1
Die Expression und intrazelluläre Lokalisierung von MRP4 in humanen Plättchen wurde durch Immunblotting und Immunfluoreszenzmikroskopie und einen funktionellen Assay nachgewiesen. In Immunblots zeigte der MRP4-spezifische Antikörper (Kaninchen) eine starkes Signal bei der erwarteten Molekularmasse von etwa 170kDa in Homogenaten isolierter Plättchen und wies auf eine MRP4-Anreicherung in Membranfraktionen hin, die über einen Saccharose- Dichtegradienten getrennt wurden.
Die MRP4-Funktion, die mit 3H-markiertem zyklischem GMP (cGMP) , einem bekannten MRP4-Substrat, nachgewiesen wurde, konnte in Fraktionen' niedriger Dichte, die die meisten Plasmamembranproteine enthalten, ebenso nachgewiesen werden wie in Fraktionen höherer Dichte, in denen intrazelluläre Granula vorlagen.
Immunfluoreszenzmikroskopie von Plättchen mit denselben
Antikörpern zeigte eine Anreicherung von MRP4 in intrazellulären Granula und ein schwaches Signal an der Plasmamembran .
In doppelten Anfärbungsversuchen unterschieden sich MRP4- positive Granula von Granula, die gegenüber P-Selectin, das überwiegend auf Alpha-Granula exprimiert wird, positiv gefärbt waren. Die MRP4-positiven Granula zeigten jedoch eine Akkumulation des Fluoreszenzfarbstoffs Mepacrin, von dem bekannt ist, dass er in Delta-Granula transportiert wird. Zum Nachweis der Expression in Thrombozyten werden gewaschene Thrombozyten auf mit Kollagen beschichteten Glasplättchen inkubiert und adhärieren an diese. Alternativ können zu Kollagen beliebige andere Substanzen genommen werden, die an Glas oder Kunststoffoberflächen binden und an die Thrombozyten binden, oder die Thrombozyten werden direkt an eine Trägeroberfläche gebunden. Die Thrombozyten werden fixiert, z.B. mit 1% Paraformaldehydlösung, und die Zellmembran durch Chemikalien, z.B. Saponin, so geöffnet, dass auch nicht membrangängige Substanzen (Antikörper,
Rezeptorbindungspartner) an intrazelluläre Strukturen binden können. Dann werden die Thrombozyten entweder mit einem direkt fluoreszenz-markierten Antikörper gegen MRP4 inkubiert, oder mit einem' nicht-markiertem Antikörper und in einem zweiten Schritt mit einem markierten Sekundärantikörper, der den Primärantikörper erkennt, z.B. Ziege anti Kaninchen FITC markiert. Die Lokalisation der Antikörper-Bindung wird durch die Koinkubation mit einem monoklonalen oder polyklonalen Antikörper mit bekannter Spezifität für Markerproteine der Thrombozytengranula ermöglicht. Die Auswertung der Färbung erfolgt mit der Fluoreszenzmikroskopie.
Alternativ werden die Thrombozyten fixiert und mit direkt oder indirekt Gold-markierten Antikörpern gegen MRP4 inkubiert und die Bindung der Antikörper an Strukturen der dichten Granula nachgewiesen .
Um die Lokalisation weiter zu sichern, haben wir die Bindung von anti-MRP4 Antikörpern an Thrombozyten untersucht, die von einem Patienten mit Hermansky Pudlak Syndrom gewonnen wurden. Bei diesem Patienten sind die dichten Granula der Thrombozyten aufgrund einer genetischen Erkrankung nicht vorhanden, jedoch sind die ■ anderen Thrombozytenorganellen (alpha Granula, Lysosomen) erhalten. Unter Verwendung der oben beschriebenen Methoden zeigte sich, dass die Thrombozyten, denen spezifisch die dichten Granula fehlen, kein MRP4 intrazellulär exprimie- ren, jedoch MRP4 auf der Thro bozyten-Oberflache . Damit ist die Lokalisation eindeutig gesichert.
Für den Immunoblot werden Thrombozyten in physiologischer Kochsalzlösung gewaschen, mit Standardmethoden solubilisiert und das Lysat auf einem Gel nach Standardmethoden entsprechend des Molekulargewichts aufgetrennt. Die Proteine im Gel werden nach Standardverfahren auf eine Nitrozellulosemembran überführt durch Anlegen eines Spannungsgradienten. Die Membran wird dann mit den primär oder sekundär markierten Antikörpern gegen MRP4 inkubiert und die Bindung der Antikörper sichtbar gemacht durch: Fluoreszenz, chemische Reaktion (Meerrettich- Peroxidase-Reaktion) oder durch radioaktive Markierung.
Beispiel 2
Messung der MRP4-Funktion in Thrombozyten-Membranen
Die Präparation der Membranvesikel und die Transportmessungen erfolgt in Anlehnung an die für MRPl und Kulturzellen ausführlich beschriebene Methode von Keppler et al. (Methods Enzy ol. 292 (1998)' 607-616) .
Waschen der Thrombozyten
Aus den Thrombozytenkonzentraten werden rund 30ml Flüssigkeit in ein Falcon-Röhrchen überführt und bei einer Zentrifugati- onsgeschwindigkeit von 1300*g für 10 min bei 4°C zentrifu- giert. Nach Abgießen des Überstandes wird des Pellet in 1 ml Lösung B ('9,3 ml NaCl-Lösung (0.9%), 0,5 ml Lösung A (5g EDTA, ad 100 ml NaCl-Lösung (0,9%)), 0,2 ml Rinderalbumin-Lösung (22%) ) resuspendiert und auf ein Volumen von 30ml mit Lösung B aufgefüllt. Es erfolgt eine weitere Zentrifugation bei 1300χg für 10 min bei 4 °C. Das erhaltenen Pellet wird in 1ml Lösung C (NaCl-Lösung (0,9%) mit lxPBS pH 7,2 auf pH 6,5 einstellen) resuspendiert und auf ein Volumen von 30ml mit Lösung C aufgefüllt. Dieser Schritt wird dreimal wiederholt, wobei beim letzten Waschen die Thrombozyten nur resuspendiert werden. Die Lagerung erfolgt dann in Aliquots von 100 μl bei -20°C. Um die Erythrozytenkonzentration des Thrombozytenkonzentrates zu minimieren, wird des lockere, weiße Pellet der Thrombozyten nach der ersten Zentrifugation mit einer ' Pasteurpipette abgenommen und somit von den sich stärker absetzenden Erythrozyten getrennt.
