EP1721134A1 - Weight sensor - Google Patents

Weight sensor

Info

Publication number
EP1721134A1
EP1721134A1 EP05732469A EP05732469A EP1721134A1 EP 1721134 A1 EP1721134 A1 EP 1721134A1 EP 05732469 A EP05732469 A EP 05732469A EP 05732469 A EP05732469 A EP 05732469A EP 1721134 A1 EP1721134 A1 EP 1721134A1
Authority
EP
European Patent Office
Prior art keywords
support
weight sensor
sensor according
sensor
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05732469A
Other languages
German (de)
French (fr)
Inventor
Benoît LINGLIN
Didier Anthoine-Milhomme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEB SA
Original Assignee
SEB SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEB SA filed Critical SEB SA
Publication of EP1721134A1 publication Critical patent/EP1721134A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/14Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
    • G01G3/1402Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/44Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports

Definitions

  • the present invention relates to a weight sensor, more particularly of the type using resistance strain gauges to detect deformations of a metal bar.
  • a weight sensor more particularly of the type using resistance strain gauges to detect deformations of a metal bar.
  • Such a sensor can advantageously be used in a device of the personal scale, baby scale or household scale type.
  • a weighing device such as a bathroom scale, comprises a plate whose upper surface is intended to receive the weight to be weighed and one or more sensors supporting on the one hand the plate and on the other hand bearing on a base or on the feet of the appliance.
  • the sensor (s) include strain gauges connected to an electronic circuit capable of converting the deformations undergone by the gauges into electrical signals and transforming these into digital values corresponding to the measured weight which is then displayed by the device.
  • a strain gauge sensor is known from document FR 2 587 484 where the gauges and their connections are deposited on a support produced in the form of a thin plate of a ceramic material.
  • the strain gauges are resistances applied by screen printing on one face of said support, its other face being fixed on the mechanical element whose tensions or deformations are to be detected locally.
  • This type of sensor is called a thick film technology sensor.
  • the support can be attached to the stressed element using screws or rivets, or even with a layer of adhesive, the deformations of the stressed element being transmitted to the strain gauge through its support.
  • Such a support with strain gauges is easy to manufacture and to apply to the stressed part, but it has been found that the type of fixing and the type of material of the support greatly influence the measurement accuracy of the sensor.
  • a resistive paste and conductive tracks are applied by means of an electrically insulating layer on a steel support constituting the mechanically stressed element.
  • the electrically insulating layer is a paste based on glass frit which is first applied to the support requested by a printing technique, the strain gauges and their connections then being applied by screen printing on said insulating layer.
  • the assembly thus prepared is baked at a temperature of about 750 ° to 900 ° C and the insulating layer is sintered with the upper surface of the support.
  • This production technique has several disadvantages, the main one being that one must handle the mechanically stressed part during the operations of depositing the strain gauges and their connections, which imposes significant manufacturing and flow organization constraints. .
  • the material of the metal support must be chosen so that it does not lose its mechanical properties with temperature.
  • the object of the present invention is to remedy these drawbacks at least in part and to propose a weight sensor comprising a metal bar comprising strain gauges deposited in a thick layer on an insulating support with improved mechanical properties, capable of providing a signal more important for the same stress applied to the sensor.
  • Another object of the invention is a weight sensor comprising a body metallic comprising strain gauges deposited in a thick layer on an insulating support, easy to handle, which can be applied to practically any type of metallic body, without limitation as to the type of material of the body and / or to the shape and dimensions of the latter , as well as increased sensitivity.
  • Another object of the invention is an easy to industrialize weight sensor, suitable for mass production for a lower manufacturing cost, while being reliable in operation.
  • metal body essentially stressed in bending includes the test body of a weight sensor, one end of which serves to fix the housing of the apparatus and the other receives the load applied to the plate. Such a body is subjected to a main stress in bending under the effect of the weight to be weighed applied to the platform, parasitic moments, such as torsional moments which can also occur due to the point of application of the weight on the platform located at a distance. of the sensor.
  • support made of an electrically insulating material is understood a substantially flat plate or sheet, made of a ceramic material on which one can deposit, for example by screen printing, the different parts of the resistive circuit of the strain gauges, this support being sufficiently rigid so that it can be grasped and manipulated, with a view to its transfer onto the mechanically stressed body, without tearing and without undergoing permanent deformation.
  • This makes it possible to carry out the delicate operation of depositing the resistive circuit and of baking at high temperature away from the part or the body which is stressed, which is, generally, of complex shape and of large dimensions related to said support, therefore difficult to integrate into an automated manufacturing flow.
  • each support can then be separated from the others and attached by bonding to the metal body of which one wants to measure the tensions or deformations.
  • Fixing by gluing is particularly advantageous in such an embodiment, the intermediate glue layer, well calibrated, playing the role of stress transmitter of the body biased towards the support of the gauges.
  • the metallic body that is essentially stressed in bending can be likened to a beam embedded at one of its ends, the other being subjected to a load whose value is to be determined by the sensor.
  • the amplitude of deformation of such a beam depends on the value of the applied load and its section inertia.
  • a rigid support or plate, less deformable than the body of the beam is made integral with one of the faces of the beam, the deformations of the assembly have a lesser amplitude.
  • said body has a rectangular section of thickness less than or equal to 15 mm.
  • said body is made of steel, a material chosen for its properties of mechanical strength and elasticity.
  • said support is chosen from the group comprising a zirconia or yttria or cordierite or steatite ceramic.
  • a zirconia ceramic has a Young's modulus of 210 GPa, which is around 30% less than alumina, which limits the harmful effect on the sensitivity of the sensor.
  • a zirconia ceramic is less friable than alumina, which can therefore be handled more easily.
  • the coefficient of linear expansion is greater than that of alumina, which limits the stresses in the intermediate adhesive layer.
  • Such supports made of ceramic materials can be obtained by sintering in the form of a plate of calibrated thickness, a plate which is then cut to the desired dimensions.
  • said support is produced in a ceramic baked at low temperature.
  • Such a material may advantageously be a laminated type tape 951 Green Tape ® from DuPont having a Young's modulus of 152 GPa.
  • a ceramic generally comprises approximately 80% of alumina and 20% of glass frit with an organic binder. Such a ceramic is more particularly suitable for use with test bodies of small cross section, without degrading the sensitivity of the sensors.
  • such a ceramic baked at low temperature can undergo a first firing step followed by a second operation during which it is cut or precut to the dimensions of the support on which the screen printing of the conductive and resistive tracks. This screen printing is then followed by baking, before the support is bonded to the test body.
  • the firing of such a cured ceramic strip can be carried out at the same time as that of the screen-printed paste deposited on said strip.
  • the thickness of said support is between 0.05 and 0.5 mm.
  • the electrically insulating support supporting the strain gauges must have the thinnest possible thickness in order to better transmit the deformations of the test body, but while being easy to handle during the operations prior to its bonding on the test body and having effective electrical insulation with regard to the electrical voltages involved and with regard to the expected longevity of the sensors.
  • the weight sensor of the invention comprises a test body in the form of a bar carrying strain gauges, one end of said bar being connected to a fixing element, the other end being connected to a load application element, where the test body flexes in an S shape with a symmetrical double overhang.
  • the weight sensor of the invention is produced in the form of a metal plate comprising a fixing element in the form of a frame or a U, connected in the middle of its base to a first end of a test body extending inside the fixing element, the opposite end of the test body being connected to a U-shaped load receiving element, extending symmetrically with respect to the body, with the arms parallel to the body and oriented towards said first end of the body.
  • Such a sensor makes it possible to produce a weighing device with a thin profile, while being very precise and reliable in operation.
  • An electronic weighing device may include at least one weight sensor of the invention.
  • such an apparatus can be provided with four sensors then with a test body of reduced section, while retaining good measurement accuracy.
  • FIG. 1a schematically shows a sensor of the state of the art in longitudinal section
  • Figure 1b is the cross section of the sensor of Figure 1a;
  • FIG. 2 is a perspective view of an embodiment of a weight sensor using the features of the invention
  • FIG. 3 is a cross-sectional view of the test body of the sensor of Figure 2;
  • FIG. 4 is a graph illustrating the sensitivity curves of a sensor weight as a function of the section inertia of the test body for different materials of the gauge support.
  • FIG. 1a A force sensor essentially stressed in bending is represented in FIG. 1a by a symmetrical composite beam embedded at one of its ends, the load being able to be applied to the free end.
  • This composite beam consists of two different materials: a body 1 made of steel and a support 2 made of alumina applied to the upper part of the body 1. Support 2 is applied by gluing and it can be assumed that there is no no sliding between the support 2 and the body 1, so that one can use the theory of simple beams according to which the elongations and contractions of the longitudinal fibers are proportional to the distance which separate them from the neutral axis .
  • FIG. 1 b the rectangular section of the body 1 of width b and height a and that of the support 2 of width b and thickness ⁇ j is noted.
  • FIG. 2 is a perspective view of a weight sensor fitted to a scale as described in document FR 2 734 050 in the name of the applicant.
  • the sensor comprises a fixing element 3 to the weight receiving plate of the device, more particularly in the form of a frame 3a.
  • the frame 3a is connected by a test bar or body 1 to a U-shaped load application element 4.
  • the test body When the load is applied to the two opposite arms 4a, 4b parallel to the body 1 of the element 4, the test body 1, mounted in double overhang, deforms taking a symmetrical S shape.
  • a support 2 carrying strain gauges 6 is applied to the body 1 over all or part of its length so that the deformations of the body 1 are transmitted to the stress gauges through the support 2.
  • the stress gauges 6 are positioned in the deformation zones maximum of the body 1 in order to give more sensitivity to the sensor.
  • Figure 3 illustrates a cross section of the body 1 of the sensor of Figure 2 where the support 2 made of a ceramic material is applied via a layer of glue 5 on the body 1. Strain gauges 6 and conductive tracks 7 ensuring their connection to the electrical circuit of the device were previously applied by screen printing of resistive paste and respectively of conductive paste on the support 2.
  • E is the Young's modulus of body 1 (equal to 210 GPa for a steel body); b is the width of the body 1 and a is the height of the body 1.
  • FIG. 4 illustrates by a graphic representation the variation of the slope or of the sensitivity of a sensor as a function of the sectional inertia of its test body.
  • curve A represents the theoretical slope of a sensor of the type described.
  • Curves B, C and D are representations of the actual slopes measured with a sensor of the type described, but using different materials for its support 2.
  • Curve B is the real curve of a sensor of the state of the art using an alumina support 2.
  • the support 2 is made of a material which has a Young's modulus equal to or less than that of the body 1, in the occurrence of a ceramic baked at low temperature (called LTCC) or a zirconia ceramic on a body 1 of steel.
  • LTCC ceramic baked at low temperature
  • zirconia ceramic on a body 1 of steel.
  • curve D is the actual curve of a sensor according to the invention comprising a support 2 made of ceramic baked at low temperature or LTCC.
  • Curve C is the actual curve of a sensor according to the invention using a zirconia ceramic as the material of support 2.
  • a first step consists in obtaining the metal body of the sensor, for example according to the contour shown in FIG. 2, for example by stamping or by cutting out a matrix from a flat metal sheet.
  • the sintered ceramic support (this support being a zirconia, yttria, cordierite or sintered soapstone ceramic or an already fired LTCC), in the form of a fairly large sheet, is precut to the dimensions of a individual sensor support.
  • a first screen printing operation consists of apply the conductive tracks by applying a conductive paste, for example based on silver. This screen printing is followed by baking at around 850 ° C.
  • a second screen printing step consists in applying a resistive paste, for example a glass frit with metallic particles, on the ceramic support followed by a second firing at 850 ° C.
  • the precut blanks thus obtained are then cut and attached by bonding to the test body of the sensor.
  • the adhesive is, for example, an epoxy adhesive which crosslinks at 200-250 ° C.
  • the thickness of the adhesive layer is well calibrated in order to reduce its shearing when the test body drops to room temperature in order to be able to transmit the stresses coming from the test body towards the ceramic support and therefore the strain gauges .
  • the calibrated thickness of the adhesive layer also makes it possible to obtain a good hysteresis and a good return to zero of the sensor.
  • insulating support a strip laminated in a ceramic of the LTCC type on which a deposition is carried out by screen printing before the firing of the ceramic. Baking is then carried out at approximately 850 ° C. of the support assembly and screen-printed tracks deposited on said support.
  • the assembly thus obtained may optionally undergo an additional screen printing step and it is then applied by gluing to the test body.

