EP1715543B1 - Calibratable microwave circuit with illuminable GaAs FET,calibrating device and process - Google Patents

Calibratable microwave circuit with illuminable GaAs FET,calibrating device and process Download PDF

Info

Publication number
EP1715543B1
EP1715543B1 EP06012897A EP06012897A EP1715543B1 EP 1715543 B1 EP1715543 B1 EP 1715543B1 EP 06012897 A EP06012897 A EP 06012897A EP 06012897 A EP06012897 A EP 06012897A EP 1715543 B1 EP1715543 B1 EP 1715543B1
Authority
EP
European Patent Office
Prior art keywords
effect transistors
microwave circuit
light source
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06012897A
Other languages
German (de)
French (fr)
Other versions
EP1715543A1 (en
Inventor
Wilhelm Kraemer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohde and Schwarz GmbH and Co KG
Original Assignee
Rohde and Schwarz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde and Schwarz GmbH and Co KG filed Critical Rohde and Schwarz GmbH and Co KG
Publication of EP1715543A1 publication Critical patent/EP1715543A1/en
Application granted granted Critical
Publication of EP1715543B1 publication Critical patent/EP1715543B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/15Auxiliary devices for switching or interrupting by semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/22Attenuating devices

Definitions

  • the invention relates to a device with a microwave circuit which has illuminated by a light source GaAs field effect transistors.
  • a device according to the preamble of claim 1 is known from US 2004/036 462 A1 known.
  • the microwave circuit can not be designed exclusively as a stepwise damping circuit for fast switching of high-frequency signals.
  • the switching components or the GaAs FET can be illuminated by the light source, wherein the incident on the field effect transistors light in particular significantly shortens the switching times of the field effect transistors and the electronic switching components.
  • Field effect transistors are known to be very easy to implement on a semiconductor chip. In addition, they require very little tax performance.
  • An exposure of field effect transistors based on galium-arsenide, in particular of MESFET, has the consequence that impurities which occur at the semiconductor interfaces, in particular below the gate electrode and have a negative influence on the switching times of the field-effect transistors, are reloaded faster .
  • the negative influence of the impurities is known as a gate-lag effect in the case of MESFET components and can be measured as an extremely slow change in the track resistance.
  • the cause is the slow charging or discharging of the surface perturbations of the source-gate path and the gate-drain path.
  • By illuminating the field-effect transistors electron-hole pairs are generated which neutralize the charges trapped in the impurities. The illumination suppresses the gate-lag effect and shortens the switching time by a factor of 10 - 100.
  • High-frequency circuits for example microwave circuits, which are designed as damping circuits, For example, they are used in high-frequency engineering for measurement purposes and for level control in signal generators and network analyzers.
  • the attenuation circuits or the field effect transistors used in them must be able to switch very fast and have a large dynamic range.
  • circuits with Galium arsenide-based field effect transistors are used, which are also illuminated in newer Wegungsanorditch especially for further switching time reduction.
  • the digitally controllable attenuator (according to the known device) is constructed with field-effect transistors as switching elements which can be illuminated by a light source, for example an LED.
  • the light sources are operated unregulated and controlled independently of other the switching time of the field effect transistors influencing variables, so that in particular the light intensity and the light color or the radiation energy in the operation of the attenuator are not changeable.
  • a disadvantage of the known device with illuminable field effect transistors on a substrate of Galium arsenide is that the switching times of the field effect transistors depending on the field effect transistors influencing variables, such. Temperature, signal voltage and control voltage, fluctuate greatly during operation.
  • the present invention is based on the object, a microwave circuit with a short, constant and reproducible switching time and a corresponding Calibration device and to provide a corresponding calibration.
  • the object is achieved with respect to the device by a calibration device according to the features of claim 1 and with respect to a calibration method by the features of claim 3.
  • the present invention has the advantage that the microwave circuit with illuminable field effect transistors can keep the switching times of the field effect transistors with little effort particularly short and constant and thus the switching times are predictable in dependence on operating parameters. In addition, the power requirement of the light sources and the thermal effect of the light source on the field effect transistors is minimized.
  • the microwave circuit is designed so that the light source can illuminate alternately or simultaneously in different colors and color combinations can be generated, the light source z. B. in red, yellow, green, white, blue, ultraviolet and infrared lights or can shine.
  • the microwave circuit has a control device which controls or regulates the light intensity and / or the light color of the light source.
  • control device controls or regulates the light intensity and / or the light color as a function of at least one measured variable or a combination of measured variables.
  • the light source can be controlled or controlled by the control device particularly accurate.
  • control device controls or regulates the light source in such a way that the switching times of the field-effect transistors remain constant over the entire range of the values occurring during operation of the measured variables used, wherein the switching times are minimized.
  • control device has a memory in which the optimum light intensity and / or light color of the light source is stored for a plurality of values of the measured variables depending on the values of the measured variables used, the control device determining the light intensity and / or the light color of the respective light source is set or controls or regulates due to the stored values in the memory of the measured variables used.
  • the electronic microwave circuit according to the invention has at least one sensor in the region of the respective field-effect transistor or of the respective semiconductor substrate, which detects the light intensity and / or the temperature.
  • the calibration device is able to calibrate the light color and / or light intensity of the light source of the microwave circuit via adjustable value ranges of the measured quantities in order to make the light intensity and / or light color optimally adjustable.
  • the calibration device has a control terminal for controlling a cooling / heating for cooling or heating the field-effect transistors.
  • the temperature of the field effect transistors can thus be controlled and changed arbitrarily.
  • Fig. 1 shows a microwave circuit 1, which is connected to a calibration device 20 according to the invention.
  • the microwave circuit 1 is executed in the embodiment as a damping circuit.
  • the microwave circuit 1 for example in a measuring arrangement, not shown, are applied to an input 9 input high-frequency signals 16 a circuit arrangement with GaAs field-effect switching transistors 15 and damping elements supplied and thereby acted upon with quickly switchable attenuations.
  • the input high-frequency signals 16 are output at an output 10 more or less attenuated than output high-frequency signals 17 output.
  • the schematically illustrated field-effect transistors 15 are integrated on a semiconductor chip 5 and formed as field-effect transistors 15 on a substrate base made of gallium arsenide (GaAs).
  • the GaAs FETs can be illuminated by a light source 2, which is designed as a light-emitting diode in the exemplary embodiment.
  • the light source 2 illuminates the GaAs FETs which are formed on semiconductor chip 5 provided with a transparent own case not separately shown.
  • the light source 2 is shown in the embodiment close to the semiconductor chip 5, but may also be arranged above the semiconductor chip 5.
  • GaAs MESFETs can be used.
  • the microwave circuit 1 is constructed on a support 14, which may be, for example, a printed circuit board.
  • a housing chamber 12 belonging to the microwave circuit 1, a control connection 11, a control device 6 and a sensor 8 are also located on the support 14.
  • the control device 6 also has a memory 7 and a digital / analog converter 13. During operation of the microwave circuit 1 designed as a damping circuit, the desired attenuation values are selected and set by the control device 6 via the digital control connection 11.
  • the switching times of the illuminable by the light source 2 field effect transistors 15 are dependent on a number of predictors. In particular, the switching times are dependent on the light intensity or illuminance with which the light source 2 is applied to the field effect transistors 15, the light color emitted by the light source 2, the temperature of the field effect transistors 15, the height of the field effect transistors.
  • Transistor 15 to be switched signal voltage relative to the control voltage with which the field effect transistor 15 is driven, the signal voltage is dependent on the input high-frequency signal 16, the height of the signal frequency, which in the embodiment of the frequency of the input high-frequency signal 16th corresponds, and the polarity of the signal voltage to the control voltage.
  • the switching times of the field effect transistors 15 and thus of the microwave circuit 1 remains constant over a wide range of values of the influencing variables.
  • the control voltage of the field effect transistors 15 can only be freely selected in a very narrow range and the temperature of the field-effect transistors adapted only very slowly and with great technical effort and only very slowly
  • the light intensity and / or the light color of the light source 2 can be set or controlled or regulated as a function of an influencing variable or a combination of the remaining influencing variables, referred to hereinafter as measured variables.
  • the variable in operation in light color and / or light intensity light source 2 is driven in the embodiment via the digital / analog converter 13 of the control device 6 with a digital signal.
  • the digital signal controls the light intensity and / or light color of the light source 2.
  • the light source 2 can be formed for example as a two-color LED, which can radiate in one of two colors or in both at the same time. It may also use a strong ultraviolet or infrared radiating light source 2 and / or a laser diode.
  • the control device 6 is for each combination of the occurring values of the measured variables used, wherein only one measured variable can be used, the optimum light intensity and / or light color stored.
  • the light intensity and / or light color is optimally selected so that the shortest possible switching time is achieved, the light intensity and / or light color can be adjusted so that even at the most unfavorable values of the measured variables a constant switching time by the control of Set light color and / or light intensity, which is constant over all expected or permissible values of the measured variables.
  • the microwave circuit 1 or the light intensity and / or the light color of the light source 2 is calibrated prior to use in, for example, a measuring arrangement by means of a calibration device 20 according to the invention.
  • the connected to the microwave circuit 1 calibration device 20 is operated by the method according to the invention.
  • the calibration device 20 essentially has a signal generator 21 and a controller (control unit) 22 with a memory 25.
  • the signal generator 21 generates the input high-frequency signal 16 and passes it on to the input 9 of the microwave circuit 1 via a calibration output 29.
  • the controller 22 controls via a calibration terminal 24 which is connected to the control terminal 11, the microwave circuit 1 and the control device 6, wherein it switches by digital control signals between the desired attenuation values and adjusts the light intensity and / or light color.
  • the output radio-frequency signal 17 is fed to the controller 22 via a calibration input 30 connected to the output 10.
  • the controller 22 controls the signal generator 21, the signal generator 21 generates the respectively desired by the controller 22 input high-frequency signals 16, and optionally via a control terminal 23, a cooling / heating 31 for changing the temperature of the microwave circuit 1 and the Field effect transistors 15.
  • the temperature of the field effect transistors 15 may optionally be varied and adjusted by the controller 22 through the heater / cooler 31.
  • the light intensity or light color of the light source 2 is varied and adjusted by the controller 22 via the control terminal 11 and the control device 6.
  • temperature of the controller 22 is capable of the temperature of the field effect transistors 15 to regulate or by Control the heating / cooling to keep constant or change.
  • the values of the influencing variables are varied stepwise and for each change, the switching time of the respective field effect transistor 15 is determined by comparing the timing of the switching command from the controller 22 with the attenuation input in the output high frequency signal 17 received from the controller 22 is, wherein the step sizes are selectable and the value ranges of the influencing variables in predictable or permissible ranges are or are so selected. For example, one influencing variable is changed step by step and at the same time the other influencing variables are kept constant.
  • the occurring values of the influencing variables are stored in the memory 25 and then evaluated by determining for each combination of the values of the measured values setting values for the respective optimum light intensity and / or light color of the light source 2, in which a minimized switching time is kept constant over all possible value combinations can be.
  • the evaluation is either first stored in the memory 25 in the form of an n-dimensional table and then transferred to the memory 7 or written directly into the memory 7.
  • the controller 22 is programmable via a programming terminal 33, for example, from a computer (PC) 32.
  • the controller 22 can also be controlled via the programming connection 32 or data can be read from the memory 25.