Zellaufschluss
Ultraschall
Diese Aufschlussmethode wird bei den gewaschenen Thrombozyten angewendet. Zu der Zellsuspension von einem Volumen von rund 500μl werden die Stammlösungen der Proteaseinhibitoren Leupep- tin, Aprotinin und Phenylmethylsulfonylfluorid jeweils im Verhältnis 1:1000 hinzugegeben. Der Aufschluss erfolgt mit dem Sonopuls-Gerät in einem Zyklus von 5χl0s bei einer Kraft von 50% mit Kühlpausen von 2 min zwischen den einzelnen Zyklen. Im Anschluss erfolgt die Zentrifugation bei 100.000χg für 30 min bei 4°C. Das erhaltene Pellet wird in 50 μl 5 mM Tris-Lösung, pH 7,4 resuspendiert und der Proteingehalt bestimmt Einfrieren/Auftauen
Die gewaschenen Thrombozyten liegen in einer Zellsuspension mit einem Gesamtvolumen von rund 500μl vor. Nach Zugabe der Stammlösungen der Protease-Inhibitoren Aprotinin, Leupeptin and PMSF im Verhältnis 1:1000 erfolgt der Aufschluss durch Einfrieren in flüssigem Stickstoff und Wiederauftauen im Wasserbad bei 37 °C. Dieser Zyklus wird insgesamt fünfmal durchgeführt. Im Anschluss erfolgt die Zentrifugation bei 100.000χ g für 30 min bei 4°C. Das erhaltene Pellet wird in 50μl 5mM Tris-Lösung, pH 7,4 resuspendiert, und es wird der Proteingehalt bestimmt.
Membranpräparation
Thrombozyten
Die durch den Zellaufschluss mit Hilfe von Einfrieren und Auftauen erhaltene Suspension ist frei von zytosolischen Proteinen und enthält somit die Plasmamembranen und weitere Zellorganellen, wie Mitochondrien und Granula. Sie wird wie folgt zu Me branvesikeln aufgearbeitet.
Die Membransuspension wird in den Dounce-Potter (tight) überführt und mit Tris-Sucrose-Puffer auf ungefähr das doppelte Volumen verdünnt. Anschließend erfolgt die Zugabe der Protease-Inhibitoren Leupeptin und Aprotinin im Volumenverhältnis der Stammlösung zur Suspension von 1:1000. Diese Protease-Inhibitoren sind kompetitive Inhibitoren, wohingegen PMSF, was schon während des Aufschlusses zugesetzt wurde, irreversibel hemmt.
Es werden daraufhin 30 Potter strokes durchgeführt, so dass ungefähr 2 strokes pro Minute erfolgen. Membranpräparation ohne Sucrose-Gradient
Nach dem ' Homogenisationsprozess werden zwei Drittel der Suspension bei 100.000χg bei 4°C für 30 min zentrifugiert . Das Pellet wird in einem 4mal dem Pelletvolumen entsprechenden Volumen an Tris-Sucrose-Puffer resuspendiert, erneut in den Dounce-Potter (tight) überführt und mit 20 Potter strokes homogenisiert. Abschließend wird die Suspension 20mal durch eine 27G-Nadel aufgezogen, um so Membranvesikel, die insbesondere inside-out gerichtet sind, herzustellen. Die Lagerung erfolgt in flüssigem Stickstoff als lOOμl Aliquots .
Membranpräparation mit Sucrose-Gradient
Nach dem Homogenisationsprozess wird ein Drittel der Suspension auf einen Sucrosegradienten gegeben. Die 4ml fassenden Röhrchen, die zu dem swing-out-Rotor SW55 der Beckman-Zentrifuge gehören, werden wie folgt beladen. Zuerst werden 1,5 ml einer 60%igen Sucrose-Lösung in 5mM HEPES, pH 7,4 (m/m) . hineingegeben. Dann werden 1,5 ml einer 30%igen Sucrose-Lösung in 5mM HEPES, pH 7,4 (m/m) hinzugegeben. Über diese beiden Sucrose-Lösungen werden 0,5 ml der Membransuspension geschichtet. Die anschließende Zentrifugation mit dem swing out Rotor erfolgt bei 200.000χg für 60 min bei 4°C.
Transportmessung
Die Grundlage der verwendeten Methode sind Membranvesikel, die durch Scherkräfte beim Aufziehen mit einer möglichst dünnen Nadel entstehen. Die Herstellungsweise der Membranvesikel bringt auch immer einen gewissen Anteil (rund 30%) an inside- out Membranvesikeln hervor. Das Besondere der inside-out Membranvesikel ist, dass die Membran umgekehrt zur Plasmamembran ausgerichtet ist. Ein Auswärtstransporter der Plasmamembran würde in einem inside-out Vesikel nach innen transportieren. Da weiterhin das MRP4 in der Plasmamembran vorliegt, bieten inside-out Vesikel die Möglichkeit eines Funktionstests. Außerdem existieren in Thrombozyten und anderen Zellen Vesikel im Zytoplasma, die durch Abschnürungen der Plasmamembran entstehen und ebenfalls inside-out ausgerichtet sind und folglich durch Transportprozesse Stoffe aufnehmen könnten.