Abstract

The invention relates to a weight sensor comprising strain gauges which are deposited in thick films on a support (2). The support is made from an electrically-insulating material which is intended to be applied to a metallic body (1) that is essentially subject to bending. According to the invention, the support (2) comprises a ceramic material which has a Young's modulus E2 that is equal to or less than that E1 of the biased metallic body (1) and which is applied to the latter by means of gluing.

Description

CAPTEUR DE POIDS WEIGHT SENSOR
La présente invention est relative à un capteur de poids, plus particulièrement du type utilisant des jauges de contrainte à résistance pour détecter les déformations d'un barreau métallique. Un tel capteur peut avantageusement être utilisé dans un appareil du type pèse-personne, pèse-bébé ou balance de ménage.The present invention relates to a weight sensor, more particularly of the type using resistance strain gauges to detect deformations of a metal bar. Such a sensor can advantageously be used in a device of the personal scale, baby scale or household scale type.
Un appareil de pesage, tel un pèse-personne, comprend un plateau dont la surface supérieure est destinée à recevoir le poids à peser et un ou plusieurs capteurs supportant d'une part le plateau et d'autre part prenant appui sur un socle ou sur les pieds de l'appareil. Le ou les capteurs comportent des jauges d'extensométrie reliées à un circuit électronique apte à convertir les déformations subies par les jauges en signaux électriques et transformer ces derniers en valeurs numériques correspondant au poids mesuré qui est ensuite affiché par l'appareil.A weighing device, such as a bathroom scale, comprises a plate whose upper surface is intended to receive the weight to be weighed and one or more sensors supporting on the one hand the plate and on the other hand bearing on a base or on the feet of the appliance. The sensor (s) include strain gauges connected to an electronic circuit capable of converting the deformations undergone by the gauges into electrical signals and transforming these into digital values corresponding to the measured weight which is then displayed by the device.
Un capteur à jauges de contrainte est connu du document FR 2 587 484 où les jauges et leurs connexions sont déposées sur un support réalisé sous forme d'une plaquette mince en un matériau céramique. Les jauges de contrainte sont des résistances appliquées par sérigraphie sur une face dudit support, son autre face étant fixée sur l'élément mécanique dont les tensions ou déformations sont à détecter localement. Ce type de capteur est dit capteur de technologie couche épaisse. La fixation du support sur l'élément sollicité peut se faire en utilisant des vis ou rivets, voire moyennant une couche de colle, les déformations de l'élément sollicité étant transmises à la jauge de contrainte à travers son support. Un tel support à jauges de contrainte est facile à fabriquer et à appliquer sur la pièce sollicitée, mais il s'est avéré que le type de fixation et le type de matériau du support influencent en grande mesure la précision de mesure du capteur.A strain gauge sensor is known from document FR 2 587 484 where the gauges and their connections are deposited on a support produced in the form of a thin plate of a ceramic material. The strain gauges are resistances applied by screen printing on one face of said support, its other face being fixed on the mechanical element whose tensions or deformations are to be detected locally. This type of sensor is called a thick film technology sensor. The support can be attached to the stressed element using screws or rivets, or even with a layer of adhesive, the deformations of the stressed element being transmitted to the strain gauge through its support. Such a support with strain gauges is easy to manufacture and to apply to the stressed part, but it has been found that the type of fixing and the type of material of the support greatly influence the measurement accuracy of the sensor.
Le document FR 2 734 050 au nom de la demanderesse décrit un capteur de poids appliqué à un appareil de pesage. Le capteur est plat et comporte un barreau de flexion sur lequel est collé un support en céramique. Dans les applications de la demanderesse, les jauges d'extensométrie et leur connexions sont disposées par sérigraphie sur un support en alumine. Le support est ensuite rapporté par collage sur le barreau du capteur, réalisé généralement en acier. Un tel mode de réalisation du capteur est aisé à mettre en œuvre, mais il présente l'inconvénient d'utiliser un support qui, tout en étant un bon isolant électrique, possède des propriétés mécaniques qui atténuent fortement les signaux électriques fournis par les circuits des jauges.Document FR 2 734 050 in the name of the applicant describes a weight sensor applied to a weighing device. The sensor is flat and has a bending bar on which a ceramic support is stuck. In the Applicant's applications, the strain gauges and their connections are arranged by screen printing on an alumina support. The support is then attached by bonding to the sensor bar, generally made of steel. Such an embodiment of the sensor is easy to implement, but it has the drawback of using a support which, while being a good electrical insulator, has mechanical properties which strongly attenuate the electrical signals supplied by the circuits of the gauges.
Un autre capteur à jauges de contrainte de technologie couche épaisse utilisé pour mesurer un couple mécanique est décrit dans le document WO 99/22210. Une pâte résistive et des pistes conductrices sont appliquées moyennant une couche électriquement isolante sur un support en acier constituant l'élément sollicité mécaniquement. La couche électriquement isolante est une pâte à base de fritte de verre qui est appliquée d'abord sur le support sollicité par une technique d'impression, les jauges de contrainte ainsi que leurs connexions étant ensuite appliquées par sérigraphie sur ladite couche isolante. L'ensemble ainsi préparé est cuit à une température d'environ 750° à 900° C et la couche isolante est frittée avec la surface supérieure du support. Cette technique de réalisation présente plusieurs désavantages, le principal étant que l'on doit manipuler la pièce sollicitée mécaniquement lors des opérations de dépôt des jauges de contrainte et de leurs connexions, ce qui impose des contraintes de fabrication et d'organisation du flux non négligeables. Par ailleurs, vu les températures de frittage très élevées, le matériau du support métallique doit être choisi de manière à ce qu'il ne perde pas ses propriétés mécaniques avec la température.Another thick-film technology strain gauge sensor used to measure mechanical torque is described in document WO 99/22210. A resistive paste and conductive tracks are applied by means of an electrically insulating layer on a steel support constituting the mechanically stressed element. The electrically insulating layer is a paste based on glass frit which is first applied to the support requested by a printing technique, the strain gauges and their connections then being applied by screen printing on said insulating layer. The assembly thus prepared is baked at a temperature of about 750 ° to 900 ° C and the insulating layer is sintered with the upper surface of the support. This production technique has several disadvantages, the main one being that one must handle the mechanically stressed part during the operations of depositing the strain gauges and their connections, which imposes significant manufacturing and flow organization constraints. . Furthermore, in view of the very high sintering temperatures, the material of the metal support must be chosen so that it does not lose its mechanical properties with temperature.
Le but de la présente invention est de remédier au moins en partie à ces inconvénients et de proposer un capteur de poids comportant un barreau métallique comprenant des jauges de contrainte déposées en couche épaisse sur un support isolant à propriétés mécaniques améliorées, apte à fournir un signal plus important pour une même contrainte appliquée au capteur.The object of the present invention is to remedy these drawbacks at least in part and to propose a weight sensor comprising a metal bar comprising strain gauges deposited in a thick layer on an insulating support with improved mechanical properties, capable of providing a signal more important for the same stress applied to the sensor.
Un autre but de l'invention est un capteur de poids comportant un corps métallique comprenant des jauges de contrainte déposées en couche épaisse sur un support isolant, facilement manipulable, pouvant être appliqué sur pratiquement tout type de corps métallique, sans limitation quant au type du matériau du corps et/ou à la forme et aux dimensions de ce dernier, tout en tant d'une sensibilité accrue.Another object of the invention is a weight sensor comprising a body metallic comprising strain gauges deposited in a thick layer on an insulating support, easy to handle, which can be applied to practically any type of metallic body, without limitation as to the type of material of the body and / or to the shape and dimensions of the latter , as well as increased sensitivity.