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Led Devices (AREA)
  • Electronic Switches (AREA)

Description

Die Erfindung betrifft eine Vorrichtung mit einer Mikrowellen-Schaltung welche durch eine Lichtquelle beleuchtbare GaAs-Feldeffekt-Transistoren aufweist. Eine Vorrichtung nach dem Oberbegriff des Anspruchs 1 ist aus der US 2004/036 462 A1 bekannt. Die Mikrowellen-Schaltung kann insbesondere aber nicht ausschließlich als stufenweise Dämpfungsschaltung zum schnellen Schalten hochfrequenter Signale ausgebildet sein. Die Schaltbauteile bzw. die GaAs-FET sind durch die Lichtquelle beleuchtbar, wobei das dabei auf die Feldeffekt-Transistoren auftreffende Licht insbesondere die Schaltzeiten der Feldeffekt-Transistoren bzw. der elektronischen Schaltbauteile wesentlich verkürzt.The invention relates to a device with a microwave circuit which has illuminated by a light source GaAs field effect transistors. A device according to the preamble of claim 1 is known from US 2004/036 462 A1 known. In particular, the microwave circuit can not be designed exclusively as a stepwise damping circuit for fast switching of high-frequency signals. The switching components or the GaAs FET can be illuminated by the light source, wherein the incident on the field effect transistors light in particular significantly shortens the switching times of the field effect transistors and the electronic switching components.

Feldeffekt-Transistoren lassen sich bekanntermaßen sehr leicht auf einem Halbleiterchip realisieren. Darüber hinaus benötigen sie nur sehr wenig Steuerleistung. Eine Belichtung von Feldeffekt-Transistoren auf Galium-Arsenid-Basis, insbesondere von MESFET, hat zu Folge, daß Störstellen, welche an den Halbleitergrenzflächen insbesondere unterhalb der Gate-Elektrode auftreten und negativen Einfluß auf die Schaltzeiten der Feldeffekt-Transistoren haben, schneller umgeladen werden. Der negative Einfluß der Störstellen ist bei MESFET-Bauelementen als Gate-Lag-Effekt bekannt und wird als äußerst langsame Änderung des Bahnwiderstandes meßbar. Ursache ist die langsame Auf- bzw. Entladung der Oberflächenstörstellen der Source-Gate-Strecke und der Gate-Drain-Strecke. Durch die Beleuchtung der Feldeffekt-Transistoren werden Elektronen-Loch-Paare erzeugt, welche die in den Störstellen gefangenen Ladungen neutralisieren. Durch die Beleuchtung läßt sich der Gate-Lag-Effekt unterdrücken und die Schaltzeit um den Faktor 10 - 100 verkürzen.Field effect transistors are known to be very easy to implement on a semiconductor chip. In addition, they require very little tax performance. An exposure of field effect transistors based on galium-arsenide, in particular of MESFET, has the consequence that impurities which occur at the semiconductor interfaces, in particular below the gate electrode and have a negative influence on the switching times of the field-effect transistors, are reloaded faster , The negative influence of the impurities is known as a gate-lag effect in the case of MESFET components and can be measured as an extremely slow change in the track resistance. The cause is the slow charging or discharging of the surface perturbations of the source-gate path and the gate-drain path. By illuminating the field-effect transistors, electron-hole pairs are generated which neutralize the charges trapped in the impurities. The illumination suppresses the gate-lag effect and shortens the switching time by a factor of 10 - 100.

