EP1714298B1 - Modular x-ray tube and method for the production thereof - Google Patents
Modular x-ray tube and method for the production thereof Download PDFInfo
- Publication number
- EP1714298B1 EP1714298B1 EP03773415A EP03773415A EP1714298B1 EP 1714298 B1 EP1714298 B1 EP 1714298B1 EP 03773415 A EP03773415 A EP 03773415A EP 03773415 A EP03773415 A EP 03773415A EP 1714298 B1 EP1714298 B1 EP 1714298B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ray tube
- anode
- acceleration
- electrons
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 230000001133 acceleration Effects 0.000 claims abstract description 80
- 239000000919 ceramic Substances 0.000 claims description 52
- 239000012212 insulator Substances 0.000 claims description 48
- 238000010276 construction Methods 0.000 claims description 7
- 238000005476 soldering Methods 0.000 claims description 7
- 230000000295 complement effect Effects 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims 1
- 230000001629 suppression Effects 0.000 claims 1
- 230000002950 deficient Effects 0.000 abstract description 5
- 238000009413 insulation Methods 0.000 description 14
- 230000005684 electric field Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000013077 target material Substances 0.000 description 8
- 239000002131 composite material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 238000011109 contamination Methods 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 206010037844 rash Diseases 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 1
- 239000006091 Macor Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 206010063493 Premature ageing Diseases 0.000 description 1
- 208000032038 Premature aging Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000005391 art glass Substances 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 208000000509 infertility Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 231100000535 infertility Toxicity 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
Definitions
- the present invention relates to an X-ray tube for high dose rates, a corresponding method for generating high dose rates with X-ray tubes and a method for producing corresponding X-ray devices, in which an anode and a cathode in a vacuumized interior are arranged opposite to each other, wherein electrons by means of applying high voltage the anode will be accelerated.
- X-ray tubes are widely used in scientific and technical applications. X-ray tubes are found not only in medicine, e.g. in diagnostic systems or in therapeutic systems for irradiation of diseased tissue use, but they are e.g. also used for the sterilization of substances such as blood or food or for sterilization (infertility) of living things such as insects. Other applications are further found in traditional x-ray technology, such as e.g. the scanning of luggage and / or transport containers or the non-destructive inspection of workpieces, e.g. Concrete reinforcements, etc. Various methods and devices for X-ray tubes are described in the prior art.
- FIG. 1 shows schematically an example of such a conventional X-ray tube from a glass composite.
- FIG. 2 and 3 show conventional x-ray tubes made of metal-ceramic composites.
- x-ray tubes In the X-ray tubes, electrons pass through an electric field in a vacuumized tube. They are thereby accelerated to their final energy and convert them to a target surface in X-radiation. That is to say, x-ray tubes comprise an anode and a cathode, which are arranged opposite one another in a vacuumized interior, and which in the metal-ceramic tubes are arranged opposite a cylindrical metal part (FIG.
- FIG. 1 Figure 2/3 ) and glass tubes of a glass cylinder ( FIG. 1 ) are enclosed.
- the glass acts as an insulator.
- the anode and / or cathode are usually electrically insulated by means of a ceramic insulator, the ceramic insulator (s) being arranged axially to the metal cylinder behind the anode and / or cathode and closing the vacuum space at the respective end.
- the ceramic insulators are typically disk-shaped (annular) or conical. In principle, any type of insulator geometry would be possible with this type of tube, with field peaks being taken into account at high voltages.
- the ceramic insulators have in their middle an opening in which a high voltage supply to the anode or the cathode, are used vacuum-tight.
- These types of x-ray tubes are also referred to in the art as bipolar or bipolar x-ray tubes ( FIG. 3 ).
- unipolar devices FIG. 2
- the electron source cathode
- HV negative high voltage
- the target anode
- HV positive high voltage
- the secondary electron emission is known for the impairment of the X-ray tube operation.
- secondary electron emission when the electron beam impinges on the anode, in addition to the X-rays, undesired but unavoidable secondary electrons propagate in the interior of the X-ray tube on tracks corresponding to the field lines. These secondary electrons can reach the insulator surface through various scattering and impact processes and there reduce the HV insulation properties.
- secondary electrons also result from the fact that the insulators are hit at the anode and / or cathode during operation of unavoidable field emission electrons and trigger secondary electrons there.
- the electric field is generated when the high voltage is switched on at the anode and cathode, ie: during operation of the x-ray tube, in the interior and the interior facing surfaces. This also includes the surfaces of the insulator.
- the shielding electrodes can be used, for example, in pairs, wherein they are usually arranged coaxially at a certain distance in a rotationally symmetrical shape of the x-ray tube in order to optimally prevent the propagation of the secondary electrons. As has been shown, however, such devices can no longer be used at very high voltage. In addition, the material and manufacturing costs in such structures is greater than in X-ray tubes with only insulators. Another possibility of the prior art is eg in DE6946926 shown. In order to reduce the attack surface, a conical ceramic insulator is used in these solutions. The ceramic insulator has a substantially constant wall thickness and is coated, for example, with a vulcanized rubber layer. The layer should contribute to the fact that secondary electrons occur less strongly.
- the electric field inside the vacuum space also senses the surfaces of the insulators.
- the field accelerates an electron impinging on the insulators or a scattered electron triggered by an impinging electron away from the surface in the direction of the anode.
- the insulation cones are shaped such that the normal vector of the electric field accelerates the electrons away from the insulator surface. If the anode-side insulator, like the cathode-side insulator, is designed as a truncated cone protruding into the interior, then an electron impinging on the insulator (for example an electron triggered from the metal piston) is likewise accelerated towards the anode.
- the anode-side cone of the insulator is shaped so that the normal vector faces away from the surface.
- the electron moves along the insulator surface, because no electric field acting on the insulator surface acts on the electron.
- the significant disruption possibly even gas eruptions or even a breakdown of the insulator can cause.
- the higher the voltage the more significant this effect becomes. At very high voltages, this type of insulators can therefore no longer be used.
- the geometric length increases with increasing applied electric field.
- an X-ray source is to be proposed which allows several times higher electrical powers than conventional X-ray sources.
- the tubes should be built modular and easy and inexpensive to manufacture. Further, any defective parts of the X-ray tube should be interchangeable without having to replace the whole X-ray tube.
- an X-ray tube an anode and a cathode are arranged opposite each other in a vacuumized interior, wherein at the cathode electrons are generated, are accelerated by means of applying high voltage to the anode and X-rays at the anode means
- the x-ray tube comprises a plurality of complementary acceleration modules, the acceleration modules each comprising at least one potential-carrying electrode, wherein the first acceleration module comprises the cathode with primary electron generation and the last acceleration module comprises the anode with the x-ray generation, and wherein the x-ray tube at least one further acceleration module comprising a potential-carrying electrode, which acceleration module for the acceleration of electrons is repeatedly reproducible in series switchable, and wherein the x-ray tube is modular buildable.
- the anode may comprise a target for X-ray generation with an exit window or be formed as a transmission anode, which closes the vacuumized interior of the X-ray tube to the outside.
- At least one of the electrodes may include spherically shaped ends for reducing or minimizing the field enhancement at the respective electrode.
- the electrodes can be connected, for example, by means of potential connections, for example, to a high-voltage cascade.
- One advantage of the invention is, inter alia, that very high power X-ray radiation can be generated, with the geometrical size of the X-ray tube being small, especially with tubes of the prior art.
- the invention enables an X-ray tube which is stably operable over a very wide electric potential range without changing performance characteristics.
- Another advantage of the invention is, inter alia, a much lower load on the insulator by the E field. This is especially true in comparison to the conventional disk insulators.
- the inventive X-ray tube can be produced, for example, in a single-stage vacuum brazing process. This has the particular advantage that the subsequent evacuation of the X-ray tube can be omitted by means of high vacuum pumps. It is a further advantage that the X-ray tubes according to the invention are particularly suitable for the one-shot method due to their simple and modular construction, since the fields inside the tube are much smaller than in conventional tubes and the tube according to the invention is therefore less susceptible to contamination and / or leaks.
- the potential difference between each two potential-carrying electrodes of adjacent acceleration modules is chosen to be constant for all acceleration modules, the final energy of the accelerating electrons being an integer multiple of the energy of an acceleration module.
- At least one of the acceleration modules has a resealable vacuum valve.
- the acceleration modules can be provided on one or both sides with a vacuum seal to allow an air-tight closure between the individual acceleration modules.
- This variant has u.a. the advantage that by means of the vacuum valve, individual parts of the X-ray tube can be replaced without, as in conventional X-ray tubes, the same whole tube must be replaced. Since the tube has a modular design, the tube can also be subsequently easily adapted to changing operating conditions by using additional acceleration modules or removing existing modules. This is not possible with any of the prior art tubes.
- the acceleration modules comprise a cylindrical insulating ceramic.
- This variant has u.a. the advantage that the mechanical design effort at moderate load through the electric field is low, exceptionally high performance characteristics can be achieved.
- the insulation ceramic has a high-resistance inner coating.
- This variant has u.a. the advantage that disturbing charges by scattered electrons, caused on the one hand by field-related processes in the insulator material, on the other hand by the backscattered by the anode target secondary electrons and by field emission electrons, is avoided.
- the life of the X-ray tubes and / or the potential differences between the individual acceleration electrodes can be additionally increased.
- the insulation ceramic 53 comprises a rib-shaped outer structure. Due to the shape of the insulation ceramic 53, the insulation distance on the outside (atmosphere side) of the insulator can be extended. This variant has the advantage, among other things, that it has a high-voltage correspondingly shaped external structure. This exterior structure additionally allows for improved efficient cooling of the x-ray tube.
- the electrodes of the acceleration modules comprise a shield for suppressing the scattered electron flow to the insulating ceramic.
- At least one of the shields may include spherically shaped ends for reducing or minimizing field elevation at the respective shield.
- the x-ray tube according to the invention is produced by the one-shot method.