Zu den inside-out Vesikeln wird ein Tritium-markiertes Substrat gegeben, was ATP-abhängig transportiert werden kann. Durch Messung in Gegenwart von AMP und ATP (ATP erhaltender Creatinkinase) wird einmal der ATP-abhängige Einwärtstransport messbar, von dem der AMP-Wert, der Diffusionsprozesse widerspiegelt, abgezogen wird.
Die in den inside-out Vesikeln befindlichen Substanzen werden auf einen Filter mit einem Durchmesser von 0,22μm gegeben, so dass durch Waschen überschüssige Radioaktivität entfernt wird. Über Zählung der radioaktiven Zerfälle auf den Filtern wird das Ergebnis detektiert (siehe Fig. 1) .
Die Transportversuche wurden mit [3H]-cGMP (Tritium-markiertes cGMP) durchgeführt.
Pro Ansatz werden lOOμg Protein der Membranvesikelsuspension mit Tris-Sucrose-Puffer auf 55μl verdünnt. In einem zweiten Ansatz werden 7,5μl Creatinkinase, 6,8μl ATP oder AMP und 7,5 μl einer [3H] -cGMP-Stammverdünnung, für die [3H]-cGMP (1 μCi/μl) im Verhältnis 2:5 mit Tris-Sucrose-Puffer verdünnt wird. Die " Endkonzentration des [3H]-cGMP entspricht 4 μM bei einer Radioaktivität von 2,7 μCi / 75 μl . Die 55 μl der Membransuspension und der radioaktive Ansatz werden gleichzeitig eine Minute bei 37 °C im Thermoschüttler erwärmt, bevor man 20 μl des radioaktiven Ansatzes in die Membransuspension pipettiert und so den Transportversuch startet. Während der Inkubation im Thermoschüttler bei 37 °C werden nach 1, 10 und 20 min jeweils 20 μl Proben gezogen. Die entnommen Proben pipettiert man in 1ml eisgekühlte Tris- Sucrose-Lösung, wobei das Gesamtvolumen sofort auf einen Nitrocellulosefilter gegeben wird. Durch Spülen mit 5 ml kalter Tris-Sucrose-Lösung bei angelegtem Vakuum entfernt man die freie Radioaktivität. Die einzelnen Filter werden in Vials überführt und 10 ml Szintillationsflüssigkeit (z.B. Firma Roth, Zinsser) hinzugegeben. Diese Flüssigkeit wandelt die vorhandene Radioaktivität in ein auswertbares Lichtsignal um, welches mit dem Wallac 1409 Liquid Scintillation counter und einem speziellen Tritium-Zählprogramm als DPM (decays per minute = Zerfälle pro Minute) gemessen werden kann.
Berechnung
[3H]-cGMP: 8,8 Ci/mmol = 8,8 μCi/nmol 1 μCi = 2,2 x 106 DPM 1 nmol ≡ 8,8 x 2,2 106 DPM 0,05 pmol ≡ 1000 DPM
Protein: lOOμg / 75μl 26,7 μg / 20μl (Probenvolumen) bezogen auf 1 mg 1000 DPM ≡ 1,87 pmol / mg Protein: Beispiel 3
Hemmung des Transports :
Bei dem Test potentieller Hemmstoffe werden diese in verschiedenen Konzentrationen der Inkubation zusammen mit dem markierten Substrat zugegeben. Eine Identifizierung als Hemmstoff ist dann gegeben, wenn die Transportrate des markierten Substrates in Mehrfach-Bestimmungen statistisch signifikant (z.B. Students T-Test) gegenüber der Kontroll- Inkubation ohne Hemmstoff erniedrigt ist.
Beispiel 4
Identifizierung von MRP4-inhibierenden Substanzen durch Messung der Thrombozytenfunktion
A. Thrombozyten-Aggregation nach Born
Die Thrombozytenfunktion nach Hemmung des MRP4 Transporters kann mit Thrombozyten-Aggregation nach Born (Platelets. In: Human Blood Coagulation, Hae ostasis and Thrombosis, 2. Ed. Biggs, Editor Blackwell Scientific Publications, London 1976, S. 168- 201) gemessen werden. Dabei setzt man Thrombozyten einen Thrombozyten-Aktivator zu und misst die Veränderung der Konzentration eines Aktivierungsmarkers . Der Versuch wird unter identischen Bedingungen wiederholt, wobei man die Thrombozyten aber zuvor mit einer zu untersuchenden Substanz in Kontakt bringt, bevor man den Thrombozytenaktivator zugibt. Alternativ wird ein Versuchstier oder ein humaner Proband mit der MRP4 inhibierenden Substanz behandelt und die von diesem Versuchstier bzw. humanem Proband gewonnenen Thrombozyten mit der gleichen Methode untersucht und entweder mit Thrombozyten nicht behandelter Versuchstiere oder nicht behandelter Probanden oder mit den Thrombozyten des Versuchstieres oder des humanen Probanden von vor der Behandlung verglichen. Die bei beiden Versuchen erhaltenen Messwerte werden verglichen, wobei die Substanz auf einen MRP4-Hemmstoff hinweist, wenn die Zugabe der Testsubstanz gegenüber dem Thrombozyten-Aggregationstest ohne Testsubstanz zu einer Verminderung des bestimmten Meßwerts führt .
Nachfolgend wird das Prinzip der Thrombozyten- funktionsuntersuchung mittels Aggregometrie nach Born beschrieben .
Messmethode : Turbidimetrie
Gerät: 4-Kanal-Aggregometer „APACT 4λ (Fa. Laborgeräte + Analysensysteme Vertriebsgesellschaft mbH, Ahrensburg, Deutschland)
Induktoren : ADP , Kollagen, Ristocetin, Adrenalin
Durchführung:
1. Induktoren:
Die Induktoren liegen als Lyophilisate vor und werden gemäß Angaben der Hersteller zur Anwendung vorbereitet und können bis zum Gebrauch in Aliquots bei unter -20 °C lagern.
