EP1719820A2 - Alliage d' aluminium coulé - Google Patents

Alliage d' aluminium coulé Download PDF

Info

Publication number
EP1719820A2
EP1719820A2 EP06405188A EP06405188A EP1719820A2 EP 1719820 A2 EP1719820 A2 EP 1719820A2 EP 06405188 A EP06405188 A EP 06405188A EP 06405188 A EP06405188 A EP 06405188A EP 1719820 A2 EP1719820 A2 EP 1719820A2
Authority
EP
European Patent Office
Prior art keywords
weight
max
aluminum alloy
aluminum
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06405188A
Other languages
German (de)
English (en)
Other versions
EP1719820A3 (fr
Inventor
Rüdiger Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aluminium Rheinfelden GmbH
Original Assignee
Aluminium Rheinfelden GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Rheinfelden GmbH filed Critical Aluminium Rheinfelden GmbH
Publication of EP1719820A2 publication Critical patent/EP1719820A2/fr
Publication of EP1719820A3 publication Critical patent/EP1719820A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the invention relates to an aluminum alloy for casting components with high capacity for kinetic energy by plastic deformation.
  • the die casting technology has developed so far today that it is possible to produce components with high quality standards.
  • the quality of a die casting depends not only on the machine setting and the chosen process, but also to a great extent on the chemical composition and the microstructure of the aluminum alloy used. These two latter parameters are known to influence the castability, the feeding behavior ( G. Schindelbauer, J. Czikel “Shape Fillability and Volume Deficit of Usual Aluminum Die Casting Alloys", foundry research 42, 1990, p. 88/89 ), the mechanical properties and - especially important in diecasting - the lifetime of the casting tools ( LA Norström, B. Klarenfjord, M. Svenson “General Aspect on Wash-out Mechanism in Aluminum Diecasting Dies", 17th International NADCA Diecasting Congress 1993, Cleveland OH ).
  • the ductility is becoming more and more important, especially in complicated designed parts.
  • the die-cast parts In order that the required mechanical properties, in particular a high breaking elongation, can be achieved, the die-cast parts must usually be subjected to a heat treatment with solution annealing. This heat treatment is necessary for the molding of the casting phases and thus for achieving a tough breaking behavior.
  • a heat treatment usually means a solution annealing at temperatures just below the solidus temperature with subsequent quenching in water or another medium to temperatures ⁇ 100 ° C.
  • the material thus treated now has a low yield strength and tensile strength.
  • a thermal aging is then carried out. This can also be done by the process, e.g. by thermal application during painting or by stress-relief annealing of an entire group of components.
  • die castings are cast close to the final dimensions, they usually have a complicated geometry with thin wall thicknesses.
  • delays have to be expected, such as reworking, e.g. by directing the castings or, in the worst case, rejects.
  • the solution annealing also causes additional costs and the economics of this production method could be significantly increased if alloys were available which meet the required properties without heat treatment or after a single-stage heat treatment without separate solution annealing. In a one-step heat treatment, it is important that sufficient static properties are maintained.
  • AISi alloy with good mechanical values in the as-cast state is known from US Pat EP-A-0 687 742 known.
  • Alloys of the type known AIMg which have a very high ductility in the cast state, but in complicated shape design tend to hot or cold cracks and are therefore unsuitable.
  • Another disadvantage of ductile die-cast alloys is their slow aging in the cast state, which may result in a temporal change in the mechanical properties - including a loss of elongation. This behavior is tolerated in many applications, since the property limits are not exceeded or fallen below, but is not tolerable in some applications and can only be turned off by a targeted heat treatment.
  • One from the EP-A-1 443 122 known AlSi alloy has a high elongation in the cast state and does not age after casting. These properties are achieved by adding 0.05 to 0.5 wt .-% molybdenum and a limitation of the magnesium content to max. 0.06 wt.% Mg.
