EP1713386A1 - Optical recording of the spatial form of bodies and body parts with sections that in part are not optically visible - Google Patents

Optical recording of the spatial form of bodies and body parts with sections that in part are not optically visible

Info

Publication number
EP1713386A1
EP1713386A1 EP05707172A EP05707172A EP1713386A1 EP 1713386 A1 EP1713386 A1 EP 1713386A1 EP 05707172 A EP05707172 A EP 05707172A EP 05707172 A EP05707172 A EP 05707172A EP 1713386 A1 EP1713386 A1 EP 1713386A1
Authority
EP
European Patent Office
Prior art keywords
visible
parts
measuring aid
measuring
spatial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05707172A
Other languages
German (de)
French (fr)
Inventor
Robert Massen
Dirk Rutschmann
Holger Reinhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
corpuse AG
Original Assignee
corpuse AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by corpuse AG filed Critical corpuse AG
Publication of EP1713386A1 publication Critical patent/EP1713386A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1077Measuring of profiles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • A61B5/1127Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique using markers

Definitions

  • the invention relates to a method for the optical detection of the spatial shape of bodies and body parts with partially invisible parts, and to an arrangement for guiding the nerve procedure.
  • this method also has the limitation that only those parts of a body can be digitized that are captured by the cameras.
  • all parts of the body to be digitized must even be captured from at least two views in order to be able to calculate the 3D model from the 2D images.
  • the non-visible parts of the body are missing in the 3D model.
  • These missing parts are a major limitation, for example, in the manufacture of thigh prostheses.
  • the shaft to be adjusted encompasses the entire thigh and, particularly in the area of the ramus (pelvic bone in the perineal area), must have firm physical contact that is precisely aligned with the ramus bone in the angular position. This area is visually not visible.
  • Spatial shape of bodies and body parts with at least one 3D digitizer and those that cannot be viewed by the at least one 3D digitizer avoidable parts of the body are attached in a form-fitting manner to at least one dimensionally stable measuring aid so that it protrudes into the measuring space that can be viewed by the at least one optical 3D digitizer, this at least one measuring aid at least at some points of its parts located in the visible measuring space with the at least one 3D digitizer that can be evaluated Markings is provided, and these markings are in a known spatial position with respect to the other parts of the measuring aid. The spatial position and the markings of this part of the measuring aid, which is visible to the at least one 3D digitizer, are combined with the? Form of the other, visible parts of the body determined.
  • geometric information such as height, angle, circumference, curvature, etc. of the body part or parts that cannot be seen are determined and this information is used to supplement the description of the incompletely digitized spatial form on these parts due to the non-visible parts Digits used.
  • the invention also relates to an arrangement for carrying out the method.
  • This arrangement comprises a body or a body part with partially invisible parts and a dimensionally rigid measuring aid with marks that can be evaluated photogrammetrically, which is attached in a form-fitting manner to at least one of the non-visible parts of the body / body part (10).
  • An optical 3D digitizer detects the spatial shape of the visible parts of the body and at least a visible part of the measuring aid and transfers spatial coordinates to a computer, which are determined by the 3D digitizer from the visible parts of the body or body part and from the visible part of the measuring aid.
  • the computer determines geometric information about the height, angle, circumference, Curvature of the parts of the body that are not visible and uses this geometric information to complement the spatial form that is incompletely digitized because of the parts that are not visible.
  • Advantageous embodiments of the method are contained in the subclaims.
  • This inventive concept is described by way of example, but not by way of limitation, using two applications in the field of orthopedics: a) the determination of spatial information from the (non-visible) area of the ramus (near the perineum) during 3D scanning of a thigh for the manufacture of a suitable stem for a thigh prosthesis b) the determination of the circumference of the (not fully visible) thigh in obese patients for the manufacture of adapted compression stockings and compression tights
  • Fig. 1 shows a front view of the optically invisible part of the ramus in a patient who needs a thigh prosthesis
  • FIG. 3 shows a measuring aid in the form of an adjustable ring which is provided with marks which can be evaluated photogrammetrically on the visible surface and which also has a marked belt for determining the circumference at the non-visible places on the thigh;
  • Fig. 4 shows a patient for compression stocking care, in which the thigh area is not visible, and in which the circumferential dimension in the invisible thigh area is determined with a 3D scanner using a marked belt.
  • the patient who needs a thigh prosthesis is traditionally cared for by manually taking a plaster cast from the thigh. in this connection The orthopedist expertly presses the still soft plaster in the area of the ramus into the appropriate position, according to the individual local anatomy of the male or female patient.
  • FIG. 1 shows a patient only shown in part and a schematically indicated 3D digitizer 2 with a connected computer 3.
  • the limb 10 of the patient standing upright on a photogrammetrically marked base plate 13 is covered with an elastic covering 12 provided with marks that can be evaluated photogrammetrically.
  • the brands are only given as examples; they can consist of differently coded patterns which are known to the person skilled in the art of photogrammetry.
  • DE 101 13 211.5 by the inventor Robert Massen describes various photogrammetric marking systems which are particularly suitable for automatic evaluation and which are suitable both for marking the base plate and for marking the elastic coating.
  • the patient stands on the plate 13 provided with photogrammetric marks, which defines the world coordinate system and at the same time represents an absolute scale, which is required for obtaining absolute XYZ coordinates.
  • the usual way for this technology to take the marked stump with a series of images taken all around with a digital camera the area between the two thighs is not visible. No 3D data can therefore be obtained from this part of the body.
  • the height coordinate 14 of the ramus bone in the area of the perineum and the ramus angle alpha 15 below which the prosthesis socket lies and which absorbs a significant part of the body weight when the prosthesis is worn later are missing.
  • an elongated measuring elbow 16 which bends upwards is attached to the inside of the thigh stump 10 and at the level of the perineum in physical contact with the ramus in such a way that it moves in the direction of the ramus angle from the invisible area into the visible outside space that sticks out.
  • the kink ensures that the visible, marked end 17 of the measuring position is in a spatial position which does not cover any parts of the body to be digitized, in the present example the lower abdomen.
  • the attachment can be done, for example, with a Velcro fastener on the elastic cover.
  • the freely visible end of the measuring bilge is recorded simultaneously with the visible parts of the body during the digitizing process and the exact spatial position of the markings of both the measuring aid and the visible parts of the body is determined. Since the help is rigid, the XYZ coordinates of these markings allow conclusions to be drawn about the spatial information required, such as the height and angular position of the ramus bone. This means that there is no complete XYZ data for the non-visible part of the body, but spatial partial information such as height, angular directions, etc., which supplement the missing points in the 3D model determined by the 3D digitizer for the appropriate manufacture of the shaft.
  • a photogrammetrically marked, circumferentially adjustable auxiliary ring 18 is brought into the position of the final shaft connection as a measurement guide via the marked coating 12 and aligned there at the ramus angle.
  • the auxiliary ring is adapted to the thigh width by adjusting the diameter with the aid of a belt construction 19 which is also marked.
  • the markings on the surface serve to determine the spatial coordinates and thus the spatial position of the auxiliary ring with respect to the world coordinate system and thus indirectly also with respect to the marked thigh stump.
  • Model of the auxiliary ring 18 can easily be converted to the individual diameter of the patient. Since the spatial position of the auxiliary ring 18 relative to the digitized stump 10 is known at the same time, all 3D information is available in order to automatically produce an individual prosthetic socket starting from the end of the stump and extending to the ramus.
  • Another idea of the invention is to produce the marked auxiliary ring from semiplastic, photogrammetrically marked material.
  • This material is molded onto the thigh by the orthopedic surgeon like a soft plaster and, after being deformed by hand, retains its spatial shape for at least a short time for the duration of the digitization.
  • the 3D digitizer determines, at least for the visible part of the thigh, the spatial shape which a final shaft compressing the fatty tissue must occupy.
  • the non-visible part is determined, for example, as described above, by a measuring aid protruding into the visible measuring space, which expediently on Auxiliary ring is attached and, for example, protrudes into the visible measuring space at the Ramus angle.
  • Another idea of the invention is to use the measuring means under load, i.e. burdened by the invisible parts of the body.
  • a vertical load e.g. in that the measuring means is supported with the aid of a support in relation to the base plate on which the patient stands during the 3D digitization.
  • the load is caught by the belt attached for adjusting the diameter.
  • the desired spatial coordinates under body load i.e. Similar to the later wearing of the prosthesis, with which 3D digitizers can be determined and thus provide a much more precise description of the spatial shape required for the production of the adapted prosthesis part than when digitizing an unloaded stump.
  • the precise fit i.e. burdened by the invisible parts of the body.
  • the markings on the aid can consist of absolutely or relatively coded marks, color-coded marks, marks marked by certain background colors or marks coded by a certain mutual arrangement.
  • 3D digitizers that project onto patterns
  • the application of photogrammetrically coded marks on the aid can be omitted and special molded parts of the aid such as e.g. its edge can be used as a space marker.
  • the aid must have sufficient optical reflection so that these projected marks can be evaluated by the optical 3D digitizer.
  • the end protruding freely into the measuring space represents, for example, a spatial position which can be detected by the 3D digitizer and which is in a known spatial position with respect to the part of the measuring aid fixed to the body part and therefore forms a "mark" in the sense of the inventive idea be counted back to the unmeasurable position of the invisible part of the body in the measuring room.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Physiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The invention relates to a method and a device for the optical 3D digitisation of bodies and body parts with sections that are not visible and thus cannot be recorded by the 3D digitiser. A mechanical aid is fixed to said sections and protrudes into the measuring area that is visible to the 3D digitiser. Said aid is provided with markings on the visible section and is digitised simultaneously with the other visible body parts. The spatial position of the markings on the aid enables important geometric information to be calculated in retrospect for the parts that are not visible, such as their spatial position, circumferential measurement etc., thus permitting the 3D model of the body or body part that is incomplete at these points to be completed. Two orthopaedic applications are given as examples.