Folgende Induktor-Konzentrationen (Endkonzentrationen) werden verwendet: ADP (2,5 μmol/1, 5 mmol/1, 10 mmol/1, 20 mmol/1) Kollagen (1 μg/ml, 4 μg/ml) Ristocetin (0,5 mg/ml; 1,5 mg/ml) Adrenalin (5 μmol/1, 10 μmol/1)
Die Induktoren werden kurz vor Gebrauch aufgetaut, kräftig gemischt (Vortexer) und während des Gebrauchs bei 4°C auf Eis gelagert (Adrenalin lagert während der Durchführung bei Raumtemperatur) .
2. Gewinnung von plättchenreiche Plasma (PRP) und plättchenarmem Plasma (PPP) :
Von einem gesunden Blutspender wird zunächst PRP mittels Differentialzentrifugation einer Zitrat-antikoagulierten, frisch entnommenen Vollblutprobe gewonnen (20 min, 120 x g) . Der Spender soll 10 Tage vor der Blutentnahme keine die Thrombozytenfunktion beeinträchtigenden Medikamente eingenommen haben.
Das PRP wird in ein sauberes Poly-Röhrchen überführt und mit PPP desselben Spenders, welches aus PRP durch hochtourige Zentrifugation gewonnen wird (5 min, 860 x g) , auf eine Thrombozytenzahl von 300.000/μl eingestellt. Das eingestellte PRP wird bis zum Gebrauch bei 37 °C aufbewahrt, das Röhrchen wird mit Parafilm verschlossen.
3. Geräteeinstellungen und Messung: a) Einstellungen am APACT 600 sec. Meßzeit, Rührgeschwindigkeit 1000 rpm, Temperatur des Heizblockes 37°C. Aufwärmzeit des Gerätes ca. 10 bis 15 min..
b) Eichung des Gerätes mit PPP 180 μl PPP werden mit 20 μl 0,9 % iger NaCl-Lösung pH 7,2 in der mit einem Rührmagneten versehenen Küvette gemischt, in den Meßkanal gestellt und gemessen (entspricht 100 % Lichtdurchlässigkeit) .
c) Eichung des Gerätes mit PRP 180 μl PRP werden mit 20 μl 0,9 % iger NaCl-Lösung pH 7,2 in der mit einem Rührmagneten versehenen Küvette gemischt, in den Meßkanal gestellt und gemessen (entspricht 0 % Lichtdurchlässigkeit) .
d) Messung Eine saubere, mit einem Rührmagneten versehene Küvette wird erneut mit 180 μl PRP blasenfrei gefüllt. Der Meßkanal wird gestartet, die Aufzeichnung der Messung der Lichtdurchlässigkeit kann am PC verfolgt werden. Nach ca. 1 min. wird in die PRP-gefüllte Küvette 20 μl einer der o.g. Induktoren pipettiert (blasenfrei, die Küvette nicht aus dem Meßkanal entfernen; darauf achten, dass der Induktor nicht am Rand der Küvette hängen bleibt!) . Der Verlauf der Kurve wird kontinuierlich aufgezeichnet. Die Lichtdurchlässigkeit (%) des PRP steigt mit der Zunahme der aggregierten Thrombozyten über die Zeit an.
Die Küvette wird nach Ende der Meßzeit aus dem Meßkanal entfernt. Die Messungen werden dann, wie unter b) bis d) beschrieben, für jeden weiteren Induktor wiederholt. Zur Messung der Spontan-Aggregation der Thrombozyten werden anstelle des Induktors 20 μl physiologische NaCl-Lösung in das PRP pipettiert und die Messung durchgeführt.
4. Qualitätskontrolle :
Die Messung der Funktion der Thrombozyten eines gesunden Normalprobanden dient als Kontrolle der Beschaffenheit der Induktoren und der Funktionstüchtigkeit des Aggregometers . Die Messung der Thrombozytenfunktion von z.B. Probanden mit V.a. Thrombozytopathie erfolgt anschließend. Die zu untersuchenden, potentiellen MRP4-Inhibitoren werden - wie oben erwähnt - den Küvetten vor Zugabe der jeweiligen Induktoren zugesetzt.
Zur Untersuchung, ob die zu untersuchende Substanz spezifisch auf das MRP4 Transporterprotein wirkt, werden die in Beispiel 3 beschriebenen Vesikel-Transportstudien durchgeführt.
B. Expression von Aktivierungsmarkern in der Durchlußzytometrie
Die Thrombozytenfunktion nach Hemmung des MRP4 Transporters kann ferner durch Expression von Aktivierungsmarkern (z.B. PAC-1, CD 63, P-Selectin) in der Durchlußzytometrie bestimmt werden.
Die Durchflusszytometrie stellt ein Verfahren zur Charakterisierung von Zellen anhand der Größe und Granularität dar. Sie dient darüber hinaus der quantitativen Bestimmung von Oberflächenmolekülen und intrazellulären Proteinen mit Hilfe von Fluoreszenz-markierten Antikörpern.
Die markierten, in Suspension vorliegenden, Zellen werden einzeln an einem Argonlaser vorbeigeführt (vgl. Fig. 2) . Das daraus resultierende Fluoreszenz- und Streulicht wird von verschiedenen Fotodetektoren erfasst. Das von der Zelle in Richtung des Laserstrahls gestreute Licht wird vom FSC-Detektor (Forward Scatter, FSC) aufgenommen und gibt Auskunft über die Größe der gemessenen Zelle. Das Seitwärtsstreulicht (Sideward Scatter, SSC) korreliert mit der Granularität der Zelle. Über verschiedene weitere Detektoren werden zusätzliche Eigenschaften der Zellen, wie zum Beispiel die Expression eines oder mehrerer Oberflächenmoleküle, registriert. Für jede einzelne Zelle wird die Intensität und Farbe der Fluoreszenz von einem Computer erfasst Die Signale der Fotodetektoren werden über Fotomultiplier verstärkt. Die Analyse der entsprechenden Daten erfolgt mit Hilfe des Computer-Programms WinMDI 2,8.