Un autre but de l'invention est un capteur de poids facile à industrialiser, adapté à une fabrication en grande série pour un coût de fabrication moindre, tout en étant fiable en fonctionnement.Another object of the invention is an easy to industrialize weight sensor, suitable for mass production for a lower manufacturing cost, while being reliable in operation.
Ces buts sont atteints avec un capteur de poids à jauges de contrainte déposées en couche épaisse sur un support en un matériau électriquement isolant destiné à être appliqué sur un corps métallique sollicité essentiellement en flexion, du fait que ledit support est un matériau céramique ayant un module de Young égal ou inférieur à celui du corps métallique sollicité et qu'il est appliqué par collage sur ce dernier.These goals are achieved with a weight sensor with strain gauges deposited in a thick layer on a support made of an electrically insulating material intended to be applied to a metal body stressed essentially in bending, since said support is a ceramic material having a module of Young equal to or less than that of the metal body requested and that it is applied by gluing on the latter.
Par corps métallique sollicité essentiellement en flexion, on comprend le corps d'épreuve d'un capteur de poids, dont l'une des extrémités sert de fixation au boîtier de l'appareil et l'autre reçoit la charge appliquée sur le plateau. Un tel corps est soumis à une sollicitation principale en flexion sous l'effet du poids à peser appliqué sur le plateau, des moments parasites, tels des moments de torsion pouvant également intervenir dus au point d'application du poids sur le plateau situé à distance du capteur.The expression “metal body essentially stressed in bending” includes the test body of a weight sensor, one end of which serves to fix the housing of the apparatus and the other receives the load applied to the plate. Such a body is subjected to a main stress in bending under the effect of the weight to be weighed applied to the platform, parasitic moments, such as torsional moments which can also occur due to the point of application of the weight on the platform located at a distance. of the sensor.
Par support en un matériau électriquement isolant on comprend une plaquette ou une feuille, sensiblement plane, réalisée en un matériau céramique sur laquelle on peut déposer, par exemple par sérigraphie, les différentes parties du circuit résistif des jauges de contrainte, ce support étant suffisamment rigide pour qu'il puisse être saisi et manipulé, en vue de son transfert sur le corps sollicité mécaniquement, sans se déchirer et sans subir de déformations permanentes. Ceci permet de réaliser l'opération délicate de dépôt du circuit résistif et de cuisson à haute température à l'écart de la pièce ou du corps sollicité qui est, généralement, de forme complexe et de dimensions importantes rapportées audit support, donc difficile à intégrer dans un flux de fabrication automatisé. Plusieurs supports peuvent ainsi être traités simultanément lors d'un dépôt automatique pour une fabrication en grande série, chaque support pouvant ensuite être désolidarisé des autres et rapporté par collage sur le corps métallique dont on veut mesurer les tensions ou les déformations. La fixation par collage est particulièrement avantageuse dans une telle réalisation, la couche de colle intermédiaire, bien calibrée, jouant le rôle de transmetteur de contrainte du corps sollicité vers le support des jauges.By support made of an electrically insulating material is understood a substantially flat plate or sheet, made of a ceramic material on which one can deposit, for example by screen printing, the different parts of the resistive circuit of the strain gauges, this support being sufficiently rigid so that it can be grasped and manipulated, with a view to its transfer onto the mechanically stressed body, without tearing and without undergoing permanent deformation. This makes it possible to carry out the delicate operation of depositing the resistive circuit and of baking at high temperature away from the part or the body which is stressed, which is, generally, of complex shape and of large dimensions related to said support, therefore difficult to integrate into an automated manufacturing flow. Several supports can thus be treated simultaneously during an automatic deposition for mass production, each support can then be separated from the others and attached by bonding to the metal body of which one wants to measure the tensions or deformations. Fixing by gluing is particularly advantageous in such an embodiment, the intermediate glue layer, well calibrated, playing the role of stress transmitter of the body biased towards the support of the gauges.
Le corps métallique sollicité essentiellement en flexion peut être assimilé à une poutre encastrée à l'une de ses extrémités, l'autre étant soumise à une charge dont la valeur est à déterminer par le capteur. L'amplitude de déformation d'une telle poutre dépend de la valeur de la charge appliquée et de son inertie de section. Lorsqu'un support ou plaquette rigide, moins déformable que le corps de la poutre, est rendue solidaire de l'une des faces de la poutre, les déformations de l'ensemble ont une amplitude moindre. Ainsi, il a été constaté lors des tests effectués en laboratoire, qu'un barreau en acier (ayant un module de Young de 210 GPa) recouvert d'une plaquette en alumine (de module de Young de 340 GPa) se déforme beaucoup moins que le barreau seul, sans plaquette, soumis à une même charge. Ceci a une influence directe sur la diminution du signal perçu par le capteur et, donc, sur la sensibilité de ce dernier.The metallic body that is essentially stressed in bending can be likened to a beam embedded at one of its ends, the other being subjected to a load whose value is to be determined by the sensor. The amplitude of deformation of such a beam depends on the value of the applied load and its section inertia. When a rigid support or plate, less deformable than the body of the beam, is made integral with one of the faces of the beam, the deformations of the assembly have a lesser amplitude. Thus, it was noted during tests carried out in the laboratory, that a steel bar (having a Young's modulus of 210 GPa) covered with an alumina plate (Young's modulus of 340 GPa) deforms much less than the bar alone, without plate, subjected to the same load. This has a direct influence on the reduction of the signal perceived by the sensor and, therefore, on the sensitivity of the latter.
Or, avec un capteur de l'invention, il a été constaté que, pour un support ou plaquette de module de Young égal ou inférieur à celui du corps métallique de la poutre, la pente calculée du capteur est très proche de la pente réelle mesurée lors des tests effectués en laboratoire, tel qu'il sera expliqué par la suite.However, with a sensor of the invention, it has been found that, for a support or plate of Young's module equal to or less than that of the metal body of the beam, the calculated slope of the sensor is very close to the actual measured slope during laboratory tests, as will be explained later.
Avantageusement, ledit corps présente une section rectangulaire d'épaisseur inférieure ou égale à 15 mm.Advantageously, said body has a rectangular section of thickness less than or equal to 15 mm.
Il a été montré lors de tests effectués en laboratoire que la perte de signal du capteur augmente avec le rapport E2 / Ei des modules de Young du support et du corps et diminue avec l'augmentation de l'inertie de section du corps. Ainsi, pour un corps d'épreuve de section carrée de 15mm x 15mm, la perte de signal par rapport à une valeur idéale calculée est très faible, mais cette perte de signal s'amplifie pour des corps d'épreuve d'épaisseur moindre sur lesquels est appliqué un support céramique ayant un module de Young élevé.It has been shown in laboratory tests that signal loss from sensor increases with the E 2 / Ei ratio of the Young's moduli of the support and the body and decreases with the increase in the sectional inertia of the body. Thus, for a test body of square section of 15mm x 15mm, the loss of signal compared to a calculated ideal value is very small, but this loss of signal is amplified for test bodies of lesser thickness on which is applied a ceramic support having a high Young's modulus.
Utilement, ledit corps est réalisé en acier, matériau choisi pour ses propriétés de résistance mécanique et d'élasticité.Usefully, said body is made of steel, a material chosen for its properties of mechanical strength and elasticity.
Selon un premier mode de réalisation de l'invention, ledit support est choisi dans le groupe comprenant une céramique zircone ou yttria ou cordiérite ou stéatite.According to a first embodiment of the invention, said support is chosen from the group comprising a zirconia or yttria or cordierite or steatite ceramic.