- This has u.a. the advantage that the subsequent evacuation of the X-ray tube 10 can be omitted by means of high vacuum pumps.
- Another advantage of the one-shot method i.
- the one-step manufacturing process is therefore more economically efficient, time-saving and cheaper. At the same time, contamination of the tube can be minimized in this process with suitable process control.
- the tube is already largely free of impurities, which minimizes the dielectric strength of the insulating ceramics in the rule.
- Vacuum tightness requirements for the tubes 10 are the same in most cases in the one-shot process as in multi-stage manufacturing processes.
- the present invention relates not only to the method according to the invention but also to a device for carrying out this method and to a method for producing such a device.
- it also relates to irradiation systems which comprise at least one X-ray tube according to the invention with one or more high-voltage cascades for supplying voltage to the at least one X-ray tube.
- FIGS. 4 to 10 illustrate architectures that can be used to implement the invention.
- an anode 20 and a cathode 30 are placed in a vacuumized interior 40 opposite one another.
- the electrons e - are generated at the cathode 30, wherein the cathode 30 serves as an electron emitter.
- the cathode 30 thus serves on the one hand for generating the electric field E, on the other hand also for electron generation. Therefore, all materials are in principle suitable for this application, the electrons e - can emit. This process can be achieved by thermal emission, but also by field emission (cold emitter).
- any type of microtiparrays with mostly diamond-like structures or, for example, also nanotubes can be used.
- the cold emission in this tube type can also be exploited by utilizing the Penning effect on suitably shaped metals.
- thermal emitters which can also be used in this emitter concept, for example tungsten (W), lanthanum hexaboride (LaB 6 ), dispenser cathodes (La in W) and / or oxide cathodes (for example ZrO).
- the electrons e - are accelerated by means of applying high voltage to the anode 20 and generate x-rays ⁇ On an object surface of the anode 20.
- the anodes 20 perform two functions in the X-ray tubes 10. First, they serve as a positive electrode 20 for generating an electric field E for accelerating the electrons e - .
- the anodes 20 or the target material embedded in the anodes 20 serve as a location where the electron energy is converted into X-radiation ⁇ . This conversion depends on the one hand on the particle energy, but also on the atomic number of the target material. Firstly, according to the Bethe formula, the energy loss of the particles is quadratic with the atomic number Z of the target material / dW dx ⁇ Z 2
- the anode 20 is thermally stressed.
- the anode or the target material must therefore be able to survive this thermal stress.
- the vapor pressure of the target material at the operating temperature of the target should be sufficiently small so as not to negatively influence the vacuum necessary for the operation of the X-ray tube 10. Therefore, for example, target materials can be preferably used which are resistant to high temperatures or can be cooled well.
- the target material for example, be embedded in a good heat conductive material (eg copper), which can be well cooled ie good thermal conductivity.
- a good heat conductive material eg copper
- the characteristic lines (K ⁇ ) are suitable for the specific application.
- the x-ray tube 10 further comprises a plurality of complementary acceleration modules 41, ..., 45.
- Each acceleration module 41,..., 45 comprises at least one potential-carrying electrode 20/30/423/433/443 with the corresponding potential connections 421/431/441.
- a first acceleration module 41 comprises the cathode 30 with the electron production e - , ie with the electron emitter.
- a second acceleration module 45 comprises the anode 20 with the X-radiation ⁇ .
- the x-ray tube comprises at least one further acceleration module 42,..., 44 with a potential-carrying electrode 423/433/443.
- the vacuumized interior 40 may be closed, for example, by means of insulating ceramic 51 to the outside.
- the insulating materials should also be suitable for producing a metal-ceramic connection.
- the ceramic should be applicable for Hochvaku umananden. Suitable materials are thus, for example, pure oxide ceramics, such as aluminum, magnesium, beryllium and zirconium oxide. Also monocrystalline Al 2 O 3 (sapphire) is suitable in principle. Furthermore, so-called glass ceramics, such as Macor, or similar materials are conceivable. In particular, mixed ceramics (eg doped Al 2 O 3 ) are of course suitable if they have the appropriate properties.
- the insulation ceramics 51 may be designed, for example, outward in rib shape or the like, in order to extend insulating distance of the insulation jacket 51, which is not vacuum-side, that is, for example, is located in insulating oil. In the same way, however, any other embodiment, for example, a pure cylindrical shape, the insulating ceramic 51 conceivable without the core of the invention would be affected.
- the insulation ceramic 51 may, for example, also have a high-resistance inner coating in order to dissipate possible charges that can be caused by various electronic processes, at the same time ensuring that the acceleration voltage can be applied.
- FIG. 8 shows the basic structure of a modular metal-ceramic tube of two such further acceleration modules 42/43 with insulation ceramic 51, acceleration electrodes 423/433 and potential terminals 421/431.
- the principle described here for the construction of X-ray tubes 10, which for example consists of a metal-ceramic composite can according to the invention are switched as often repeatable in series and so to accelerate electrons e.
- the last potential-carrying electrode of the acceleration structure is the anode 20 required for the production.
- the cathode 30 necessary for electron generation constitutes the first electrode of the acceleration structure This is in the embodiments of the FIGS. 4 to 9 shown.
- X-ray tubes 10 can be built with a total energy up to 800 kilovolts or more (eg FIG. 5 ).
- conventional X-ray tubes have been produced with a maximum total energy of 200 to 450 kilovolts.
- An essential advantage of this concept is that it achieves very high energies with small designs at the same time.
- Another advantage over existing concepts is the almost homogeneous loading of the segments of the insulating ceramics 51 by the electric field. This has the advantage, inter alia, that the X-ray tube 10 can be configured by segmentation so that the field-moderate loading of the insulating ceramics 51 remains below a limit value necessary for high-voltage flashovers.
- FIG. 9 schematically shows the potential distribution in an inventive modular X-ray tube 10 of an embodiment with an 800kV tube.
- the X-ray tubes used in the prior art there is a strong radial stress on the insulating ceramics because the tubes are constructed substantially similar to a cylindrical capacitor.
- These radial fields lead to very high field strengths at the interface between the insulator inner radius and the axially arranged acceleration electrodes (anode, cathode).
- This enormous field elevation at the so-called triple point (insulator-electrode-vacuum) leads to field emissions of electrons, which generate high-voltage flashovers and can lead to the destruction of the tube, as already described above.
- FIG. 12 schematically shows an architecture of such a conventional X-ray tube 10 of the prior art.
- electrons e- from an electron emitter that is a cathode 20
- a hot tungsten filament emitted accelerated by an applied high voltage to a target, wherein X-rays ⁇ from the target, ie the anode 30 is emitted through a window 301.
- Triple points field increases the to field emission of electrons e - lead) incurred while both the cathode side and the anode side.
- the potential difference between in each case two potential-carrying electrodes 20/30/423/433/443 of adjacent acceleration modules 41,..., 45 may, for example, also be constant for all acceleration modules 41,. wherein the final energy of the accelerated electrons e - is an integer multiple of the energy of an acceleration module 41, ..., 45.
- At least one of the acceleration modules 41,..., 45 may further comprise a resealable vacuum valve 531.
- This has the advantage that by means of the vacuum valve 531 individual parts of the X-ray tube 10 can be replaced without, as in conventional X-ray tubes, the same whole tube must be replaced. Since the tube 10 according to the invention has a modular design, the tube 10 can subsequently also be easily adapted to changed operating conditions by using further acceleration modules or by removing existing modules. This is not possible with any of the prior art tubes.
- the increase of the beam energy of X-ray tubes 10 can be achieved by adding one or more acceleration segments 41, ..., 45 or acceleration modules 41, ..., 45 ,
- at least one of the acceleration modules 41,..., 45 can be designed such that it carries a resealable vacuum valve 531.
- the acceleration modules 41,..., 45 could additionally comprise vacuum seals on one or both sides.
- the life of the X-ray tubes and / or the potential differences between the individual acceleration electrodes 20/30/423/433/443 can be additionally increased.
- the simple and modular construction of the x-ray tube 10 according to the invention is particularly suitable for production processes in the one-shot method, or this construction allows the one-shot process only efficiently.
- the soldering of the entire tube 10 takes place in a single-stage vacuum brazing process. This has the advantage, inter alia, that the subsequent evacuation of the x-ray tube 10 by means of high-vacuum pumps can be dispensed with.
- Another advantage of the one-shot process ie the one-step production process by the total soldering of the tube in vacuum (one-shot method), is, among other things, that one has a single manufacturing process and not three as usual: 2. Assemble assemblies (eg soldering or welding) / 3. Evacuate tube by means of vacuum pump.
- the one-step manufacturing process is therefore more economically efficient, time-saving and cheaper.
- the contamination of the tube can be minimized.
- the tube is already largely free of impurities, which minimizes the dielectric strength of the insulating ceramics in the rule.
- Vacuum tightness requirements for the tubes 10 are the same in most cases in the one-shot process as in multi-stage manufacturing processes.
- the inventive tube 10 is less susceptible to contamination and / or leaks.
- the X-ray tube 10 according to the invention can also be used excellently for producing entire radiation systems and / or individual radiation devices 60 (see FIG. 12 ).
- the tube 10 may be mounted in a housing 65, for example, in insulating oil.
- the shielding housing 65 may include an exit window 61 for X-radiation ⁇ .
- the radiation device 60 comprises for the tube 10 a corresponding high-voltage cascade 62, for example with an associated high-voltage transformer 63 and voltage terminals 64 to the outside.
- Such radiation devices 60 or monobloc 60 can then be used, for example, to produce larger radiation systems.
- inventive tube 10 without a target or transmission anode is also outstandingly suitable as an electron emitter and / or electron gun with the corresponding industrial fields of application due to its simple, modular construction and its high powers.
- the shields 422/432/442 are shaped so that the electron beam does not "see" an insulator surface 51 (FIG. FIG. 13 ).
