EP1712744B1 - Arrangement in a high pressure turbine for passive tip clearance control - Google Patents

Arrangement in a high pressure turbine for passive tip clearance control Download PDF

Info

Publication number
EP1712744B1
EP1712744B1 EP05090109A EP05090109A EP1712744B1 EP 1712744 B1 EP1712744 B1 EP 1712744B1 EP 05090109 A EP05090109 A EP 05090109A EP 05090109 A EP05090109 A EP 05090109A EP 1712744 B1 EP1712744 B1 EP 1712744B1
Authority
EP
European Patent Office
Prior art keywords
arrangement
rotor
segments
accordance
pressure turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05090109A
Other languages
German (de)
French (fr)
Other versions
EP1712744A1 (en
Inventor
Thomas Wunderlich
Peter Broadhead
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Priority to DE502005006421T priority Critical patent/DE502005006421D1/en
Priority to EP05090109A priority patent/EP1712744B1/en
Priority to US11/403,809 priority patent/US7588414B2/en
Publication of EP1712744A1 publication Critical patent/EP1712744A1/en
Application granted granted Critical
Publication of EP1712744B1 publication Critical patent/EP1712744B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/16Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means
    • F01D11/18Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means using stator or rotor components with predetermined thermal response, e.g. selective insulation, thermal inertia, differential expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades

Definitions

  • the invention relates to an arrangement for internal passive clearance adjustment in a high-pressure turbine, in which arranged above the blade tips of the rotor housing segments are supported at the front and rear ends of radially movable vane segments and concentric with the vane segments arranged and acting on these inner rings are provided, the thermal Expansion and contraction behavior is matched to the elongation or contraction of the rotor according to its respective load to cause a matched to the rotor load radial movement of the housing segments for running gap control.
  • the running gap between the blade tips of the rotor of the high-pressure turbine and the blade tips at a distance opposite, non-rotating housing parts or liners at the different flight conditions and loads should be consistently small to keep the power and fuel losses low in all flight phases and a high To ensure efficiency of the engine.
  • the running gap must be large enough to avoid friction of the rotating blade tips on the stationary parts in the case of the different expansion or contraction behavior of the rotor occurring under transition conditions such as start, landing, acceleration or deceleration. Due to the different thermal and dynamic load of the rotor in the various operating conditions and the only thermal expansion Therefore, a corresponding control of the running gap width is required for the blade elements facing the fixed elements.
  • the application of the internal passive clearance control can not be applied to engines in which, due to the absence of a fixed structure located downstream of the rotor, the support of the inner ring connected to the radially movable vane segments is not possible. This is the case, for example, with a rotor of the high-pressure turbine which is not static downstream, but is mounted in a rotating component, since no rear static structure is available for fastening the inner ring acting on the guide vanes.
  • the invention has for its object to provide an arrangement for internal passive Laufspalteingna of the type mentioned for a high-pressure turbine with downstream not statically mounted rotor.
  • the running gap limiting, radially movable segments does not exist statically, for example, on a rotating bearing ring of the low-pressure turbine mounted rotor, the basic idea of Invention in the formation of a projecting from the inner platform of the vane segments, not bound to a static structure Torsionsbox that increases or decreases according to the elongation behavior of the rotor of the high-pressure turbine and the respective temperature conditions and acts on the outer segments of the vane segments on the liner segments and the running gap automatically and passively adjusts, but is designed so that a strain compensation in the axial direction and in the circumferential direction is guaranteed to compensate for stress.
  • the Torsionsbox has a U-shaped inner ring, which is not attached to a static structure, but with its open side to the platforms of the van
  • the Torsionsbox formed from the U-shaped inner ring and the inner platform abstrebenden webs is in addition to the exercise in the radial direction of the housing segments acting forces also able to absorb the acting on the vanes as a result of the gas forces rolling moment and tilting moment.
  • the legs of the U-shaped inner ring of Torsionsbox are connected to the webs, which also form a U-profile with the inner platform of the vane segments, with releasable fastening means so that in the Torsionsbox in the axial direction and in the circumferential direction acting expansion forces are compensated.
  • the vanes are also held by a toothing on the housing in the circumferential direction and guided radially. An axial fixation takes place with the help of a retaining ring on the turbine housing.
  • connection of the legs of the U-shaped inner ring with the integrally formed on the platforms and lying flat against the legs webs is carried out with a clamping sleeve which is slidably fitted on one side in bores of the leg and the web and on the opposite side by means of a in the clamping sleeve mounted bolt are pressed firmly together. While the sliding arrangement of the clamping sleeve on one side of the torsion box causes an expansion compensation in the axial direction, a circumferentially extending slot is provided for the expansion compensation in the circumferential direction for every second clamping sleeve attachment.
  • the high pressure turbine (HDT) of the engine includes a static upstream and downstream of an intermediate shaft bearing 1 (inter shaft bearing) of the following low-pressure turbine (NDT, not shown) not statically held rotor, which consists of a rotor disk 2 and the rotor blades attached to the periphery 3.
  • the upstream of the rotor blades 3 arranged and with its outer platform 5 a radially movable on the turbine housing.
  • 4 held turbine blades 5 of the high-pressure turbine are connected via the inner platform 5b with a fixed structure mounted on the inner ring 6 for inner passive running gap adjustment (inner passive ring) whose thermal expansion behavior is matched to that of the rotor.
  • the rotor segments 2 and the rotor blades 3 are radially raised or lowered at a radial extension or contraction corresponding to the respective load conditions, so that at different heat load the formation of a consistently small tip gap is ensured and thus the power and fuel losses of the turbine can be kept low.
  • vane segments 7 on the upper platforms 7a on the turbine housing 4 in a - Fig. 2 indicated - Cross-key teeth 15 (Hirth serration) held in the circumferential direction and guided radially and additionally axially fixed to a retaining ring 25.
  • the webs 13, 14 engage over the legs 11, 12 of the U-shaped inner ring 10.
  • In the legs or webs are - each aligned - normal (round) holes and - seen in the circumferential direction of the torsion box 8 - elongated holes formed.
  • round holes and elongated holes are arranged alternately, that is, in the webs 13, 14 are each provided opposite a round hole and a long hole.
  • the clamping sleeve 16 has at a distance from the front end face a collar 19 which rests against the inside of the front leg 11 of the U-shaped inner ring 10.
  • the rear region of the clamping sleeve 16 has a straight, smooth region 20, which is inserted precisely into the aligned bores of the rear leg 12 and the rear web 14 and allows a sliding movement.