Une céramique zircone présente un module de Young de 210 GPa, soit d'environ 30% de moins que l'alumine, ce qui limite l'effet néfaste sur la sensibilité du capteur. Par ailleurs, une céramique zircone est moins friable que l'alumine, pouvant ainsi être manipulée plus facilement. De surcroît, le coefficient de dilatation linéaire est plus important que celui de l'alumine, ce qui limite les contraintes dans la couche de colle intermédiaire.A zirconia ceramic has a Young's modulus of 210 GPa, which is around 30% less than alumina, which limits the harmful effect on the sensitivity of the sensor. In addition, a zirconia ceramic is less friable than alumina, which can therefore be handled more easily. In addition, the coefficient of linear expansion is greater than that of alumina, which limits the stresses in the intermediate adhesive layer.
D'autres matériaux céramiques tels l'yttria et la cordiérite ont un module de Young d'environ 140 GPa et la stéatite présente un module de Young de 120 GPa. De par leur faible valeur du module de Young comparée à celle du corps en acier, ces matériaux, lorsque utilisés en tant que supports des jauges, permettent à ces dernières de fournir un signal réel, non atténué, au circuit électrique de mesure et cela même pour des corps d'épreuve de section faible.Other ceramic materials such as yttria and cordierite have a Young's modulus of around 140 GPa and soapstone has a Young's modulus of 120 GPa. Due to their low Young's modulus value compared to that of the steel body, these materials, when used as gauge supports, allow the latter to provide a real signal, not attenuated, to the electrical measurement circuit and even for test bodies of small cross-section.
De tels supports en matériaux céramiques peuvent être obtenus par frittage sous forme d'une plaque d'épaisseur calibrée, plaque qui est ensuite découpée aux dimensions souhaitées.Such supports made of ceramic materials can be obtained by sintering in the form of a plate of calibrated thickness, a plate which is then cut to the desired dimensions.
Selon un deuxième mode de réalisation de l'invention, ledit support est réalisé en une céramique cocuite à basse température.According to a second embodiment of the invention, said support is produced in a ceramic baked at low temperature.
Un tel matériau peut avantageusement être une bande laminée du type 951 Green Tape ® de DuPont ayant un module de Young de 152 GPa. Une telle céramique comprend généralement environ 80% d'alumine et 20% de fritte de verre avec un liant organique. Une telle céramique est plus particulièrement adaptée à l'utilisation avec des corps d'épreuve de section faible, sans dégrader la sensibilité des capteurs.Such a material may advantageously be a laminated type tape 951 Green Tape ® from DuPont having a Young's modulus of 152 GPa. Such a ceramic generally comprises approximately 80% of alumina and 20% of glass frit with an organic binder. Such a ceramic is more particularly suitable for use with test bodies of small cross section, without degrading the sensitivity of the sensors.
Lors de son utilisation en tant que support des jauges, une telle céramique cocuite à basse température peut subir une première étape de cuisson suivie d'une seconde opération lors de laquelle elle est coupée ou prédécoupée aux dimensions du support sur lequel on pratique la sérigraphie des pistes conductrices et résistives. Cette sérigraphie est ensuite suivie d'une cuisson, avant le collage du support sur le corps d'épreuve. Dans une variante de l'invention, la cuisson d'une telle bande en céramique cocuite peut être réalisée en même temps que celle de la pâte sérigraphiée déposée sur ladite bande.When used as a gauge support, such a ceramic baked at low temperature can undergo a first firing step followed by a second operation during which it is cut or precut to the dimensions of the support on which the screen printing of the conductive and resistive tracks. This screen printing is then followed by baking, before the support is bonded to the test body. In a variant of the invention, the firing of such a cured ceramic strip can be carried out at the same time as that of the screen-printed paste deposited on said strip.
Utilement, l'épaisseur dudit support est comprise entre 0.05 et 0.5 mm.Usefully, the thickness of said support is between 0.05 and 0.5 mm.
Le support électriquement isolant supportant les jauges de contrainte doit avoir une épaisseur la plus fine possible afin de mieux transmettre les déformations du corps d'épreuve, mais tout en étant facilement manipulable lors des opérations préalables à son collage sur le corps d'épreuve et présentant une isolation électrique effective en regard des tensions électriques mises en jeu et en regard de la longévité attendue des capteurs.The electrically insulating support supporting the strain gauges must have the thinnest possible thickness in order to better transmit the deformations of the test body, but while being easy to handle during the operations prior to its bonding on the test body and having effective electrical insulation with regard to the electrical voltages involved and with regard to the expected longevity of the sensors.
De préférence, le capteur de poids de l'invention comprend un corps d'épreuve en forme de barreau portant des jauges de contrainte, l'une des extrémités dudit barreau étant reliée à un élément de fixation, l'autre extrémité étant reliée à un élément d'application de charge, où le corps d'épreuve fléchit suivant une forme en S en double porte-à-faux symétrique. En plaçant les jauges de contrainte dans les zones du corps d'épreuve déformé monté en double porte-à-faux où les rayons de courbures dus à la double flexion de la poutre sont les plus petits, on peut donc obtenir des signaux amplifiés, plus faciles à traiter par la suite par le circuit électrique de l'appareil.Preferably, the weight sensor of the invention comprises a test body in the form of a bar carrying strain gauges, one end of said bar being connected to a fixing element, the other end being connected to a load application element, where the test body flexes in an S shape with a symmetrical double overhang. By placing the strain gauges in the zones of the deformed test body mounted in double overhang where the radii of curvature due to the double bending of the beam are the smallest, we can therefore obtain amplified signals, more easy to process subsequently by the electrical circuit of the device.
Avantageusement, le capteur de poids de l'invention est réalisé sous forme de plaque métallique comportant un élément de fixation en forme de cadre ou de U, relié au milieu de sa base à une première extrémité d'un corps d'épreuve s'étendant à l'intérieur de l'élément de fixation, l'extrémité opposée du corps d'épreuve étant reliée à un élément de réception de charge en forme de U, s'étendant de façon symétrique par rapport au corps, avec les bras parallèles au corps et orientés vers ladite première extrémité du corps.Advantageously, the weight sensor of the invention is produced in the form of a metal plate comprising a fixing element in the form of a frame or a U, connected in the middle of its base to a first end of a test body extending inside the fixing element, the opposite end of the test body being connected to a U-shaped load receiving element, extending symmetrically with respect to the body, with the arms parallel to the body and oriented towards said first end of the body.
Un tel capteur permet de réaliser un appareil de pesage de profil mince, tout en étant très précis et fiable en fonctionnement.Such a sensor makes it possible to produce a weighing device with a thin profile, while being very precise and reliable in operation.
Un appareil de pesage électronique peut comporter au moins un capteur de poids de l'invention. Avantageusement, un tel appareil peut être muni de quatre capteurs alors de corps d'épreuve de section réduite, tout en gardant une bonne précision de mesure.An electronic weighing device may include at least one weight sensor of the invention. Advantageously, such an apparatus can be provided with four sensors then with a test body of reduced section, while retaining good measurement accuracy.
L'invention sera mieux comprise à l'étude des modes de réalisation pris à titre nullement limitatif et illustrés dans les figures annexées dans lesquelles :The invention will be better understood from the study of the embodiments taken without any limitation being implied and illustrated in the appended figures in which:
- la figure 1a représente schématiquement un capteur de l'état de la technique en section longitudinale;- Figure 1a schematically shows a sensor of the state of the art in longitudinal section;
- la figure 1 b est la section transversale du capteur de la figure 1 a;- Figure 1b is the cross section of the sensor of Figure 1a;
- la figure 1c est la section transformée, théorique, de celle représentée à la figure 1 b;- Figure 1c is the transformed, theoretical section of that shown in Figure 1b;
- la figure 2 est une vue en perspective d'un exemple de réalisation d'un capteur de poids utilisant les caractéristiques de l'invention;- Figure 2 is a perspective view of an embodiment of a weight sensor using the features of the invention;
- la figure 3 est une vue en coupe transversale du corps d'épreuve du capteur de la figure 2;- Figure 3 is a cross-sectional view of the test body of the sensor of Figure 2;