- Charging effects of the ceramic insulators 51 may occur, which need not necessarily be caused by scattered and secondary electron emission.
- FIG. 13 illustrated geometry or a similar geometry such charging effects can be prevented or minimized.
- a coating of the insulation ceramic can also be used, in particular, to supply the potential if, for example, a suitable conductive layer is attached to the outside of the insulators, so that the layer acts as a voltage divider.
- a suitable coating could also replace the metallic electrodes 423/433/443 against the vacuumized interior.
Landscapes
- X-Ray Techniques (AREA)
- Radiation-Therapy Devices (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft eine Röntgenröhre für hohe Dosisleistungen, ein entsprechendes Verfahren zur Erzeugung von hohen Dosisleistungen mit Röntgenröhren sowie ein Verfahren zur Herstellung entsprechender Röntgenvorrichtungen, bei welchem eine Anode und eine Kathode in einem vakuumisierten Innenraum einander gegenüberliegend angeordnet sind, wobei Elektronen mittels anlegbarer Hochspannung auf die Anode beschleunigt werden.The present invention relates to an X-ray tube for high dose rates, a corresponding method for generating high dose rates with X-ray tubes and a method for producing corresponding X-ray devices, in which an anode and a cathode in a vacuumized interior are arranged opposite to each other, wherein electrons by means of applying high voltage the anode will be accelerated.
Die Nutzung von Röntgenröhren ist in wissenschaftlichen und technischen Anwendungen weit verbreitet. Röntgenröhren finden nicht nur in der Medizin, z.B. in diagnostischen Systemen oder bei therapeutischen Systemen zur Bestrahlung von krankem Gewebe Verwendung, sondern sie werden z.B. auch zur Sterilisation von Stoffen wie Blut oder Lebensmittel oder zur Sterilisation (Unfruchtbarmachung) von Lebewesen wie Insekten eingesetzt. Andere Anwendungsgebiete finden sich weiter in der traditionellen Röntgentechnik wie z.B. das Durchleuchten von Gepäckstücken und/oder Transportcontainern oder die zerstörungsfreie Überprüfung von Werkstücken z.B. Betonarmierungen etc. Im Stand der Technik sind diverse Verfahren und Vorrichtungen für Röntgenröhren beschrieben. Diese reichen von miniaturisierten Röhren in Form eines Transistorgehäuses, bis hin zu Hochleistungsröhren mit einer Beschleunigungsspannung von bis zu 450 Kilovolt. Besonders in neuerer Zeit wurde viel Aufwand und Mühe von Industrie und Technik darauf verwendet, die Leistung und/oder Effizienz und/oder Lebensdauer und/oder Wartungsmöglichkeiten von Bestrahlungssystemen zu verbessern. Diese Anstrengungen wurden insbesondere durch neue Anforderungen bei Sicherheitssystemen, wie z.B. beim Durchleuchten von grossen Frachtcontainern im Flugverkehr etc., und ähnlichen Vorrichtungen ausgelöst.The use of X-ray tubes is widely used in scientific and technical applications. X-ray tubes are found not only in medicine, e.g. in diagnostic systems or in therapeutic systems for irradiation of diseased tissue use, but they are e.g. also used for the sterilization of substances such as blood or food or for sterilization (infertility) of living things such as insects. Other applications are further found in traditional x-ray technology, such as e.g. the scanning of luggage and / or transport containers or the non-destructive inspection of workpieces, e.g. Concrete reinforcements, etc. Various methods and devices for X-ray tubes are described in the prior art. These range from miniaturized tubes in the form of a transistor package, to high-performance tubes with an acceleration voltage of up to 450 kilovolts. Particularly recently, much effort and effort has been made by industry and technology to improve the performance and / or efficiency and / or life and / or maintenance capabilities of irradiation systems. These efforts have been made particularly by new requirements in safety systems, such as e.g. when scanning large cargo containers in air traffic, etc., and similar devices triggered.
Die konventionellen im industriellen Umfeld angewandten Röntgenröhrentypen bestehen entweder aus Glas oder aus Metall-Keramik-Verbünden.
Die Probleme bzw. die Nachteile, die durch diese einstufige Konstruktion entstehen, liegen darin, dass bei steigenden angelegten Spannungen ebenfalls die Wahrscheinlichkeit störender physikalischer Effekte steigt. Diese begrenzen zurzeit die Röntgenröhren des Standes der Technik bei unipolaren Röhren auf maximal ca. 200 bis 300 kV und bei bipolaren Vorrichtungen auf maximal ca. 450 kV angelegte Spannung. Wie eben erwähnt, sind es die neben der erwünschten Erzeugung von Röntgenstrahlen beim Betrieb einer Röntgenröhre auftretenden weiteren physikalischen Effekte, wie z.B. Feldemission, Sekundärelektronenemission und Photoeffekt, die die Funktionsfähigkeit der Röhre begrenzen. Diese Effekte stören jedoch nicht nur die Funktion der Röntgenröhre, sondern können zu einer Beeinträchtigung des Materials und damit zu einer vorzeitigen Ermüdung der Teile führen. Insbesondere die Sekundärelektronenemission ist bekannt für die Beeinträchtigung des Röntgenröhrenbetriebs. Bei der Sekundärelektronenemission entstehen beim Auftreffen des Elektronenstrahls auf der Anode neben den Röntgenstrahlen unerwünschte, aber unvermeidbare Sekundärelektronen, die sich im Inneren der Röntgenröhre auf Bahnen entsprechend den Feldlinien fortbewegen. Diese Sekundärelektronen können durch diverse Streu- und Stossprozesse auf die Isolatoroberfläche gelangen und dort die HV-Isolationseigenschaften herabsetzen. Sekundärelektronen entstehen jedoch auch dadurch, dass die Isolatoren bei der Anode und/oder Kathode bei Betrieb von unvermeidbaren Feldemissionselektronen getroffen werden und dort Sekundärelektronen auslösen. Das elektrische Feld wird bei eingeschalteter Hochspannung an der Anode und Kathode, d.h: bei Betrieb der Röntgenröhre, im Innenraum und den dem Innenraum zugewandten Oberflächen erzeugt. Dies umfasst auch die Oberflächen des Isolators. Je kürzer die Röntgenröhre ist und je breiter der Keramikisolator ist, desto grösser ist die Wahrscheinlichkeit, dass Sekundärelektronen und/oder Feldemissionselektronen auf den oder die Keramikteil(e) auftreffen. Dies führt dazu, dass die Hochspannungsfestigkeit und Lebensdauer der Vorrichtung auf unerwünschte Art herabgesetzt wird. Bei scheibenförmigen Isolatoren ist es deshalb aus dem Stand der Technik, z.B. aus
Es ist eine Aufgabe dieser Erfindung, eine neue Röntgenröhre und ein entsprechendes Verfahren zur Herstellung einer solchen Röntgenröhren vorzuschlagen, welche die oben beschriebenen Nachteile nicht aufweist. Insbesondere soll ein Röntgenstrahler vorgeschlagen werden, der mehrfach höhere elektrische Leistungen ermöglicht als konventionelle Röntgenstrahler. Ebenso sollen die Röhren modular aufbaubar und einfach und kostengünstig herzustellen sein. Weiter sollen eventuelle defekte Teile der Röntgenröhre austauschbar sein, ohne dass die ganze Röntgenröhre ersetzt werden muss.It is an object of this invention to propose a novel X-ray tube and a corresponding method for producing such an X-ray tube, which does not have the disadvantages described above. In particular, an X-ray source is to be proposed which allows several times higher electrical powers than conventional X-ray sources. Likewise, the tubes should be built modular and easy and inexpensive to manufacture. Further, any defective parts of the X-ray tube should be interchangeable without having to replace the whole X-ray tube.
Gemäss der vorliegenden Erfindung wird dieses Ziel insbesondere durch die Elemente der unabhängige Ansprüche erreicht. Weitere vorteilhafte Ausführungsformen gehen ausserdem aus den abhängigen Ansprüchen und der Beschreibung hervor.According to the present invention, this object is achieved in particular by the elements of the independent claims. Further advantageous embodiments are also evident from the dependent claims and the description.