Description

Die Erfindung betrifft eine Anordnung zur inneren passiven Laufspalteinstellung bei einer Hochdruckturbine, bei der oberhalb der Schaufelspitzen des Rotors angeordnete Gehäusesegmente an den vorderen und hinteren Enden an radial beweglichen Leitschaufelsegmenten abgestützt sind und konzentrisch zu den Leitschaufelsegmenten angeordnete und auf diese wirkende Innenringe vorgesehen sind, deren thermisches Dehnungs- und Kontraktionsverhalten auf die Dehnung bzw. Kontraktion des Rotors entsprechend dessen jeweiliger Belastung abgestimmt ist, um eine an die Rotorbelastung angepasste radiale Bewegung der Gehäusesegmente zur Laufspaltregelung zu bewirken.The invention relates to an arrangement for internal passive clearance adjustment in a high-pressure turbine, in which arranged above the blade tips of the rotor housing segments are supported at the front and rear ends of radially movable vane segments and concentric with the vane segments arranged and acting on these inner rings are provided, the thermal Expansion and contraction behavior is matched to the elongation or contraction of the rotor according to its respective load to cause a matched to the rotor load radial movement of the housing segments for running gap control.

Bei Fluggasturbinen soll der Laufspalt zwischen den Schaufelspitzen des Rotors der Hochdruckturbine und den den Schaufelspitzen im Abstand gegenüberliegenden, nicht rotierenden Gehäuseteilen oder Linern bei den unterschiedlichen Flugbedingungen und Belastungen gleichbleibend klein sein, um die Leistungs- und Kraftstoffverluste in allen Flugphasen gering zu halten und eine hohe Effizienz des Triebwerks zu gewährleisten. Andererseits muss der Laufspalt jedoch groß genug sein, um bei dem unter Übergangsbedingungen wie Start, Landung, Beschleunigung oder Verzögerung auftretenden unterschiedlichen Dehnungs- bzw. Kontraktionsverhalten des Rotors eine Reibung der rotierenden Schaufelspitzen an den feststehenden Teilen zu vermeiden. Infolge der unterschiedlichen thermischen und dynamischen Belastung des Rotors in den verschiedenen Betriebszuständen und der lediglich thermischen Dehnung der den Schaufelspitzen gegenüberliegenden feststehenden Elemente ist daher eine entsprechende Regelung der Laufspaltweite erforderlich.In aircraft gas turbine, the running gap between the blade tips of the rotor of the high-pressure turbine and the blade tips at a distance opposite, non-rotating housing parts or liners at the different flight conditions and loads should be consistently small to keep the power and fuel losses low in all flight phases and a high To ensure efficiency of the engine. On the other hand, however, the running gap must be large enough to avoid friction of the rotating blade tips on the stationary parts in the case of the different expansion or contraction behavior of the rotor occurring under transition conditions such as start, landing, acceleration or deceleration. Due to the different thermal and dynamic load of the rotor in the various operating conditions and the only thermal expansion Therefore, a corresponding control of the running gap width is required for the blade elements facing the fixed elements.