- la figure 4 est un graphique illustrant les courbes de sensibilité d'un capteur de poids en fonction de l'inertie de section du corps d'épreuve pour différents matériaux du support des jauges.- Figure 4 is a graph illustrating the sensitivity curves of a sensor weight as a function of the section inertia of the test body for different materials of the gauge support.
Un capteur de force sollicité essentiellement en flexion est représenté en figure 1a par une poutre composée symétrique encastrée à l'une des ses extrémités, la charge pouvant être appliquée à l'extrémité libre. Cette poutre composée est constituée de deux matériaux différents : un corps 1 en acier et un support 2 en alumine appliqué sur la partie supérieure du corps 1. Le support 2 est appliqué par collage et l'on peut supposer qu'il n'y a pas de glissement entre le support 2 et le corps 1 , de manière à ce que l'on puisse utiliser la théorie des poutres simples selon laquelle les allongements et les contractions des fibres longitudinales sont proportionnels à la distance qui les séparent de l'axe neutre. En figure 1 b on remarque la section rectangulaire du corps 1 de largeur b et de hauteur a et celle du support 2 de largeur b et d'épaisseur βj. En figure 1c est représentée la transformée de la section de la figure 1 b, le module d'élasticité E2 de l'alumine étant supérieur à celui E de l'acier, ce qui équivaut, du point de vue de la flexion à une âme en acier beaucoup plus large, de largeur bi et d'épaisseur βj. Si l'on veut que le moment résistant des efforts internes reste inchangé pour une courbure donnée, l'épaisseur bi de l'âme doit être telle que A force sensor essentially stressed in bending is represented in FIG. 1a by a symmetrical composite beam embedded at one of its ends, the load being able to be applied to the free end. This composite beam consists of two different materials: a body 1 made of steel and a support 2 made of alumina applied to the upper part of the body 1. Support 2 is applied by gluing and it can be assumed that there is no no sliding between the support 2 and the body 1, so that one can use the theory of simple beams according to which the elongations and contractions of the longitudinal fibers are proportional to the distance which separate them from the neutral axis . In FIG. 1 b, the rectangular section of the body 1 of width b and height a and that of the support 2 of width b and thickness β j is noted. In Figure 1c is shown the transform of the section of Figure 1b, the elastic modulus E 2 of alumina being greater than that E of steel, which is equivalent, from the point of view of bending to a much wider steel core, of width bi and thickness β j . If we want the resistance moment of internal forces to remain unchanged for a given curvature, the thickness bi of the core must be such that
La figure 2 est une vue en perspective d'un capteur de poids équipant un pèse- personne tel que décrit dans le document FR 2 734 050 au nom de la demanderesse. Le capteur comporte un élément de fixation 3 au plateau de réception de poids de l'appareil, plus particulièrement sous forme d'un cadre 3a. Le cadre 3a est relié par un barreau ou corps 1 d'épreuve à un élément 4 d'application de charge en forme de U. Lors de l'application de la charge sur les deux bras opposés 4a, 4b parallèles au corps 1 de l'élément 4, le corps 1 d'épreuve, monté en double porte à faux, se déforme prenant une forme en S symétrique. Un support 2 portant des jauges de contrainte 6 est appliqué sur le corps 1 sur toute ou partie de sa longueur de manière à ce que les déformations du corps 1 soient transmises aux jauges de contrainte à travers le support 2. Les jauges de contrainte 6 sont positionnées dans les zones de déformation maximale du corps 1 afin de conférer plus de sensibilité au capteur.FIG. 2 is a perspective view of a weight sensor fitted to a scale as described in document FR 2 734 050 in the name of the applicant. The sensor comprises a fixing element 3 to the weight receiving plate of the device, more particularly in the form of a frame 3a. The frame 3a is connected by a test bar or body 1 to a U-shaped load application element 4. When the load is applied to the two opposite arms 4a, 4b parallel to the body 1 of the element 4, the test body 1, mounted in double overhang, deforms taking a symmetrical S shape. A support 2 carrying strain gauges 6 is applied to the body 1 over all or part of its length so that the deformations of the body 1 are transmitted to the stress gauges through the support 2. The stress gauges 6 are positioned in the deformation zones maximum of the body 1 in order to give more sensitivity to the sensor.
La figure 3 illustre une section transversale du corps 1 du capteur de la figure 2 où le support 2 réalisé en un matériau céramique est appliqué via une couche de colle 5 sur le corps 1. Des jauges de contrainte 6 et des pistes conductrices 7 assurant leur connexion au circuit électrique de l'appareil ont été préalablement appliquées par sérigraphie de pâte résistive et respectivement de pâte conductrice sur le support 2.Figure 3 illustrates a cross section of the body 1 of the sensor of Figure 2 where the support 2 made of a ceramic material is applied via a layer of glue 5 on the body 1. Strain gauges 6 and conductive tracks 7 ensuring their connection to the electrical circuit of the device were previously applied by screen printing of resistive paste and respectively of conductive paste on the support 2.
Dans le cadre d'un tel capteur décrit à titre d'exemple, deux jauges 6 reliées en demi pont sont appliquées sur le corps 1 d'épreuve. La pente théorique ou calculée d'un tel capteur est donnée par la formule : Pente théorique = 3*k*d / 2*E*b*a2 où k est le coefficient de jauge des résistances qui est fonction du type de pâte résistive utilisée (égal à 10 dans ce cas) ; d est l'entraxe des jauges ;In the context of such a sensor described by way of example, two gauges 6 connected in half-bridge are applied to the test body 1. The theoretical or calculated slope of such a sensor is given by the formula: Theoretical slope = 3 * k * d / 2 * E * b * a 2 where k is the coefficient of resistance gauge which is a function of the type of resistive paste used (equal to 10 in this case); d is the distance between the gauges;
E est le module de Young du corps 1 (égal à 210 GPa pour un corps en acier); b est la largeur du corps 1 et a est la hauteur du corps 1.E is the Young's modulus of body 1 (equal to 210 GPa for a steel body); b is the width of the body 1 and a is the height of the body 1.
Cette pente théorique correspond au comportement idéal d'un capteur, elle ne prend pas en compte la raideur apportée par le support 2.This theoretical slope corresponds to the ideal behavior of a sensor, it does not take into account the stiffness provided by the support 2.
La figure 4 illustre par une représentation graphique la variation de la pente ou de la sensibilité d'un capteur en fonction de l'inertie de section de son corps d'épreuve. Ainsi, la courbe A représente la pente théorique d'un capteur du type décrit. Les courbes B, C et D sont les représentations des pentes réelles mesurées avec un capteur du type décrit, mais en utilisant différents matériaux pour son support 2. La courbe B est la courbe réelle d'un capteur de l'état de la technique utilisant un support 2 en alumine.FIG. 4 illustrates by a graphic representation the variation of the slope or of the sensitivity of a sensor as a function of the sectional inertia of its test body. Thus, curve A represents the theoretical slope of a sensor of the type described. Curves B, C and D are representations of the actual slopes measured with a sensor of the type described, but using different materials for its support 2. Curve B is the real curve of a sensor of the state of the art using an alumina support 2.
Plus particulièrement selon l'invention, le support 2 est réalisé en un matériau qui présente un module de Young égal ou inférieur à celui du corps 1 , en l'occurrence une céramique cocuite à basse température (appelée LTCC) ou une céramique zircone sur un corps 1 en acier.More particularly according to the invention, the support 2 is made of a material which has a Young's modulus equal to or less than that of the body 1, in the occurrence of a ceramic baked at low temperature (called LTCC) or a zirconia ceramic on a body 1 of steel.
Ainsi, la courbe D est la courbe réelle d'un capteur selon l'invention comportant un support 2 en céramique cocuite à basse température ou LTCC.Thus, curve D is the actual curve of a sensor according to the invention comprising a support 2 made of ceramic baked at low temperature or LTCC.
La courbe C est la courbe réelle d'un capteur selon l'invention utilisant une céramique zircone comme matériau du support 2.Curve C is the actual curve of a sensor according to the invention using a zirconia ceramic as the material of support 2.
II ressort clairement de la figure 4 que la sensibilité du capteur est grandement améliorée par un choix judicieux du matériau du support, notamment son élasticité, et ceci est d'autant plus visible pour des corps d'épreuve ayant une faible inertie de section.It is clear from FIG. 4 that the sensitivity of the sensor is greatly improved by a judicious choice of the support material, in particular its elasticity, and this is all the more visible for test bodies having a low section inertia.
