EP1719386B1 - Corps electrique chauffant sous forme d'element chauffant comprime a proprietes elastiques permanentes - Google Patents

Corps electrique chauffant sous forme d'element chauffant comprime a proprietes elastiques permanentes Download PDF

Info

Publication number
EP1719386B1
EP1719386B1 EP05707400.7A EP05707400A EP1719386B1 EP 1719386 B1 EP1719386 B1 EP 1719386B1 EP 05707400 A EP05707400 A EP 05707400A EP 1719386 B1 EP1719386 B1 EP 1719386B1
Authority
EP
European Patent Office
Prior art keywords
range
electric heating
heating unit
unit according
metallic casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05707400.7A
Other languages
German (de)
English (en)
Other versions
EP1719386A1 (fr
Inventor
Giacinto Castiglia
Hubert Schwan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gc-Heat Gebhard & Castiglia & Co KG GmbH
Original Assignee
Gc-Heat Gebhard & Castiglia & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gc-Heat Gebhard & Castiglia & Co KG GmbH filed Critical Gc-Heat Gebhard & Castiglia & Co KG GmbH
Publication of EP1719386A1 publication Critical patent/EP1719386A1/fr
Application granted granted Critical
Publication of EP1719386B1 publication Critical patent/EP1719386B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C3/00Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids
    • H01C3/14Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids the resistive element being formed in two or more coils or loops continuously wound as a spiral, helical or toroidal winding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • H05B3/52Apparatus or processes for filling or compressing insulating material in tubes