Description

Optische Erfassung der Raumform von Körpern und Körperteilen mit optisch teilweise nicht einsehbaren Partien Optical detection of the spatial shape of bodies and body parts with parts that are not visually visible
Die Erfindung betrifft ein Verfahren zur optischen Erfassung der Raumform von Körpern und Körperteilen mit teilweise nicht einsehbaren Partien sowie eine Anordnung zur Dui-chfϊihrung des Nerfahrens.The invention relates to a method for the optical detection of the spatial shape of bodies and body parts with partially invisible parts, and to an arrangement for guiding the nerve procedure.
Die optische Erfassung der 3-dimensionalen Form von Körpern und Körperteilen mit Hilfe von sog. 3D-Scannern entwickelt sich zu einer wichtigen Technologie bei der Produktion von an den menschlichen Körper angepaßten Produkten wie Bekleidung, Schuhwerk, Sportstützen, orthopädische und medizinische Hilfen u.a.. Die Verfügbarkeit sehr kostengünstiger, auf der Kombination von Bildverarbeitung und Photogrammetrie beruhenden Verfahren macht diese Technik insbesondere für orthopädische Anwendungen interessant. In der EP 0760 622 des Erfinders Robert Massen wird das grundsätzliche Verfahren eines besonders kostengünstigen 3D Scanners beschrieben, bei welchem das zu digitalisierende Körperteil mit einem elastischen Überzug versehen wird, welcher photogrammetrisch auswertbare Marken trägt. Mit Hilfe einer oder mehrerer nur grob positionierten Kameras werden überlappende Bilder aufgenommen und aus dem Verbund dieser 2D Bilder automatisch ein 3D Modell des Körperteils erstellt. Unter der Bezeichnung „3D Image" wird dieses Verfahrens bereits von der Firma Bauerfeind-Phlebologie AG aus Zeulenroda eingesetzt, um angepaßte Kompressionsstrümpfe herzustellen (www.bauerfeind-phIeboIogie.de).The optical detection of the 3-dimensional shape of bodies and body parts with the help of so-called 3D scanners is developing into an important technology in the production of products adapted to the human body, such as clothing, footwear, sports supports, orthopedic and medical aids, etc. Availability of very cost-effective methods based on the combination of image processing and photogrammetry makes this technology particularly interesting for orthopedic applications. EP 0760 622 by the inventor Robert Massen describes the basic method of a particularly inexpensive 3D scanner, in which the body part to be digitized is provided with an elastic coating which bears marks that can be evaluated photogrammetrically. With the help of one or more roughly positioned cameras, overlapping images are recorded and a 3D model of the body part is automatically created from the combination of these 2D images. Under the name "3D Image", this process is already being used by Bauerfeind-Phlebologie AG from Zeulenroda to produce customized compression stockings (www.bauerfeind-phIeboIogie.de).
Wie bei allen optischen 3D Scannern hat aber auch dieses Verfahren die Beschränkimg, daß nur solche Teile eines Körpers digitalisiert werden können, welche von den Kameras bildhaft erfaßt werden. Bei photogrammetrischen Verfahren müssen alle zu digitalisierenden Körperteile sogar aus mindestens zwei Ansichten bildhaft erfaßt werden, um aus den 2D Bildern das 3D Modell berechnen zu können. Die nicht einsehbaren Körperpartien fehlen im 3D Modell. Diese fehlenden Partien sind beispielsweise bei der Herstellung von Oberschenkelprothesen eine starke Einschränkung. Der anzupassende Schaft umfaßt den gesamten Oberschenkel und muß insbesondere im Bereich des Ramus (Beckenknochen im Damm-Bereich) einen festen und zum Ramus-Knochen in der Winkelstellung genau ausgerichteten physischen Kontakt haben. Dieser Bereich ist optisch aber nicht einsehbar. Er wird beim traditionellen Verfahren des Gipsabdrucks manuell vom Orthopäden abgetastet, um die Raumlage und Raumform des Ramus auf die Gipsform zu übertragen. Diese manuell erfaßten Daten liegen nicht in numerischer Form vor und sind damit nur sehr schwierig in ein automatisch erzeugtes 3D Teil-Modell nachzutragen. Die automatische Erfassung der Raumform des gesamten Oberschenkels zur Herstellung besonders gut passender Prothesenschäfte ist damit nur eingeschränl t möglich.As with all optical 3D scanners, however, this method also has the limitation that only those parts of a body can be digitized that are captured by the cameras. With photogrammetric methods, all parts of the body to be digitized must even be captured from at least two views in order to be able to calculate the 3D model from the 2D images. The non-visible parts of the body are missing in the 3D model. These missing parts are a major limitation, for example, in the manufacture of thigh prostheses. The shaft to be adjusted encompasses the entire thigh and, particularly in the area of the ramus (pelvic bone in the perineal area), must have firm physical contact that is precisely aligned with the ramus bone in the angular position. This area is visually not visible. In the traditional plaster cast method, he is manually scanned by the orthopedist in order to transfer the spatial position and spatial shape of the ramus to the plaster mold. These manually recorded data are not available in numerical form and are therefore very difficult to add to an automatically generated 3D part model. The automatic determination of the spatial shape of the entire thigh for the production of particularly well-fitting prosthetic sockets is therefore only possible to a limited extent.
Ein weiterer, bei den heutigen optischen 3D Scannern nicht zufriedenstellend gelöster Anwendungsfall ist die Ermittlung der Raumform für die maßgenaue Fertigung oder Maßsele?ktion von Kompressionsstrümpfen bei fettleibigen Patienten, bei welchen der Bereich zwischen den Oberschenkeln für Kameras nicht einsehbar ist. In diesem Fall fehlen die benötigten genauen Umfangsmaße an diesen Stellen. Im optisch vollständig erfaßten Unterschenkelbereich hingegen können die Umfangsmaße mit hoher Genauigkeit aus dem (dort vollständigen) 3D Modell ermittelt werden. Eine reine Extrapolation im nichteinsehbaren Bereich des Oberschenkels ist ungenau, da der Querschnitt keine einfache Kreis- oder Ellipsenform aufzeigt.Another application that is not satisfactorily resolved in today's optical 3D scanners is the determination of the spatial shape for the dimensionally accurate manufacture or dimension selection of compression stockings in obese patients, in which the area between the thighs cannot be seen by cameras. In this case, the exact circumferential dimensions required are missing at these points. In the optically completely recorded lower leg area, however, the circumferential dimensions can be determined with high accuracy from the (there complete) 3D model. A pure extrapolation in the invisible area of the thigh is imprecise, since the cross section does not show a simple circular or elliptical shape.