Hochfrequenz-Schaltungen, beispielsweise Mikrowellen-Schaltungen, die als Dämpfungsschaltungen ausgeführt sind, werden z.B. in der Hochfrequenztechnik für Meßzwecke und zur Pegelregelung in Signalgeneratoren und Netzwerkanalysatoren eingesetzt. Um beispielsweise Meßreihen mit verschiedenen veränderlichen Parametern schnell durchfahren zu können, müssen die Dämpfungsschaltungen bzw. die in ihnen zum Einsatz kommenden Feldeffekt-Transistoren sehr schnell schalten können und einen großen Dynamikbereich aufweisen. Dabei werden insbesondere wegen ihrer ausgezeichneten Hochfrequenztauglichkeit und ihrer sehr geringen Schaltzeiten Schaltungen mit Feldeffekt-Transistoren auf Galium-Arsenid-Basis verwendet, die in neueren Schaltungsanordungen insbesondere zur weiteren Schaltzeitverkürzung zudem beleuchtbar sind.High-frequency circuits, for example microwave circuits, which are designed as damping circuits, For example, they are used in high-frequency engineering for measurement purposes and for level control in signal generators and network analyzers. For example, in order to be able to drive through measurement series with different variable parameters quickly, the attenuation circuits or the field effect transistors used in them must be able to switch very fast and have a large dynamic range. In particular, because of their excellent high frequency capability and their very short switching times circuits with Galium arsenide-based field effect transistors are used, which are also illuminated in newer Schaltungsanordungen especially for further switching time reduction.

Das digital ansteuerbare Dämpfungsglied (gemäss der bekannten Vorrichtung) ist mit Feldeffekt-Transistoren als Schaltelementen aufgebaut, die durch eine Lichtquelle, beispielsweise eine LED beleuchtbar sind. Die Lichtquellen werden ungeregelt betrieben und unabhängig von anderen die Schaltzeit der Feldeffekt-Transistoren beeinflussenden Größen angesteuert, so daß insbesondere die Lichtstärke und die Lichtfarbe bzw. die Strahlungsenergie im Betrieb des Dämpfungsglieds nicht veränderbar sind.The digitally controllable attenuator (according to the known device) is constructed with field-effect transistors as switching elements which can be illuminated by a light source, for example an LED. The light sources are operated unregulated and controlled independently of other the switching time of the field effect transistors influencing variables, so that in particular the light intensity and the light color or the radiation energy in the operation of the attenuator are not changeable.

Nachteilig bei der bekannten Vorrichtung mit beleuchtbaren Feldeffekt-Transistoren auf einer Subtratbasis aus Galium-Arsenid ist, daß die Schaltzeiten der Feldeffekt-Transistoren abhängig von die Feldeffekt-Transistoren beeinflussenden Größen, wie z.B. Temperatur, Signalspannung und Steuerspannung, im Betrieb stark schwanken.A disadvantage of the known device with illuminable field effect transistors on a substrate of Galium arsenide is that the switching times of the field effect transistors depending on the field effect transistors influencing variables, such. Temperature, signal voltage and control voltage, fluctuate greatly during operation.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Mikrowellen-Schaltung mit kurzer, konstanter und reproduzierbarer Schaltzeit und eine entsprechende Kalibriervorrichtung und ein entsprechendes Kalibrierverfahren zu schaffen.The present invention is based on the object, a microwave circuit with a short, constant and reproducible switching time and a corresponding Calibration device and to provide a corresponding calibration.

Die Aufgabe wird bezüglich der Vorrichtung durch eine Kalibriervorrichtung gemäss den Merkmalen des Anspruchs 1 und bezüglich eines Kalibrierverfahrens durch die Merkmale des Anspruchs 3 gelöst.The object is achieved with respect to the device by a calibration device according to the features of claim 1 and with respect to a calibration method by the features of claim 3.

Die vorliegende Erfindung hat den Vorteil, daß die Mikrowellen-Schaltung mit beleuchtbaren Feldeffekt-Transistoren die Schaltzeiten der Feldeffekt-Transistoren mit geringem Aufwand besonders kurz und konstant halten kann und so die Schaltzeiten in Abhängigkeit von Betriebsparametern vorhersagbar sind. Außerdem wird der Leistungsbedarf der Lichtquellen und die Wärmewirkung der Lichtquelle auf die Feldeffekt-Transistoren minimiert.The present invention has the advantage that the microwave circuit with illuminable field effect transistors can keep the switching times of the field effect transistors with little effort particularly short and constant and thus the switching times are predictable in dependence on operating parameters. In addition, the power requirement of the light sources and the thermal effect of the light source on the field effect transistors is minimized.

Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen.Advantageous developments of the invention will become apparent from the dependent claims.

Gemäß einer Weiterbildung der Erfindung ist die Mikrowellen-Schaltung so ausgebildet, daß die Lichtquelle abwechselnd oder gleichzeitig in unterschiedlichen Farben leuchten kann und so Farbkombinationen erzeugt werden können, wobei die Lichtquelle z. B. in Rot, Gelb, Grün, Weiß, Blau, Ultraviolett und Infrarot leuchten bzw. leuchten kann.According to one embodiment of the invention, the microwave circuit is designed so that the light source can illuminate alternately or simultaneously in different colors and color combinations can be generated, the light source z. B. in red, yellow, green, white, blue, ultraviolet and infrared lights or can shine.

Gemäß einer weiteren Weiterbildung der Erfindung weist die Mikrowellen-Schaltung eine Steuervorrichtung auf, welche die Lichtstärke und/oder die Lichtfarbe der Lichtquelle steuert oder regelt.According to a further development of the invention, the microwave circuit has a control device which controls or regulates the light intensity and / or the light color of the light source.

Vorteilhaft ist es außerdem, wenn die Steuervorrichtung die Lichtstärke und/oder die Lichtfarbe in Abhängigkeit von zumindest einer Meßgröße oder einer Kombination von Meßgrößen steuert oder regelt.It is also advantageous if the control device controls or regulates the light intensity and / or the light color as a function of at least one measured variable or a combination of measured variables.

Durch die Messung und Verwendung der Meßergebnisse der Meßgrößen Polarität der Signalspannung gegenüber der Steuerspannung mit der die Feldeffekt-Transistoren angesteuert werden, Höhe der Signalspannung gegenüber der Steuerspannung mit der die Feldeffekt-Transistoren angesteuert werden, Temperatur der Feldeffekt-Transistoren, Pegel der Signalspannung und Höhe der Signalfrequenz kann die Lichtquelle durch die Steuervorrichtung besonders genau geregelt oder gesteuert werden.By measuring and using the measurement results of the measured variables polarity of the signal voltage with respect to the control voltage with which the field effect transistors are driven, height of the signal voltage relative to the control voltage with which the field effect transistors are driven, temperature of the field effect transistors, level of the signal voltage and height the signal frequency, the light source can be controlled or controlled by the control device particularly accurate.