Aktivierte und ruhende Thrombozyten unterscheiden sich morphologisch voneinander. Aktivierte Thrombozyten zeichnen sich durch die Bildung von Mikropartikeln und großen Thrombozytenaggregaten aus, was zu einer Verschiebung der Thrombozyten im FSC / SSC führt (Matzdorff et al . 1998, J. Lab. Clin. Med. 131 (6) : 507-17) .
Ruhende Thrombozyten zeigen hingegen eine einheitliche Größe und bilden daher eine definierte Punktwolke bei Betrachtung von Größe und Granularität im Durchflusszytometer . Neben der Veränderung der Form der Thrombozyten kommt es zur Oberflächenexponierung von P-Selektin.
Zur Fixierung werden 100 μl Thrombozytensuspension in 1 ml Formaldehydlösung pipettiert. Nach zwei Stunden bis maximal vier Tagen werden die Thrombozyten für die Färbung zweimal mit FACS-Flow gewaschen (1700 x g, 5 min) . Das Pellet wird in 500 μl FACS-BSA-Gemisch resuspendiert und 25 μl der Probe mit 10 μl Antikörper (P-Selektin, Maus, unmarkiert) für 30 min bei Raumtemperatur im Dunkeln inkubiert. Anschließend wird der Ansatz einmal mit FACS-Flow gewaschen. Nach Absaugen des Überstandes werden 10 μl Sekundärantikörper (anti-Maus, FITC- markiert, 1:30 verdünnt) zu den Thrombozyten gegeben. Die Proben werden bei Raumtemperatur 30 min im Dunkeln inkubiert. Für die Messung werden die Thrombozyten einmal gewaschen und dann in 1 ml FACS-Flow aufgenommen.
Die Messungen erfolgen analog der Untersuchung der Thrombozyten- Aggregation nach Born (s. unter A) durch Thombozytenaktivierung jeweils im Vergleich mit und ohne zu untersuchende Substanz, wobei die Substanz auf einen MRP4-Hemmstoff hinweist, wenn die Zugabe der Testsubstanz gegenüber dem Messung ohne Testsubstanz zu einer geringeren Thrombozytenaktivierung und damit zu einer Verschiebung des FSC /SCC-Verhältnisses in Richtung FSC führt.
Zur Untersuchung, ob die zu untersuchende Substanz spezifisch auf das MRP4 Transporterprotein wirkt, werden die in Beispiel 3 beschriebenen Vesikel-Transportstudien durchgeführt.
C . Lumiaggregometrie
Die Thrombozytenfunktion nach Hemmung des MRP4 Transporters kann ferner durch Lumiaggregometrie bestimmt werden. Dabei misst man die Freisetzung von ADP/ATP in der Lumiaggregometrie mittels Luciferin-Luciferase Test (vgl. Mondoro et al . , Blood 96 (2000) 2487-2495 sowie White et al . , Thromb . Haemost . 67 (1992) 572) .
Die Messungen erfolgen analog der Untersuchung der Thrombozyten- Aggregation nach Born (s. unter A) oder der Durchlußzytometrie (vgl. unter B) durch Thombozytenaktivierung jeweils im Vergleich mit und ohne zu untersuchende Substanz, bzw. von mit der Substanz behandelten Versuchstieren oder humanen Probanden im Vergleich zu nicht mit der Substanz behandelten Versuchstieren oder humanen Probanden, wobei die Substanz auf einen MRP4- Hemmstoff hinweist, wenn die Zugabe der Testsubstanz gegenüber dem Messung ohne Testsubstanz zu einer geringeren Thrombozytenaktivierung und damit zu einem geringeren Lumineszenzwert führt.
Der Versuch wird unter identischen Bedingungen wiederholt, wobei man die Thrombozyten aber zuvor mit einer zu untersuchenden Substanz in Kontakt bringt. Die bei beiden Versuchen erhaltenen Messwerte werden verglichen, wobei die Substanz auf einen MRP4-Hemmstoff hinweist, wenn die Zugabe der Testsubstanz gegenüber der Lumiaggregometrie ohne Testsubstanz zu einer Verminderung der Freisetzung von ADP/ATP führt . Neben der Lumiaggregometrie können auch andere Verfahren der Quantifizierung von ADP in Thrombopzyten verwendet werden, wie z.B. die Extraktion von ADP- und Nachweis mit der Luciferin- Luciferase Methode, oder die Quantifizierung mit chromatographischen Verfahren, wie der HPLC .
Zur Untersuchung, ob die zu untersuchende Substanz spezifisch auf das MRP4 Transporterprotein wirkt, werden die in Beispiel 3 beschriebenen Vesikel-Transportstudien durchgeführt.
Beispiel 5
Beteiligung von MRP4 am ADP-Transport in delta-Granula von Thrombozyten.
[3H]ADP-Transport in vesikulären Fraktionen aus Plättchen.