En comparant les courbes A et B de la figure 4, on remarque que l'écart maximum est obtenu pour des corps d'épreuve de faible section, alors que pour les corps d'épreuve de section plus importante l'écart est très faible. Ainsi, en considérant un capteur de poids comportant un support 2 en alumine fixé sur un corps d'épreuve en acier de section carrée 15mm x 15mm, utilisé par exemple dans un pèse-personne à un seul capteur, la perte de signal est d'environ 0,13%. Des mesures effectuées avec une balance de ménage utilisant un même support en alumine et une section rectangulaire du corps d'épreuve en acier de 10mm x 3,5mm, la perte de signal est de 20,1%. Alors que les mêmes mesures effectuées avec une balance de ménage à quatre capteurs dont la section du corps d'épreuve également en acier et rectangulaire est de 8mm x 1 ,2mm, le support de jauges étant également en alumine, ont établi une perte de signal de 59,4%.By comparing curves A and B in FIG. 4, it is noted that the maximum deviation is obtained for test bodies of small section, while for test bodies of larger section the deviation is very small. Thus, considering a weight sensor comprising an alumina support 2 fixed on a steel test body of square section 15mm x 15mm, used for example in a bathroom scale with a single sensor, the signal loss is about 0.13%. Measurements made with a household balance using the same alumina support and a rectangular section of the steel test body of 10mm x 3.5mm, the signal loss is 20.1%. While the same measurements made with a household balance with four sensors whose section of the test body also in steel and rectangular is 8mm x 1, 2mm, the gauge support also being in alumina, established a loss of signal 59.4%.
On pense pouvoir expliquer l'invention de la manière suivante, soit en reconsidérant la figure 1c où les inerties de section du corps 1 seul sont : lzz= b*a3/12, et lyy=a*b3/12. Les inerties de section de la nouvelle partie et en considérant la distance du centre de gravité du corps 1 au centre de gravité du support 2 approximativement égale à la moitié de la largeur du corps 1 , soit a/2 sont : \2Z= bXe a3 '\2 + b ei* a2/4, et The invention in the following manner is believed to explain, or reconsidering Figure 1c where the section of inertia of the body 1 only are: zz = b * a 3/12, and yy = a * b 3/12. The section inertias of the new part and considering the distance from the center of gravity of the body 1 to the center of gravity of the support 2 approximately equal to half the width of the body 1, ie a / 2 are: \ 2Z = bXe a , π 3 \ 2 + be i * 2/4, and
Par conséquent, les inerties de section corrigées de la poutre composée sont Izz(totai) = ba3/12 + b ej3/12 + biθj* a /4, et otao ≈ Therefore, the corrected section of inertia of the composite beam are Izz (totai) = b 3/12 ej + b 3/12 + biθj * a / 4, and otao ≈
Des formules précédentes, il semblerait que plus le module de Young du matériau du support E2 est faible comparé à E^ moindre est son influence sur l'inertie de section de la poutre composée. Ces considérants théoriques sont à l'origine de la réalisation du capteur de l'invention.From the previous formulas, it would seem that the lower the Young's modulus of the support material E 2 compared to E ^, the less its influence on the section inertia of the composite beam. These theoretical recitals are at the origin of the realization of the sensor of the invention.
Ainsi, avec les capteurs de l'invention utilisant un corps d'épreuve 1 en acier sur lequel est appliqué par collage un support 2 en une céramique zircone (courbe C) ou en une céramique cocuite à basse température ou LTCC (courbe D) on observe sur la figure 4 que le comportement réel du capteur (pente réelle) respecte la courbe théorique liant la sensibilité du capteur à l'inertie de section du corps d'épreuve. Les écarts obtenus avec de tels supports sont très faibles, et sont établis, pour la courbe D à maximum 18,2 %, et pour la courbe C à maximum 26%, dans le cas le plus défavorable d'un corps d'épreuve de section réduite, les dimensions de cette dernière étant de 8mm x 1 ,2mm .Thus, with the sensors of the invention using a test body 1 made of steel onto which a support 2 is applied by bonding 2 in a zirconia ceramic (curve C) or in a ceramic baked at low temperature or LTCC (curve D) on observe in FIG. 4 that the actual behavior of the sensor (actual slope) respects the theoretical curve linking the sensitivity of the sensor to the sectional inertia of the test body. The differences obtained with such supports are very small, and are established, for the curve D at maximum 18.2%, and for the curve C at maximum 26%, in the most unfavorable case of a test body of reduced section, the dimensions of the latter being 8mm x 1, 2mm.
La fabrication d'un tel capteur de poids comporte les étapes suivantes. Une première étape consiste à obtenir le corps métallique du capteur, par exemple selon le contour montré à la figure 2, par exemple par estampage ou par découpe en matrice d'une tôle métallique plane. En parallèle, le support céramique fritte (ce support étant une céramique zircone, yttria, cordiérite ou stéatite frittée ou une LTCC déjà cuite), se présentant sous la forme d'une feuille d'assez grandes dimensions, est prédécoupé aux dimensions d'un support de capteur individuel. Une première opération de sérigraphie consiste à appliquer les pistes conductrices en appliquant une pâte conductrice, par exemple à base d'argent. Cette sérigraphie est suivie d'une cuisson à environ 850°C. Une deuxième étape de sérigraphie consiste à appliquer une pâte résistive, par exemple une fritte de verre avec des particules métalliques, sur le support céramique suivie d'une deuxième cuisson à 850°C. Les flans prédécoupés ainsi obtenus sont ensuite découpés et rapportés par collage sur le corps d'épreuve du capteur. La colle est par exemple une colle époxy réticulant à 200-250°C. L'épaisseur de la couche de colle est bien calibrée afin de réduire son cisaillement lorsque le corps d'épreuve redescend à la température ambiante afin de pouvoir transmettre les contraintes en provenance du corps d'épreuve vers le support céramique et donc les jauges de contrainte. L'épaisseur calibrée de la couche de colle permet également d'obtenir un bon hystérésis et un bon retour à zéro du capteur.The manufacture of such a weight sensor comprises the following steps. A first step consists in obtaining the metal body of the sensor, for example according to the contour shown in FIG. 2, for example by stamping or by cutting out a matrix from a flat metal sheet. In parallel, the sintered ceramic support (this support being a zirconia, yttria, cordierite or sintered soapstone ceramic or an already fired LTCC), in the form of a fairly large sheet, is precut to the dimensions of a individual sensor support. A first screen printing operation consists of apply the conductive tracks by applying a conductive paste, for example based on silver. This screen printing is followed by baking at around 850 ° C. A second screen printing step consists in applying a resistive paste, for example a glass frit with metallic particles, on the ceramic support followed by a second firing at 850 ° C. The precut blanks thus obtained are then cut and attached by bonding to the test body of the sensor. The adhesive is, for example, an epoxy adhesive which crosslinks at 200-250 ° C. The thickness of the adhesive layer is well calibrated in order to reduce its shearing when the test body drops to room temperature in order to be able to transmit the stresses coming from the test body towards the ceramic support and therefore the strain gauges . The calibrated thickness of the adhesive layer also makes it possible to obtain a good hysteresis and a good return to zero of the sensor.
D'autres variantes et modes de réalisation du capteur de poids de l'invention peuvent être envisagées sans sortir du cadre de ces revendications.Other variants and embodiments of the weight sensor of the invention can be envisaged without departing from the scope of these claims.
Ainsi, dans une variante, on peut utiliser comme support isolant une bande laminée en une céramique du type LTCC sur laquelle on réalise un dépôt par sérigraphie avant la cuisson de la céramique. On réalise ensuite la cuisson à environ 850°C de l'ensemble support et pistes sérigraphiées déposées sur ledit support. L'ensemble ainsi obtenu peut éventuellement subir une étape de sérigraphie supplémentaire et il est ensuite appliqué par collage sur le corps d'épreuve.Thus, in a variant, it is possible to use as insulating support a strip laminated in a ceramic of the LTCC type on which a deposition is carried out by screen printing before the firing of the ceramic. Baking is then carried out at approximately 850 ° C. of the support assembly and screen-printed tracks deposited on said support. The assembly thus obtained may optionally undergo an additional screen printing step and it is then applied by gluing to the test body.
Dans une autre variante, on peut déjà coller la bande LTCC non cuite sur le corps d'épreuve et réaliser la sérigraphie et la cuisson de l'ensemble par la suite. In another variant, it is already possible to glue the uncooked LTCC strip to the test body and then screen-print and bake the whole.