Definitions

  • the invention relates to an electric heating element in the form of a compacted heating element, the cylindrical components heated from the outside, preferably in the form of a helical tube on the nozzle of injection molding or die casting or the like heatable cylindrical components consisting of a metallic shell, in which a MgO ceramic is arranged, in which the one Schuleiterspirale is embedded.
  • the heating of nozzles in the hot runner technology in plastic injection molding machines as well as in the zinc die casting industry is done by tightly fitting to the nozzles compacted electrical heating elements. These heating elements are wound, wherein the inner diameter of the wound heating element, a helical tube cartridge, is less than the outer diameter of the nozzle.
  • the inner diameter of the helical tube cartridge for example, with a nozzle diameter of 20 mm about 0.15 mm smaller than the nozzle.
  • the wound heating element can then be slid tightly onto the nozzle by a rotary motion.
  • the aim is that the heating element is firmly attached to the outer surface of the nozzle, thereby to transmit a maximum heat output and to provide a precise consistent temperature control.
  • the known heating elements are preferably made of ductile stainless steel or nickel as a pipe jacket.
  • the material must have a high elongation at break during the manufacture of the heating elements, since it is very much mechanically deformed becomes. In some cases nickel-base alloys are used.
  • the materials mentioned have low hot strengths, especially when these higher temperatures up to 500 ° C are permanently exposed.
  • a hot runner nozzle for an injection molding machine with an electric heater which heats the hot runner nozzle from the outside.
  • the radiator consists of helically around the hot runner nozzle circulating heating conductors, which are surrounded on the outside by an enveloping cylindrical metallic shell and the cavity located therebetween is filled with a Isolierkeramik. By pressing the metallic shell, a non-detachable unit is produced between the heating conductors and the hot runner nozzle to be heated.
  • High temperature metal alloys with high tensile strength and yield strength are made of FR-A-2078602 known.
  • the present invention seeks to provide an electric heater in the form of a compacted heating element, the cylindrical components heated from the outside, preferably in the form of a coiled tubing on the nozzle of injection molding or die casting or the like heated cylindrical components , which can be fixed to a cylindrical heatable object, without additional clamping elements and especially at temperatures around 500 ° C its strength and clamping effect permanently, ie at least 10,000 hours, reserves.
  • an electric heater in the form of a compacted heating element, the cylindrical components heated from the outside, preferably in the form of a helical tube on the nozzle of injection molding or die casting or the like heatable cylindrical components consisting of a metallic shell in which a MgO Ceramic, in which a Schuleiterspirale is embedded, wherein the material of the metallic shell has a tensile strength Rm at 500 ° C of> 650 N / mm 2 and a yield strength R p0,2 at 500 ° C, which is approximately equal , and the material of the metallic shell after a solution annealing and subsequent curing has an elongation at break of ⁇ 20% after curing and an elongation at break of> 30% before curing to achieve a permanent radial contact pressure of the coiled tubing on the component to be heated due to their spring properties ,
  • the material which is in the form of a tubular jacket, during the manufacture of the heating element and before curing must have the high elongation at
  • the material of the metallic shell has a tensile strength Rm at 500 ° C, which is at most 30% greater than the yield strength R p0.2 at 500 ° C.
  • the metallic shell has a tensile strength Rm at 20 ° C of> 900 N / mm 2 .
  • the material of the metallic shell has a yield strength R p0.2 at 20 ° C of> 850 N / mm 2 .
  • the material of the metallic shell has a tensile strength Rm at 500 ° C after 10,000 hours of> 400 N / mm 2 .
  • the material of the metallic shell has a thermal expansion at 400 ° C of ⁇ 17 x 10 -6 K -1 .
  • the material of the metallic shell is resistant to scale.
  • the material of the metallic shell is a precipitation-hardenable nickel-chromium-iron alloy.
  • the material of the metallic shell is a precipitation-hardenable nickel-chromium-iron alloy comprising proportions of Ni in a range of about 50.0% to 55.0%, of Cr in a range of about 17% to 21.0%, C in a range of about 0.02% to 0.08%, Mn in a range of about 0% to 0.35%, Si in a range of about 0% to 0.35%, Cu in a range of about 0% to 0.20%, Mo in a range of about 2.80% to 3.30%, Co in a range of about 0% to 1.0%, Nb in a range of about 4.80% to 5.50%, Al in a range of about 0.30% to 0.70%, Ti in a range of about 0.70% to 1.15%, B in one Range of about 0.002% to 0.006%, P in a range of about 0% to 0.0015%, S in a range of about 0% to 0.010% and the remainder being Fe, based on the total alloy
  • the electric heating element is wound into a helical tube cartridge, wherein the inner diameter of the helical tube cartridge is approximately between 0.5% to 5% smaller than the outer diameter of the cylindrical component to be heated.