Um festzustellen, ob ADP ein Substrat für den MRP4-vermittelten, ATP-abhängigen Transport sein kann, wurde die Aufnahme von [3H]ADP (1 μM) in Plättchen-Membranvesikel (Rohmembranen) in Gegenwart von 0,4 mmol/1 ATP über einen Zeitraum von 2 Minuten gemessen. Wie in Figur 3 gezeigt, wurde eine zeitabhängige Erhöhung des Vesikel-assoziierten [3H]ADP bei einer Rate von 6,74 + 1,9 pmol x mg x Protein-1 x min-1 (Mittelwert + Standardabweichung von drei verschiedenen Experimenten mit Dreifachbestimmung) beobachtet. Wenn man ATP durch 5' -AMP oder das nicht-hydrolisierbare ATP-Analogon AMPPNP, das üblicherweise bei Kontrollinkubationen verwendet wurde, um die ATP-abhängige Komponente des Transports zu berechnen, ersetzte, wurde etwa eine drei- bis vierfach höhere Hintergrundbindung des [3H]ADP an die Membranen beobachtet, was sich mit der Zeit nur leicht erhöhte (nicht gezeigt) . Diese geringere, unspezifische Bindung von [3H]ADP in Gegenwart von ATP im Vergleich zu 5 ' -AMP ist wahrscheinlich auf das Vorhandensein von unmarkiertem ADP zurückzuführen, das mit 3H-markiertem ADP konkurriert und dieses verdünnt . Die Quelle dieses unmarkiertem ADP könnte eine ADP- Kontamination im kommerziell erhältlichen ATP und die Bildung von ADP durch ATP-Hydrolyse sein. Um die ATP-Abhängigkeit zu zeigen und gleichzeitig gleiche initiale ADP-Konzentrationen sicherzustellen, wurde der Transport in Gegenwart von ATP mit oder ohne 1 mM Orthovanadat, einem Inhibitor der ATP-Hydrolyse, gemessen. Es wurde eine zeitabhängige Erhöhung der Vesikel- assoziierten Radioaktivität in Gegenwart von ATP beobachtet, trotz der Tatsache, daß [3H]ADP durch gleichzeitige Bildung von unmarkiertem ADP verdünnt wurde. Das zeigt, daß es eine aktive Einlagerung gibt, die dem Verdünnungseffekt entgegenwirkt. Die Vesikel-assoziierte Radioaktivität war in Gegenwart von ATP plus Orthovanadat signifikant reduziert, trotz der Tatsache, daß die Inhibierung der ADP-Bildung die Bindung der markierten Verbindung verstärken sollte, was somit zeigt, daß die beobachtete Abnahme die Inhibierung des aktiven Transportprozesses darstellt. Der Verdünnungseffekt auf [ H]ADP durch Bildung von unmarkiertem ADP war auch der Grund, die ATP- Konzentration von der Standardkonzentration (4 mM) auf 0,4 mM zu reduzieren.
Um zu bestimmen, ob der beobachtete Unterschied bei der [3H]ADP- Aufnahme durch die Vesikel in Gegenwart und Abwesenheit von Orthovanadat vielmehr eine Transmembran-Bewegung als eine Bindung an die Membranoberfläche reflektiert, wurde der Einfluß hoher Osmolarität untersucht. Bei einer Konzentration von 1 mol/1 Saccharose außerhalb der Vesikel war die Rate des [3H] ADP-Transports in Abwesenheit von Orthovanadat beträchtlich reduziert, was einen aktiven Transport zeigt (Figur 3B) . In Gegenwart von Orthovanadat beeinflußte 1 mol/1 Saccharose nur leicht die [3H] ADP-Assoziation an die Vesikel. Das zeigt, daß die Menge der gemessenen Radioaktivität das Verhältnis der [3H]ADP-Bindung an die Vesikel-Membran repräsentiert, unabhängig vom Transmembran-Transport. Ferner konnte die Vanadat-sensitive ADP-Akkumulation in der dichten Granular-Fraktion des Saccharose-Gradienten nachgewiesen werden und wurde durch Dipyridamol, MK571 und cGMP inhibiert (Tabelle 1) .
Methoden:
Transport von [3H]ADP. Ein ATP abhängiger Transport von [3H]ADP (1 μmol/1) in die Membran-Vesikel wurde durch Schnellfiltration gemessen, Wie es für [3H]cGMP beschrieben ist, mit der Ausnahme, daß die Vesikel in mit 0,4 mmol/1 ATP, 10 mmol/1 MgCl2 supplementiertem Inkubationspuffer in Gegenwart oder Abwesenheit von Natriumorthovanadat (1 mmol/1) inkubiert wurden. Um den Effekt der Osmolarität des extravesikulären Mediums zu untersuchen, wurden die Vesikel für 45 Minuten bei 4°C in einem 1 mol/1 Saccharose enthaltendem Puffer oder in Standard- Inkubationspuffer, der 250 mmol/1 Saccharose enthielt, präinkubiert . Tabelle 1. Inhibierung des [3H]ADP Transports in dichte Plättchen-Granula
Dichte Plättchen-Vesikel (100 μg an Protein) wurden mit [ H]ADP (1 μmol/l)'in Gegenwart von 0,4 mmol/1 ATP oder 0,4 mmol/1 ATP + 1 mmol/1 Orthovanadat für 2 Minuten inkubiert, und der Unterschied der Vesikel-assoziierten Radioaktivität wurde berechnet . ' Die aufgeführten Verbindungen wurden in den angegebenen Konzentrationen zu den Inkubationen mit und ohne Orthovanadat hinzugegeben. Der Unterschied ist als Prozentsatz der Kontrolle (Mittelwert + Standardabweichung von 3 Bestimmungen) angegeben. Der Kontrollwert des Vanadat-Sensitiven [3H] ADP-Transports betrug nach 2 Minuten in diesen Experimenten 3,0 ± 0,4 pmol/mg Protein-1.
Beschreibung der Figuren:
Figur 1 :
Prinzip der Transportmessung mit inside-out Membranvesikeln.
Figur 2 :
Aufbau eines Durchflusszytometers (vereinfachte schematische Darstellung)
Figur 3 :
Transport von ADP in Plättchen-Membranen.
A-D: Rohe Membran-Vesikel von Plättchen (100 μg an Protein) wurden mit [3H]ADP (1 μmol/1) in Gegenwart von 0,4 mmol/1 ATP (Quadrate) oder 0,4 mmol/1 ATP plus (1 mmol/L Orthovanadat Rauten) inkubiert, und die Vesikel-assoziierte Radioaktivität wurde wie im Abschnitt "Methoden" bestimmt (Mittelwert ± Standardabweichung, n ≤ 3; 1 pmol x mg Protein -1 = 1724 DPM) . A, B: Vesikel wurden für 45 Minuten bei 4°C in Standard- Inkubationspuffer, der 250 mmol/1 Saccharose (A) enthielt, oder in 1 mol/1 Saccharose enthaltendem Puffer (B) präinkubiert . C, D: ADP-Transport in Abwesenheit (C) oder Gegenwart (D) von 100 μmol/1 Dipyridamol.