Es besteht daher ein großes wirtschaftliches Interesse daran, ein Verfahren und eine Vorrichtung zu schaffen, welche bei dem optischen 3D Scannen von Körperteilen die von den optischen Systemen nicht einsehbaren Körperteile im erzeugten 3D Modell nicht ausläßt, sondern hierfür zumindestens räumhche Teilinformationen gleichzeitig mit den vollständigen Rauminformationen der vom 3D Scanner einsehbaren Körperteile erzeugt.There is therefore great economic interest in creating a method and a device which, in the optical 3D scanning of body parts, does not omit the body parts that cannot be seen by the optical systems in the generated 3D model, but instead at least spatial part information simultaneously with the complete spatial information which creates body parts visible to the 3D scanner.
Dies wird erfindungsgemäß dadurch erreicht, daß zur optischen Erfassung derThis is achieved according to the invention in that the optical detection of the
Raumform von Körpern und Körperteilen mit mindestens einem 3D Digitalisierer an die von dem mindestens einen 3D Digitalisierer nicht einsehbaren und vermeßbaren Körperpartien formschlüssig mindestens eine formhaltige Meßhilfe so angebracht wird, daß diese in den von dem mindestens einen optischen 3D Digitalisierer einsehbaren Meßraum hineinragt, wobei diese mindestens eine Meßhilfe zumindest an einigen Stellen ihrer sich im einsehbaren Meßraum befindlichen Teile mit von dem mindestens einen 3D Digitalisierer auswertbaren Markierungen versehen ist, und wobei diese Markierungen sich in einer bekannten Raumlage bezüglich der übrigen Teile der Meßhilfe befinden. Die Raumlage und die Markierungen dieses für den mindestens einen 3D Digitalisierer sichtbaren Teils der Meßhilfe wird zusammen mit der ? aumform der übrigen, einsehbaren Körperpartien ermittelt. Aus der gemessenen Raumlage des sichtbaren Teils der mindestens einen Meßhilfe werden geometrische Informationen wie Höhe, Winkel, Umfang, Krümmung u.a. des oder der nicht-einsehbaren Körperteile ermittelt und diese Informationen werden zur ergänzenden Beschreibung der wegen der nicht- einsehbaren Partien unvollständig digitalisierten Raumform an diesen Stellen verwendet.Spatial shape of bodies and body parts with at least one 3D digitizer and those that cannot be viewed by the at least one 3D digitizer avoidable parts of the body are attached in a form-fitting manner to at least one dimensionally stable measuring aid so that it protrudes into the measuring space that can be viewed by the at least one optical 3D digitizer, this at least one measuring aid at least at some points of its parts located in the visible measuring space with the at least one 3D digitizer that can be evaluated Markings is provided, and these markings are in a known spatial position with respect to the other parts of the measuring aid. The spatial position and the markings of this part of the measuring aid, which is visible to the at least one 3D digitizer, are combined with the? Form of the other, visible parts of the body determined. From the measured spatial position of the visible part of the at least one measuring aid, geometric information such as height, angle, circumference, curvature, etc. of the body part or parts that cannot be seen are determined and this information is used to supplement the description of the incompletely digitized spatial form on these parts due to the non-visible parts Digits used.
Die Erfindung betrifft auch eine Anordnung zur Durchführung des Verfahrens. Diese Anordnung umfaßt einen Körper oder ein Körperteil mit teilweise nichteinsehbaren Partien und eine formstarre Meßhilfe mit photogrammetrisch auswertbaren Marken, die an mindestens einer der nicht einsehbaren Partien des Körpers/Körperteils (10) formschlüssig angebracht ist. Ein optischer 3D Digitalisierer erfaßt die Raumform der einsehbaren Körperpartien und zumindest einen sichtbaren Teil der Meßhilfe und übergibt Raumkoordinaten an einen Rechner, die vom 3D Digitalisierer von den einsehbaren Partien des Körpers oder Körperteils sowie von dem sichtbaren Teil der Meßhilfe ermittelt werden. Der Rechner ermittelt aus der gespeicherten Raumform der Meßhilfe, der bekannten Position der Marken der Meßhilfe bezüglich des am nicht-einsehbaren Körperteils fixierten Teils der Meßhilfe und aus der Raumposition der einsehbaren Teile des digitalisierten Körpers oder Körperteils geometrische Informationen über die Höhe, Winkel, Umfang, Krümmung u.a. der nicht einsehbaren Körperpartien und verwendet diese geometrischen Informationen zur Ergänzung der wegen der nichteinsehbaren Partien unvollständig digitalisierten Raumform. Vorteilhafte Ausführungen des Verfahrens sind in den Unteransprüchen enthalten.The invention also relates to an arrangement for carrying out the method. This arrangement comprises a body or a body part with partially invisible parts and a dimensionally rigid measuring aid with marks that can be evaluated photogrammetrically, which is attached in a form-fitting manner to at least one of the non-visible parts of the body / body part (10). An optical 3D digitizer detects the spatial shape of the visible parts of the body and at least a visible part of the measuring aid and transfers spatial coordinates to a computer, which are determined by the 3D digitizer from the visible parts of the body or body part and from the visible part of the measuring aid. From the stored spatial shape of the measuring aid, the known position of the marks of the measuring aid with respect to the part of the measuring aid fixed to the non-visible body part and the spatial position of the visible parts of the digitized body or body part, the computer determines geometric information about the height, angle, circumference, Curvature of the parts of the body that are not visible and uses this geometric information to complement the spatial form that is incompletely digitized because of the parts that are not visible. Advantageous embodiments of the method are contained in the subclaims.
Dieser Erfindungsgedanke wird beispielhaft, aber nicht einschränkend, anhand von zwei Anwendungen aus dem Bereich der Orthopädie beschrieben: a) der Bestimmung von Rauminformationen aus dem (nicht-einsehbaren) Bereich des Ramus (in der Nähe des Dammes) bei dem 3D Scannen von einem Oberschenkel zur Fertigung eines passenden Schaftes für eine Oberschenkelprothese b) der Bestimmung des Umfangs des (nicht vollständig einsehbaren) Oberschenkels bei fettleibigen Patienten zur Fertigung von angepaßten Kompressionsstrümpfen und KompressionsstrumpfhosenThis inventive concept is described by way of example, but not by way of limitation, using two applications in the field of orthopedics: a) the determination of spatial information from the (non-visible) area of the ramus (near the perineum) during 3D scanning of a thigh for the manufacture of a suitable stem for a thigh prosthesis b) the determination of the circumference of the (not fully visible) thigh in obese patients for the manufacture of adapted compression stockings and compression tights
Hierzu werden folgende Abbildungen benutzt:The following illustrations are used for this:
Fig. 1 zeigt in der Ansicht von vorne die optisch nicht einsehbare Partie des Ramus bei einem Patienten, welcher eine Oberschenkelprothese benötigt;Fig. 1 shows a front view of the optically invisible part of the ramus in a patient who needs a thigh prosthesis;