  • the object of the invention is to provide an aluminum alloy suitable for casting and, in particular, die-casting, which is very easy to cast, has a high elongation and a high ductility in the cast state and does not age after casting.
  • the alloy should reach its highest ductility after a one-step heat treatment, ie without solution annealing and quenching.
  • the alloy should be well weldable and flangeable, can be riveted and high corrosion resistance exhibit.
  • alloy composition according to the invention it is possible to achieve a high elongation in diecast parts in the cast state with good values for the yield strength and the tensile strength, so that the alloy is particularly suitable for the production of safety components in the automotive industry.
  • the addition of tellurium leads to a strong refining of the eutectic and results in a higher ductility and a higher elongation already in the casting state.
  • the desired effect is already reached with an addition of 0.05 wt .-% Te, the preferred content is 0.2 to 1.5 wt .-% Te, in particular at 0.6 to 1.0 wt .-% Te.
  • the strength can be even further improved.
  • the preferred content of zirconium is max. 0.3 wt .-% Zr and is in particular from 0.1 to 0.25 wt .-% Zr.
  • the preferred silicon content is 8.5 to 11.7 wt% Si.
  • the limitation of the magnesium content to preferably max. 0.06 wt .-% Mg causes the eutectic structure is not significantly coarsened and the alloy has only a low curing potential, which contributes to a high elongation.
  • the proportion of manganese prevents sticking in the mold and ensures good mold release.
  • the manganese content is preferably 0.4 to 1.3 wt .-% Mn and gives the casting a high structural strength at elevated temperature, so that is expected during demolding with very little to no distortion. To avoid sticking, a content of 0.4 to 0.8% by weight of Mn is sufficient. A content of 0.8 to 1.30 wt .-% Mn leads to a noticeable increase in strength.
  • the iron content is preferably limited to max. 0.25 wt .-% Fe, in particular to max. Limited to 0.15 wt .-% Fe.
  • the alloy according to the invention is weldable and heat treatable.
  • the alloy according to the invention is preferably produced as a horizontal continuous casting ingot. Smaller quantities are shed to bars. Thus, a die-cast alloy with low oxide contamination can be melted without expensive melt cleaning: an important prerequisite for achieving high elongation values in the die-cast part.
  • the purification of the inventive time-refined AlSi alloy is preferably carried out by means of a purge gas treatment with inert gases by means of an impeller.
  • 0.0025 to 0.008% by weight of beryllium may be added to the melt.
  • Grain refining is preferably carried out in the case of the alloy according to the invention.
  • the alloy gallium phosphide and / or indium phosphide in an amount corresponding to 1 to 250 ppm, preferably 1 to 30 ppm of phosphorus can be supplied.
  • the alloy for grain refining may also contain titanium and boron, the addition of titanium and boron via a master alloy with 1 to 2% by weight of Ti and 1 to 2% by weight of B, balance aluminum.
  • the aluminum master alloy contains 1.3 to 1.8% by weight of Ti and 1.3 to 1.8% by weight of B, and has a Ti / B weight ratio of about 0.8 to 1.2.
  • the content of the master alloy in the alloy of the present invention is preferably adjusted to 0.05 to 0.5% by weight.
  • the aluminum alloy according to the invention is particularly suitable for the production of safety parts in the automotive industry by diecasting.
  • Table 2 clearly show the positive influence of the alloying elements Te, Zr and Ag on the mechanical properties of the alloys according to the invention, in particular when using a single-stage heat treatment.
  • the influence of adding Te on the yield strength Rp0.2 and elongation A5 of alloys Nos. 3 to 6 in the casting state (temper F) and after single-stage heat treatment at 350 ° C for 90 minutes is shown as a diagram in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
EP06405188A 2005-05-03 2006-04-28 Alliage d' aluminium coulé Withdrawn EP1719820A3 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH7952005 2005-05-03

Publications (2)