Um den Laufspalt in allen Betriebsphasen auf einem möglichst gleichbleibenden und geringen Maß zu halten und damit die eingesetzte Energie wirksam zu nutzen, und zwar ohne dass in einer Phase geringerer thermischer und dynamischer Rotorbelastung die Schaufelspitzen des Rotors die benachbarten feststehenden Gehäuseteile kontaktieren, wurde neben der aufwendigen aktiven Spaltweitenregelung mittels gesteuerter Kaltluft- bzw. Heißgaszufuhr auch eine passive automatische Laufspaltregelung vorgeschlagen.In order to keep the running gap in all phases of operation as constant and small as possible and thus to use the energy used effectively, and without contact in a phase of lower thermal and dynamic rotor load blade tips of the rotor, the adjacent stationary housing parts, in addition to the costly active gap width control by means of controlled cold air or hot gas supply also proposed a passive automatic running gap control.

Bei der beispielsweise in der GB 20 61 396 beschriebenen inneren passiven Einstellung der Laufspaltweite sind im Abstand über den Spitzen der Rotorschaufeln angeordnete Linersegmente auf einer Seite an den äußeren Plattformen der Leitschaufeln der Hochdruckturbine und auf der anderen Seite an den äußeren Plattformen von stromab angeordneten weiteren Leitschaufeln einer nachfolgenden Niederdruckturbine abgestützt. Die inneren Plattformen der beiderseits der Hochdruckturbine angeordneten Leitschaufelsegmente sind jeweils mit einem Ringelement verbunden, dessen thermisches Ausdehnungs- bzw. Kontraktionsverhalten mit dem des Rotors der Hochdruckturbine übereinstimmt. Entsprechend der Belastung des Rotors und der unterschiedlichen radialen Dehnung bzw. Kontraktion der Rotorscheibe und der Rotorschaufeln vergrößern oder verkleinern sich bei diesem inneren passiven Laufspaltregelungssystem infolge des Temperatureinflusses auch die beiderseitigen, an den Leitschaufelsegmenten montierten inneren Ringelemente derart, dass die Leitschaufelsegmente und die an diesen abgestützten Linersegmente entsprechend der Dehnung bzw. Kontraktion des Rotors radial nach außen bzw. nach innen verstellt werden. Auf diese Art ist eine passive automatische Laufspalteinstellung entsprechend den Belastungsverhältnissen in der Hochdruckturbine gewährleistet.For example, in the GB 20 61 396 described inside passive adjustment of the clearance gap spaced liner segments spaced above the tips of the rotor blades are supported on one side on the outer platforms of the high pressure turbine vanes and on the other side on the outer platforms of downstream further vanes of a subsequent low pressure turbine. The inner platforms of the vane segments arranged on either side of the high-pressure turbine are each connected to a ring element whose thermal expansion or contraction behavior coincides with that of the rotor of the high-pressure turbine. According to the load of the rotor and the different radial expansion or contraction of the rotor disk and the rotor blades increase or decrease in this inner passive running gap control system due to the influence of temperature and the mutual, mounted on the vane segments inner ring elements such that the guide vane segments and supported on these Liner segments are adjusted according to the expansion or contraction of the rotor radially outward or inward. That's the way it is ensures a passive automatic running gap adjustment according to the load conditions in the high-pressure turbine.

Die Anwendung der inneren passiven Laufspaltregelung kann jedoch nicht bei Triebwerken erfolgen, bei denen aufgrund des Fehlens einer stromabwärts des Rotors angeordneten festen Struktur die Abstützung des mit den radial beweglichen Leitschaufelsegmenten verbundenen Innenringes nicht möglich ist. Das ist beispielsweise bei einem stromab nicht statisch, sondern in einem rotierenden Bauteil gelagerten Rotor der Hochdruckturbine der Fall, da hier keine hintere statische Struktur zur Befestigung des auf die Leitschaufeln wirkenden innenringes zur Verfügung steht.However, the application of the internal passive clearance control can not be applied to engines in which, due to the absence of a fixed structure located downstream of the rotor, the support of the inner ring connected to the radially movable vane segments is not possible. This is the case, for example, with a rotor of the high-pressure turbine which is not static downstream, but is mounted in a rotating component, since no rear static structure is available for fastening the inner ring acting on the guide vanes.

Der Erfindung liegt die Aufgabe zugrunde, eine Anordnung zur inneren passiven Laufspalteinstellung der eingangs erwähnten Art für eine Hochdruckturbine mit stromab nicht statisch gelagertem Rotor anzugeben.The invention has for its object to provide an arrangement for internal passive Laufspalteinstellung of the type mentioned for a high-pressure turbine with downstream not statically mounted rotor.

Erfindungsgemäß wird die Aufgabe mit einer gemäß den Merkmalen des Patentanspruchs 1 ausgebildeten Anordnung gelöst. Aus den Unteransprüchen ergeben sich vorteilhafte Weiterbildungen und zweckmäßige Ausgestaltungen der Erfindung.According to the invention the object is achieved with a trained according to the features of claim 1 arrangement. From the dependent claims, advantageous refinements and expedient embodiments of the invention.