Insbesondere werden diese Ziele durch die Erfindung dadurch erreicht, dass in einer Röntgenröhre eine Anode und eine Kathode in einem vakuumisierten Innenraum einander gegenüberliegend angeordnet sind, wobei bei der Kathode Elektronen erzeugt werden, mittels anlegbarer Hochspannung auf die Anode beschleunigt werden und Röntgenstrahlen bei der Anode mittels der Elektronen erzeugt werden, wobei die Röntgenröhre mehrere einander ergänzende Beschleunigungsmodule umfasst, welche Beschleunigungsmodule jeweils mindestens eine potentialtragende Elektrode umfassen, wobei das erste Beschleunigungsmodul die Kathode mit primärer Elektronenerzeugung und das letzte Beschleunigungsmodul die Anode mit der Röntgenstrahlungserzeugung umfasst, und wobei die Röntgenröhre mindestens ein weiteres Beschleunigungsmodul mit einer potentialtragenden Elektrode umfasst, welches Beschleunigungsmodul zur Beschleunigung von Elektronen beliebig oft wiederholbar in Serie schaltbar ist, und wobei die Röntgenröhre modular aufbaubar ist. Die Anode kann ein Target zur Röntgenstrahlungserzeugung mit einem Austrittsfenster umfassen oder als eine Transmissionsanode ausgebildet sein, welche den vakuumisierten Innenraum der Röntgenröhre nach Aussen abschliesst. Mindestens eine der Elektroden kann kugelförmig bzw. konusförmig ausgebildete Enden zur Herabsetzung oder Minimierung der Feldüberhöhung an der jeweiligen Elektrode umfassen. Die Elektroden können z.B. mittels Potentialanschlüsse zum Beispiel an eine Hochspannungskaskade anschliessbar sein. Ein Vorteil der Erfindung ist u.a., dass Röntgenstrahlung sehr hoher Leistung erzeugt werden kann, wobei die geometrische Baugrösse der Röntgenröhre insbesondere zu Röhren des Standes der Technik klein ist. Gleichzeitig ermöglicht die Erfindung eine Röntgenröhre, die stabil über einen sehr weiten elektrischen Potentialbereich betreibbar ist, ohne dass sich Leistungscharakteristiken verändern. Ein weiterer Vorteil der Erfindung ist u.a. eine weitaus geringere Belastung des Isolators durch das E-Feld. Dies gilt besonders im Vergleich zu den herkömmlichen Scheibenisolatoren. Die erfindungsgemässe Röntgenröhre kann z.B. in einem einstufigen Vakuumlötprozess hergestellt werden. Dies hat insbesondere den Vorteil, dass die anschliessende Evakuierung der Röntgenröhre mittels Hochvakuumpumpen entfallen kann. Es ist ein weiterer Vorteil, dass sich die erfindungsgemässe Röntgenröhren durch ihren einfachen und modularen Aufbau besonders für das One-Shot-Verfahren eignet, da die Felder innerhalb der Röhre viel kleiner sind als bei konventionellen Röhren und die erfindungsgemässe Röhre dadurch weniger anfällig auf Verunreinigungen und/oder undichte Stellen ist.In particular, these objects are achieved by the invention in that in an X-ray tube, an anode and a cathode are arranged opposite each other in a vacuumized interior, wherein at the cathode electrons are generated, are accelerated by means of applying high voltage to the anode and X-rays at the anode means wherein the x-ray tube comprises a plurality of complementary acceleration modules, the acceleration modules each comprising at least one potential-carrying electrode, wherein the first acceleration module comprises the cathode with primary electron generation and the last acceleration module comprises the anode with the x-ray generation, and wherein the x-ray tube at least one further acceleration module comprising a potential-carrying electrode, which acceleration module for the acceleration of electrons is repeatedly reproducible in series switchable, and wherein the x-ray tube is modular buildable. The anode may comprise a target for X-ray generation with an exit window or be formed as a transmission anode, which closes the vacuumized interior of the X-ray tube to the outside. At least one of the electrodes may include spherically shaped ends for reducing or minimizing the field enhancement at the respective electrode. The electrodes can be connected, for example, by means of potential connections, for example, to a high-voltage cascade. One advantage of the invention is, inter alia, that very high power X-ray radiation can be generated, with the geometrical size of the X-ray tube being small, especially with tubes of the prior art. At the same time, the invention enables an X-ray tube which is stably operable over a very wide electric potential range without changing performance characteristics. Another advantage of the invention is, inter alia, a much lower load on the insulator by the E field. This is especially true in comparison to the conventional disk insulators. The inventive X-ray tube can be produced, for example, in a single-stage vacuum brazing process. This has the particular advantage that the subsequent evacuation of the X-ray tube can be omitted by means of high vacuum pumps. It is a further advantage that the X-ray tubes according to the invention are particularly suitable for the one-shot method due to their simple and modular construction, since the fields inside the tube are much smaller than in conventional tubes and the tube according to the invention is therefore less susceptible to contamination and / or leaks.
In einer Ausführungsvariante wird die Potentialdifferenz zwischen jeweils zwei potentialtragenden Elektroden benachbarter Beschleunigungsmodule für alle Beschleunigungsmodule konstant gewählt, wobei die Endenergie der beschleunigen Elektronen ein ganzzahliges Vielfaches der Energie eines Beschleunigungsmoduls ist. Diese Ausführungsvariante hat u.a. den Vorteil, dass die Belastung der Isolatoren über die Strecke konstant ist und keine Feldüberhöhungen auftreten, die sich nachteilig auf die Betriebsfähigkeit der Röhre auswirken können.In one embodiment variant, the potential difference between each two potential-carrying electrodes of adjacent acceleration modules is chosen to be constant for all acceleration modules, the final energy of the accelerating electrons being an integer multiple of the energy of an acceleration module. This variant has the advantage, inter alia, that the load on the insulators over the distance is constant and no field increases occur, which can adversely affect the operability of the tube.
In einer anderen Ausführungsvariante weist mindestens eines der Beschleunigungsmodule ein wiederverschliessbares Vakuumventil auf. Der Beschleunigungsmodule können dabei einseitig oder zweiseitig mit einem einer Vakuumdichtung versehen sein, um eine Luftdichte Schliessung zwischen den einzelnen Beschleunigungsmodulen zu erlauben. Diese Ausführungsvariante hat u.a. den Vorteil, dass mittels des Vakuumventils einzelne Teile der Röntgenröhre ersetzt werden können, ohne dass, wie bei herkömmlichen Röntgenröhren, gleich die ganze Röhre ersetzt werden muss. Da die Röhre modular aufgebaut ist, lässt sich die Röhre nachträglich auch problemlos an veränderte Betriebsvoraussetzungen anpassen, indem weitere Beschleunigungsmodule eingesetzt oder bestehende Module entfernt werden. Dies ist bei keiner der Röhren im Stand der Technik so möglich.In another embodiment variant, at least one of the acceleration modules has a resealable vacuum valve. The acceleration modules can be provided on one or both sides with a vacuum seal to allow an air-tight closure between the individual acceleration modules. This variant has u.a. the advantage that by means of the vacuum valve, individual parts of the X-ray tube can be replaced without, as in conventional X-ray tubes, the same whole tube must be replaced. Since the tube has a modular design, the tube can also be subsequently easily adapted to changing operating conditions by using additional acceleration modules or removing existing modules. This is not possible with any of the prior art tubes.
In einer weiteren Ausführungsvariante umfassen die Beschleunigungsmodule eine zylinderförmige Isolationskeramik. Diese Ausführungsvariante hat u.a. den Vorteil, dass der mechanische konstruktive Aufwand bei moderater Belastung durch das elektrische Feld gering ist, wobei ausserordentlich hohe Leistungscharakteristiken erzielbar sind.In a further embodiment, the acceleration modules comprise a cylindrical insulating ceramic. This variant has u.a. the advantage that the mechanical design effort at moderate load through the electric field is low, exceptionally high performance characteristics can be achieved.
In einer wieder anderen Ausführungsvariante weist die Isolationskeramik eine hochohmige Innenbeschichtung auf. Diese Ausführungsvariante hat u.a. den Vorteil, dass störende Aufladungen durch gestreute Elektronen, hervorgerufen einerseits durch feldmässig bedingte Prozesse im Isolatormaterial, anderseits durch die vom Anodentarget zurückgestreuten Sekundärelektronen und durch Feldemissionselektronen, vermieden wird. Damit kann die Lebensdauer der Röntgenröhren und/oder die Potentialdifferenzen zwischen den einzelnen Beschleunigungselektroden zusätzlich erhöht werden.In yet another embodiment variant, the insulation ceramic has a high-resistance inner coating. This variant has u.a. the advantage that disturbing charges by scattered electrons, caused on the one hand by field-related processes in the insulator material, on the other hand by the backscattered by the anode target secondary electrons and by field emission electrons, is avoided. Thus, the life of the X-ray tubes and / or the potential differences between the individual acceleration electrodes can be additionally increased.
In einer Ausführungsvariante umfasst die Isolationskeramik 53 eine rippenförmige Aussenstruktur. Durch die Form der Isolationskeramik 53 kann die Isolationsstrecke an der Aussenseite (Atmosphärenseite) des Isolators verlängert werden. Diese Ausführungsvariante hat u.a. den Vorteil, dass sie eine der Hochspannung entsprechend geformte Aussenstruktur aufweisst. Diese Aussenstruktur erlaubt zusätzlich ein verbessertes effizienteres Kühlen der Röntgenröhre.In one embodiment, the
In einer Ausführungsvariante umfassen die Elektroden der Beschleunigungsmodule eine Abschirmung zur Unterdrückung des Streuelektronenflusses auf die Isolationskeramik. Mindestens eine der Abschirmungen kann kugelförmig bzw. konusförmig ausgebildete Enden zur Herabsetzung oder Minimierung der Feldüberhöhung an der jeweiligen Abschirmung umfassen. Diese Ausführungsvariante hat u.a. den Vorteil, dass die Abschirmungen einen zusätzlichen Schutz für die Isolationskeramiken bilden. Damit kann die Lebensdauer der Röntgenröhren und/oder die Potentialdifferenzen zwischen den einzelnen Beschleunigungselektroden zusätzlich erhöht werden.In one embodiment, the electrodes of the acceleration modules comprise a shield for suppressing the scattered electron flow to the insulating ceramic. At least one of the shields may include spherically shaped ends for reducing or minimizing field elevation at the respective shield. This variant has u.a. the advantage that the shields provide additional protection for the insulation ceramics. Thus, the life of the X-ray tubes and / or the potential differences between the individual acceleration electrodes can be additionally increased.