Claims

B.0661 , Rm1eexxtι REVENDICATIONS B.0661, Rm1eexxtι CLAIMS
1. Capteur de poids à jauges de contrainte déposées en couche épaisse sur un support (2) en un matériau électriquement isolant destiné à être appliqué sur un corps (1) métallique sollicité essentiellement en flexion, caractérisé en ce que ledit support (2) est un matériau céramique ayant un module de Young E2 égal ou inférieur à celui Ei du corps (1) métallique sollicité et qu'il est appliqué par collage sur ce dernier.1. Weight sensor with strain gauges deposited in a thick layer on a support (2) made of an electrically insulating material intended to be applied to a metal body (1) stressed essentially in bending, characterized in that said support (2) is a ceramic material having a Young's modulus E 2 equal to or less than that of the stressed metal body (1) Ei and that it is applied by bonding to the latter.
2. Capteur de poids selon la revendication 1 , caractérisé en ce que ledit corps (1 ) présente une section rectangulaire d'épaisseur inférieure ou égale à 15 mm.2. Weight sensor according to claim 1, characterized in that said body (1) has a rectangular section of thickness less than or equal to 15 mm.
3. Capteur de poids selon l'une des revendications 1 ou 2, caractérisé en ce que ledit corps (1) est réalisé en acier.3. Weight sensor according to one of claims 1 or 2, characterized in that said body (1) is made of steel.
4. Capteur de poids selon l'une des revendications précédentes, caractérisé en ce que ledit support (2) est choisi dans le groupe comprenant une céramique zircone ou yttria ou cordiérite ou stéatite.4. Weight sensor according to one of the preceding claims, characterized in that said support (2) is chosen from the group comprising a zirconia or yttria or cordierite or steatite ceramic.
5. Capteur de poids selon l'une des revendications 1 à 3, caractérisé en ce que ledit support (2) est réalisé en une céramique cocuite à basse température.5. Weight sensor according to one of claims 1 to 3, characterized in that said support (2) is made of a ceramic baked at low temperature.
6. Capteur de poids selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur dudit support (2) est comprise entre 0.05 et 0.5 mm.6. Weight sensor according to one of the preceding claims, characterized in that the thickness of said support (2) is between 0.05 and 0.5 mm.
7. Capteur de poids selon l'une des revendications précédentes, caractérisé en ce qu'il comprend un corps (1) d'épreuve en forme de barreau portant des jauges de contrainte (6), l'une des extrémités dudit barreau étant reliée à un élément de fixation (3), l'autre extrémité étant reliée à un élément d'application de charge (4), où le corps (1) d'épreuve fléchit suivant une forme en S en double porte-à-faux symétrique. 7. Weight sensor according to one of the preceding claims, characterized in that it comprises a bar-shaped test body (1) carrying strain gauges (6), one end of said bar being connected to a fastening element (3), the other end being connected to a load application element (4), where the test body (1) flexes in an S shape in a symmetrical double overhang .
8. Capteur de poids selon la revendication 7, caractérisé en ce qu'il est réalisé sous forme de plaque métallique comportant un élément de fixation (3) en forme de cadre (3a) ou de U, relié au milieu de sa base à une première extrémité d'un corps (1) d'épreuve s'étendant à l'intérieur de l'élément de fixation (3), l'extrémité opposée du corps (1) d'épreuve étant reliée à un élément de réception de charge (4) en forme de U, s'étendant de façon symétrique par rapport au corps (1), avec les bras (4a,4b) parallèles au corps (1) et orientés vers ladite première extrémité du corps (1).8. Weight sensor according to claim 7, characterized in that it is produced in the form of a metal plate comprising a fixing element (3) in the form of a frame (3a) or of a U, connected in the middle of its base to a first end of a test body (1) extending inside the fixing element (3), the opposite end of the test body (1) being connected to a load receiving element (4) U-shaped, extending symmetrically relative to the body (1), with the arms (4a, 4b) parallel to the body (1) and oriented towards said first end of the body (1).
9. Appareil de pesage électronique comportant au moins un capteur selon l'une des revendications précédentes. 9. Electronic weighing apparatus comprising at least one sensor according to one of the preceding claims.
EP05732469A 2004-03-03 2005-02-28 Weight sensor Withdrawn EP1721134A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0402195A FR2867275B1 (en) 2004-03-03 2004-03-03 WEIGHT SENSOR
PCT/FR2005/000474 WO2005095903A1 (en) 2004-03-03 2005-02-28 Weight sensor