Bei der inneren passiven Regelung der Laufspaltweite mit auf das Dehnungsverhalten des Rotors bei unterschiedlicher Belastung abgestimmten, stromauf und stromab angeordneten Innenringen, die über Leitschaufelsegmente auf am Innenumfang des Turbinengehäuses oberhalb der Schaufelspitzen angeordnete, den Laufspalt begrenzende, radial bewegliche Segmente wirken, besteht bei einem nicht statisch, beispielsweise an einem rotierenden Lagerring der Niederdruckturbine gelagerten Rotor, der Grundgedanke der Erfindung in der Ausbildung einer von der inneren Plattform der Leitschaufelsegmente ausgehenden, an keine statische Struktur gebundenen Torsionsbox, die sich entsprechend dem Dehnungsverhalten des Rotors der Hochdruckturbine und der jeweiligen Temperaturverhältnisse vergrößert oder verkleinert und über die äußeren Plattformen der Leitschaufelsegmente auf die Linersegmente wirkt und den Laufspalt automatisch und passiv einstellt, aber so gestaltet ist, dass zum Ausgleich von Spannungen ein Dehnungsausgleich in axialer Richtung und in Umfangsrichtung gewährleistet ist. Die Torsionsbox weist einen U-förmigen Innenring auf, der nicht an einer statischen Struktur, sondern mit seiner offenen Seite an den Plattformen der Leitschaufelsegmente befestigt ist, und dessen radiale Dehnung auf die Leitschaufelsegmente und damit auf die den Laufspalt begrenzenden Segmente übertragen wird.In the inner passive control of the running gap width matched to the expansion behavior of the rotor at different load upstream and downstream arranged inner rings, which arranged on the inner circumference of the turbine housing above the blade tips on the inner circumference of the turbine housing, the running gap limiting, radially movable segments, does not exist statically, for example, on a rotating bearing ring of the low-pressure turbine mounted rotor, the basic idea of Invention in the formation of a projecting from the inner platform of the vane segments, not bound to a static structure Torsionsbox that increases or decreases according to the elongation behavior of the rotor of the high-pressure turbine and the respective temperature conditions and acts on the outer segments of the vane segments on the liner segments and the running gap automatically and passively adjusts, but is designed so that a strain compensation in the axial direction and in the circumferential direction is guaranteed to compensate for stress. The Torsionsbox has a U-shaped inner ring, which is not attached to a static structure, but with its open side to the platforms of the vane segments, and whose radial expansion is transmitted to the vane segments and thus to the gap defining segments.

Die aus dem U-förmigen Innenring und von der inneren Plattform abstrebenden Stegen gebildete Torsionsbox ist neben der Ausübung in radialer Richtung auf die Gehäusesegmente wirkender Kräfte außerdem in der Lage, das auf die Leitschaufeln infolge der Gaskräfte wirkende Rollmoment und Kippmoment aufzunehmen.The Torsionsbox formed from the U-shaped inner ring and the inner platform abstrebenden webs is in addition to the exercise in the radial direction of the housing segments acting forces also able to absorb the acting on the vanes as a result of the gas forces rolling moment and tilting moment.

Die Schenkel des U-förmige Innenrings der Torsionsbox sind mit den Stegen, die mit der inneren Plattform der Leitschaufelsegmente ebenfalls ein U-Profil bilden, mit lösbaren Befestigungsmitteln so verbunden, dass in der Torsionsbox in axialer Richtung und in Umfangsrichtung wirkende Dehnungskräfte ausgeglichen werden.The legs of the U-shaped inner ring of Torsionsbox are connected to the webs, which also form a U-profile with the inner platform of the vane segments, with releasable fastening means so that in the Torsionsbox in the axial direction and in the circumferential direction acting expansion forces are compensated.

Die Leitschaufeln sind zudem über eine Verzahnung am Gehäuse in Umfangsrichtung gehalten und radial geführt. Eine axiale Fixierung erfolgt mit Hilfe eines Halteringes am Turbinengehäuse.The vanes are also held by a toothing on the housing in the circumferential direction and guided radially. An axial fixation takes place with the help of a retaining ring on the turbine housing.

Die Verbindung der Schenkel des U-förmigen Innenringes mit den an die Plattformen angeformten und flächig an den Schenkeln anliegenden Stegen erfolgt mit einer Klemmhülse, die auf einer Seite gleitfähig in Bohrungen des Schenkels und des Steges eingepasst ist und die auf der gegenüberliegenden Seite mit Hilfe eines in der Klemmhülse gelagerten Schraubenbolzens fest aneinander gepresst werden. Während die gleitende Anordnung der Klemmhülse auf der einen Seite der Torsionsbox einen Dehnungsausgleich in axialer Richtung bewirkt, ist zum Dehnungsausgleich in Umfangsrichtung für jede zweite Klemmhülsenbefestigung ein sich in Umfangsrichtung erstreckendes Langloch vorgesehen.The connection of the legs of the U-shaped inner ring with the integrally formed on the platforms and lying flat against the legs webs is carried out with a clamping sleeve which is slidably fitted on one side in bores of the leg and the web and on the opposite side by means of a in the clamping sleeve mounted bolt are pressed firmly together. While the sliding arrangement of the clamping sleeve on one side of the torsion box causes an expansion compensation in the axial direction, a circumferentially extending slot is provided for the expansion compensation in the circumferential direction for every second clamping sleeve attachment.