Claims

Patentansprüche:
1. Verwendung eines Inhibitors des Multidrug- Resistenzproteins 4 (MRP4) in Thrombozyten zur Behandlung und/oder Prophylaxe kardiovaskulärer Erkrankungen.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass die Behandlung und/oder Prophylaxe kardiovaskulärer Erkrankungen die Therapie, Primärprophylaxe und/oder Sekundärprophylaxe von akutem Coronarsyndrom, Angina Pectoris, Herzinfarkt, Schlaganfall oder peripherer arterieller Verschlusskrankheit vor, während und nach Stentimplantation in Gefäße ist.
3. Verwendung nach Anspruch 1 und 2, dadurch gekennzeichnet, dass der Wirkstoff eine amphiphile organische, neutrale oder anionische Verbindung mit einem Molekulargewicht von ca. 200 bis 1000 Dalton (Da) ist, die den MRP4- vermittelten Transport von 'Nukleotiden hemmt.
4. Verwendung nach Anspruch 3, dadurch gekennzeichnet, dass der Wirkstoff Dipyridamol, Indomethacin, Ibuprofen, Inhibitoren von organischen Anionen-Transportern wie Probeneeid und Sulfinpyrazon, Strukturanaloga von cyclischen Nukleotiden wie Sildenafil, Trequensin, Zaprinast (Phosphodiesterase-Inhibitoren) und der Leukotrien-Rezeptorantagonist MK571.
5. Verfahren zur Identifizierung einer Substanz, die das ADP-Transporterprotein MRP4 in Thrombozyten hemmt, dadurch gekennzeichnet, dass man a) die zu untersuchende Substanz mit Thombozyten in vivo oder in vitro in Kontakt bringt, einen Thrombozyten- Aktivator zugibt und man die Veränderung der Konzentration eines Aktivierungsmarkers im Vergleich zu aktivierten Thrombozyten misst, die nicht mit der zu untersuchenden Substanz in Kontakt gebracht werden (in vivo oder in vitro) , und man b) in MRP4-enthaltenden Membran-Vesikeln oder Granula, die man ebenfalls mit der zu untersuchenden Substanz in Kontakt bringt, die Veränderung von markiertem, aufgenommenem cAMP oder cGMP im Vergleich zu Membran- Vesikeln oder Granula misst, die nicht mit der zu untersuchenden Substanz in Kontakt gebracht werden, wobei* die Substanz das ADP-Transporterprotein MRP4 in Thrombozyten hemmt, wenn die Substanz in a) und/oder b) jeweils zu einer Verminderung des bestimmten Messwerts führt .
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass man ferner c) die zu untersuchende Substanz mit Thrombozyten in vivo oder in vitro in Kontakt bringt und davor und danach die ADP-Konzentration in den Thrombozyten bestimmt, wobei- die Substanz das ADP-Transporterprotein MRP4 in Thrombozyten hemmt, wenn die Substanz in a) und/oder b) und/oder c) jeweils zu einer Verminderung des bestimmten Meßwerts führt.
7. Verfahren Anspruch 5 oder 6, dadurch gekennzeichnet, dass man a) und b) oder a) und b) und c) in beliebiger Reihenfolge durchführt.
8. Verfahren zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung und/oder Prophylaxe kardiovaskulärer Erkrankungen, dadurch gekennzeichnet, dass man ein Verfahren nach den Ansprüchen 4 bis 7 durchführt und man die identifizierten Substanzen mit pharmazeutisch akzeptablen Hilfs- und/oder Trägerstoffen formuliert .
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Behandlung und/oder Prophylaxe kardiovaskulärer Erkrankungen die Therapie, Primärprophylaxe und/oder Sekundärprophylaxe von akutem Coronarsyndrom, Angina Pectoris, Herzinfarkt, Schlaganfall oder peripherer arterieller Verschlusskrankheit vor, während und nach Stentimplantation in Gefäße ist.
10. Verwendung einer nach einem Verfahren der Ansprüche 4 bis 7 identifizierten Substanz zur Behandlung und/oder Prophylaxe kardiovaskulärer Erkrankungen.
11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, dass die Behandlung und/oder Prophylaxe kardiovaskulärer Erkrankungen die Therapie, Primärprophylaxe und/oder Sekundärprophylaxe von akutem Coronarsyndrom, Angina Pectoris, Herzinfarkt, Schlaganfall oder peripherer arterieller Verschlusskrankheit vor, während und nach Stentimplantation in Gefäße ist.