Publications (1)

Publication Number Publication Date
EP1721134A1 true EP1721134A1 (en) 2006-11-15

Family

ID=34855013

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05732469A Withdrawn EP1721134A1 (en) 2004-03-03 2005-02-28 Weight sensor

Country Status (6)

Country Link
US (1) US7441466B2 (en)
EP (1) EP1721134A1 (en)
CN (1) CN1926410B (en)
FR (1) FR2867275B1 (en)
RU (1) RU2369845C2 (en)
WO (1) WO2005095903A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150199B2 (en) * 2003-02-19 2006-12-19 Vishay Intertechnology, Inc. Foil strain gage for automated handling and packaging
US8286464B2 (en) * 2006-12-22 2012-10-16 Societe Bic Sensing device and methods related thereto
US8656793B2 (en) 2006-12-22 2014-02-25 Societe Bic State of charge indicator and methods related thereto
US8166833B2 (en) * 2006-12-22 2012-05-01 Socíété BIC State of charge indicator and methods related thereto
JP5487672B2 (en) * 2009-03-27 2014-05-07 パナソニック株式会社 Physical quantity sensor
DE102011112935B4 (en) * 2011-09-13 2015-02-12 Micronas Gmbh force sensor
FR2980571B1 (en) 2011-09-27 2014-05-16 Seb Sa INTEGRATED STRAIGHT FORCE SENSOR AND BALANCE INCORPORATING SUCH SENSOR
CN202676329U (en) 2012-07-04 2013-01-16 永运电子有限公司 Pressure sensor
JP6045281B2 (en) * 2012-10-09 2016-12-14 東洋測器株式会社 Load cell
JP5728745B2 (en) * 2013-03-27 2015-06-03 株式会社タニタ Straining body, load cell and weight measuring device
RU2564150C1 (en) * 2014-06-10 2015-09-27 Владимир Ильич Речицкий Body for linear road sensor
WO2016118546A1 (en) * 2015-01-21 2016-07-28 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Furniture-integrated monitoring system and load cell for same
CN106974654B (en) * 2017-04-07 2020-08-11 电子科技大学 Sole pressure measuring insole for rehabilitation training of lower limb fracture patient
CN109708738B (en) * 2018-12-21 2022-11-04 集美大学 Beehive weighing device
RU2711183C1 (en) * 2019-06-17 2020-01-15 Общество с ограниченной ответственностью "РД Групп" Strain gauge for measuring load on axis of cargo vehicle and system for measuring load on axis of cargo vehicle
RU199211U1 (en) * 2020-04-07 2020-08-21 общество с ограниченной ответственностью "Инженерный центр "АСИ" (ООО "ИЦ "АСИ") Sensor for determining the weight parameters of the vehicle
CN117705028A (en) * 2024-02-02 2024-03-15 潍柴重机股份有限公司 Measuring platform supporting device, three-coordinate measuring instrument and diesel engine body detection method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913391A (en) * 1974-04-22 1975-10-21 Kulite Semiconductor Products Strain gage configurations employing high di-electric strength and efficient strain transmission
US4009608A (en) * 1975-01-20 1977-03-01 Ormond Alfred N Shear measuring flexure isolated load cells
US4454770A (en) * 1981-12-24 1984-06-19 Kistler-Morse Corporation Torque-insensitive load cell
JPS58142206A (en) * 1982-02-18 1983-08-24 Tokyo Electric Co Ltd Strain sensor
IT206727Z2 (en) * 1985-09-17 1987-10-01 Marelli Autronica THICK FILM EXTENSIMETRIC SENSOR FOR DETECTION OF STRESSES AND DEFORMATIONS IN ORGANS OR MECHANICAL STRUCTURES
TW295622B (en) * 1994-10-28 1997-01-11 Komatsu Mfg Co Ltd
FR2734050B1 (en) * 1995-05-09 1997-07-11 Seb Sa SELF-SUPPORTING WEIGHT SENSOR AND WEIGHING APPARATUS COMPRISING SUCH SENSORS
US6071627A (en) * 1996-03-29 2000-06-06 Kabushiki Kaisha Toshiba Heat-resistant member and a method for evaluating quality of a heat-resistant member
DE10102288C2 (en) * 2001-01-19 2003-10-30 Reinz Dichtungs Gmbh & Co Kg Metallic flat gasket
US7164342B2 (en) * 2002-08-07 2007-01-16 Matsushita Electric Industrial Co., Ltd. Load sensor and method of manufacturing the load sensor, paste used for the method, and method of manufacturing the paste

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005095903A1 *

Also Published As

Publication number Publication date
CN1926410B (en) 2010-10-06
WO2005095903A1 (en) 2005-10-13
US7441466B2 (en) 2008-10-28
US20070186662A1 (en) 2007-08-16
FR2867275B1 (en) 2006-05-19
RU2369845C2 (en) 2009-10-10
FR2867275A1 (en) 2005-09-09
RU2006134732A (en) 2008-04-10
CN1926410A (en) 2007-03-07

Similar Documents

Publication Publication Date Title
WO2005095903A1 (en) Weight sensor
EP0604628B1 (en) Strain gage disposed on a flexible support and probe fitted with said gage
EP2065713B1 (en) Detection device with a hanging piezoresistive strain gauge comprising a strain amplification cell
FR2852102A1 (en) SEMICONDUCTOR PRESSURE SENSOR HAVING A MEMBRANE
WO1999041565A1 (en) Tensile testing sensor for measuring mechanical jamming deformations on first installation and automatic calibrating based on said jamming
WO2010007266A1 (en) Bolometric detector for detecting electromagnetic waves
WO2002061384A1 (en) Pressure sensor and rocket engine incorporating same
EP0098796B1 (en) Sensitive element for a stress transducer, and transducer employing it
EP3766829B1 (en) Mechanical link for mems and nems device for measuring a pressure variation and device comprising such a mechanical link
EP0503719B1 (en) Strain gauged transducer
FR3032791A1 (en) MINIATURE METAL MEMBRANE PRESSURE SENSOR AND METHOD FOR MANUFACTURING THE SAME
EP0852726B1 (en) Monolithic acceleration transducer
FR2995995A1 (en) PRESSURE SENSOR BASED ON NANOJAUGES COUPLEES WITH A RESONATOR
EP0990128B1 (en) Pressure sensor with compensation for null shift non-linearity at very low temperatures
EP1423665B1 (en) Weighing device
WO2018130672A1 (en) Sensor and touch screen with environmental compensation, especially for temperature
EP0219748B1 (en) Force sensor comprising a resonator whose frequency varies in dependence upon the applied force
FR3084208A1 (en) PYROELECTRIC DETECTION DEVICE WITH CONSTRAINED SUSPENDED MEMBRANE
FR2864614A1 (en) Physical quantity e.g. force, acquiring sensor, has heat conduction path formed across one unit so that it has thermal resistance on conduction path lesser than that of another unit in direction of application of physical quantity
WO2018219683A1 (en) Integral deformation sensor and method for measuring the deformation of a surface of a solid
FR2542447A1 (en) Force sensor comprising a deformable support and strain gauges
FR2528235A1 (en) Thin electromechanical transducer - bonded to elastomeric block to enhance the response to match the output of ceramic transducers
EP2102665B1 (en) Guiding blade for a proof mass and micromachined electromechanical system using such blade
FR3087006A1 (en) PYROELECTRIC SENSOR WITH SUSPENDED MEMBRANE
CA2321134A1 (en) Tensile testing sensor for measuring mechanical jamming deformations on first installation and automatic calibrating based on said jamming

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060808

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071106

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150527