Ein Ausführungsbeispiel der Erfindung wird anhand der Zeichnung näher erläutert. Es zeigen:

  • Fig. 1 eine Teilansicht eines Triebwerks im Bereich der Hochdruckturbine, der stromauf statisch und stromab nicht statisch gehaltenen ist;
  • Fig. 2 eine vergrößerte Darstellung eines stromab an einem als Torsionsbox ausgebildeten Dehnungsring montierten, radial beweglich am Turbinengehäuse fixierten Leitschaufelsegments; und
  • Fig. 3 eine detaillierte Darstellung der Torsionsbox.
An embodiment of the invention will be explained in more detail with reference to the drawing. Show it:
  • Fig. 1 a partial view of an engine in the high-pressure turbine, which is statically static and downstream not statically held upstream;
  • Fig. 2 an enlarged view of a downstream of a trained as Torsionsbox expansion ring, radially fixed to the turbine housing fixed vane segment; and
  • Fig. 3 a detailed view of the torsion box.

Die Hochdruckturbine (HDT) des Triebwerks umfasst einen stromauf statisch und stromab an einer Zwischenwellenlagerung 1 (inter shaft bearing) der nachfolgenden Niederdruckturbine (NDT, nicht dargestellt) nicht statisch gehaltenen Rotor, der aus einer Rotorscheibe 2 und an deren Umfang angebrachten Rotorschaufeln 3 besteht. Die stromauf der Rotorschaufeln 3 angeordneten und mit ihrer äußeren Plattform 5a radial beweglich am Turbinengehäuse 4 gehaltenen Leitschaufelsegmente 5 der Hochdruckturbine sind über die innere Plattform 5b mit einem an einer festen Struktur montierten Innenring 6 zur inneren passiven Laufspalteinstellung (inner passive ring) verbunden, dessen Wärmedehnungsverhalten auf das des Rotors abgestimmt ist. Stromab der Rotorschaufeln 3 befinden sich die Leitschaufelsegmente 7 der nachfolgenden Niederdruckturbine, die über ihre äußere Plattform 7a ebenfalls radial beweglich am Turbinengehäuse 4 geführt sind, während an der inneren Plattform 7b eine als Laufspalteinstellorgan (inner passive ring) dienende Torsionsbox 8 ausgebildet ist, deren Wärmedehnungsverhalten dem des Rotors der Hochdruckturbine entspricht. Die äußeren Plattformen 5a, 7a der Leitschaufelsegmente 5, 7 sind mit einem oberhalb der Spitzen der Rotorschaufeln 3 angeordneten Linersegment 9 verbunden. Aufgrund der übereinstimmenden Dehnungseigenschaften des Rotors und der Torsionsbox 8 und des Innenrings 6 werden bei einer den jeweiligen Belastungsbedingungen entsprechenden radialen Streckung bzw. Kontraktion der Rotorscheibe 2 und der Rotorschaufeln 3 in gleichem Maße die Linersegmente 9 radial angehoben bzw. abgesenkt, so dass bei unterschiedlicher Wärmebelastung die Ausbildung eines gleichbleibend kleinen Spitzenspaltes gewährleistet ist und damit die Leistungs- und Kraftstoffverluste der Turbine gering gehalten werden können.The high pressure turbine (HDT) of the engine includes a static upstream and downstream of an intermediate shaft bearing 1 (inter shaft bearing) of the following low-pressure turbine (NDT, not shown) not statically held rotor, which consists of a rotor disk 2 and the rotor blades attached to the periphery 3. The upstream of the rotor blades 3 arranged and with its outer platform 5 a radially movable on the turbine housing. 4 held turbine blades 5 of the high-pressure turbine are connected via the inner platform 5b with a fixed structure mounted on the inner ring 6 for inner passive running gap adjustment (inner passive ring) whose thermal expansion behavior is matched to that of the rotor. Downstream of the rotor blades 3 are the guide blade segments 7 of the subsequent low-pressure turbine, which are also guided radially movable on the turbine housing 4 via its outer platform 7a, while on the inner platform 7b serving as Laufspalteinstellorgan (inner passive ring) Torsionsbox 8 is formed whose thermal expansion behavior corresponds to the rotor of the high-pressure turbine. The outer platforms 5a, 7a of the vane segments 5, 7 are connected to a liner segment 9 arranged above the tips of the rotor blades 3. Due to the matching elongation properties of the rotor and the torsion box 8 and the inner ring 6, the rotor segments 2 and the rotor blades 3 are radially raised or lowered at a radial extension or contraction corresponding to the respective load conditions, so that at different heat load the formation of a consistently small tip gap is ensured and thus the power and fuel losses of the turbine can be kept low.