Fig.2 zeigt eine starre Meßbilfe, welche vom Ramus aus bis in den einsehbaren Teil des Meßraums hineinragt und wobei dieser Teil mit photogrammetrisch auswertbaren Marken versehen ist;2 shows a rigid measuring bilge which protrudes from the ramus into the visible part of the measuring space and which part is provided with marks which can be evaluated photogrammetrically;
Fig.3 zeigt eine Meßhilfe in Form eines verstellbaren Ringes, welcher auf der einsehbaren Oberfläche mit photogrammetrisch auswertbaren Marken versehen ist und über einen ebenfalls markierten Gurt zur Umfangsbestimmung an den nicht einsehbaren Stellen des Oberschenkels verfügt;3 shows a measuring aid in the form of an adjustable ring which is provided with marks which can be evaluated photogrammetrically on the visible surface and which also has a marked belt for determining the circumference at the non-visible places on the thigh;
Fig. 4 zeigt einen Patienten für die Kompressionsstrumpfversorgung, bei dem die Oberschenkelpartie nicht einsehbar ist, und bei welchem über einen markierten Gurt das Umfangsmaß im nicht einsehbaren Oberschenkelbereich mit einem 3D Scanner ermittelt wird. Der eine Oberschenkelprothese benötigende Patient wird traditionell so versorgt, daß manuell ein Gipsabdruck von dem Oberschenkel abgenommen wird. Hierbei drückt der Orthopäde fachmännisch den noch weichen Gips im Bereich des Ramus manuell in die passende Position, entsprechend der individuellen lokalen Anatomie des männlichen oder weiblichen Patienten.Fig. 4 shows a patient for compression stocking care, in which the thigh area is not visible, and in which the circumferential dimension in the invisible thigh area is determined with a 3D scanner using a marked belt. The patient who needs a thigh prosthesis is traditionally cared for by manually taking a plaster cast from the thigh. in this connection The orthopedist expertly presses the still soft plaster in the area of the ramus into the appropriate position, according to the individual local anatomy of the male or female patient.
Für den Fall des automatischen 3D Digitalisierens des Oberschenkelstumpfes möchten wir den Erf dungsgedanken am Beispiel des 3D Digitalisierens mit einer SD- Technologie nach der og. EP 0760 622 beschreiben. Diese Technik wird unter dem Markennamen „The MagicalSkin Scanner®" von der Firma corpus.e AG, Stuttgart kommerzialisiert (siehe www.corpus-e.com). Es ist selbstverständlich, daß der Erfindungsgedanke nicht auf diese spezielle, auf der Photogrammetrie beruhende 3D Digitalisier-Technologie beschränkt ist, sondern ebenso auf 3D Digitalisierer, welche nach dem Streifenprojektions-Verfahren, nach dem Lasertriangulations-Verfahren, nach dem Silhouettenschnitt- Verfahren oder anderen, dem Fachmann bekannte 3D Digitalisier-Methoden beruhen, anwendbar ist.In the case of automatic 3D digitization of the thigh stump, we would like to use the idea of the invention using the example of 3D digitization with SD technology according to the above. Describe EP 0760 622. This technology is commercialized under the brand name "The MagicalSkin Scanner®" by corpus.e AG, Stuttgart (see www.corpus-e.com). It goes without saying that the idea of the invention is not based on this special 3D based on photogrammetry Digitizing technology is limited, but also applicable to 3D digitizers, which are based on the strip projection method, the laser triangulation method, the silhouette cutting method or other 3D digitizing methods known to the person skilled in the art.
Figur 1 zeigt einen nur teilweise dargestellten Patienten und einen schematisch angedeuteten 3D-Digitalisierer 2 mit angeschlossenem Rechner 3.FIG. 1 shows a patient only shown in part and a schematically indicated 3D digitizer 2 with a connected computer 3.
Nach Fig. 1 wird der Gliedstumpf 10 des aufrecht auf einer photogrammetrisch markierten Bodenplatte 13 stehenden Patienten mit einem elastischen, mit photogrammetrisch auswertbaren Marken versehenen elastischen Überzug 12 bekleidet. Die Marken sind nur beispielhaft angedeutet; sie können aus verschiedenartig codierten Mustern bestehen, welche dem Fachmann der Photogrammetrie bekannt sind. In der DE 101 13 211.5 des Erfinders Robert Massen sind verschiedene, besonders für eine automatische Auswertung geeignete photogrammetrische Markierungssysteme beschrieben, welche sich sowohl für die Markierung der Bodenplatte als auch für die Markierung des elastischen Überzugs eignen. Der Patient steht auf der mit photogrammetrischen Marken versehenen Platte 13, welche das Weltkoordinatensystem definiert und gleichzeitig einen absoluten Maßstab darstellt, welcher für die Gewinnung absoluter XYZ Koordinaten benötigt wird. Bei der für diese Technologie üblichen Aufnahme des markierten Stumpfes durch eine Reihe von ringsum aufgenommen Bildern mit einer Digitalkamera bleibt der Bereich zwischen den beiden Oberschenkeln nicht einsehbar. Von dieser Körperpartie können daher keine 3D Daten gewonnen werden.According to FIG. 1, the limb 10 of the patient standing upright on a photogrammetrically marked base plate 13 is covered with an elastic covering 12 provided with marks that can be evaluated photogrammetrically. The brands are only given as examples; they can consist of differently coded patterns which are known to the person skilled in the art of photogrammetry. DE 101 13 211.5 by the inventor Robert Massen describes various photogrammetric marking systems which are particularly suitable for automatic evaluation and which are suitable both for marking the base plate and for marking the elastic coating. The patient stands on the plate 13 provided with photogrammetric marks, which defines the world coordinate system and at the same time represents an absolute scale, which is required for obtaining absolute XYZ coordinates. The usual way for this technology to take the marked stump with a series of images taken all around with a digital camera the area between the two thighs is not visible. No 3D data can therefore be obtained from this part of the body.
Insbesondere fehlt die Höhenkoordinate 14 des Ramus-Knochen im Bereich des Dammes und der Ramus-Winkel alpha 15 unter dem der Prothesenschaft aufliegt und beim späteren Tragen der Prothese einen signifikanten Teil des Körpergewichtes aufnimmt.In particular, the height coordinate 14 of the ramus bone in the area of the perineum and the ramus angle alpha 15 below which the prosthesis socket lies and which absorbs a significant part of the body weight when the prosthesis is worn later are missing.
Erfindungsgemäß wird nach Fig. 2 eine längliche, nach oben abknickende Meßbilfe 16 an der Innenseite des Oberschenkelstumpfes 10 und in Höhe des Dammes in physischem Kontakt mit dem Ramus so befestigt, daß sie in Richtung des Ramus-Winkel aus dem nichteinsehbaren Bereich in den einsehbaren Außenraum hereinragt. Durch den Knick wird erreicht, daß das sichtbare, markierte Ende 17 der Meßbilfe sich in einer Raumstellung befindet, welche keine der zu digitalisierende Körperpartien abdeckt, im vorliegenden Beispiel der Unterbauch. Die Befestigung kann beispielsweise mit Hilfe eines Klettverschlusses an den elastischen Überzug geschehen.According to the invention, according to FIG. 2, an elongated measuring elbow 16 which bends upwards is attached to the inside of the thigh stump 10 and at the level of the perineum in physical contact with the ramus in such a way that it moves in the direction of the ramus angle from the invisible area into the visible outside space that sticks out. The kink ensures that the visible, marked end 17 of the measuring position is in a spatial position which does not cover any parts of the body to be digitized, in the present example the lower abdomen. The attachment can be done, for example, with a Velcro fastener on the elastic cover.