  • the MgO ceramic has at least one hole for a Schuleiterspirale, wherein in the space between the metallic shell and the MgO ceramic and in cavities in the MgO ceramic MgO powder is introduced.
  • the MgO ceramic has at least one bore for a thermocouple.
  • a further advantageous embodiment of the invention is a method for producing an electric heater wherein a Schuleiterspirale contacted with lead wire and is drawn into the MgO ceramic, and the MgO ceramic is inserted with the Schuleiterspirale in the jacket tube.
  • the cavities are filled with MgO insulating powder under vibration, the cross section of the heating element is reduced by about 10 - 20%, the jacket tube is tapped to expose the connections, then solution annealing is carried out under a protective gas atmosphere, the heated zone is wound on an inner diameter which is smaller than the outer diameter of the cylindrical member to be heated, after winding the helical tube cartridge is calibrated by means of a pressing mandrel to the exact final dimension, wherein a Nachverdichtung the MgO powder takes place, wherein finally the curing at about 720 ° C on 8 hours, wherein the electric heater is cooled to 620 ° C within 2 hours and maintained at 620 ° C for 8 hours.
  • This is a heating element with two-sided connection
  • heating elements with two-sided connection there are also heating elements with one-sided connection.
  • the jacket tube is then closed after insertion of the MgO ceramic in this one-sided with a bottom plate.
  • the ensuing Procedure is identical to the production of a heating element with two-sided connection.
  • the cured unheated zone is annealed again, preferably solution annealing by means of a gas burner, and thus made bendable again.
  • the unheated zone of the coiled tubing is provided before curing with insulation, so that the unheated zone in the curing oven is not subject to the curing temperature, whereby the unheated zone after curing is still bendable.
  • the electric radiator according to the invention allows by its spiral-spring action a permanent radial contact pressure of the electric heater in the form of the spiral tube cartridge on the spray nozzle of the injection mold for temperatures up to 500 ° C.
  • This permanent contact pressure which does not require the well-known complex design clamping mechanisms, is made possible, inter alia, by the insignificantly decreasing spring stiffness of the metallic shell at high temperatures around 500 ° C. and a long time duration of 10,000 to 100,000 hours.
  • the known problems with regard to the small space available for mounting a clamping element are avoided by the lack of a complex large Spannmechanismusses.
  • the electric heating element according to the invention has a vibration-proof and shock-resistant contact pressure, since there are no screws which could be released due to vibrations existing in the machine.
  • a further advantage of the material used is that it has a high corrosion resistance and is scale-resistant.
  • the electric heaters in the form of Wendelrohrpatronen are preferably made of ductile stainless steel or nickel, these materials have low thermal strengths, especially when these higher temperatures of about 400 ° C are permanently exposed.
  • the tube jacket loses its spring force.
  • An increase in the inner diameter of the helical tube cartridge is the result.
  • the helical tube cartridge is no longer completely against the spray nozzle, so that a good heat transfer from the helical tube cartridge to the injection nozzle is no longer guaranteed. Accordingly, the efficiency of the heating decreases, so that no consistent reproducible temperature control is ensured.
  • the thermal coupling of the spiral tube cartridge with the spray nozzle is disturbed.
  • the absorbed power of the nozzle decreases and the radiation losses of the spiral tube cartridge rise.
  • a further advantage is that the pipe wall thickness of the metallic shell can be made thinner by the better spring properties of the material of the metallic shell, so that the heating element can turn out smaller.
  • Another advantage is given by the fact that a tight fit of the electric heater is given on the heated cylindrical member in the cold and warm state, due of about 0.5% to 5% smaller inner diameter of the helical tube cartridge in the unassembled state compared to the outer diameter of the cylindrical component to be heated, wherein due to the spring properties, a permanent radial contact pressure is ensured.
  • Fig. 1. and Fig. 2 an electric heater in the form of a helical tube cartridge 1 on the spray nozzle, not shown, of an injection molding tool or a similar heatable cylindrical member.
  • the inner diameter d WI of the helical tube cartridge 1 in the non-assembled state is approximately between 0.5 to 5% smaller than the outer diameter d BA of the electrical component to be heated. Due to the fact that the jacket tube 2 of the helical tube cartridge 1 is formed of a material which springs at temperatures of about 500 C, due to the smaller inner diameter of the helical tube cartridge 2, these are tight due to the resilient properties without further clamping means firmly on the cylindrical component to be heated. The spring effect of the wound from the jacket tube 2 coil tube 1 is sufficient to an automatic release of the same to prevent vibrations.