In einer weiteren Weiterbildung steuert oder regelt die Steuervorrichtung die Lichtquelle in einer Weise, daß die Schaltzeiten der Feldeffekt-Transistoren über den gesamten Bereich der im Betrieb vorkommenden Werte der verwendeten Meßgrößen konstant bleibt, wobei die Schaltzeiten dabei minimiert sind.In a further development, the control device controls or regulates the light source in such a way that the switching times of the field-effect transistors remain constant over the entire range of the values occurring during operation of the measured variables used, wherein the switching times are minimized.

Vorteilhafterweise weist die Steuervorrichtung einen Speicher auf, in dem die jeweils in Abhängigkeit der Werte der verwendeten Meßgrößen optimale Lichtstärke und/oder Lichtfarbe der Lichtquelle für eine Mehrzahl von Werten der Meßgrößen abgelegt ist, wobei die Steuervorrichtung die Lichtstärke und/oder die Lichtfarbe der jeweiligen Lichtquelle aufgrund der in dem Speicher abgelegten Werte der verwendeten Meßgrößen einstellt bzw. steuert oder regelt.Advantageously, the control device has a memory in which the optimum light intensity and / or light color of the light source is stored for a plurality of values of the measured variables depending on the values of the measured variables used, the control device determining the light intensity and / or the light color of the respective light source is set or controls or regulates due to the stored values in the memory of the measured variables used.

Vorteilhafterweise weist die erfindungsgemäße elektronische Mikrowellen-Schaltung zumindest einen Sensor im Bereich des jeweiligen Feldeffekt-Transistors bzw. des jeweiligen Halbleitersubstrats auf, welcher die Lichtstärke und/oder die Temperatur erfasst.Advantageously, the electronic microwave circuit according to the invention has at least one sensor in the region of the respective field-effect transistor or of the respective semiconductor substrate, which detects the light intensity and / or the temperature.

Die erfindungsgemäße Kalibriervorrichtung ist in der Lage, die Lichtfarbe und/oder Lichtstärke der Lichtquelle der Mikrowellen-Schaltung über einstellbare Wertebereiche der Meßgrößen zu kalibrieren, um die Lichtstärke und/oder Lichtfarbe optimal einstellbar zu machen.The calibration device according to the invention is able to calibrate the light color and / or light intensity of the light source of the microwave circuit via adjustable value ranges of the measured quantities in order to make the light intensity and / or light color optimally adjustable.

Vorteilhafterweise weist die Kalibriervorrichtung einen Steueranschluß zum Steuern einer Kühlung/Heizung zum Kühlen oder Erwärmen der Feldeffekt-Transistoren auf. Die Temperatur der Feldeffekt-Transistoren kann damit gesteuert werden und willkürlich verändert werden.Advantageously, the calibration device has a control terminal for controlling a cooling / heating for cooling or heating the field-effect transistors. The temperature of the field effect transistors can thus be controlled and changed arbitrarily.

Die Erfindung wird nachstehend anhand einer schematischen Darstellungen an einem Ausführungsbeispiel näher erläutert. Übereinstimmende Bauteile sind dabei mit übereinstimmenden Bezugszeichen versehen. In der Zeichnung zeigt:

Fig. 1
ein schematisch dargestelltes erfindungsgemäßes Ausführungsbeispiel einer Mikrowellen-Schaltung und einer Kalibriervorrichtung.
The invention is explained in more detail below with reference to a schematic representations of an exemplary embodiment. Matching components are provided with matching reference numerals. In the drawing shows:
Fig. 1
a schematically illustrated inventive embodiment of a microwave circuit and a calibration device.

Fig. 1 zeigt eine Mikrowellen-Schaltung 1, welche an eine erfindungsgemäße Kalibriervorrichtung 20 angeschlossen ist.Fig. 1 shows a microwave circuit 1, which is connected to a calibration device 20 according to the invention.

Die Mikrowellen-Schaltung 1 ist im Ausführungsbeispiel als Dämpfungsschaltung ausgeführt. Im Betrieb der Mikrowellen-Schaltung 1, beispielsweise in einer nicht dargestellten Meßanordnung, werden an einem Eingang 9 anliegenden Eingangs-Hochfrequenz-Signale 16 einer Schaltungsanordung mit GaAs-Feldeffekt-Schalttransistoren 15 und Dämpfungselementen zugeführt und dabei mit schnell umschaltbaren Dämpfungen beaufschlagt. Die Eingangs-Hochfrequenz-Signale 16 werden an einem Ausgang 10 mehr oder minder bedämpft als Ausgangs-Hochfrequenz-Signale 17 ausgegeben.The microwave circuit 1 is executed in the embodiment as a damping circuit. In operation of the microwave circuit 1, for example in a measuring arrangement, not shown, are applied to an input 9 input high-frequency signals 16 a circuit arrangement with GaAs field-effect switching transistors 15 and damping elements supplied and thereby acted upon with quickly switchable attenuations. The input high-frequency signals 16 are output at an output 10 more or less attenuated than output high-frequency signals 17 output.

Die schematisch dargestellten Feldeffekt-Transistoren 15 sind auf einem Halbleiterchip 5 integriert und als Feldeffekt-Transistoren 15 auf einer Subtratbasis aus Galium-Arsenid (GaAs) ausgebildet. Die GaAs-FET sind durch eine Lichtquelle 2, welche im Ausführungsbeispiel als Leuchtdiode ausgebildet ist, beleuchtbar. Die Lichtquelle 2 beleuchtet die GaAs-FET, welche auf mit einem nicht gesondert dargestellten transparenten eigenen Gehäuse versehenen Halbleiterchip 5 ausgebildet sind. Die Lichtquelle 2 ist im Ausführungsbeispiel nahe neben dem Halbleiterchip 5 dargestellt, kann aber ebenso über dem Halbleiterchip 5 angeordnet sein. Ebenso können GaAs-MESFET verwendet werden.The schematically illustrated field-effect transistors 15 are integrated on a semiconductor chip 5 and formed as field-effect transistors 15 on a substrate base made of gallium arsenide (GaAs). The GaAs FETs can be illuminated by a light source 2, which is designed as a light-emitting diode in the exemplary embodiment. The light source 2 illuminates the GaAs FETs which are formed on semiconductor chip 5 provided with a transparent own case not separately shown. The light source 2 is shown in the embodiment close to the semiconductor chip 5, but may also be arranged above the semiconductor chip 5. Likewise, GaAs MESFETs can be used.

Die Mikrowellen-Schaltung 1 ist auf einem Träger 14, welcher beispielsweise eine Leiterplatine sein kann, aufgebaut. Auf dem Träger 14 befinden sich im Ausführungsbeispiel außerdem eine zur Mikrowellen-Schaltung 1 gehörende Gehäusekammer 12, ein Steueranschluß 11, eine Steuervorrichtung 6 und ein Sensor 8. Die Steuervorrichtung 6 weist zudem einen Speicher 7 und einen Digital/Analog-Wandler 13 auf. Im Betrieb der als Dämpfungsschaltung ausgebildeten Mikrowellen-Schaltung 1 werden die gewünschten Dämpfungswerte über den digitalen Steueranschluß 11 durch die Steuervorrichtung 6 ausgewählt und eingestellt.The microwave circuit 1 is constructed on a support 14, which may be, for example, a printed circuit board. In the exemplary embodiment, a housing chamber 12 belonging to the microwave circuit 1, a control connection 11, a control device 6 and a sensor 8 are also located on the support 14. The control device 6 also has a memory 7 and a digital / analog converter 13. During operation of the microwave circuit 1 designed as a damping circuit, the desired attenuation values are selected and set by the control device 6 via the digital control connection 11.