EP04797661A 2003-11-07 2004-11-05 Verwendung von mrp4-inhibitoren zur behandlung und/oder prophylaxe kardiovaskulärer erkrankungen Withdrawn EP1725221A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10352511A DE10352511A1 (de) 2003-11-07 2003-11-07 Verwendung von MRP4-Inhibitoren zur Behandlung und/oder Prophylaxe kardiovaskulärer Erkrankungen
PCT/EP2004/012554 WO2005044244A2 (de) 2003-11-07 2004-11-05 Verwendung von mrp4-inhibitoren zur behandlung und/oder prophylaxe kardiovaskulärer erkrankungen

Publications (1)

Publication Number Publication Date
EP1725221A2 true EP1725221A2 (de) 2006-11-29

Family

ID=34559564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04797661A Withdrawn EP1725221A2 (de) 2003-11-07 2004-11-05 Verwendung von mrp4-inhibitoren zur behandlung und/oder prophylaxe kardiovaskulärer erkrankungen

Country Status (4)

Country Link
US (1) US20070212366A1 (de)
EP (1) EP1725221A2 (de)
DE (1) DE10352511A1 (de)
WO (1) WO2005044244A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040265323A1 (en) * 2003-05-16 2004-12-30 Mccormick Beth A. Compositions comprising pathogen elicited epithelial chemoattractant (eicosanoid hepoxilin A3), inhibitors thereof and methods of use thereof
ITRM20060460A1 (it) * 2006-08-31 2006-11-30 Univ Roma Uso di acido acetil salicilico in combinazione con inibitori dei canali mrp4 per il trattamento di pazienti resistenti a detto acido acetil salicilico
EP1974739A1 (de) * 2007-03-21 2008-10-01 Deutsches Krebsforschungszentrum, Stiftung des öffentlichen Rechts Verfahren und Verbindungen zur Modulation von Entzündungsprozessen
US8354388B2 (en) * 2007-04-10 2013-01-15 Inserm (Institut National De La Sante Et De La Recherche Medicale) Inhibitors of MRP4 for the treatment of vascular disorders
ES2613804T3 (es) * 2008-07-17 2017-05-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Inhibidores de MRP4 y agentes que estimulan la actividad de MRP4 para el tratamiento de trastornos cardíacos
US10806711B2 (en) 2011-08-12 2020-10-20 University Of Cincinnati Method of treating acute decompensated heart failure with probenecid
CA2904671C (en) 2013-03-13 2022-08-30 University Of Cincinnati Treatment of a diastolic cardiac dysfunction with a trpv2 receptor agonist
CN110169969B (zh) * 2019-06-28 2022-05-27 南京医科大学 Mk571在制备预防和治疗心脏病药物中应用
WO2021033773A1 (ja) * 2019-08-21 2021-02-25 国立大学法人東京大学 Abcc11阻害剤

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2353285A1 (fr) * 1975-09-17 1977-12-30 Doms Laboratoires Medicament vasodilatateur coronarien perfectionne
EP0003901B1 (de) * 1978-02-24 1981-08-05 Pfizer Limited 3-(Imidazol-1-ylalkyl) indole als selektive Thromboxansynthetase Hemmungsmittel, pharmazeutische Zusammensetzungen die diese enthalten und Verfahren zu ihrer Herstellung
US4287202A (en) * 1978-05-26 1981-09-01 Horrobin David F Treatment and/or prophylaxis of spasms of coronary arteries
GB8607662D0 (en) * 1986-03-27 1986-04-30 Rainsford K D Pharmaceutical formulation
GB8715476D0 (en) * 1987-07-01 1987-08-05 Shell Int Research Preparation of ibuprofen
US6759238B1 (en) * 1999-03-31 2004-07-06 St. Jude Children's Research Hospital Multidrug resistance associated proteins and uses thereof
US6476037B1 (en) * 2000-03-23 2002-11-05 The Regents Of The University Of California L-arginine and phosphodiesterase (PDE) inhibitor synergism
AU2001276403A1 (en) * 2000-07-12 2002-01-21 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Use of inhibitors to multidrug resistance protein 5 (mrp5) to enhance intracellular levels of cyclic nucleotides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005044244A2 *

Also Published As

Publication number Publication date
WO2005044244A2 (de) 2005-05-19
DE10352511A1 (de) 2005-06-16
WO2005044244A3 (de) 2006-10-05
US20070212366A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
Haserück et al. The plaque lipid lysophosphatidic acid stimulates platelet activation and platelet-monocyte aggregate formation in whole blood: involvement of P2Y1 and P2Y12 receptors
Klinkhardt et al. Clopidogrel but not aspirin reduces P‐selectin expression and formation of platelet‐leukocyte aggregates in patients with atherosclerotic vascular disease
Skoryatina et al. Impact of experimental development of arterial hypertension and dyslipidemia on intravascular activity of rats’ platelets
de Jong et al. Characterization of the phosphatidylserine-exposing subpopulation of sickle cells
Liu et al. Protective effects of circulating microvesicles derived from ischemic preconditioning on myocardial ischemia/reperfusion injury in rats by inhibiting endoplasmic reticulum stress
DE69937146T2 (de) Verfahren zur quantifizierung der blutplättchenaktivierung
Del Principe et al. PADGEM/GMP‐140 expression on platelet membranes from homozygous beta thalassaemic patients
WO2005044244A2 (de) Verwendung von mrp4-inhibitoren zur behandlung und/oder prophylaxe kardiovaskulärer erkrankungen
Cowan et al. Lipopolysaccharide internalization activates endotoxin-dependent signal transduction in cardiomyocytes
Kole et al. Homeostatic maintenance in excitability of tree shrew hippocampal CA3 pyramidal neurons after chronic stress
Ulker et al. Extracellular ATP activates eNOS and increases intracellular NO generation in Red Blood Cells
Banerjee et al. Autophagy in platelets
Wu et al. Hsp47 Inhibitor Col003 Attenuates Collagen-Induced Platelet Activation and Cerebral Ischemic–Reperfusion Injury in Rats
Kumar et al. Experimental oral iron administration: Histological investigations and expressions of iron handling proteins in rat retina with aging
Qin et al. Balancing role of nitric oxide in complement‐mediated activation of platelets from mCd59a and mCd59b double‐knockout mice
DE102006048300A1 (de) Inhibitoren des Blutgerinnungsfaktors Xa zur Verwendung als Antikoagulans
Bani et al. Inhibitory effects of relaxin on human basophils activated by stimulation of the Fcε receptor. The role of nitric oxide
McNicol et al. The empty sack syndrome: a platelet storage pool deficiency associated with empty dense granules
DE69722917T2 (de) Reagenzien für tests für mycophenolsäure
CH685959A5 (de) Diagnostische Testpackung zur Bestimmung von Proteinen.
Falcon et al. Platelet aggregation in whole blood-studies with a platelet counting technique-methodological aspects and some applications
Zhu et al. Autophagy in Load‐Induced Heart Disease
DE69736893T2 (de) Oxydativer stoffwechsel in glatten muskelzellen: verfahren in beziehung dazu
Shet et al. Morphological and functional platelet abnormalities in Berkeley sickle cell mice
EP4103614A1 (de) Agens zur behandlung und prophylaxe einer postischämischen gewebeschädigung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060505

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100205

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120601