  • the helical tube cartridge 1 has a heated zone 3 and an unheated zone 4, which merges into the connection head 5. Usual inner diameters of the helical tube cartridge 1 are between 6 and 60 mm.
  • Fig. 3 shows a section through the construction diagram of the heating element with a one-sided connection in not yet wound coil filament cartridge 1 state.
  • the heating conductor spiral 6 is contacted with thicker connecting wires 7.
  • the heating conductor spiral 6 with lead wire 7 is drawn into the ceramic moldings 8.
  • the ceramic molding 8 with connecting wire 7 is inserted into the appropriate jacket tube 9.
  • the jacket tube 9 is closed on one side with a closure element 10.
  • the cavities are possibly filled with MgO insulating powder under vibration. Subsequently, reducing the cross-section of the heating element 1 by about 10 - 20%.
  • the goal is to produce a good heat transfer from the Schuleiterspirale 6 to the jacket tube 9 by the compression of the MgO and at the same time to increase the high-voltage strength. This results in a work hardening of the jacket tube 9.
  • the jacket tube 9 extends thereby by about 10% in the longitudinal direction. Only materials with a high elongation at break can be used here. It follows the tapping off of the jacket tube 9, wherein the connecting wires 7, which are passed through the unheated zone 4, must be exposed for the connection of the strand. This is done for example by parting off on a lathe. Subsequently, the solution annealing is carried out under a protective gas atmosphere, so that you can deform the jacket tube 9 again and wrap.
  • the helical tube cartridge 1 is usually wound in the heated zone 3 to a smaller inner diameter with a smaller mandrel than the cylinder to be heated later. After winding the helical tube cartridge 1 is brought by pressing mandrel to the exact final dimensions. At the same time, a re-compaction of the MgO mass takes place carried out. The curing to achieve the permanent spring effect, takes place at about 720 ° C for 8 hours. Subsequently, the electric heater is cooled to 620 ° C within 2 hours and maintained at 620 ° C for 8 hours. Finally, the attachment of the electrical connection.
  • Fig. 4 shows a section through the heating element along line AA in Fig. 3
  • a MgO ceramic 8 is arranged, which has two holes 10 for receiving the Schuleiterspirale 6 and two smaller holes 11 for receiving a thermo wire / thermocouple 12.
  • An existing between the jacket tube 9 and the MgO ceramic 8 gap 13 and the cavities in the MgO ceramic are filled with MgO powder 14.
  • a particularly suitable material for the metallic jacket tube of the hardened heating element is characterized in that the tensile strength Rm at 20 ° C> 900 N / mm 2 .
  • the yield strength R p0.2 should be> 850 N / mm 2 at 20 ° C.
  • the breaking elongation of the heating element should be ⁇ 20%.
  • the tensile strength Rm at 500 ° C should be> 650 N / mm 2 .
  • the tensile strength Rm at 500 ° C after 10,000 hours should still be> 400 N / mm 2 .
  • the thermal expansion at 400 ° C should be ⁇ 17 x 10 -6 K -1 .
  • the material should be scale resistant and corrosion resistant.
  • the material of the metallic cladding tube should have a tensile strength Rm at 500 ° C of> 650 N / mm 2 and a yield strength R p0.2 at 500 ° C, which are approximately equal.
  • the material of the metallic jacket tube should have a tensile strength Rm which is at most 30% greater than the yield strength R p0.2 . at 500 ° C.
  • a particularly suitable material is given for example by a precipitation-hardenable nickel-chromium-iron alloy.
  • a precipitation-hardenable nickel-chromium-iron alloy comprises proportions of Ni in a range of about 50.0% to 55.0%, Cr in a range of about 17.0% to 21.0% and the remainder being Fe, based on the total alloy.
  • the nickel-chromium-iron alloy may additionally comprise amounts of C in a range of about 0.02% to 0.08%, Mn in a range of about 0% to 0.35%, Si in a range of about 0% to 0.35%, Cu in a range of about 0% to 0.20%, Mo in a range of about 2.80% to 3.30%, Co in a range of about 0% to 1.0%, Nb in a range of about 4.80% to 5.50%, Al in a range of about 0.30% to 0.70%, Ti in a range of about 0.70% to 1.15%, B in one Range from about 0.002% to 0.006%; P ranges from about 0% to 0.0015%; S ranges from about 0% to 0.010% of the total alloy.
  • a particularly suitable material is, for example, INCONELL alloy 718 (German material standard number: 2.4668). Also suitable are INCONELL alloy X-750 (German material standard number: 2.4669),, INCONELL alloy 751 (German material standard number: 2.2494), INCONELL alloy A-286 (German material standard number: 1.4980), INCONELL alloy 80A (German material standard number: 2.4631 and 2.4952), INCONELL alloy 90 (German material standard number: 2.4632 and 2.4969), INCONELL alloy 101, INCONELL alloy 105 (German material standard number: 2.4634), INCONELL alloy 115 (German material standard number: 2.4636), INCONELL alloy 263 (German material standard number: 2.4650), INCONELL alloy PE 16 and INCONELL alloy D 979. Also suitable are high-temperature nickel-base alloys such as INCONELL alloy 601H (German material standard number: 2.4851) and INCONELL alloy 800H (German material standard number: 1.4876).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Resistance Heating (AREA)