Die Schaltzeiten der durch die Lichtquelle 2 beleuchtbaren Feldeffekt-Transistoren 15 sind von einer Reihe von Einflußgrößen abhängig. Insbesondere sind die Schaltzeiten abhängig von der Lichtstärke bzw. Beleuchtungsstärke mit der die Lichtquelle 2 die Feldeffekt-Transistoren 15 beaufschlagt, von der Lichtfarbe die die Lichtquelle 2 emittiert, von der Temperatur der Feldeffekt-Transistoren 15, von der Höhe der durch den jeweiligen Feldeffekt-Transistor 15 zu schaltenden Signalspannung gegenüber der Steuerspannung mit der der Feldeffekt-Transistor 15 angesteuert wird, wobei die Signalspannung abhängig ist von dem Eingangs-Hochfrequenz-Signal 16, von der Höhe der Signalfrequenz, welche im Ausführungsbeispiel der Frequenz des Eingangs-Hochfrequenz-Signals 16 entspricht, und von der Polarität der Signalspannung gegenüber der Steuerspannung.The switching times of the illuminable by the light source 2 field effect transistors 15 are dependent on a number of predictors. In particular, the switching times are dependent on the light intensity or illuminance with which the light source 2 is applied to the field effect transistors 15, the light color emitted by the light source 2, the temperature of the field effect transistors 15, the height of the field effect transistors. Transistor 15 to be switched signal voltage relative to the control voltage with which the field effect transistor 15 is driven, the signal voltage is dependent on the input high-frequency signal 16, the height of the signal frequency, which in the embodiment of the frequency of the input high-frequency signal 16th corresponds, and the polarity of the signal voltage to the control voltage.

In den meisten Anwendungsfällen ist es wünschenswert, wenn die Schaltzeiten der Feldeffekt-Transistoren 15 und damit der Mikrowellen-Schaltung 1 über einen weiten Wertebereich der Einflußgrößen konstant bleibt. Da aber die Größen der Eingangs-Hochfrequenz-Signale naturgemäß schwanken, die Steuerspannung der Feldeffekt-Transistoren 15 aber nur in einem sehr engen Bereich frei gewählt werden können und die Temperatur der Feldeffekt-Transistoren nur mit sehr großem technischen Aufwand und nur sehr langsam angepaßt bzw. gesteuert oder geregelt werden kann, wird im gezeigten Ausführungsbeispiel die Lichtstärke und/oder die Lichtfarbe der Lichtquelle 2 in Abhängigkeit einer Einflußgröße oder einer Kombination der verbleibenden Einflußgrößen, im folgenden Meßgrößen genannt, eingestellt bzw. gesteuert oder geregelt.In most applications, it is desirable if the switching times of the field effect transistors 15 and thus of the microwave circuit 1 remains constant over a wide range of values of the influencing variables. However, since the sizes of the input high-frequency signals naturally fluctuate, the control voltage of the field effect transistors 15 can only be freely selected in a very narrow range and the temperature of the field-effect transistors adapted only very slowly and with great technical effort and only very slowly In the exemplary embodiment shown, the light intensity and / or the light color of the light source 2 can be set or controlled or regulated as a function of an influencing variable or a combination of the remaining influencing variables, referred to hereinafter as measured variables.

Die im Betrieb in Lichtfarbe und/oder Lichtstärke veränderbare Lichtquelle 2 wird im Ausführungsbeispiel über den Digital/Analog-Wandler 13 der Steuervorrichtung 6 mit einem digitalen Signal angesteuert. Das digitale Signal steuert die Lichtstärke und/oder Lichtfarbe der Lichtquelle 2. Die Lichtquelle 2 kann dabei beispielsweise als zweifarbige LED ausgebildet sein, die in einer von zwei Farben oder in beiden gleichzeitig strahlen kann. Es kann auch eine stark im Ultraviolettbereich oder Infrarotbereich strahlende Lichtquelle 2 und/oder eine Laserdiode verwenden.The variable in operation in light color and / or light intensity light source 2 is driven in the embodiment via the digital / analog converter 13 of the control device 6 with a digital signal. The digital signal controls the light intensity and / or light color of the light source 2. The light source 2 can be formed for example as a two-color LED, which can radiate in one of two colors or in both at the same time. It may also use a strong ultraviolet or infrared radiating light source 2 and / or a laser diode.

Im gezeigten Ausführungsbeispiel stellt die Steuervorrichtung 6 die Lichtstärke und/oder Lichtfarbe der Lichtquelle 2 über den D/A-Wandler 13 in Abhängigkeit einer oder mehrerer der Einflußgrößen, z. B.