Publication Number Publication Date
EP1719820A2 true EP1719820A2 (fr) 2006-11-08
EP1719820A3 EP1719820A3 (fr) 2006-12-27

Family

ID=36650841

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06405188A Withdrawn EP1719820A3 (fr) 2005-05-03 2006-04-28 Alliage d' aluminium coulé

Country Status (1)

Country Link
EP (1) EP1719820A3 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010124835A1 (fr) * 2009-04-28 2010-11-04 Belte Ag Alliage d'aluminium-silicium pour le moulage sous pression de composants structurels à parois fines
DE102009032588A1 (de) * 2009-07-10 2011-02-17 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Gussbauteils
DE102010055011A1 (de) * 2010-12-17 2012-06-21 Trimet Aluminium Ag Gut gießbare, duktile AlSi-Legierung und Verfahren zur Herstellung eines Gussteils unter Verwendung der AlSi-Gusslegierung
CN102899539A (zh) * 2012-11-07 2013-01-30 南京宁铁有色合金科技开发有限公司 一种压铸用高塑性铝硅合金及其制备方法
DE102013002632B4 (de) * 2012-02-16 2015-05-07 Audi Ag Aluminium-Silizium-Druckgusslegierung und Verfahren zur Herstellung eines Druckgussbauteils
DE102019205267B3 (de) * 2019-04-11 2020-09-03 Audi Ag Aluminium-Druckgusslegierung
CN113909448A (zh) * 2021-10-09 2022-01-11 润星泰(常州)技术有限公司 新能源车铆接用铝合金压铸件制备方法及压铸件
DE102021114484A1 (de) 2021-06-07 2022-12-08 Audi Aktiengesellschaft Aluminium-Gusslegierung
CN115896504A (zh) * 2022-10-27 2023-04-04 广州致远新材料科技有限公司 铝合金材料的制备方法及道闸传动结构件的制备方法
US11655148B2 (en) * 2020-03-03 2023-05-23 Massachusetts Institute Of Technology Hydrogen generating reactions
DE102021131973A1 (de) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Aluminium-Druckgusslegierung
DE102021131935A1 (de) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Aluminium-Druckgusslegierung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU445704A1 (ru) * 1972-12-21 1974-10-05 Белорусский Ордена Трудового Красного Знамени Политехнический Институт Литейный сплав на основе алюмини
EP0687742A1 (fr) * 1994-06-16 1995-12-20 ALUMINIUM RHEINFELDEN GmbH Alliage pour coulée sous pression
EP1443122A1 (fr) * 2003-01-23 2004-08-04 ALUMINIUM RHEINFELDEN GmbH Alliage à coulée d'aluminium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU445704A1 (ru) * 1972-12-21 1974-10-05 Белорусский Ордена Трудового Красного Знамени Политехнический Институт Литейный сплав на основе алюмини
EP0687742A1 (fr) * 1994-06-16 1995-12-20 ALUMINIUM RHEINFELDEN GmbH Alliage pour coulée sous pression
EP1443122A1 (fr) * 2003-01-23 2004-08-04 ALUMINIUM RHEINFELDEN GmbH Alliage à coulée d'aluminium