Da im vorliegenden Fall stromab der Hochdruckturbine keine feste Struktur zum Anbringen eines auf die Linersegmente wirkenden Dehnungsringes zur Verfügung steht, ist dieser als U-förmiger Innenring 10 ausgebildet, dessen Schenkel 11, 12 mit radial von der inneren Plattform 7b der Leitschaufelsegmente 7 abstrebenden Stegen 13, 14, die mit der Plattform 7b ebenfalls ein U-Profil bilden, verbunden sind. Durch eine feste Verbindung der Schenkel 11, 12 des U-förmigen Ringes 10 mit den Stegen 13, 14 wird an der Plattform 7b die oben erwähnte Torsionsbox 8 geschaffen, die - ohne die Anbindung an eine feste Struktur - in der Lage ist, die auf die Leitschaufelsegmente 7 wirkenden Kräfte aufzunehmen. Außerdem werden die Leitschaufelsegmente 7 über die oberen Plattformen 7a am Turbinengehäuse 4 in einer - in Fig. 2 angedeuteten - Cross-Key-Verzahnung 15 (Hirthverzahnung) in Umfangsrichtung gehalten und radial geführt sowie an einem Haltering 25 zusätzlich axial fixiert.Since in the present case, downstream of the high-pressure turbine, there is no fixed structure for attaching an expansion ring acting on the liner segments, this is designed as a U-shaped inner ring 10, the legs 11, 12 of which are braced with webs 13 radially projecting from the inner platform 7b of the guide blade segments 7 14, which likewise form a U-profile with the platform 7b. By a firm connection of the legs 11, 12 of the U-shaped ring 10 with the webs 13, 14 is on the platform 7b, the above-mentioned torsion 8th created, which - without the connection to a fixed structure - is able to absorb the forces acting on the vane segments 7 forces. In addition, the vane segments 7 on the upper platforms 7a on the turbine housing 4 in a - Fig. 2 indicated - Cross-key teeth 15 (Hirth serration) held in the circumferential direction and guided radially and additionally axially fixed to a retaining ring 25.