  • Polarität der Signalspannung gegenüber der Steuerspannung mit der die Feldeffekt-Transistoren 15 angesteuert werden,
  • Höhe der Signalspannung gegenüber der Steuerspannung mit der die Feldeffekt-Transistoren 15 angesteuert werden,
  • Temperatur der Feldeffekt-Transistoren 15,
  • Pegel der Signalspannung und
  • Höhe der Signalfrequenz ein, wobei diese Einflußgrößen im gezeigten Ausführungsbeispiel durch die Mikrowellen-Schaltung 1 im Betrieb gemessen werden und als Meßgrößen in der Steuervorrichtung 6 erfasst werden. Der D/A-Wandler stellt im gezeigten Ausführungsbeispiel die Spannungsversorgung der betreffenden Lichtquelle 2 ein und damit den Strom durch die Lichtquelle 2.
    Im gezeigten Ausführungsbeispiel wird die Lichtstärke und/oder Lichtfarbe der Lichtquelle 2 von der Steuervorrichtung 6 geregelt. Dazu ist ein nahe neben dem betreffenden Feldeffekt-Transistor 15 angeordneter Sensor 8 vorgesehen. Der Sensor 8 mißt die Beleuchtungsstärke der betreffenden Lichtquelle 2 und gibt diese an die Steuervorrichtung 6 weiter. Im Ausführungsbeispiel mißt der Sensor 8 auch die Temperatur im Bereich des betreffenden Feldeffekt-Transistors 15. In anderen Ausführungsbeispielen kann der Sensor 8 beispielsweise auf dem Halbleiterchip 5 integriert sein. In weiteren Ausführungsbeispielen kann der Sensor 8 beispielsweise nur die Temperatur messen, wobei dann die Lichtstärke der betreffenden Lichtquelle 2 von der Steuervorrichtung 6 nur gesteuert werden kann.
    Die Steuervorrichtung 6, welche im gezeigten Ausführungsbeispiel die Lichtstärke und/oder Lichtfarbe der betreffenden Lichtquelle 2 in Abhängigkeit der Meßgrößen, z. B.
  • Polarität der Signalspannung gegenüber der Steuerspannung, mit der die Feldeffekt-Transistoren 15 angesteuert werden,
  • Höhe der Signalspannung gegenüber der Steuerspannung, mit der die Feldeffekt-Transistoren 15 angesteuert werden,
  • Temperatur der Feldeffekt-Transistoren 15,
  • Pegel der Signalspannung und
  • Höhe der Signalfrequenz so regelt, daß die Schaltzeiten des betreffenden Feldeffekt-Transistors 15 über die zu erwartenden bzw. zulässigen Wertebereiche der Einflußgrößen konstant ist, wählt die Lichtstärke dabei gerade so groß wie nötig und/oder die Wellenlänge der Lichtfarbe optimal ist. Die Wärmeentwicklung und der Temperatureinfluß der Lichtquelle 2 auf den Feldeffekt-Transistor 15 wird dabei reduziert. Außerdem wird im gezeigten Ausführungsbeispiel die Lichtstärke und/oder Lichtfarbe von der Steuervorrichtung 6 so ausgewählt, daß die Schaltzeiten des betreffenden Feldeffekt-Transistors 15 so kurz wie möglich sind.
In the embodiment shown, the control device 6, the light intensity and / or light color of the light source 2 via the D / A converter 13 in dependence of one or more of the influencing variables, for. B.
  • Polarity of the signal voltage with respect to the control voltage with which the field effect transistors 15 are driven,
  • Level of the signal voltage with respect to the control voltage with which the field-effect transistors 15 are driven,
  • Temperature of the field effect transistors 15,
  • Level of signal voltage and
  • Height of the signal frequency, these influencing variables are measured in the embodiment shown by the microwave circuit 1 during operation and detected as measured variables in the control device 6. In the exemplary embodiment shown, the D / A converter sets the voltage supply of the relevant light source 2 and thus the current through the light source 2.
    In the embodiment shown, the light intensity and / or light color of the light source 2 is controlled by the control device 6. For this purpose, a sensor 8 arranged close to the respective field effect transistor 15 is provided. The sensor 8 measures the illuminance of the relevant light source 2 and forwards it to the control device 6. In the exemplary embodiment, the sensor 8 also measures the temperature in the region of the relevant field-effect transistor 15. In other exemplary embodiments, the sensor 8 may be integrated on the semiconductor chip 5, for example. In further embodiments, the sensor 8, for example, only measure the temperature, in which case the light intensity of the relevant light source 2 can only be controlled by the control device 6.
    The control device 6, which in the embodiment shown, the light intensity and / or light color of the respective light source 2 in dependence of the measured variables, for. B.
  • Polarity of the signal voltage with respect to the control voltage with which the field effect transistors 15 are driven,
  • Level of the signal voltage with respect to the control voltage with which the field-effect transistors 15 are driven,
  • Temperature of the field effect transistors 15,
  • Level of signal voltage and
  • Height of the signal frequency controls so that the switching times of the relevant field effect transistor 15 on the expected or permissible value ranges of the influencing variables is constant, the light intensity selects just as large as necessary and / or the wavelength of the light color is optimal. The heat development and the influence of temperature of the light source 2 on the field effect transistor 15 is thereby reduced. In addition, in the embodiment shown, the light intensity and / or light color of the control device 6 is selected so that the switching times of the relevant field effect transistor 15 are as short as possible.

Im Speicher 7 der Steuervorrichtung 6 ist für jeweils jede Kombination der vorkommenden Werte der verwendeten Meßgrößen, wobei auch nur eine Meßgröße verwendet werden kann, die optimale Lichtstärke und/oder Lichtfarbe abgelegt. Im gezeigten Ausführungsbeispiel wird die Lichtstärke und/oder Lichtfarbe so optimal ausgewählt, daß eine möglichst kurze Schaltzeit erreicht wird, wobei die Lichtstärke und/oder Lichtfarbe dabei so eingeregelt werden können, daß sich auch bei ungünstigsten Werten der Meßgrößen eine konstante Schaltzeit durch die Regelung der Lichtfarbe und/oder Lichtstärke einstellen läßt, die über alle zu erwartenden bzw. zulässigen Werte der Meßgrößen konstant ist.In the memory 7 of the control device 6 is for each combination of the occurring values of the measured variables used, wherein only one measured variable can be used, the optimum light intensity and / or light color stored. In the embodiment shown, the light intensity and / or light color is optimally selected so that the shortest possible switching time is achieved, the light intensity and / or light color can be adjusted so that even at the most unfavorable values of the measured variables a constant switching time by the control of Set light color and / or light intensity, which is constant over all expected or permissible values of the measured variables.

Im gezeigten Ausführungsbeispiel wird die Mikrowellen-Schaltung 1 bzw. die Lichtstärke und/oder die Lichtfarbe der Lichtquelle 2 vor einem Einsatz in beispielsweise einer Meßanordnung mittels einer erfindungsgemäßen Kalibriervorrichtung 20 kalibriert. Die an der Mikrowellen-Schaltung 1 angeschlossenen Kalibriervorrichtung 20 wird mit dem erfindungsgemäßen Verfahren betrieben.In the embodiment shown, the microwave circuit 1 or the light intensity and / or the light color of the light source 2 is calibrated prior to use in, for example, a measuring arrangement by means of a calibration device 20 according to the invention. The connected to the microwave circuit 1 calibration device 20 is operated by the method according to the invention.

Die Kalibriervorrichtung 20 weist im wesentlichen einen Signalgenerator 21 und einen Kontroller (Steuereinheit) 22 mit einem Speicher 25 auf. Der Signalgenerator 21 erzeugt das Eingangs-Hochfrequenz-Signal 16 und gibt dieses über einen Kalibrierausgang 29 an den Eingang 9 der Mikrowellen-Schaltung 1 weiter. Der Kontroller 22 steuert über einen Kalibrieranschluß 24, welcher mit dem Steueranschluß 11 verbunden ist, die Mikrowellen-Schaltung 1 bzw. die Steuervorrichtung 6, wobei er durch digitale Steuersignale zwischen den gewünschten Dämpfungswerten umschaltet und die Lichtstärke und/oder Lichtfarbe einstellt. Das Ausgangs-Hochfrequenz-Signal 17 wird über einen mit dem Ausgang 10 verbundenen Kalibriereingang 30 dem Kontroller 22 zugeführt. Außerdem steuert der Kontroller 22 den Signalgenerator 21, wobei der Signalgenerator 21 die jeweils vom Kontroller 22 gewünschten Eingangs-Hochfrequenz-Signale 16 erzeugt, und optional über einen Steueranschluß 23 eine Kühlung/Heizung 31 zur Änderung der Temperatur der Mikrowellen-Schaltung 1 bzw. der Feldeffekt-Transistoren 15.The calibration device 20 essentially has a signal generator 21 and a controller (control unit) 22 with a memory 25. The signal generator 21 generates the input high-frequency signal 16 and passes it on to the input 9 of the microwave circuit 1 via a calibration output 29. The controller 22 controls via a calibration terminal 24 which is connected to the control terminal 11, the microwave circuit 1 and the control device 6, wherein it switches by digital control signals between the desired attenuation values and adjusts the light intensity and / or light color. The output radio-frequency signal 17 is fed to the controller 22 via a calibration input 30 connected to the output 10. In addition, the controller 22 controls the signal generator 21, the signal generator 21 generates the respectively desired by the controller 22 input high-frequency signals 16, and optionally via a control terminal 23, a cooling / heating 31 for changing the temperature of the microwave circuit 1 and the Field effect transistors 15.