Claims (16)

  1. Corps de chauffe électrique sous la forme d'un élément de chauffage comprimé, qui chauffe des composants cylindriques depuis l'extérieur, de préférence sous la forme d'une cartouche en forme de bobine (1) sur la buse d'émission de moules pour le moulage par injection ou de moules de moulage par compression ou de composants cylindriques analogues aptes à être chauffés, constitué d'une enveloppe métallique (2, 9) dans laquelle est disposée une céramique d'oxyde de magnésium dans laquelle est incorporé un conducteur chauffant en spirale (6), caractérisé en ce que la matière de l'enveloppe métallique (2, 9) présente une résistance à la traction Rm à 500 °C > 650 N/mm2 et une limite d'élasticité Rp0,2 à 500°C qui est approximativement égale, et la matière de l'enveloppe métallique (2, 9) présente, après un traitement thermique de mise en solution, un allongement à la rupture > 30 % et après un durcissement ultérieur, un allongement à la rupture < 20 %, pour obtenir un contact radial durable par pression de la cartouche en forme de bobine (1) sur le composant à chauffer, sur base de ses propriétés élastiques.
  2. Corps de chauffe électrique selon la revendication 1, caractérisé en ce que la matière de l'enveloppe métallique (2, 9) présente une résistance à la traction Rm à 500°C qui est supérieure au maximum à concurrence de 30 %, à la limite d'élasticité Rp0,2 à 500°C.
  3. Corps de chauffe électrique selon la revendication 1 ou 2, caractérisé en ce que l'enveloppe métallique présente une résistance à la traction Rm à 20°C> 900 N/mm2.
  4. Corps de chauffe électrique selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la matière de l'enveloppe métallique (2, 9) présente une limite d'élasticité Rp0,2 à 20 °C > 850 N/mm2.
  5. Corps de chauffe électrique selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la matière de l'enveloppe métallique (2, 9) présente une résistance à la traction Rm à 500°C après 10.000 heures > 400 N/mm2.
  6. Corps de chauffe électrique selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la matière de l'enveloppe métallique (2, 9) présente un allongement à la chaleur à 400 °C < 17 x 10-6 K-1.
  7. Corps de chauffe électrique selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la matière de l'enveloppe métallique (2, 9) résiste à l'oxydation jusqu'à 700 °C.
  8. Corps de chauffe électrique selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la matière de l'enveloppe métallique (2, 9) est un alliage de nickel-chrome-fer qui peut être durci par précipitation.
  9. Corps de chauffe électrique selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la matière de l'enveloppe métallique (2, 9) est un alliage de nickel-chrome-fer comprenant des fractions de Ni dans la plage d'environ 50,0 % à 55,0 %, de Cr dans la plage d'environ 17,0 % à 21,0 %, de C dans la plage d'environ 0,02 % à 0,08 %, de Mn dans la plage d'environ 0 % à 0,35 %, de Si dans la plage d'environ 0 % à 0,35 %, de Cu dans la plage d'environ 0 % à 0,20 %, de Mo dans la plage d'environ 2,80 % à 3,30 %, de Co dans la plage d'environ 0 % à 1,0 %, de Nb dans la plage d'environ 4,80 % à 5,50 %, de Al dans la plage d'environ 0,30 % à 0,70 %, de Ti dans la plage d'environ 0,70 % à 1,15 %, de B dans la plage d'environ 0,002 % à 0,006 %, de P dans la plage d'environ 0 % à 0,0015 %, de S dans la plage d'environ 0 % à 0,010 %, le reste étant formé par du Fe, rapportés à l'alliage dans son ensemble.
  10. Corps de chauffe électrique selon l'une quelconque des revendications 1 à 9, caractérisé en ce que l'élément de chauffage électrique est enroulé pour obtenir une cartouche (1) en forme de bobine, le diamètre interne de la cartouche (1) en forme de bobine étant inférieur à concurrence d'environ 0,5 % à 5 % au diamètre externe du composant cylindrique à chauffer.
  11. Corps de chauffe électrique selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la céramique d'oxyde de magnésium présente au moins un alésage (10) pour le conducteur chauffant en spirale, de la poudre d'oxyde de magnésium étant incorporée dans l'espace intermédiaire (13) ménagé entre l'enveloppe métallique (2, 9) et la céramique d'oxyde magnésium, et également dans les espaces creux de la céramique d'oxyde de magnésium.
  12. Corps de chauffe électrique selon l'une quelconque des revendications 1 à 11, caractérisé en ce que la céramique d'oxyde de magnésium présente au moins un alésage (11) pour un thermocouple (12).
  13. Procédé pour la fabrication d'un corps de chauffe électrique sous la forme d'un élément de chauffage comprimé, qui chauffe des composants cylindriques depuis l'extérieur, de préférence sous la forme d'une cartouche en forme de bobine (1) sur la buse d'émission de moules pour le moulage par injection ou de moules de moulage par compression ou de composants cylindriques analogues aptes à être chauffés, dans lequel on met un conducteur chauffant en spirale (6) en contact avec une sortie (7) et on le monte dans une céramique d'oxyde magnésium et on insère la céramique d'oxyde de magnésium avec le conducteur chauffant en spirale (6) dans une enveloppe tubulaire (2, 9), on remplit par vibrations les espaces creux (13) dans l'enveloppe tubulaire (2, 9) avec de la poudre isolante d'oxyde magnésium, on réduit la section transversale de l'élément de chauffage à concurrence d'environ 10 à 20 %, on tronçonne l'enveloppe tubulaire (2, 9) pour libérer les raccords, on procède ensuite à un traitement thermique de mise en solution sous l'atmosphère d'un gaz de protection, on enroule la zone chauffée (3) avec un diamètre interne qui est inférieur au diamètre externe du composant cylindrique à chauffer, et après l'enroulement, on étalonne à la cote exacte la cartouche (1) en forme de bobine au moyen d'un mandrin de compression, caractérisé en ce que, en conclusion, on procède à un durcissement pendant 8 heures à une température d'environ 720°C, le corps de chauffe électrique étant refroidi à 620°C pendant un laps de temps de 2 heures et maintenu à la température de 620 °C pendant 8 heures.
  14. Procédé selon la revendication 13, caractérisé en ce que, après l'insertion de la céramique d'oxyde de magnésium dans l'enveloppe tubulaire (2, 9), on ferme cette dernière d'un côté.
  15. Procédé selon la revendication 13 ou 14, caractérisé en ce que la zone non chauffée (4) de la cartouche (1) en forme de bobine est soumise, après le durcissement, à une calcination, de préférence à un traitement thermique de mise en solution, de telle sorte que la zone non chauffée (4) est à nouveau flexible après le durcissement.
  16. Procédé selon l'une quelconque des revendications 3 à 15, caractérisé en ce que la zone non chauffée (4) de la cartouche (1) en forme de bobine est munie d'une isolation, avant le durcissement, si bien que la zone non chauffée (4), dans le four de trempe, n'est pas exposé à une température de durcissement, si bien que la zone non chauffée (4) est à nouveau flexible après le durcissement.
EP05707400.7A 2004-02-15 2005-02-15 Corps electrique chauffant sous forme d'element chauffant comprime a proprietes elastiques permanentes Not-in-force EP1719386B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410007542 DE102004007542B4 (de) 2004-02-15 2004-02-15 Elektrischer Heizkörper in Form eines verdichteten Heizelementes mit dauerhaften Federeigenschaften
PCT/EP2005/001512 WO2005079115A1 (fr) 2004-02-15 2005-02-15 Corps electrique chauffant sous forme d'element chauffant comprime a proprietes elastiques permanentes