In einer Ausführungsvariante wird die erfindungsgemässe Röntgenröhre im One-Shot-Verfahren hergestellt. Dies hat u.a. den Vorteil, dass die anschliessende Evakuierung der Röntgenröhre 10 mittels Hochvakuumpumpen entfallen kann. Ein weiterer Vorteil des One-Shot-Verfahren, d.h. des einstufigen Herstellungsverfahrens durch die gesamthafte Lötung der Röhre im Vakuum (One-Shot-Verfahren), ist u.a., dass man einen einzigen Herstellungsprozess hat und nicht wie herkömmlich drei: 1. Baugruppen Löten / 2. Baugruppen zusammenfügen (z.B. Löten oder Schweissen) / 3. Röhre evakuieren mittels Vakuumpumpe. Das einstufige Herstellungsverfahren ist daher ökonomisch effizienter, zeitsparender und billiger. Gleichzeitig lässt sich bei diesem Verfahren bei geeigneter Prozessführung die Kontaminierung der Röhre minimieren. Dennoch kann es vorteilhaft sein, wenn die Röhre schon weitgehend frei von Verunreinigungen ist, was in der Regel die Spannungsfestigkeit der Isolationskeramiken minimiert. Die Anforderungen an die Vakuumsdichtigkeit für die Röhren 10 sind beim One-Shot-Verfahren in den meisten Fällen dieselben wie bei mehrstufigen Herstellungsverfahren.In one embodiment variant, the x-ray tube according to the invention is produced by the one-shot method. This has u.a. the advantage that the subsequent evacuation of the
An dieser Stelle soll festgehalten werden, dass sich die vorliegende Erfindung neben dem erfindungsgemässen Verfahren auch auf eine Vorrichtung zur Ausführung dieses Verfahrens sowie ein Verfahren zur Herstellung einer solchen Vorrichtung bezieht. Insbesondere bezieht es sich auch auf Bestrahlungssysteme, welche mindestens eine erfindungsgemässe Röntgenröhre mit einer oder mehreren Hochspannungskaskaden zur Spannungsversorgung der mindestens einen Röntgenröhre umfassen.It should be noted at this point that the present invention relates not only to the method according to the invention but also to a device for carrying out this method and to a method for producing such a device. In particular, it also relates to irradiation systems which comprise at least one X-ray tube according to the invention with one or more high-voltage cascades for supplying voltage to the at least one X-ray tube.
Nachfolgend werden Ausführungsvarianten der vorliegenden Erfindung anhand von Beispielen beschrieben. Die Beispiele der Ausführungen werden durch folgende beigelegte Figuren illustriert:
-
Figur 1 zeigt ein Blockdiagramm, welches schematisch eine Röntgenröhre 10 aus einem Glasverbund des Standes der Technik zeigt. Dabei werden Elektronen e- von einerKathode 30 emittiert und Röntgenstrahlen γ von einerAnode 20durch ein Fenster 201 abgestrahlt. 50 ist ein zylindrische Glasröhre, wobei das Glas als Isolator dient. -
Figur 2 zeigt ein Blockdiagramm, welches schematisch eine unipolare Röntgenröhre 10 aus einem Metall-Keramik-Verbund des Standes der Technik zeigt. 51 ist der Keramik-Isolator, 52 der auf Erde gesetzte Metallzylinder. Dabei werden Elektronen e- von einerKathode 30 emittiert und Röntgenstrahlen γ von einerAnode 20durch ein Fenster 201 abgestrahlt. -
Figur 3 zeigt ein Blockdiagramm, welches schematisch eine bipolare Röntgenröhre 10 ebenfalls aus einem Metall-Keramik-Verbund des Standes der Technik zeigt. 51 ist der Keramik-Isolator, 52 der auf Erde gesetzte Metallzylinder. Dabei werden Elektronen e- von einerKathode 30 emittiert und Röntgenstrahlen γ von einerAnode 20durch ein Fenster 201 abgestrahlt. -
Figur 4 zeigt ein Blockdiagramm, welches schematisch ein Beispiel einer Aussenansicht einer erfindungsgemässen Röntgenröhre 10 zeigt. -
Figur 5 zeigt ein Blockdiagramm, welches schematisch die Architektur einer Ausführungsvariante einer erfindungsgemässen Röntgenröhre 10 zeigt. Dabei werden Elektronen e- von einerKathode 30 emittiert und Röntgenstrahlen γ von einerAnode 20 abgestrahlt.Die Röntgenröhre 10 umfasst mehrere einander ergänzende Beschleunigungsmodule 41,...,45 und jedes Beschleunigungsmodul 41,...,45 umfasst mindestens eine potentialtragende Elektrode 20/30/423/433/443. -
Figur 6 zeigt ein Blockdiagramm, welches schematisch die Architektur einer weiteren Ausführungsvariante einer erfindungsgemässen Röntgenröhre 10 zeigt.Die Röntgenröhre 10 umfasst wie inFigur 3 mehrere einander ergänzende Beschleunigungsmodule 41,...,45mit potentialtragenden Elektroden 20/30/423/433/443. Die Beschleunigungsmodule umfassen zusätzlich Elektronenabschirmungen 422/432/442 zur Unterdrückung des Streuelektronenflusses auf die Isolationskeramik. -
Figur 7 zeigt ebenfalls ein Blockdiagramm, welches schematisch die Architektur einer anderen Ausführungsvariante einer erfindungsgemässen Röntgenröhre 10 zeigt.Die Röntgenröhre 10 umfasst wie inFigur 3 mehrere einander ergänzende Beschleunigungsmodule 41,...,45mit potentialtragenden Elektroden 20/30/423/433/443. Mindestens eines der Beschleunigungsmodule 41,...,45 umfasst zusätzlichein wiederverschliessbares Vakuumventil 531. -
Figur 8 zeigt eine Querschnittansicht einer erfindungsgemässen Röntgenröhre 10, welche schematisch die Architektur einer Ausführungsvariante gemässFigur 3 zeigt. -
Figur 9 zeigt eine weitere Querschnittansicht einer erfindungsgemässen Röntgenröhre 10.Die Beschleunigungsmodule 41,...,45 umfassen zusätzlich eine möglicheAusführungsform von Abschirmungen 423...443 zur Unterdrückung des Streuelektronenflusses auf die Isolationskeramik. Diese Ausführungsvariante hat u.a. den Vorteil, dass die Abschirmungen einen zusätzlichen Schutz für die Isolationskeramiken bilden. Damit kann die Lebensdauer der Röntgenröhren und/oder die Potentialdifferenzen zwischen den einzelnen Beschleunigungselektroden zusätzlich erhöht werden. Die mögliche Ausführungsform vonFigur 9 zeigt kugelförmig bzw. konusförmig ausgebildete Enden derElektroden 423/433/443 und/oder derAbschirmungen 412,...,415 zur Herabsetzung oder Minimierung der Feldüberhöhung an der jeweiligen Elektrode 423/433/443 und/oder Abschirmung 412,...,415.Die Elektroden 423/433/443 sind durch die Potentialanschlüsse z.B. an eine Hochspannungskaskade anschliessbar. -
zeigt den prinzipiellen Aufbau einer Beschleunigungsstufe einer modularen Metall-Keramik-Röhre mit einer modularen zweistufigen BeschleunigungsstufeFigur 10mit zwei Beschleunigungsmodulen 42/43mit Isolationskeramik 50,Beschleunigungselektroden 423/433und Potentialanschlüssen 421/431. -
Figur 11 zeigt schematisch die Potentialverteilung in einer erfindungsgemässen modularen Röntgenröhre 10 eines Ausführungsbeispiels mit einer 800kV-Röhre. -
Figur 12 zeigt schematisch ein Bestrahlungssystem 60 mit einererfindungsgemässen Röntgenröhre 10. Das Bestrahlungssystem 60umfasst eine Hochspannungskaskade 62 zur Spannungsversorgung der Röntgenröhre 10,ein Hochspannungstransformer 63 sowieein Austrittsfenster 61 für die Röntgenstrahlung γ ausdem Abschirmungsgehäuse 65. -
Figur 13 zeigt eine weitereAusführungsvariante dreier Beschleunigungsmodulen 42/43/44mit Isolationskeramik 50,Elektronenabschirmung 422/432/442und Beschleunigungselektroden 423/433/443.
-
FIG. 1 FIG. 12 is a block diagram schematically showing anX-ray tube 10 of a prior art glass composite. In this case, electrons e - are emitted from acathode 30 and x-rays γ are emitted from ananode 20 through awindow 201. 50 is a cylindrical glass tube with the glass serving as insulator. -
FIG. 2 Fig. 12 is a block diagram schematically showing a prior artunipolar X-ray tube 10 made of a metal-ceramic composite. 51 is the ceramic insulator, 52 is the metal cylinder set on earth. In this case, electrons e - are emitted from acathode 30 and x-rays γ are emitted from ananode 20 through awindow 201. -
FIG. 3 shows a block diagram which schematically shows abipolar X-ray tube 10 also of a metal-ceramic composite of the prior art. 51 is the ceramic insulator, 52 is the metal cylinder set on earth. In this case, electrons e - are emitted from acathode 30 and x-rays γ are emitted from ananode 20 through awindow 201. -
FIG. 4 shows a block diagram which schematically shows an example of an external view of aninventive X-ray tube 10. -
FIG. 5 shows a block diagram, which schematically shows the architecture of an embodiment of aninventive X-ray tube 10. In this case, electrons e - are emitted by acathode 30 and x-rays γ are emitted by ananode 20. TheX-ray tube 10 comprises a plurality ofcomplementary acceleration modules 41, ..., 45 and eachacceleration module 41, ..., 45 comprises at least one potential-carryingelectrode 20/30/423/433/443. -
FIG. 6 shows a block diagram, which schematically shows the architecture of another embodiment of aninventive X-ray tube 10 shows. TheX-ray tube 10 comprises as in FIGFIG. 3 a plurality ofcomplementary acceleration modules 41, ..., 45 with potential-carryingelectrodes 20/30/423/433/443. The acceleration modules additionally include electron shields 422/432/442 for suppressing the stray electron flux to the insulating ceramic. -
FIG. 7 also shows a block diagram, which schematically shows the architecture of another embodiment of aninventive X-ray tube 10. TheX-ray tube 10 comprises as in FIGFIG. 3 a plurality ofcomplementary acceleration modules 41, ..., 45 with potential-carryingelectrodes 20/30/423/433/443. At least one of theacceleration modules 41,..., 45 additionally comprises aresealable vacuum valve 531. -
FIG. 8 shows a cross-sectional view of aninventive X-ray tube 10, which schematically shows the architecture of an embodiment according toFIG. 3 shows. -
FIG. 9 shows a further cross-sectional view of aninventive X-ray tube 10. Theacceleration modules 41, ..., 45 additionally include a possible embodiment ofshields 423 ... 443 for suppressing the stray electron flow to the insulating ceramic. This embodiment variant has the advantage, inter alia, that the shields form an additional protection for the insulation ceramics. Thus, the life of the X-ray tubes and / or the potential differences between the individual acceleration electrodes can be additionally increased. The possible embodiment ofFIG. 9 shows spherically shaped ends of theelectrodes 423/433/443 and / or theshields 412, ..., 415 for reducing or minimizing the field elevation at therespective electrode 423/433/443 and / orshield 412, ... , 415th Theelectrodes 423/433/443 can be connected through the potential connections, for example, to a high-voltage cascade. -
FIG. 10 shows the basic structure of an acceleration stage of a modular metal-ceramic tube with a modular two-stage acceleration stage with twoacceleration modules 42/43 with insulatingceramic 50,acceleration electrodes 423/433 andpotential terminals 421/431. -
FIG. 11 schematically shows the potential distribution in an inventivemodular X-ray tube 10 of an embodiment with an 800kV tube. -
FIG. 12 schematically shows an irradiation system 60 with aninventive X-ray tube 10. The irradiation system 60 includes ahigh voltage cascade 62 for powering theX-ray tube 10, ahigh voltage transformer 63 and anexit window 61 for the X-ray γ from the shield case 65th -
FIG. 13 shows a further embodiment of threeacceleration modules 42/43/44 withinsulation ceramic 50,electron shield 422/432/442 andacceleration electrodes 423/433/443.