Die Kalibriervorrichtung 20 variiert nun mittels des Kontrollers 22 die Einflußgrößen, welche die Schaltzeit der Feldeffekt-Transistoren 15 beeinflussen. Über den Signalgenerator 21 werden durch die Veränderung des Eingangs-Hochfrequenz-Signals 16 variiert und eingestellt:

  • Polarität der Signalspannung gegenüber der Steuerspannung, mit der die Feldeffekt-Transistoren 15 angesteuert werden,
  • Höhe der Signalspannung gegenüber der Steuerspannung, mit der die Feldeffekt-Transistoren 15 angesteuert werden,
  • Pegel der Signalspannung und
  • Höhe der Signalfrequenz.
The calibration device 20 now varies by means of the controller 22, the influencing variables which influence the switching time of the field effect transistors 15. Via the signal generator 21 are varied and adjusted by the change of the input high-frequency signal 16:
  • Polarity of the signal voltage with respect to the control voltage with which the field effect transistors 15 are driven,
  • Level of the signal voltage with respect to the control voltage with which the field-effect transistors 15 are driven,
  • Level of signal voltage and
  • Height of the signal frequency.

Die Temperatur der Feldeffekt-Transistoren 15 kann optional vom Kontroller 22 durch die Heizung/Kühlung 31 variiert und eingestellt werden. Die Lichtstärke bzw. Lichtfarbe der Lichtquelle 2 wird vom Kontroller 22 über den Steueranschluß 11 und die Steuervorrichtung 6 variiert und eingestellt. Über die vom Sensor 8 über die Steuervorrichtung 6 und den Steueranschluß 11 übermittelte Temperatur ist der Kontroller 22 im Stande die Temperatur der Feldeffekt-Transistoren 15 zu regeln bzw. durch Steuern der Heizung/Kühlung konstant zu halten oder zu verändern.The temperature of the field effect transistors 15 may optionally be varied and adjusted by the controller 22 through the heater / cooler 31. The light intensity or light color of the light source 2 is varied and adjusted by the controller 22 via the control terminal 11 and the control device 6. About the transmitted from the sensor 8 via the control device 6 and the control terminal 11 temperature of the controller 22 is capable of the temperature of the field effect transistors 15 to regulate or by Control the heating / cooling to keep constant or change.

Die Werte der Einflußgrößen werden schrittweise variiert bzw. verändert und für jede Änderung wird die Schaltzeit des betreffenden Feldeffekt-Transistors 15 bestimmt, indem der Zeitpunkt des Schaltbefehls vom Kontroller 22 mit dem vom Kontroller 22 empfangenen Eintritt der Dämpfung im Ausgangs-Hochfrequenz-Signal 17 verglichen wird, wobei die Schrittweiten wählbar sind und die Wertebereiche der Einflußgrößen in vorhersehbaren bzw. zulässigen Bereichen liegen bzw. so gewählt sind. Beispielsweise wird jeweils eine Einflußgröße schrittweise verändert und gleichzeitig die anderen Einflußgrößen konstant gehalten. Die dabei auftretenden Werte der Einflußgrößen werden im Speicher 25 gespeichert und dann ausgewertet, indem für jede Kombination der Werte der Meßgrößen Einstellwerte für die jeweils optimale Lichtstärke und/oder Lichtfarbe der Lichtquelle 2 bestimmt werden, bei denen eine minimierte Schaltzeit über alle möglichen Wertekombinationen konstant gehalten werden kann. Die Auswertung wird in Form einer n-dimensionalen Tabelle entweder zuerst im Speicher 25 gespeichert und dann an den Speicher 7 übertragen oder unmittelbar in den Speicher 7 geschrieben.The values of the influencing variables are varied stepwise and for each change, the switching time of the respective field effect transistor 15 is determined by comparing the timing of the switching command from the controller 22 with the attenuation input in the output high frequency signal 17 received from the controller 22 is, wherein the step sizes are selectable and the value ranges of the influencing variables in predictable or permissible ranges are or are so selected. For example, one influencing variable is changed step by step and at the same time the other influencing variables are kept constant. The occurring values of the influencing variables are stored in the memory 25 and then evaluated by determining for each combination of the values of the measured values setting values for the respective optimum light intensity and / or light color of the light source 2, in which a minimized switching time is kept constant over all possible value combinations can be. The evaluation is either first stored in the memory 25 in the form of an n-dimensional table and then transferred to the memory 7 or written directly into the memory 7.

Der Kontroller 22 ist über einen Programmieranschluß 33 beispielsweise von einem Computer (PC) 32 aus programmierbar. Über den Programmieranschluß 32 kann der Kontroller 22 auch gesteuert werden oder es können Daten aus dem Speicher 25 ausgelesen werden.The controller 22 is programmable via a programming terminal 33, for example, from a computer (PC) 32. The controller 22 can also be controlled via the programming connection 32 or data can be read from the memory 25.

Claims (4)

  1. Device with an electronic microwave circuit (1), which provides GaAS-field-effect transistors (15) capable of being illuminated by a light source (2),
    characterised by
    a calibration device (20) for calibrating the luminous intensity and/or luminous colour of the light source (2);
    a signal generator (21) for generating high-frequency input signals (16) at a calibration output (29), through which the high-frequency input signals (16) are supplied to an input (9) of the microwave circuit (1) ;
    a calibration input (30), through which the altered high-frequency signals (17) of the calibration device (20) are again supplied to the microwave circuit (1); and a control unit (22) for controlling the light source (2) and for controlling circuit processes of the microwave circuit (1) through a calibration connection (24) and for controlling the signal generator (21),
    wherein the control unit (22) evaluates high-frequency output signals (17) received through the calibration input (30) in order to optimise the adjustment of the light source (2) and stores the result of the evaluation in a memory (7) of the microwave circuit (1).
  2. Device according to claim 1,
    characterised by
    a control connection (23) of the calibration device (20) for the control of a cooling/heating unit (31) for the cooling or heating of the field-effect transistors (15).
  3. Method for operating a calibration device (20) in a device according to claims 1 to 2 comprising the following procedural stages:
    - incremental alteration and registration of the influencing parameters:
    - luminous intensity and/or
    - luminous colour
    of the light source (2) of the microwave circuit (1) and of at least one of the measurement parameters:
    - polarity of the signal voltage of the high-frequency signal (16) to be connected by comparison with the control voltage, with which the field-effect transistors are controlled;
    - level of the signal voltage of the high-frequency signal (16) to be connected by comparison with the control voltage, with which the field-effect transistors are controlled;
    - temperature of the field-effect transistors;
    - level of the signal voltage of the high-frequency signal (16) to be connected;
    - level of the signal frequency of the high-frequency signal (16) to be connected;
    - storage of the value combinations of the altered and registered values of the influencing parameters and the measurement parameters;
    - evaluation of the value combinations;
    - transfer of the evaluation results to the microwave circuit (1).
  4. Method according to claim 3,
    characterised in that
    the value combinations are evaluated in such a manner that an n-dimensional table is generated, from which the respective values for an optimum luminous intensity and/or optimum luminous colour can be read out for each combination of the individual values of the measured measurement parameters.
EP06012897A 2004-05-17 2005-04-22 Calibratable microwave circuit with illuminable GaAs FET,calibrating device and process Active EP1715543B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004024367A DE102004024367A1 (en) 2004-05-17 2004-05-17 Calibratable microwave circuit with illuminable GaAs FET and calibration device and method for calibration
EP05733713A EP1654778B1 (en) 2004-05-17 2005-04-22 Calibratable microwave circuit with illuminable gaas-fet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP05733713A Division EP1654778B1 (en) 2004-05-17 2005-04-22 Calibratable microwave circuit with illuminable gaas-fet