Publications (2)

Publication Number Publication Date
EP1719386A1 EP1719386A1 (fr) 2006-11-08
EP1719386B1 true EP1719386B1 (fr) 2013-07-31

Family

ID=34853487

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05707400.7A Not-in-force EP1719386B1 (fr) 2004-02-15 2005-02-15 Corps electrique chauffant sous forme d'element chauffant comprime a proprietes elastiques permanentes

Country Status (3)

Country Link
EP (1) EP1719386B1 (fr)
DE (1) DE102004007542B4 (fr)
WO (1) WO2005079115A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012016112A2 (pt) * 2009-12-29 2016-05-31 Synventive Molding Solutions aparelho de aquecimento para canal de fluxo de fluido
DE202019104902U1 (de) 2019-09-05 2019-09-16 Hotset Gmbh Elektrisches Heizelement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA937426A (en) * 1970-02-16 1973-11-27 G. Fletcher Stewart Production of superalloys
DE3001017A1 (de) * 1980-01-12 1981-07-16 Heinz 7203 Fridingen Stegmeier Heisskanalduese fuer eine spritzgussmaschine
DE3736612C2 (de) * 1987-10-29 1996-08-14 Hotset Corp Vorrichtung zur Befestigung von Wendelrohren auf den Spritzdüsen von Spritzgießwerkzeugen
DE10124960A1 (de) * 2001-05-21 2002-11-28 Watlow Gmbh Heizelement

Also Published As

Publication number Publication date
WO2005079115A1 (fr) 2005-08-25
DE102004007542A1 (de) 2005-09-15
EP1719386A1 (fr) 2006-11-08
DE102004007542B4 (de) 2007-03-22