Bei diesem Prozess wird die Anode 20 thermisch belastet. Die Anode bzw. das Targetmaterial muss also in der Lage sein, diese thermische Belastung zu überstehen. Daraus folgt, dass der Dampfdruck des Targetmaterials bei Betriebstemperatur des Targets genügend klein sein sollte, um nicht das für den Betrieb der Röntgenröhre 10 notwendige Vakuum negativ zu beeinflussen. Daher können vorzugsweise z.B. Targetmaterialien verwendet werden, die hochtemperaturbeständig sind bzw. gut gekühlt werden können. Dazu kann das Targetmaterial beispielsweise in ein gut wärmeleitfähiges Material (z.B. Kupfer) eingebettet sein, welches gut gekühlt werden kann d.h. gut wärmeleitend ist. Beispielsweise können deshalb möglichst schwere und temperaturbeständige Materialien als Anode (Target) 20 verwendet werden. Insbesondere eignen sich dafür z.B. Materialien wie Wolfram (W, Z=74) und/oder Uran (U, Z=92) und/oder Rhodium (Rh, Z=45) und/oder Silber (Ag, Z=47) und/oder Molybdän (Mo, Z=42) und/oder Palladium (Pd, Z=46) und/oder Eisen (Fe, Z=26) und/oder Kupfer (Cu, Z=29). Bei der Auswahl des Targetmaterials kann es insbesondere vorteilhaft sein, z.B. bei analytischen Anwendungen, zu berücksichtigen, dass die charakteristischen Linien (Kα) sich für den spezifischen Anwendungszweck eignen.In this process, the
Die Röntgenröhre 10 umfasst weiter mehrere einander ergänzende Beschleunigungsmodule 41,...,45. Jedes Beschleunigungsmodul 41,...,45 umfasst mindestens eine potentialtragende Elektrode 20/30/423/433/443 mit den entsprechenden Potentialanschlüssen 421/431/441. Ein erstes Beschleunigungsmodul 41 umfasst die Kathode 30 mit der Elektronenerzeugung e-, d.h. mit dem Elektronenemitter. Ein zweites Beschleunigungsmodul 45 umfasst die Anode 20 mit der Röntgenstrahlung γ. Die Röntgenröhre umfasst mindestens ein weiteres Beschleunigungsmodul 42,...,44 mit einer potentialtragenden Elektrode 423/433/443. Der vakuumisierte Innenraum 40 kann z.B. mittels Isolationskeramik 51 nach aussen abgeschlossen sein. Für das erfindungsgemässe Strahlerkonzept können z.B. Isolationsmaterialien verwendet werden, die den elektrischen Anforderungen der Röntgenröhre 10 (Feldstärke) genügen. Für entsprechende Ausführungsbeispiele sollten die Isolationsmaterialen auch geeignet sein, eine Metall-Keramik-Verbindung herzustellen. Zudem sollte die Keramik für Hochvaku umanwendungen anwendbar sein. Geeignete Materialien sind somit beispielsweise Reinoxid-Keramiken, wie Aluminium-, Magnesium-, Beryllium- und Zirkoniumoxid. Auch monokristallines Al2O3 (Saphir) ist prinzipiell geeignet. Weiter sind auch so genannte Glaskeramiken, wie z.B. Macor, oder ähnliche Materialen vorstellbar. Insbesondere sind natürlich auch Mischkeramiken (z.B. dotiertes Al2O3) geeignet, falls sie die entsprechenden Eigenschaften aufweisen. Die Isolationskeramiken 51 können z.B. nach aussen in Rippenform oder ähnlichem ausgeführt sein, um Isolierstrecke des Isolationsmantels 51, welches nicht vakuumseitig ist, also z.B. sich in Isolieröl befindet, zu verlängern. In gleicher Weise ist aber auch jede andere Ausgestaltung z.B. eine reine Zylinderform, der Isolationskeramik 51 vorstellbar, ohne dass der Kern der Erfindung damit tangiert würde. Die Isolationskeramik 51 kann zusätzlich z.B. auch eine hochohmige Innenbeschichtung aufweisen, um mögliche Aufladungen, die durch diverse Elektronische Prozesse hervorgerufen werden können, abzuleiten, wobei gleichzeitig gewährleistet ist, dass die Beschleunigungsspannung angelegt werden kann.
Die Potentialdifferenz zwischen jeweils zwei potentialtragenden Elektroden 20/30/423/433/443 benachbarter Beschleunigungsmodule 41,...,45 kann z.B. auch für alle Beschleunigungsmodule 41,...,45 konstant gewählt sein, wobei die Endenergie der beschleunigten Elektronen e- ein ganzzahliges Vielfaches der Energie eines Beschleunigungsmoduls 41,...,45 ist. Mindestens eines der Beschleunigungsmodule 41,...,45 kann weiter ein wiederverschliessbares Vakuumventil 531 aufweisen. Dies hat den Vorteil, dass mittels des Vakuumventils 531 einzelne Teile der Röntgenröhre 10 ersetzt werden können, ohne dass, wie bei herkömmlichen Röntgenröhren, gleich die ganze Röhre ersetzt werden muss. Da die erfindungsgemässe Röhre 10 modular aufgebaut ist, lässt sich die Röhre 10 nachträglich damit auch problemlos an veränderte Betriebsvoraussetzungen anpassen, indem weitere Beschleunigungsmodule eingesetzt oder bestehende Module entfernt werden. Dies ist bei keiner der Röhren im Stand der Technik so möglich.The potential difference between in each case two potential-carrying
Es ist wichtig darauf hinzuweisen, dass bei den erfindungsgemässen Röntgenröhren 10 eine prinzipielle Modularität besteht, d.h. die Erhöhung der Strahlenergie einer Röntgenröhren 10 kann durch Hinzufügung einer oder mehrerer Beschleunigungssegmente 41,...,45 oder Beschleunigungsmodule 41,...,45 erzielt werden. Dabei kann mindestens eines der Beschleunigungsmodule 41,...,45 so ausgebildet sein, dass es eine wiederverschliessbare Vakuumventil 531 trägt. Die Beschleunigungsmodule 41,...,45 könne zusätzlich einseitig oder beidseitig Vakuumdichtungen umfassen. Dies hat den Vorteil, dass einzelnen defekte Beschleunigungsmodule 41,...,45 einfach ersetzt und/oder recycelt werden können, indem eine defekten Röhre 10 mittels des wiederverschliessbare Vakuumventil 531 entvakuumsiert wird, das defekte Beschleunigungsmodul 41,...,45 durch ein neues und/oder funktionierendes ersetzt wird und die Röhre 10 mit einer entsprechenden Vakuumpumpe über das wiederverschliessbare Vakuumventil 531 wieder vakuumisiert wird. Es ist ebenfalls wichtig darauf hinzuweisen, dass die Elektroden 20/30/423/433/443 der Beschleunigungsmodule 41,...,45 eine Abschirmung 412,...,415 zur Unterdrückung des Streuelektronenflusses auf die Isolationskeramik 51 umfassen können (
Es kann für die erfindungsgemässe Ausführung sinnvoll sein, dass die Abschirmungen 422/432/442 so geformt sind, dass der Elektronenstrahl keine Isolatorfläche 51 "sieht" (
Claims (12)
- An X-ray tube (10) in which an anode (20) and a cathode (30) are disposed opposite each other in a vacuumized inner space (40), electrons (e-) being able to be produced at the cathode (30), being able to be accelerated to the anode (20) by means of impressible high voltage, and X rays (γ) being able to be produced at the anode (20) by means of the electrons (e-), the X-ray tube (10) comprising a multiplicity of mutually complementary acceleration modules (41,...,45), each acceleration module (41,...,45) comprising at least one potential-carrying electrode (20/30/423/433/443), a first acceleration module (41) comprising the cathode (30) with electron extraction (e-), and a second acceleration module (45) comprising the anode (20) with the X ray generation (γ),
wherein
the X-ray tube (10) comprises at least one further acceleration module (42,...,44) with a potential-carrying electrode (423/433/443), the acceleration module (42,...,44) for acceleration of electrons (e-) being repeatedly connectible in series as often as desired, and the X-ray tube (10) being of modular construction. - The X-ray tube (10) according to claim 1, wherein the difference in potential between each two potential-carrying electrodes (20/30/423/433/443) of adjacent acceleration modules (41,...,45) is constant for all acceleration modules (41,...,45), the final energy of the accelerated electrons (e-) being a whole-number multiple of the energy of an acceleration module (41,...,45).
- The X-ray tube (10) according to one of the claims 1 or 2, wherein at least one of the acceleration modules (41,...,45) has a reclosable vacuum valve (531) and/or vacuum seals on one side or on two sides.