Das frei sichtbare Ende der Meßbilfe wird gleichzeitig mit den einsehbaren Körperpartien beim Digitalisiervorgang erfaßt und die genaue Raumlage der Markierungen sowohl der Meßhilfe als auch der einsehbaren Körperteile bestimmt. Da die Hilfe formstarr ist, kann von den XYZ Koordinaten dieser Markierungen auf die benötigten räumlichen Teilinformationen wie Höhe und Winkellage des Ramus-Knochens geschlossen werden. Damit liegen zwar keine vollständigen XYZ Daten der nicht-einsehbaren Körperpartie vor, wohl aber räumliche Teilinformationen wie Höhe, Winkelrichtungen usw., welche zur passenden Fertigung des Schaftes die fehlenden Stellen im vom 3D Digitalisierer ermittelten 3D Modell ergänzen.The freely visible end of the measuring bilge is recorded simultaneously with the visible parts of the body during the digitizing process and the exact spatial position of the markings of both the measuring aid and the visible parts of the body is determined. Since the help is rigid, the XYZ coordinates of these markings allow conclusions to be drawn about the spatial information required, such as the height and angular position of the ramus bone. This means that there is no complete XYZ data for the non-visible part of the body, but spatial partial information such as height, angular directions, etc., which supplement the missing points in the 3D model determined by the 3D digitizer for the appropriate manufacture of the shaft.
Erfindungsgemäß wird durch die Befestigung der Meßhilfe unter Druck auf den Ramus-Knochen gleichzeitig erreicht, daß Raumkoordinaten für einen anatomischen Teil gewonnen werden, welcher sich unterhalb des Fettgewebes befindet und damit prinzipiell nicht aus dem auf dem Fettgewebe aufliegenden markierten Überzug bestimmt werden könnte, auch wenn dieser Bereich einsehbar wäre.According to the invention, by attaching the measuring aid under pressure on the ramus bone, spatial coordinates are obtained for an anatomical part which is located below the fat tissue and therefore principally not from the one lying on the fat tissue marked coating could be determined, even if this area would be visible.
In einer weiteren beispielhaften Ausprägung des Erfindungsgedankens nach Fig. 3 wird ein photogrammetrisch markierter, im Umfang einstellbarer Hilfsring 18 als Meßbilfe über den markierten Überzug 12 in die Position des endgültigen Schaftanschlusses gebracht und dort am Ramus-Winkel ausgerichtet. Durch Anpassung des Durchmessers mit Hilfe einer ebenfalls markierten Gurtkonstruktion 19 wird der Hilfsring an die Oberschenkelweite angepaßt.In a further exemplary embodiment of the inventive concept according to FIG. 3, a photogrammetrically marked, circumferentially adjustable auxiliary ring 18 is brought into the position of the final shaft connection as a measurement guide via the marked coating 12 and aligned there at the ramus angle. The auxiliary ring is adapted to the thigh width by adjusting the diameter with the aid of a belt construction 19 which is also marked.
Die Markierungen auf der Oberfläche dienen dazu, die Raumkoordinaten und damit die Raumlage des Hilfsringes bezüglich des Weltkoordinatensystems und damit indirekt auch bezüglich des markierten Oberschenkelstumpfes zu bestimmen. Da das 3D Modell des markierten Hilfsringes von seiner CADThe markings on the surface serve to determine the spatial coordinates and thus the spatial position of the auxiliary ring with respect to the world coordinate system and thus indirectly also with respect to the marked thigh stump. As the 3D model of the marked auxiliary ring from its CAD
Konstruktion her bekannt ist und über die Position der Gurtmarken sein individuell an den Oberschenkel angepasster Durchmesser durch den 3D Digitalisierer bestimmbar ist, kann das in einem CAD Rechner hinterlegte 3DKnown construction and the position of the belt marks can be determined by the 3D digitizer individually adjusted to the thigh diameter, the 3D stored in a CAD computer
Modell des Hilfsringes 18 leicht auf den individuellen Durchmesser des Patienten umgerechnet werden. Da gleichzeitig die Raumlage des Hilfsringes 18 zum digitalisierten Stumpf 10 bekannt sind, liegen alle 3D Informationen vor, um einen individuellen Prothesenschaft beginnend mit dem Stumpfende und bis zum Ramus reichend automatisch zu fertigen.Model of the auxiliary ring 18 can easily be converted to the individual diameter of the patient. Since the spatial position of the auxiliary ring 18 relative to the digitized stump 10 is known at the same time, all 3D information is available in order to automatically produce an individual prosthetic socket starting from the end of the stump and extending to the ramus.
Ein weiterer Erfindungsgedanke ist es, den markierten Hilfsring aus semiplastischem photogrammetrisch markiertem Material herzustellen. Dieses Material wird vom Orthopäden wie ein weicher Gips an den Oberschenkel angeformt und behält nach der händigen Verformung seine Raumform zummdestens kurzzeitig für die Dauer der Digitalisierung bei. Der 3D Digitalisierer ermittelt zumindestens für den einsehbaren Teil des Oberschenkels damit diejenige Raumform, welche ein das Fettgewebe komprimierender, endgültiger Schaft einnehmen muß. Der nicht einsehbare Teil wird z.B. wie oben beschrieben durch eine in den einsehbaren Meßraum hereinragende Meßhilfe bestimmt, welche zweckmäßigerweise am Hilfsring befestigt ist und beispielsweise unter dem Ramus-Winkel in den einsehbaren Meßraum hinein ragt.Another idea of the invention is to produce the marked auxiliary ring from semiplastic, photogrammetrically marked material. This material is molded onto the thigh by the orthopedic surgeon like a soft plaster and, after being deformed by hand, retains its spatial shape for at least a short time for the duration of the digitization. The 3D digitizer determines, at least for the visible part of the thigh, the spatial shape which a final shaft compressing the fatty tissue must occupy. The non-visible part is determined, for example, as described above, by a measuring aid protruding into the visible measuring space, which expediently on Auxiliary ring is attached and, for example, protrudes into the visible measuring space at the Ramus angle.