Similar Documents

Publication Publication Date Title
DE3621216C2 (fr)
DE69710160T2 (de) Keramische Glühkerze
DE102009040809A1 (de) Elektrische Heizvorrichtung und Verfahren zur Herstellung einer elektrischen Heizvorrichtung
DE4026065C2 (de) Verfahren zur Herstellung eines Versorgungsrohres für eine Flüssigkeit unter hohem Druck
DE10029004C2 (de) Keramikheizungs-Glühkerze
EP0498386A1 (fr) Capteur de température et procédé pour sa fabrication
EP1395085B1 (fr) Appareil de chauffage électrique pour des corps cylindriques
EP1719386B1 (fr) Corps electrique chauffant sous forme d&#39;element chauffant comprime a proprietes elastiques permanentes
EP2255130B1 (fr) Tube à incandescence pour une bougie-crayon à incandescence, et son procédé de fabrication
DE102010006356B4 (de) Elektrische Heizvorrichtung und Verfahren zur Herstellung einer elektrischen Heizvorrichtung
DE10224034B4 (de) Elektrische Heizeinrichtung für zylindrische Körper
EP1550353B1 (fr) Corps composite et procede de fabrication dudit corps
DE102014108919A1 (de) Rohrwendelpatrone
EP1037507A2 (fr) Procédé de fabrication d&#39;éléments électriques chauffants dans un moule à injection
DE3147995A1 (de) &#34;elektrisches heizband&#34;
EP1515830B1 (fr) Element de chauffage electrique souple pour des outils
DE102013104992A1 (de) Glühkerze
DE9403416U1 (de) Heizeinrichtung, insbesondere zum Einsatz in Spritzgießformen zum Verarbeiten thermoplastischer Materialien
EP2127786B1 (fr) Corps de chauffage pour milieux d&#39;écoulement et son procédé de fabrication
EP2209173B1 (fr) Boîtier laser avec un corps devant être refroidi
DE102010016760A1 (de) Thermoelement zum Erfassen von Temperaturen im Hochtemperaturbereich und Verfahren zu dessen Herstellung
DE10315425A1 (de) Verfahren zur Herstellung eines Bauelements mit einer piezoelektrischen Komponente, nach einem derartigen Verfahren hergestelltes Bauelement sowie Sensor oder Aktor mit einem derartigen Bauelement
DE650815C (de) Elektrischer Rohrheizkoerper
DE202019104902U1 (de) Elektrisches Heizelement
DE1813655A1 (de) Patronenheizkoerper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060908

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070518

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20130614

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 625277

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013878

Country of ref document: DE

Effective date: 20130926

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005013878

Country of ref document: DE

Representative=s name: MUELLER-GERBES WAGNER ALBIGER PATENTANWAELTE, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131101

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005013878

Country of ref document: DE

Representative=s name: WAGNER ALBIGER & PARTNER PATENTANWAELTE MBB, DE

Effective date: 20140124

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005013878

Country of ref document: DE

Owner name: GC-HEAT GEBHARD GMBH & CO.KG, DE

Free format text: FORMER OWNER: GC-HEAT GEBHARD & CASTIGLIA GMBH & CO. KG, 51545 WALDBROEL, DE

Effective date: 20130802

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005013878

Country of ref document: DE

Owner name: GC-HEAT GEBHARD GMBH & CO.KG, DE

Free format text: FORMER OWNER: GC-HEAT GEBHARD & CASTIGLIA GMBH & CO. KG, 51545 WALDBROEL, DE

Effective date: 20140124

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005013878

Country of ref document: DE

Representative=s name: MUELLER-GERBES WAGNER ALBIGER PATENTANWAELTE, DE

Effective date: 20140124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013878

Country of ref document: DE

Effective date: 20140502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GC-HEAT GEBHARD GMBH AND CO. KG, DE

Free format text: FORMER OWNER: GC-HEAT GEBHARD AND CASTIGLIA GMBH AND CO. KG, DE

BERE Be: lapsed

Owner name: GC-HEAT GEBHARD & CASTIGLIA G.M.B.H. & CO. KG

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140215

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140215

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140215

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 625277

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160222

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050215

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220221

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220426

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005013878

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230901