- The X-ray tube (10) according to one of the claims 1 to 3, wherein the acceleration modules (41,...,45) include a cylindrical ceramic insulator (53).
- The X-ray tube (10) according to claim 4, wherein the insulating ceramic (53) has a high-ohmic interior coating.
- The X-ray tube (10) according to one of the claims 4 or 5, wherein the ceramic insulator (53) comprises a ridged exterior structure.
- The X-ray tube (10) according to one of the claims 1 to 6, wherein the anode (20) comprises a target for X-ray generation as well as an emission hole (201) for X-radiation.
- The X-ray tube (10) according to one of the claims 1 to 6, wherein the anode (20) includes a transmission anode, the transmission anode closing off the vacuumized inner space (40) toward the outside.
- The X-ray tube (10) according to one of the claims 1 to 7, wherein the electrodes (20/30/423/433/443) of the acceleration modules (41,...,45) include a shield (412,...,415) for suppression of the stray electron flow on the ceramic insulator (51).
- The X-ray tube (10) according to claim 9, wherein at least one of the electrodes (423/433/443 ) and/or shields (412,...,415) comprises spherically or conically designed ends for reducing or minimizing the field peak at the respective electrode (423/433/443) and/or shield (412,...,415).
- An irradiation system (60), wherein the irradiation system (60) comprises at least one X-ray tube (10) according to one of the claims 1 to 10 with a high voltage cascade (62) for voltage supply of the X-ray tube (10).
- A method of production of an X-ray tube (10) according to one of the claims 1 to 10, wherein the X-ray tube (10) is produced in a one-step vacuum soldering process.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CH2003/000796 WO2005055270A1 (en) | 2003-12-02 | 2003-12-02 | Modular x-ray tube and method for the production thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1714298A1 EP1714298A1 (en) | 2006-10-25 |
EP1714298B1 true EP1714298B1 (en) | 2008-11-19 |
Family
ID=34638003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03773415A Expired - Lifetime EP1714298B1 (en) | 2003-12-02 | 2003-12-02 | Modular x-ray tube and method for the production thereof |
Country Status (7)
Country | Link |
---|---|
US (1) | US7424095B2 (en) |
EP (1) | EP1714298B1 (en) |
CN (1) | CN1879187B (en) |
AT (1) | ATE414987T1 (en) |
AU (1) | AU2003281900A1 (en) |
DE (1) | DE50310817D1 (en) |
WO (1) | WO2005055270A1 (en) |
Families Citing this family (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7949099B2 (en) * | 2007-07-05 | 2011-05-24 | Newton Scientific Inc. | Compact high voltage X-ray source system and method for X-ray inspection applications |
DE102008006620A1 (en) * | 2008-01-29 | 2009-08-06 | Smiths Heimann Gmbh | X-ray generator and its use in an X-ray examination or X-ray inspection |
US8436327B2 (en) | 2008-05-22 | 2013-05-07 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus |
US9744380B2 (en) | 2008-05-22 | 2017-08-29 | Susan L. Michaud | Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof |
US8487278B2 (en) * | 2008-05-22 | 2013-07-16 | Vladimir Yegorovich Balakin | X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US9737734B2 (en) | 2008-05-22 | 2017-08-22 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US8642978B2 (en) | 2008-05-22 | 2014-02-04 | Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US8896239B2 (en) | 2008-05-22 | 2014-11-25 | Vladimir Yegorovich Balakin | Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system |
US10143854B2 (en) | 2008-05-22 | 2018-12-04 | Susan L. Michaud | Dual rotation charged particle imaging / treatment apparatus and method of use thereof |
US7939809B2 (en) | 2008-05-22 | 2011-05-10 | Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US9737733B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle state determination apparatus and method of use thereof |
US9737272B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle cancer therapy beam state determination apparatus and method of use thereof |
US8969834B2 (en) | 2008-05-22 | 2015-03-03 | Vladimir Balakin | Charged particle therapy patient constraint apparatus and method of use thereof |
US9616252B2 (en) | 2008-05-22 | 2017-04-11 | Vladimir Balakin | Multi-field cancer therapy apparatus and method of use thereof |
US8374314B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
US9910166B2 (en) | 2008-05-22 | 2018-03-06 | Stephen L. Spotts | Redundant charged particle state determination apparatus and method of use thereof |
US9974978B2 (en) | 2008-05-22 | 2018-05-22 | W. Davis Lee | Scintillation array apparatus and method of use thereof |
US9682254B2 (en) | 2008-05-22 | 2017-06-20 | Vladimir Balakin | Cancer surface searing apparatus and method of use thereof |
US10070831B2 (en) | 2008-05-22 | 2018-09-11 | James P. Bennett | Integrated cancer therapy—imaging apparatus and method of use thereof |
US8975600B2 (en) | 2008-05-22 | 2015-03-10 | Vladimir Balakin | Treatment delivery control system and method of operation thereof |
US9177751B2 (en) | 2008-05-22 | 2015-11-03 | Vladimir Balakin | Carbon ion beam injector apparatus and method of use thereof |
US8373145B2 (en) * | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Charged particle cancer therapy system magnet control method and apparatus |
US8368038B2 (en) | 2008-05-22 | 2013-02-05 | Vladimir Balakin | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
US8718231B2 (en) | 2008-05-22 | 2014-05-06 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US9498649B2 (en) | 2008-05-22 | 2016-11-22 | Vladimir Balakin | Charged particle cancer therapy patient constraint apparatus and method of use thereof |
US10092776B2 (en) | 2008-05-22 | 2018-10-09 | Susan L. Michaud | Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof |
US9782140B2 (en) | 2008-05-22 | 2017-10-10 | Susan L. Michaud | Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof |
US8569717B2 (en) | 2008-05-22 | 2013-10-29 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
US9044600B2 (en) | 2008-05-22 | 2015-06-02 | Vladimir Balakin | Proton tomography apparatus and method of operation therefor |
WO2009142544A2 (en) * | 2008-05-22 | 2009-11-26 | Vladimir Yegorovich Balakin | Charged particle cancer therapy beam path control method and apparatus |
US9937362B2 (en) | 2008-05-22 | 2018-04-10 | W. Davis Lee | Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof |
US9168392B1 (en) | 2008-05-22 | 2015-10-27 | Vladimir Balakin | Charged particle cancer therapy system X-ray apparatus and method of use thereof |
JP2011523169A (en) | 2008-05-22 | 2011-08-04 | エゴロヴィチ バラキン、ウラジミール | Charged particle beam extraction method and apparatus for use with a charged particle cancer treatment system |
US8624528B2 (en) | 2008-05-22 | 2014-01-07 | Vladimir Balakin | Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods |
US8188688B2 (en) | 2008-05-22 | 2012-05-29 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US8089054B2 (en) | 2008-05-22 | 2012-01-03 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US9095040B2 (en) | 2008-05-22 | 2015-07-28 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8178859B2 (en) | 2008-05-22 | 2012-05-15 | Vladimir Balakin | Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system |
CN102119585B (en) | 2008-05-22 | 2016-02-03 | 弗拉迪米尔·叶戈罗维奇·巴拉金 | The method and apparatus of charged particle cancer therapy patient location |
US8519365B2 (en) | 2008-05-22 | 2013-08-27 | Vladimir Balakin | Charged particle cancer therapy imaging method and apparatus |
US8637833B2 (en) | 2008-05-22 | 2014-01-28 | Vladimir Balakin | Synchrotron power supply apparatus and method of use thereof |
US9579525B2 (en) | 2008-05-22 | 2017-02-28 | Vladimir Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US9855444B2 (en) | 2008-05-22 | 2018-01-02 | Scott Penfold | X-ray detector for proton transit detection apparatus and method of use thereof |
US8129699B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US10548551B2 (en) | 2008-05-22 | 2020-02-04 | W. Davis Lee | Depth resolved scintillation detector array imaging apparatus and method of use thereof |
US8598543B2 (en) * | 2008-05-22 | 2013-12-03 | Vladimir Balakin | Multi-axis/multi-field charged particle cancer therapy method and apparatus |
US8373143B2 (en) * | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
US10029122B2 (en) | 2008-05-22 | 2018-07-24 | Susan L. Michaud | Charged particle—patient motion control system apparatus and method of use thereof |
US9058910B2 (en) * | 2008-05-22 | 2015-06-16 | Vladimir Yegorovich Balakin | Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system |
US9056199B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Balakin | Charged particle treatment, rapid patient positioning apparatus and method of use thereof |
US9155911B1 (en) | 2008-05-22 | 2015-10-13 | Vladimir Balakin | Ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US8710462B2 (en) | 2008-05-22 | 2014-04-29 | Vladimir Balakin | Charged particle cancer therapy beam path control method and apparatus |
US10684380B2 (en) | 2008-05-22 | 2020-06-16 | W. Davis Lee | Multiple scintillation detector array imaging apparatus and method of use thereof |
CN102113419B (en) | 2008-05-22 | 2015-09-02 | 弗拉迪米尔·叶戈罗维奇·巴拉金 | Multi-axis charged particle cancer therapy method and device |
EP2283710B1 (en) | 2008-05-22 | 2018-07-11 | Vladimir Yegorovich Balakin | Multi-field charged particle cancer therapy apparatus |
US8907309B2 (en) | 2009-04-17 | 2014-12-09 | Stephen L. Spotts | Treatment delivery control system and method of operation thereof |
US8309941B2 (en) | 2008-05-22 | 2012-11-13 | Vladimir Balakin | Charged particle cancer therapy and patient breath monitoring method and apparatus |
US8378321B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Charged particle cancer therapy and patient positioning method and apparatus |