Die Verbindung der vorderen und hinteren Stege 13, 14 der inneren Plattformen 7b der Leitschaufelsegmente 7 mit dem U-förmigen Innenring 10 erfolgt mit Hilfe von speziell ausgebildeten Klemmhülsen 16 und Schraubenbolzen 17 mit Nietmutter 18. Die Stege 13, 14 greifen über die Schenkel 11, 12 des U-förmigen Innenringes 10. In den Schenkeln oder Stegen sind - jeweils zueinander fluchtend - normale (runde) Bohrungen und - in Umfangsrichtung der Torsionsbox 8 gesehen - Langlochbohrungen ausgebildet. In Umfangsrichtung sind runde Bohrungen und Langlochbohrungen im Wechsel angeordnet, das heißt, in den Stegen 13, 14 sind jeweils gegenüberliegend eine runde Bohrung und eine Langlochbohrung vorgesehen. Die Klemmhülse 16 hat im Abstand von der vorderen Stirnseite einen Bund 19, der an der Innenseite des vorderen Schenkels 11 des U-förmigen Innenringes 10 anliegt. Der hintere Bereich der Klemmhülse 16 weist einen geraden, glatten Bereich 20 auf, der passgenau in die fluchtenden Bohrungen des hinteren Schenkels 12 und des hinteren Steges 14 eingesetzt ist und eine Gleitbewegung zulässt. Eine stirnseitige Einsenkung 21 in der Klemmhülse 16 dient zur Aufnahme des Schraubenkopfes 17a des Schraubenbolzens 17. Mit der so ausgebildeten Klemmhülse 16 und dem Schraubenbolzen 17 mit Sicherheitsmutter 18 wird der stromab die passive Laufspalteinstellung bewirkende U-förmige Innenring 10 an den Stegen 13, 14 der inneren Plattform 7b auf einer Seite fest verspannt und auf der gegenüberliegenden Seite - zum Ausgleich von Wärmedehnungen in axialer Richtung - gleitend fixiert. Wärmedehnungen in Umfangsrichtung der Torsionsbox 8 werden durch die teilweise Befestigung in Langlöchern ausgeglichen. Insbesondere aus Fig. 2 ist ersichtlich, dass an den U-förmigen Innenring 10 der Torsionsbox 8 ein umlaufender Dichtungssteg 22 zur Abschirmung der Nietmuttern 18 und ein bis zur Zwischenwellenlagerung 1 reichender umlaufender Schutzschild 23 mit Kanten- und Bürstendichtung 24 angeformt sind. Durch die Abschirmung der Nietmuttern 18 und der Schraubenbolzenköpfe sowie die Anordnung des Schutzschildes 23 werden die Ventilationsverluste minimiert.The connection of the front and rear webs 13, 14 of the inner platforms 7b of the guide blade segments 7 with the U-shaped inner ring 10 by means of specially trained ferrules 16 and bolts 17 with rivet nut 18. The webs 13, 14 engage over the legs 11, 12 of the U-shaped inner ring 10. In the legs or webs are - each aligned - normal (round) holes and - seen in the circumferential direction of the torsion box 8 - elongated holes formed. In the circumferential direction round holes and elongated holes are arranged alternately, that is, in the webs 13, 14 are each provided opposite a round hole and a long hole. The clamping sleeve 16 has at a distance from the front end face a collar 19 which rests against the inside of the front leg 11 of the U-shaped inner ring 10. The rear region of the clamping sleeve 16 has a straight, smooth region 20, which is inserted precisely into the aligned bores of the rear leg 12 and the rear web 14 and allows a sliding movement. With the thus formed clamping sleeve 16 and the bolt 17 with safety nut 18 of the downstream of the passive running gap setting effecting U-shaped inner ring 10 on the webs 13, 14 of the inner platform 7b firmly clamped on one side and on the opposite side - to compensate for thermal expansion in the axial direction - slidably fixed. Thermal expansions in the circumferential direction of the torsion box 8 are compensated by the partial attachment in oblong holes. In particular from Fig. 2 It can be seen that on the U-shaped inner ring 10 of the torsion box 8, a circumferential sealing web 22 for shielding the rivet nuts 18 and a reaching to the intermediate shaft bearing 1 circumferential protective shield 23 with edge and brush seal 24 are formed. By shielding the rivet nuts 18 and the bolt heads and the arrangement of the shield 23, the ventilation losses are minimized.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
ZwischenwellenlagerungIntermediate shaft bearing
22
Rotorscheiberotor disc
33
Rotorschaufelnrotor blades
44
Turbinengehäuseturbine housing
55
Leitschaufelsegment (HDT)Guide vane segment (HDT)
5a5a
äußere Plattformouter platform
5b5b
innere Plattforminner platform
66
Innenring (upstream inner passive ring)Inner ring (upstream inner passive ring)
77
Leitschaufelsegment (NDT)Guide vane segment (NDT)
7a7a
äußere Plattformouter platform
7b7b
innere Plattforminner platform
88th
Torsionsboxtorsion
99
Linersegmentliner segment
1010
U-förmiger Innenring (downstream inner passive ring)U-shaped inner ring (downstream inner passive ring)
11, 1211, 12
Schenkel von 10Thighs of 10
13, 1413, 14
Stege von 7bFootbridges from 7b
1515
cross-key-Verzahnungcross-key teeth
1616
Klemmhülsecollet
1717
Schraubenbolzenbolt
17a17a
Schraubenkopfscrew head
1818
NietmutterRivet nut
1919
BundFederation
2020
gerader Bereich, Gleitbereich v. 16straight area, sliding area v. 16
2121
Einsenkung v. 16Depression v. 16
2222
Dichtungsstegsealing web
2323
Schutzschildshield
2424
Kanten- und BürstendichtungEdge and brush seal
2525
Halteringretaining ring

Claims (8)