Ein weiterer Erfindungsgedanke ist es, das Meßmittel unter Last, d.h. durch die nicht einsehbaren Körperteile belastet, anzubringen. Dies kann bei einer vertikalen Belastung z.B. dadurch geschehen, daß das Meßmittel gegenüber der Bodenplatte, auf welcher der Patient während der 3D Digitalisierung steht, mit Hilfe einer Stütze abgestützt ist. Bei einer radialen Belastung durch beispielsweise die bewußte Kompression des Oberschenkels mit Hilfe einer ringförmigen Meßhilfe wird das Auffangen der Last durch den zum Einstellen des Durchmessers angebrachten Gurt erreicht. In beiden Beispielen wird erreicht, daß die gewünschten Raumkoordinaten unter Körperlast, d.h. ähnlich wie beim späteren Tragen der Prothese, mit dem 3D Digitahsierer ermittelt werden können und damit eine wesentlich genauere Beschreibung der für die Herstellung des angepassten Prothesenteils erforderlichen Raumform liefern als bei einer Digitalisierung eines unbelasteten Stumpfes. Als zweites Beispiel zur Erläuterung des Erfindungsgedanken wird die paßgenaueAnother idea of the invention is to use the measuring means under load, i.e. burdened by the invisible parts of the body. With a vertical load e.g. in that the measuring means is supported with the aid of a support in relation to the base plate on which the patient stands during the 3D digitization. In the event of a radial load, for example due to the deliberate compression of the thigh with the aid of an annular measuring aid, the load is caught by the belt attached for adjusting the diameter. In both examples it is achieved that the desired spatial coordinates under body load, i.e. Similar to the later wearing of the prosthesis, with which 3D digitizers can be determined and thus provide a much more precise description of the spatial shape required for the production of the adapted prosthesis part than when digitizing an unloaded stump. As a second example to explain the idea of the invention, the precise fit
Herstellung von Kompressionsstrümpfen oder Kompressionsstrumpfhosen für fettleibige Patienten besprochen. Wir gehen beispielhaft ebenfalls davon aus, daß für das 3D Digitalisieren die „MagicalSkin Scanner ®" Technologie eingesetzt wird. Bei solchen Patienten ist nach Fig. 4 der Bereich zwischen den Oberschenkeln 20 nicht mehr einsehbar. Für die Maßfertigung bzw. Maßsele? tion passender Kompressionstrümpfe muß der Umfang der Beine in verschiedenen Höhen bekannt sein. Da die Querschnittsform eines Beines keinesfalls kreisförmig oder elliptisch ist, sind die genauen Umfangsmaße aus einem nur unvollständigen 3D Modell nur ungenau zu ermitteln. Erfindungsgemäß wird für diesen Anwendungsfall mindestens ein markierter, nicht dehnbarer Gurt 21 verwendet, welcher im nicht-einsehbaren Bereich den Oberschenkel umschlingt. Aus der Lage der Gurtmarkierungen 22 kann sowohl die Raumlage als auch der Umfang über den 3D Digitalisierer ermittelt werden. Damit liegt ein wichtiges Umfangsmaß vor, welches aus dem im Oberschenkelbereich nicht vollständigen 3 D Modell nicht genau ableitbar ist. Diese drei Beispiele sind nicht einschränkend zu verstehen. Der Erfindungsgedanke erfaßt alle möglichen 3D DigitaHsier-Technologien, alle möglichen zu digitalisierende Körper und Körperteile sowohl von Lebewesen als auch von der unbelebten Natur als auch alle möglichen markierten Hilfsmittel, welche geeignet sind, räumliche Informationen aus den nicht einsehbaren Körperpartien in den von einem 3D Digitalisierer einsehbaren Meßraum überzuleiten und welche gleichzeitig mit der Raumform der einsehbaren Körperteilen mit erfaßt werden.Manufacture of compression stockings or compression tights for obese patients discussed. We also assume, by way of example, that the "MagicalSkin Scanner ®" technology is used for 3D digitizing. The area between the thighs 20 is no longer visible in such patients according to FIG. 4. Suitable compression stockings for the customization or measurement selection Since the cross-sectional shape of a leg is in no way circular or elliptical, the exact circumferential dimensions can only be determined inaccurately from an incomplete 3D model. According to the invention, at least one marked, non-stretchable belt 21 is used for this application The position of the belt markings 22 can be used to determine both the spatial position and the circumference by means of the 3D digitizer. This is an important circumferential dimension, which is derived from the 3-D model which is not complete in the thigh region is not exactly derivable t. These three examples are not meant to be limiting. The idea of the invention encompasses all possible 3D digital technologies, all possible bodies and body parts to be digitized, both of living beings and of inanimate nature, and all possible marked aids, which are suitable, spatial information from the non-visible parts of the body in a 3D digitizer to transfer visible measuring room and which are simultaneously recorded with the spatial shape of the visible body parts.
Die Markierungen an dem Hilfsmittel können sowohl aus absolut oder relativ codierten Marken, farbcodierten Marken, durch über bestimmte Hintergrundfarben codierte Marken oder durch eine bestimmte gegenseitige Anordnungen codierte Marken bestehen. Bei 3D Digitalisierern, welche Muster aufprojizieren wie z.B. Streifenprojektions-Digitalisierer oder Laser-Triagulationsdigitalisierer, kann das Aufbringen photogrammetrisch codierter Marken auf das Hilfsmittel entfallen und besondere Formteile des Hilfsmittels wie z.B. sein Rand als Raummarkierung verwendet werden. Das Hilfsmittel muß aber eine ausreichende optische Reflexion besitzen, damit diese aufprojizierten Marken von dem optischen 3D Digitalisierer ausgewertet werden können. Das frei in den Meßraum hineinragende Ende stellt beispielsweise eine von dem 3D Digitalisierer erfassbare Raumposition dar, welche sich in einer bekannten Raumposition zum am Körperteil fixierten Teils der Meßhilfe befindet und bildet daher im Sinne des Erfindungsgedanken eine „Marke". Damit kann von dieser meßbaren Position im Meßraum auf die nichtmeßbare Position des nicht einsehbaren Körperteils zurück gerechnet werden.The markings on the aid can consist of absolutely or relatively coded marks, color-coded marks, marks marked by certain background colors or marks coded by a certain mutual arrangement. For 3D digitizers that project onto patterns such as Fringe projection digitizer or laser triagulation digitizer, the application of photogrammetrically coded marks on the aid can be omitted and special molded parts of the aid such as e.g. its edge can be used as a space marker. However, the aid must have sufficient optical reflection so that these projected marks can be evaluated by the optical 3D digitizer. The end protruding freely into the measuring space represents, for example, a spatial position which can be detected by the 3D digitizer and which is in a known spatial position with respect to the part of the measuring aid fixed to the body part and therefore forms a "mark" in the sense of the inventive idea be counted back to the unmeasurable position of the invisible part of the body in the measuring room.
Da auch projizierende 3D Digitalisierer Kameras einsetzen, können von denSince projecting 3D digitizers also use cameras, the
Kameras miterfaßte kontrastreiche Markierungen am einsehbaren Teil der Meßhilfe genau wie bei nicht projizierenden photogrammetrischen Verfahren hilfreich sein, die genaue Raumposition des sichtbaren Teils der Meßhilfe im erzeugten 3 D Modell zu bestimmen. Cameras with high-contrast markings on the visible part of the measuring aid, just as with non-projecting photogrammetric methods, can be helpful in determining the exact spatial position of the visible part of the measuring aid in the 3D model generated.