US9981147B2 (en) | 2008-05-22 | 2018-05-29 | W. Davis Lee | Ion beam extraction apparatus and method of use thereof |
US8373146B2 (en) * | 2008-05-22 | 2013-02-12 | Vladimir Balakin | RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US8625739B2 (en) | 2008-07-14 | 2014-01-07 | Vladimir Balakin | Charged particle cancer therapy x-ray method and apparatus |
US8627822B2 (en) | 2008-07-14 | 2014-01-14 | Vladimir Balakin | Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
DE102009007218A1 (en) * | 2009-02-03 | 2010-09-16 | Siemens Aktiengesellschaft | Electron accelerator for generating a photon radiation with an energy of more than 0.5 MeV |
CN102387836B (en) | 2009-03-04 | 2016-03-16 | 普罗汤姆封闭式股份公司 | Many charged particle cancer treatment facilities |
US10589128B2 (en) | 2010-04-16 | 2020-03-17 | Susan L. Michaud | Treatment beam path verification in a cancer therapy apparatus and method of use thereof |
US10376717B2 (en) | 2010-04-16 | 2019-08-13 | James P. Bennett | Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof |
US10179250B2 (en) | 2010-04-16 | 2019-01-15 | Nick Ruebel | Auto-updated and implemented radiation treatment plan apparatus and method of use thereof |
US10751551B2 (en) | 2010-04-16 | 2020-08-25 | James P. Bennett | Integrated imaging-cancer treatment apparatus and method of use thereof |
US11648420B2 (en) | 2010-04-16 | 2023-05-16 | Vladimir Balakin | Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof |
US10518109B2 (en) | 2010-04-16 | 2019-12-31 | Jillian Reno | Transformable charged particle beam path cancer therapy apparatus and method of use thereof |
US9737731B2 (en) | 2010-04-16 | 2017-08-22 | Vladimir Balakin | Synchrotron energy control apparatus and method of use thereof |
US10349906B2 (en) | 2010-04-16 | 2019-07-16 | James P. Bennett | Multiplexed proton tomography imaging apparatus and method of use thereof |
US10555710B2 (en) | 2010-04-16 | 2020-02-11 | James P. Bennett | Simultaneous multi-axes imaging apparatus and method of use thereof |
US10638988B2 (en) | 2010-04-16 | 2020-05-05 | Scott Penfold | Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof |
US10086214B2 (en) | 2010-04-16 | 2018-10-02 | Vladimir Balakin | Integrated tomography—cancer treatment apparatus and method of use thereof |
US10188877B2 (en) | 2010-04-16 | 2019-01-29 | W. Davis Lee | Fiducial marker/cancer imaging and treatment apparatus and method of use thereof |
US10625097B2 (en) | 2010-04-16 | 2020-04-21 | Jillian Reno | Semi-automated cancer therapy treatment apparatus and method of use thereof |
US10556126B2 (en) | 2010-04-16 | 2020-02-11 | Mark R. Amato | Automated radiation treatment plan development apparatus and method of use thereof |
US8963112B1 (en) | 2011-05-25 | 2015-02-24 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8953747B2 (en) * | 2012-03-28 | 2015-02-10 | Schlumberger Technology Corporation | Shielding electrode for an X-ray generator |
JP5763032B2 (en) * | 2012-10-02 | 2015-08-12 | 双葉電子工業株式会社 | X-ray tube |
US8933651B2 (en) | 2012-11-16 | 2015-01-13 | Vladimir Balakin | Charged particle accelerator magnet apparatus and method of use thereof |
US9907981B2 (en) | 2016-03-07 | 2018-03-06 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US10037863B2 (en) | 2016-05-27 | 2018-07-31 | Mark R. Amato | Continuous ion beam kinetic energy dissipater apparatus and method of use thereof |
JP7269107B2 (en) * | 2019-06-12 | 2023-05-08 | 日清紡マイクロデバイス株式会社 | electron gun |
EP4060713A4 (en) * | 2019-11-11 | 2023-12-13 | Canon Electron Tubes & Devices Co., Ltd. | X-ray tube and method for manufacturing x-ray tube |
EP3933881A1 (en) | 2020-06-30 | 2022-01-05 | VEC Imaging GmbH & Co. KG | X-ray source with multiple grids |
US11791123B2 (en) * | 2021-04-29 | 2023-10-17 | Electronics And Telecommunications Research Institute | X-ray tube |
JP7231001B1 (en) * | 2021-12-13 | 2023-03-01 | 株式会社Nhvコーポレーション | Electron beam irradiation device |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE6946926U (en) | 1969-12-03 | 1971-07-22 | C H P Mueller Gmbh | ROENTGE PIPE WITH METAL PISTON. |
DE2302938C3 (en) * | 1973-01-22 | 1979-07-12 | Polymer-Physik Gmbh & Co Kg, 2844 Lemfoerde | Multi-stage accelerator for charged particles with high vacuum insulation |
US3903424A (en) * | 1974-02-19 | 1975-09-02 | Extrion Corp | Linear accelerator with x-ray absorbing insulators |
DE2506841C2 (en) | 1975-02-18 | 1986-07-03 | Philips Patentverwaltung Gmbh, 2000 Hamburg | High voltage vacuum tube |
DE2855905A1 (en) | 1978-12-23 | 1980-06-26 | Licentia Gmbh | DEVICE WITH A X-RAY TUBE |
CH665920A5 (en) | 1985-03-28 | 1988-06-15 | Comet Elektron Roehren | X-ray tube WITH THE ANODE AND CATHODE SURROUNDING CYLINDRICAL METAL PART. |
DE4425683C2 (en) * | 1994-07-20 | 1998-01-22 | Siemens Ag | Electron generating device of an X-ray tube with a cathode and with an electrode system for accelerating the electrons emanating from the cathode |
JP2002025446A (en) * | 1997-12-04 | 2002-01-25 | Hamamatsu Photonics Kk | Manufacturing method of x-ray tube |
US6111932A (en) | 1998-12-14 | 2000-08-29 | Photoelectron Corporation | Electron beam multistage accelerator |
DE10019070A1 (en) * | 2000-04-18 | 2001-10-25 | Moeller Gmbh | Device for de-gassing and soldering pre-mounted vacuum switch tubes has base plate with solder point(s), opening for connecting suction pump, bell, stimulation coil, generator and susceptor |
DE10048833C2 (en) * | 2000-09-29 | 2002-08-08 | Siemens Ag | Vacuum housing for a vacuum tube with an X-ray window |
JP2002253687A (en) | 2001-03-02 | 2002-09-10 | Mitsubishi Heavy Ind Ltd | Radiotherapeutic apparatus |
-
2003
- 2003-12-02 EP EP03773415A patent/EP1714298B1/en not_active Expired - Lifetime
- 2003-12-02 WO PCT/CH2003/000796 patent/WO2005055270A1/en active Application Filing
- 2003-12-02 DE DE50310817T patent/DE50310817D1/en not_active Expired - Lifetime
- 2003-12-02 US US10/581,542 patent/US7424095B2/en not_active Expired - Fee Related
- 2003-12-02 CN CN2003801107839A patent/CN1879187B/en not_active Expired - Fee Related
- 2003-12-02 AU AU2003281900A patent/AU2003281900A1/en not_active Abandoned
- 2003-12-02 AT AT03773415T patent/ATE414987T1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE50310817D1 (en) | 2009-01-02 |
WO2005055270A1 (en) | 2005-06-16 |
US7424095B2 (en) | 2008-09-09 |
AU2003281900A1 (en) | 2005-06-24 |
ATE414987T1 (en) | 2008-12-15 |
EP1714298A1 (en) | 2006-10-25 |
CN1879187B (en) | 2010-04-28 |
CN1879187A (en) | 2006-12-13 |
US20070121788A1 (en) | 2007-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1714298B1 (en) | Modular x-ray tube and method for the production thereof | |
DE2129636C2 (en) | Field emission electron gun | |
EP0584871B1 (en) | X-ray tube with anode in transmission mode | |
DE19933650C1 (en) | Ionization chamber with a non-radioactive ionization source | |
DE112010002551B4 (en) | LOADED PARTICLES EMITTING DEVICE | |
EP0558797B1 (en) | Cathodic sputtering device | |
DE1514990A1 (en) | Hollow cathode | |
DE19962160A1 (en) | Extreme UV and soft X-ray radiation source e.g. for extreme UV lithography, has auxiliary electrode behind opening in one main gas discharge electrode for increasing energy conversion efficiency | |
EP0063840B1 (en) | High tension vacuum tube, particularly x ray tube | |
EP2191132A2 (en) | Device for dissipating lost heat, and ion accelerator arrangement comprising such a device | |
EP1537594B1 (en) | High-voltage vacuum tube | |
DE1187740B (en) | Electron multiplier tubes | |
WO2005086203A1 (en) | X-ray tube for high dosing performances, method for producing high dosing performances with x-ray tubes and method for the production of corresponding x-ray devices | |
DE2341503A1 (en) | ELECTRON BEAM TUBE | |
DE102021127146B3 (en) | Device for charging bulk material with accelerated electrons | |
DE3001983C2 (en) | ||
DE102020109610B4 (en) | GAS FIELD IONIZATION SOURCE | |
DE10241549B4 (en) | Orbitron pump | |
DE1934328A1 (en) | Device for the optional atomization of solid substances by ion bombardment using the plasma or ion beam method | |
EP1654914B1 (en) | Extreme uv and soft x ray generator | |
RU2344513C2 (en) | Modular x-ray tube and method of its production | |
DE619621C (en) | X-ray tube with perforated hollow anode | |
DE3908480C1 (en) | ||
DE745240C (en) | Device for generating a beam of positive ions or electrons | |
DE4209226A1 (en) | Monochromatic X=ray source - has fluorescent target biased negatively w.r.t. anode to increase fluorescence output |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060516 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50310817 Country of ref document: DE Date of ref document: 20090102 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090301 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 |
|
BERE | Be: lapsed |
Owner name: COMET HOLDING A.G. Effective date: 20081231 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081231 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090219 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090219 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090420 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081231 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 |
|
26N | No opposition filed |
Effective date: 20090820 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090520 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081202 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090220 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20100528 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20181220 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20191210 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50310817 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210701 |