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010124835A1 (fr) * 2009-04-28 2010-11-04 Belte Ag Alliage d'aluminium-silicium pour le moulage sous pression de composants structurels à parois fines
DE102009032588A1 (de) * 2009-07-10 2011-02-17 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Gussbauteils
DE102010055011A1 (de) * 2010-12-17 2012-06-21 Trimet Aluminium Ag Gut gießbare, duktile AlSi-Legierung und Verfahren zur Herstellung eines Gussteils unter Verwendung der AlSi-Gusslegierung
DE102013002632B4 (de) * 2012-02-16 2015-05-07 Audi Ag Aluminium-Silizium-Druckgusslegierung und Verfahren zur Herstellung eines Druckgussbauteils
CN102899539A (zh) * 2012-11-07 2013-01-30 南京宁铁有色合金科技开发有限公司 一种压铸用高塑性铝硅合金及其制备方法
CN102899539B (zh) * 2012-11-07 2015-03-18 南京宁铁有色合金科技开发有限公司 一种压铸用高塑性铝硅合金及其制备方法
DE102019205267B3 (de) * 2019-04-11 2020-09-03 Audi Ag Aluminium-Druckgusslegierung
WO2020207708A1 (fr) 2019-04-11 2020-10-15 Audi Ag Alliage d'aluminium pour coulée sous pression
US11655148B2 (en) * 2020-03-03 2023-05-23 Massachusetts Institute Of Technology Hydrogen generating reactions
DE102021114484A1 (de) 2021-06-07 2022-12-08 Audi Aktiengesellschaft Aluminium-Gusslegierung
CN113909448A (zh) * 2021-10-09 2022-01-11 润星泰(常州)技术有限公司 新能源车铆接用铝合金压铸件制备方法及压铸件
DE102021131973A1 (de) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Aluminium-Druckgusslegierung
DE102021131935A1 (de) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Aluminium-Druckgusslegierung
WO2023099520A1 (fr) 2021-12-03 2023-06-08 Audi Ag Alliage de coulée sous pression d'aluminium
WO2023099080A1 (fr) 2021-12-03 2023-06-08 Audi Ag Alliage d'aluminium pour coulée sous pression
CN115896504A (zh) * 2022-10-27 2023-04-04 广州致远新材料科技有限公司 铝合金材料的制备方法及道闸传动结构件的制备方法

Also Published As

Publication number Publication date
EP1719820A3 (fr) 2006-12-27

Similar Documents

Publication Publication Date Title
EP1443122B1 (fr) Alliage à coulée d'aluminium
EP1612286B1 (fr) Alliage d'aluminium pour moulage sous pression
EP1719820A2 (fr) Alliage d' aluminium coulé
EP1682688B1 (fr) Alliage d'aluminium de coulée du type Al-Mg-Si contenant du scandium
EP3365472B1 (fr) Alliage d'aluminium
EP2735621B1 (fr) Alliage à coulée sous pression en aluminium
EP0687742B1 (fr) Alliage pour coulée sous pression
EP2653579B1 (fr) Alliage d'aluminium
EP3235917B1 (fr) Alliage d'aluminium pour moulage sous pression
EP1896621B1 (fr) Alliage d'aluminium
DE102007023323B4 (de) Verwendung einer Al-Mn-Legierung für hochwarmfeste Erzeugnisse
DE602005005509T2 (de) Aluminiumformplatte mit hoher härte und verfahren zur herstellung dieser platte
DE202006006518U1 (de) Aluminiumgusslegierung
WO2009059593A2 (fr) Alliages d'aluminium de fonderie
EP3176275B2 (fr) Alliage de coulée sous pression de silicium/aluminium. procédé de fabrication d'un composant coulé sous pression en alliage et composants de carrosserie comprenant un tel composant coulé sous pression
DE102016219711B4 (de) Aluminiumlegierung zum Druckgießen und Verfahren zu ihrer Hitzebehandlung
EP1118685A1 (fr) Alliage d'Aluminium coulé
EP0853133B1 (fr) Utilisation d'un alliage d'aluminium pour moulage sous pression
DE102017114162A1 (de) Hochfeste und hochkriechresistente aluminiumgusslegierungen und hpdc-motorblöcke
EP0911420B1 (fr) Alliage de coulée à base d'aluminium
EP1590495B1 (fr) Alliage de moulage al-ni-mn pour composants structurels utilises dans l'industrie automobile ou aerospatiale
AT407533B (de) Aluminiumlegierung
EP2088216B1 (fr) Alliage d'aluminium
EP0908527A1 (fr) Alliage de coulée à base d'aluminium
EP1118686B1 (fr) Alliage de coulée à base d'aluminium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070628