Publications (2)

Publication Number Publication Date
EP1715543A1 EP1715543A1 (en) 2006-10-25
EP1715543B1 true EP1715543B1 (en) 2007-07-04

Family

ID=34965156

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06012897A Active EP1715543B1 (en) 2004-05-17 2005-04-22 Calibratable microwave circuit with illuminable GaAs FET,calibrating device and process
EP05733713A Active EP1654778B1 (en) 2004-05-17 2005-04-22 Calibratable microwave circuit with illuminable gaas-fet

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP05733713A Active EP1654778B1 (en) 2004-05-17 2005-04-22 Calibratable microwave circuit with illuminable gaas-fet

Country Status (4)

Country Link
US (1) US7498552B2 (en)
EP (2) EP1715543B1 (en)
DE (3) DE102004024367A1 (en)
WO (1) WO2005114774A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935373B2 (en) * 2007-01-23 2012-05-23 横河電機株式会社 Switch circuit and step attenuator using the switch circuit
WO2016198100A1 (en) 2015-06-10 2016-12-15 Advantest Corporation High frequency integrated circuit and emitting device for irradiating the integrated circuit

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3662289A (en) * 1970-07-30 1972-05-09 Rca Corp Frequency modulation by light impingement on a solid state oscillator
JPS6355978A (en) * 1986-08-26 1988-03-10 Yokogawa Electric Corp Semiconductor device
US4832433A (en) * 1986-12-31 1989-05-23 Hughes Aircraft Company Fiber-optic feed network using series/parallel connected light emitting opto-electronic components
US4859965A (en) 1989-02-27 1989-08-22 The United States Of America As Represented By The Secretary Of The Army Optical gain control of GaAs microwave monolithic integrated circuit distributed amplifier
JP2629428B2 (en) * 1990-10-01 1997-07-09 日本電気株式会社 Gallium arsenide FET integrated circuit
US5073718A (en) * 1990-10-15 1991-12-17 The United States Of America As Represented By The Secretary Of The Army Optical control of a microwave switch
US5073717A (en) * 1990-10-15 1991-12-17 The United States Of America As Represented By The Secretary Of The Army Optical control of a microwave switch
FR2669145B1 (en) 1990-11-09 1994-02-11 Thomson Tubes Electroniques ELECTRON CANON MODULATED BY OPTOELECTRONIC SWITCHING.
US5086281A (en) * 1991-03-04 1992-02-04 The United States Of America As Represented By The Secretary Of The Army Optical control circuit for a microwave monolithic integrated circuit
US5214275A (en) * 1991-09-30 1993-05-25 The Boeing Company Optically controlled microwave switch and signal switching system
US5162657A (en) * 1991-11-06 1992-11-10 The United States Of America As Represented By The Secretary Of The Army Optical control of a microwave switch
US5347235A (en) * 1992-11-02 1994-09-13 The United States Of America As Represented By The Secretary Of The Army Optically controlled oscillator
US5623233A (en) * 1993-11-10 1997-04-22 The United States Of America As Represented By The Secretary Of The Army Pulsed optically injection locked MESFET oscillator
US5808322A (en) * 1997-04-01 1998-09-15 Hewlett-Packard Company Faster switching GaAs FET switches by illumination with high intensity light
DE10228810B4 (en) * 2002-06-27 2010-09-30 Rohde & Schwarz Gmbh & Co. Kg Microwave circuit with illuminated field-effect transistors
FR2848375B1 (en) * 2002-12-05 2005-01-14 Schneider Electric Ind Sas LIGHT EMITTING DIODE LIGHTING DEVICE COMPRISING A COMMUNICATION DEVICE AND INSTALLATION COMPRISING SUCH A DEVICE

Also Published As

Publication number Publication date
DE502005000980D1 (en) 2007-08-16
US20070176129A1 (en) 2007-08-02
US7498552B2 (en) 2009-03-03
WO2005114774A2 (en) 2005-12-01
EP1715543A1 (en) 2006-10-25
EP1654778B1 (en) 2007-01-31
WO2005114774A3 (en) 2006-01-05
DE102004024367A1 (en) 2005-12-22
EP1654778A2 (en) 2006-05-10
DE502005000357D1 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
DE69906260T2 (en) LED LIGHT
DE10239449B4 (en) Method and device for the realization of LED lights with color and brightness adjustment and the associated control element
EP2022295B1 (en) Lighting system and method for operating a lighting system
DE69123544T2 (en) Power supply for an LED arrangement
DE102013220397A1 (en) Method and control device for operating at least one light source
EP1715543B1 (en) Calibratable microwave circuit with illuminable GaAs FET,calibrating device and process
DE112015002876B4 (en) LED drive current adjustment for irradiance step response output and system for driving one or more light emitting devices
DE102010015908B4 (en) Device for controlling an electrical load
DE69122718T2 (en) PRINTER WITH LIGHTING DIODE ARRANGEMENT
DE102011079796B4 (en) Method for determining PWM values for LED modules
EP2947962A1 (en) Motor vehicle illumination system
DE112017002049T5 (en) Method and systems for accelerated switching on of a switching regulator
EP0805021A2 (en) Process for the regulation of the temperature within a device for the inscription of printing plates using a laser radiation particularly for an offset printing machine
DE202006012864U1 (en) Light producing device, has control unit connected with four different colored LEDs for controlling LEDs, and transforming input signal into control signal and including channel for each of LEDs
DE102016106014A1 (en) A method of controlling a light source of a photolithography exposure system and an exposure assembly for a photolithography apparatus
EP3163979B1 (en) Light module and a method for operating a light module
DE102015205808A1 (en) Circuit arrangement for operating at least a first and exactly a second cascade of LEDs
US11522337B2 (en) Driver circuit and processing device
DE102007036728B3 (en) Driver circuit has two outlets for controlling power semiconductor switch switched-on by signal of voltage against ground potential
EP3453228A1 (en) Illumination device
EP2034572B1 (en) Laser diode assembly
US11659638B2 (en) LED matrix driver to reduce bright coupling
EP2116106B1 (en) Control circuit and method for controlling large-scale semiconductor light sources
DE112017000587T5 (en) Automatic power control unit for multiple lighting arrays
DE102008055655B4 (en) Method for setting a dark signal from a laser source in a laser scanning microscope

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060622

AC Divisional application: reference to earlier application

Ref document number: 1654778

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1654778

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070705

REF Corresponds to:

Ref document number: 502005000980

Country of ref document: DE

Date of ref document: 20070816

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080407

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240417

Year of fee payment: 20