Claims

Patentansprüche claims
1. Verfahren zur optischen Erfassung der Raumform von Körpern und Körperteilen mit teilweise nicht einsehbaren Partien, dadurch gekennzeichnet, daß1. A method for the optical detection of the spatial shape of bodies and body parts with partially invisible parts, characterized in that
- zur optischen Erfassung der Raumform von Körpern und Körperteilen (10) mit mindestens einem 3D Digitalisierer (2) an den von dem 3D Digitalisierer nicht einsehbaren und vermeßbaren Körperpartien formschlüssig mindestens eine formhaltige Meßhilfe (16; 18; 21) so angebracht wird, daß diese in den von dem 3D Digitalisierer (2) einsehbaren Meßraum hineinragt, wobei diese Meßhilfe (16; 18; 21) zumindest an einigen Stellen ihrer sich im einsehbaren Meßraum befindlichen Teile mit von dem 3D Digitalisierer auswertbaren Markierungen versehen ist, und wobei diese Markierungen sich in einer bekannten Raumlage bezüglich der übrigen Teile der Meßhilfe befinden; - die Raumlage und die Markierungen dieses für den 3D Digitalisierer sichtbaren Teils der Meßbilfe zusammen mit der Raumform der übrigen, einsehbaren Körperpartien ermittelt wird;- For the optical detection of the three-dimensional shape of bodies and body parts (10) with at least one 3D digitizer (2) on the parts of the body that cannot be seen and avoided by the 3D digitizer, at least one dimensionally stable measuring aid (16; 18; 21) is attached in such a way that it is protrudes into the measuring space that can be viewed by the 3D digitizer (2), this measuring aid (16; 18; 21) being provided with markings that can be evaluated by the 3D digitizer at least at some points of its parts located in the visible measuring space, and these markings are located in a known spatial position with respect to the remaining parts of the measuring aid; - The spatial position and the markings of this part of the measurement bilge visible to the 3D digitizer are determined together with the spatial shape of the other visible parts of the body;
- geometrische Informationen wie Höhe, Winkel, Umfang, Krümmimg u.a. der nicht-einsehbaren Körperpartien aus der gemessenen Raumlage des sichtbaren Teils der Meßhilfe ermittelt werden; und- Geometric information such as height, angle, circumference, curvature, etc. the non-visible parts of the body are determined from the measured spatial position of the visible part of the measuring aid; and
- diese Informationen zur ergänzenden Beschreibung der wegen der nichteinsehbaren Partien unvollständig digitalisierten Raumform verwendet werden.- This information is used to supplement the description of the spatial form that has been incompletely digitized due to the non-visible parts.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Meßhilfe (16) aus einem starren Material besteht, welches so an der nicht einsehbaren Körperpartie fixiert wird, daß die Raumlage dieser Körperpartie aus der 3D Digitalisierung des in den Meßraum hineinragenden markierten Teils der Meßhilfe (16) berechnet werden kann. 2. The method according to claim 1, characterized in that the measuring aid (16) consists of a rigid material which is fixed to the non-visible body part that the spatial position of this body part from the 3D digitization of the protruding part of the measuring aid protruding into the measuring space (16) can be calculated.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die starre Meßhilfe (16) eine längliche Form hat und an ihrem einen Ende nach oben abknickt.3. The method according to claim 2, characterized in that the rigid measuring aid (16) has an elongated shape and bends at one end upwards.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die starre Meßhilfe unter Druck auf einen Knochen befestigt wird, wobei4. The method according to claim 2 or 3, characterized in that the rigid measuring aid is attached to a bone under pressure, wherein
Raumkoordinaten für einen anatomischen Teil ermittelt werden, der sich unter Fettgewebe befindet.Spatial coordinates can be determined for an anatomical part that is located under fatty tissue.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß5. The method according to claim 1, characterized in that
- die markierte Meßhilfe (18; 21) manschettenförmig ist und den einsehbaren und nicht einsehbaren Teil eines annähernd zylindrischen, nur teilweise einsehbaren Körperteils umspannt, wobei der Umfang der Meßhilfe über einen markierten Gurt (19; 22) so eingestellt wird, daß sie eng an dem annähernd zylindrischen Körper anliegt, und die Position des markierten Gurtes (19; 22) so gewählt ist, daß er in den einsehbaren Meßraum hineinragt; und - aus der gemeinsamen 3D Digitalisierung des Körperteils, der Meßhilfe (18;- The marked measuring aid (18; 21) is cuff-shaped and spans the visible and non-visible part of an approximately cylindrical, only partially visible body part, the circumference of the measuring aid being adjusted via a marked belt (19; 22) so that it is tight rests approximately cylindrical body, and the position of the marked belt (19; 22) is selected so that it protrudes into the visible measuring space; and - from the common 3D digitization of the body part, the measuring aid (18;
21) und des markierten Gurtes (19; 22) der Umfang des Körperteils an der Stelle der Meßhilfe ermittelt wird.21) and the marked belt (19; 22) the circumference of the body part is determined at the location of the measuring aid.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die markierte Meßhilfe ein mechanisch durch Verformung und/oder Veränderung des Durchmessers an den zu digitalisierenden, annähernd zylindrischen Körperteil anpaßbarer Formring ist.6. The method according to claim 1, characterized in that the marked measuring aid is a mechanically adaptable by deformation and / or change in diameter to the digitized, approximately cylindrical body part mold ring.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß7. The method according to claim 6, characterized in that
- der markierte Formring zummdestens teilweise aus einem semi-plastischen Material besteht; - vor der 3D Digitalisierung manuell an die Raumform des zu digitalisierenden nicht-einsehbaren annähernd zylindrischen Körperteils angeformt wird; und - nach der Anformung zumindest für die Dauer des 3D Digitalisierens diese Raumform beibehält.- The marked shaped ring consists at least partially of a semi-plastic material; - Before the 3D digitization is molded onto the spatial shape of the non-visible, approximately cylindrical body part to be digitized; and - After shaping, this spatial shape remains at least for the duration of the 3D digitization.
8. Verfahren nach einem der Ansprüche 1 bis 1, dadurch gekennzeichnet, daß der zu digitalisierende Körperteil (10) ein Gliedstumpf ist, welcher gemeinsam mit der Meßhilfe digitalisiert wird.8. The method according to any one of claims 1 to 1, characterized in that the body part to be digitized (10) is a limb stump, which is digitized together with the measuring aid.
9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der zu digitalisierende Körperteil ein durch ein Kompressionstextil zu versorgender Körperteil ist, welcher gemeinsam mit der Meßhilfe digitalisiert wird.9. The method according to any one of claims 1 to 7, characterized in that the body part to be digitized is a body part to be supplied by a compression textile, which is digitized together with the measuring aid.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß10. The method according to any one of claims 1 to 9, characterized in that
- der zu digitalisierende Körper oder das zu digitalisierende Körperteil (10) mit einem elastischen, eng anliegenden Überzug bekleidet ist, welcher photogrammetrisch auswertbare Marken aufzeigt;- The body to be digitized or the body part to be digitized (10) is clad with an elastic, close-fitting cover which shows marks that can be evaluated photogrammetrically;
- das Teil der Meßhilfe, das in den von dem 3D Digitalisierer (2) erfaßbaren Meßraum hineinragt, photogrammetrisch auswertbare Marken aufzeigt, wobei diese- The part of the measuring aid that protrudes into the measuring space that can be detected by the 3D digitizer (2) shows marks that can be evaluated photogrammetrically
Marken so gestaltet sind, daß sie sich mit den Verfahren der Bildverarbeitung und/oder Photogrammetrie von denjenigen des elastischen Überzugs unterscheiden lassen; undMarks are designed in such a way that they can be distinguished from those of the elastic covering with the methods of image processing and / or photogrammetry; and
- die markierte Meßhilfe gemeinsam mit den einsehbaren Körperpartien photogrammetrisch digitalisiert wird.- The marked measuring aid is digitally digitized together with the visible parts of the body.
11. Anordnung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Anordnung folgendes umfaßt:11. Arrangement for performing the method according to one of claims 1 to 10, characterized in that the arrangement comprises the following:
- einen Körper oder ein Körperteil (10) mit teilweise nicht-einsehbaren Partien;- A body or a body part (10) with partially hidden parts;
- eine formstarre Meßhilfe (16; 18; 21) mit photogrammetrisch auswertbaren Marken, die an mindestens einer der nicht einsehbaren Partien des- A rigid measuring aid (16; 18; 21) with photogrammetrically evaluable marks that on at least one of the non-visible parts of the
Körpers/Körperteils (10) formschlüssig angebracht ist; - einen optischen 3D Digitalisierer (2), der die Raumform der einsehbaren Körperpartien und zumindest einen sichtbaren Teil der Meßbilfe erfaßt;Body / body part (10) is positively attached; - An optical 3D digitizer (2) that detects the spatial shape of the visible parts of the body and at least a visible part of the measurement area;
- einen Rechner (3), an den Raumkoordinaten übergeben werden, die vom 3D Digitalisierer von den einsehbaren Partien des Körpers oder Körperteils (10) sowie von dem sichtbaren Teil der Meßhilfe (16; 18; 21) ermittelt werden, wobei der Rechner (3) aus der gespeicherten Raumform der Meßhilfe, der bekannten Position der Marken der Meßhilfe bezüglich des am nicht-einsehbaren Körperteils fixierten Teils der Meßhilfe und aus der Raumposition der einsehbaren Teile des digitalisierten Körpers oder Körperteils geometrische Informationen über die Höhe, Winkel, Umfang, Krümmung u.a. der nicht einsehbaren Körperpartien ermittelt und diese geometrischen Informationen zur Ergänzung der wegen der nicht-einsehbaren Partien unvollständig digitalisierten Raumform verwendet. - A computer (3) to which spatial coordinates are transferred, which are determined by the 3D digitizer from the visible parts of the body or body part (10) and from the visible part of the measuring aid (16; 18; 21), the computer (3 ) geometric information about the height, angle, circumference, curvature etc. from the stored spatial shape of the measuring aid, the known position of the marks of the measuring aid with respect to the part of the measuring aid fixed to the non-visible part of the body and the spatial position of the visible parts of the digitized body or part of the body of the non-visible parts of the body is determined and this geometric information is used to supplement the spatial form that is incompletely digitized due to the non-visible parts.
EP05707172A 2004-02-13 2005-02-03 Optical recording of the spatial form of bodies and body parts with sections that in part are not optically visible Withdrawn EP1713386A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004007455A DE102004007455A1 (en) 2004-02-13 2004-02-13 Optical detection of the spatial form of bodies and body parts with partially invisible parts
PCT/EP2005/001089 WO2005077271A1 (en) 2004-02-13 2005-02-03 Optical recording of the spatial form of bodies and body parts with sections that in part are not optically visible

Publications (1)

Publication Number Publication Date
EP1713386A1 true EP1713386A1 (en) 2006-10-25

Family

ID=34813398

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05707172A Withdrawn EP1713386A1 (en) 2004-02-13 2005-02-03 Optical recording of the spatial form of bodies and body parts with sections that in part are not optically visible

Country Status (4)

Country Link
US (1) US7852493B2 (en)
EP (1) EP1713386A1 (en)
DE (1) DE102004007455A1 (en)
WO (1) WO2005077271A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8417487B2 (en) * 2007-10-05 2013-04-09 3D Systems, Inc. Replaceable fairing for prosthetic limb or brace
US8363927B2 (en) 2007-11-19 2013-01-29 Corpus.E Ag High-resolution optical detection of the three-dimensional shape of bodies
US8986234B2 (en) * 2008-11-09 2015-03-24 3D Systems, Inc Custom braces, casts and devices having fenestrations and methods for designing and fabricating
US20110001794A1 (en) * 2009-03-03 2011-01-06 Bhanti Amit V System and method for shape capturing as used in prosthetics, orthotics and pedorthics
US8588476B1 (en) * 2012-06-04 2013-11-19 Clicrweight, LLC Systems for determining animal metrics and related devices and methods
GB201302194D0 (en) * 2013-02-07 2013-03-27 Crisalix Sa 3D platform for aesthetic simulation
US20140257762A1 (en) 2013-03-08 2014-09-11 Gottinger Handelshaus Ohg Method and device for transferring statics
WO2015145220A1 (en) * 2014-03-26 2015-10-01 Robosense Srl Device and method for the discrete reconstruction of the three-dimensional shape and position of an object
EP2962636B1 (en) * 2014-07-03 2016-08-17 Arno Kefenbaum Device for transillumination of a human or animal body
JP6897048B2 (en) * 2016-10-04 2021-06-30 凸版印刷株式会社 Prosthesis mounting part shape acquisition method and prosthetics mounting part shape acquisition system
DE102018104386A1 (en) 2017-11-07 2019-05-09 Gottinger Handelshaus Ohg A method of creating a model of a tool from an existing tool or negative print, means for digitizing a tool, and unit for performing the method
US20210186360A1 (en) * 2019-12-23 2021-06-24 Wyze Labs, Inc. Smart scale systems with body imaging and associated devices and methods
PL442485A1 (en) * 2022-10-10 2024-04-15 Wimba Poland Spółka Z Ograniczoną Odpowiedzialnością Shape recognition marker and its use
GB2624657A (en) * 2022-11-24 2024-05-29 Smith & Nephew Method of limb scanning

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3807578A1 (en) * 1988-03-08 1989-09-28 Neumeyer Stefan Method for the three-dimensional detection and/or determination of a body, in particular a human skull (cranium)
FR2639211A1 (en) 1988-11-18 1990-05-25 Hennson Int METHOD FOR CORRELATION OF THREE-DIMENSIONAL INPUTS OF HUMAN ORGANS AND DEVICE FOR IMPLEMENTING THE SAME
SE465498B (en) * 1989-08-17 1991-09-23 Anders Sundh METHOD FOR PREPARING RESTORATIONS, PROSTHESIS OR SIMILAR IN DENTAL AND HEALTH
US4974331A (en) 1989-10-17 1990-12-04 Watterson Steven J Extensible girth measuring device
FR2679327B1 (en) * 1991-07-15 1996-12-27 Cebelor NON-CONTACT THREE-DIMENSIONAL MEASUREMENT METHOD OF THE ENVELOPE OF AN OBJECT, IN PARTICULAR A FOOT, AND MEASURING APPARATUS FOR CARRYING OUT THE METHOD.
DE4229466C2 (en) * 1992-09-03 2001-04-26 Kaltenbach & Voigt Tooth measurement without calibration body
GB9304058D0 (en) * 1993-03-01 1993-04-14 Orthotics Limited Improvements relating to foot orthoses
DE4417872A1 (en) * 1994-05-22 1995-11-23 Robert Prof Dr Ing Massen Optical digitization of body parts
DE19916978C1 (en) * 1999-04-15 2001-04-26 Bock Orthopaed Ind Body area measurement method
US6377353B1 (en) * 2000-03-07 2002-04-23 Pheno Imaging, Inc. Three-dimensional measuring system for animals using structured light
DE10025922A1 (en) * 2000-05-27 2001-12-13 Robert Massen Automatic photogrammetric digitization of bodies and objects
DE10033828A1 (en) * 2000-07-19 2002-01-31 Robert Massen Optical detection of the spatial shape of bodies and body parts
US6993179B1 (en) * 2000-08-07 2006-01-31 Koninklijke Philips Electronics N.V. Strapdown system for three-dimensional reconstruction
DE10049926A1 (en) * 2000-10-07 2002-04-11 Robert Massen Camera for photogrammetric detection of shape of limb has projector attachment for providing visually detectable alignment structures
DE10216475B4 (en) * 2002-04-12 2015-03-26 Corpus.E Ag Optical detection of the spatial form of interiors
FR2852421B1 (en) * 2003-04-22 2005-06-17 DEVICE FOR AIDING THE SELECTION OF A CONTAINMENT ORTHESIS AND ITS ADAPTATION TO THE MORPHOLOGY OF A MEMBER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005077271A1 *

Also Published As

Publication number Publication date
US7852493B2 (en) 2010-12-14
DE102004007455A1 (en) 2005-09-01
US20070288198A1 (en) 2007-12-13
WO2005077271A1 (en) 2005-08-25

Similar Documents

Publication Publication Date Title
EP1713386A1 (en) Optical recording of the spatial form of bodies and body parts with sections that in part are not optically visible
KR101726013B1 (en) Replaceable fairing for prosthetic limb or brace
EP2164355B1 (en) Sensing apparatus and method for detecting a three-dimensional physical shape of a body
DE4417872A1 (en) Optical digitization of body parts
EP1599136A1 (en) Three-dimensional, digitized capturing of the shape of bodies and body parts using mechanically positioned imaging sensors
EP0054785A1 (en) Process for the manufacture of medical and dental, alloplastic, endoprosthetic and exoprosthetic fittings
DE102010021934A1 (en) Dental tool
DE102018128514B4 (en) Method and device for performing a prosthesis construction
DE102014111643A1 (en) Moving image generation method for generating a coordinate-like motion sequence of the teeth of a vertebrate
EP3422996A1 (en) Device and method for measuring a movement of a mandible
EP2873393B1 (en) Method for determining the dimensioning of a prosthesis shaft for a limb stump and method for producing a prosthesis for a limb stump
US20110001794A1 (en) System and method for shape capturing as used in prosthetics, orthotics and pedorthics
WO2008080562A1 (en) Method and arrangement for the three-dimensional detection of the spatial shape of a foot
Geil Consistency, precision, and accuracy of optical and electromagnetic shape-capturing systems for digital measurement of residual-limb anthropometrics of persons with transtibial amputation
DE102015200627A1 (en) Holding device for the production of an orthosis and device and method for producing an orthosis
DE102015121180B4 (en) Device and method for holding prosthetic teeth
DE102019122374B4 (en) Method for producing a prosthesis socket
DE102013112032A1 (en) Method of constructing a bite splint
Brncick Computer automated design and computer automated manufacture
DE4411907A1 (en) Determining rotation axis of human joint with variable axis position
DE102005008605A1 (en) Method for creation of prosthesis, comprising determination of condition of stump with computer-tomograph or magnet-resonance-tomograph
EP1654997B1 (en) Adjustment of leg length in hip replacement surgery
EP1911421B1 (en) Device for determining the change of an object
AT526037B1 (en) Process for the production of individually adapted shoes, shoe soles and shoe insoles with orthopedically corrected soles
DE102021116536A1 (en) Method for measuring and manufacturing a prosthetic socket

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REINHARD, HOLGER

Inventor name: RUTSCHMANN, DIRK

Inventor name: MASSEN, ROBERT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100415

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140603