  1. Arrangement for internal passive tip clearance control in a high-pressure turbine in which moveable casing segments (9) located above the blade tips of the rotor (2, 3) are supported at the front and rear ends at the outer platforms (5a, 7a) by radially moveable guide vane segments (5, 7) and inner rings (6, 10), which are concentrically arranged to the guide vane segments (5, 7), and acting upon them, are provided, whose thermal expansion and contraction behaviour matches the expansion or contraction of the rotor (2, 3) in dependence of its respective loading, to provide radial movement of the casing segments (9) - in accordance with the rotor loading - to control tip clearance, characterized in that, when there is no downstream static bearing of the rotor (2, 3) on struts (14, 15) forming a U-shaped profile with the inner platform (7b), a U-shaped inner ring (10) for passive tip clearance control is mounted such that a torsion box (8) is provided on the platform (7b) and in that the torsion box (8) compensates expansions in axial and in peripheral direction.
  2. Arrangement in accordance with Claim 1, characterized in that, to form the torsion box (16), the one leg (11) of the inner ring (10) is firmly tightened to the adjacent struts (13) of the inner platform (7b) using a clamping sleeve (16) that comprises a collar (19) and a screw bolt (17) arranged in said clamping sleeve (16) with safety nut (18) while the even area (20) at the opposite end portion of the clamping sleeve (16) is slidingly fitted into holes of the other leg (12) and the other struts (14) for expansion compensation in axial direction, and while every other hole that receives fastening means (16, 18) in the legs (11, 12) or struts (13, 14) is an oblong hole to provide expansion compensation in peripheral direction.
  3. Arrangement in accordance with Claim 2, characterized in that the clamping sleeve (16) includes an indentation (21) on its front that receives the head of the screw bolt (17) to minimize ventilation losses.
  4. Arrangement in accordance with Claim 1, characterized in that the torsion box (8) is provided with an upstream circumferential sealing dam (22) directed towards the inner platform (7b) to shield the portion of the screw bolt (17) with rivet nuts (18) that protrudes from the outer surface of the torsion box (8) to minimize ventilation losses.
  5. Arrangement in accordance with Claim 1, characterized in that the torsion box (8) is provided with a circumferential protective shield (23) pointing inwards with an edge and/or brush packing (24) on its free edge to minimize ventilation losses.
  6. Arrangement in accordance with Claim 1, characterized in that the guide vane segments (7) equipped with the torsion box (8) are held in peripheral direction, and guided in radial direction, by a cross key serration (15) between turbine casing (4) and outer platform (7a) and in that a retainer ring (25) is provided for axial fixation of the guide vane segments (7).
  7. Arrangement in accordance with Claim 1, characterized in that the casing segments located upstream of the rotor blade tips (3) are liner segments (9) that can be moved in the radial direction.
  8. Arrangement in accordance with Claim 1, characterized in that the downstream bearing of the rotor of the high-pressure turbine is a non-static inter-shaft bearing (1) of the subsequent low-pressure turbine.
EP05090109A 2005-04-14 2005-04-14 Arrangement in a high pressure turbine for passive tip clearance control Expired - Fee Related EP1712744B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE502005006421T DE502005006421D1 (en) 2005-04-14 2005-04-14 Arrangement for internal passive clearance adjustment in a high-pressure turbine
EP05090109A EP1712744B1 (en) 2005-04-14 2005-04-14 Arrangement in a high pressure turbine for passive tip clearance control
US11/403,809 US7588414B2 (en) 2005-04-14 2006-04-14 Arrangement for internal passive turbine blade tip clearance control in a high pressure turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05090109A EP1712744B1 (en) 2005-04-14 2005-04-14 Arrangement in a high pressure turbine for passive tip clearance control

Publications (2)

Publication Number Publication Date
EP1712744A1 EP1712744A1 (en) 2006-10-18
EP1712744B1 true EP1712744B1 (en) 2009-01-07

Family

ID=34938438

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05090109A Expired - Fee Related EP1712744B1 (en) 2005-04-14 2005-04-14 Arrangement in a high pressure turbine for passive tip clearance control

Country Status (3)

Country Link
US (1) US7588414B2 (en)
EP (1) EP1712744B1 (en)
DE (1) DE502005006421D1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8757919B2 (en) * 2008-08-29 2014-06-24 Volvo Aero Corporation Component and a gas turbine engine comprising the component
US9328626B2 (en) * 2012-08-21 2016-05-03 United Technologies Corporation Annular turbomachine seal and heat shield
EP2792892B8 (en) * 2013-04-16 2016-12-07 GESIPA Blindniettechnik GmbH Blind rivet nut
EP3027855B1 (en) * 2013-07-30 2020-09-09 United Technologies Corporation Gas turbine engine with a vane ring arrangement
US9790806B2 (en) 2014-06-06 2017-10-17 United Technologies Corporation Case with vane retention feature
US10731500B2 (en) 2017-01-13 2020-08-04 Raytheon Technologies Corporation Passive tip clearance control with variable temperature flow
US11015475B2 (en) 2018-12-27 2021-05-25 Rolls-Royce Corporation Passive blade tip clearance control system for gas turbine engine
US11193393B2 (en) 2019-04-23 2021-12-07 Rolls-Royce Plc Turbine section assembly with ceramic matrix composite vane
US10975708B2 (en) 2019-04-23 2021-04-13 Rolls-Royce Plc Turbine section assembly with ceramic matrix composite vane
US11008880B2 (en) 2019-04-23 2021-05-18 Rolls-Royce Plc Turbine section assembly with ceramic matrix composite vane
US10954802B2 (en) 2019-04-23 2021-03-23 Rolls-Royce Plc Turbine section assembly with ceramic matrix composite vane
US11149559B2 (en) 2019-05-13 2021-10-19 Rolls-Royce Plc Turbine section assembly with ceramic matrix composite vane
US11732596B2 (en) 2021-12-22 2023-08-22 Rolls-Royce Plc Ceramic matrix composite turbine vane assembly having minimalistic support spars

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2061396B (en) * 1979-10-24 1983-05-18 Rolls Royce Turbine blade tip clearance control
DE3003470C2 (en) * 1980-01-31 1982-02-25 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Turbine guide vane suspension for gas turbine jet engines
GB2087979B (en) * 1980-11-22 1984-02-22 Rolls Royce Gas turbine engine blade tip seal
FR2777318B1 (en) * 1998-04-09 2000-05-12 Snecma PROCESS FOR REDUCING THE EXISTING CLEARANCE BETWEEN A SHIRT AND A TURBINE DISTRIBUTOR OF A TURBOREACTOR
DE10340825A1 (en) * 2003-09-04 2005-03-31 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine with running gap control

Also Published As

Publication number Publication date
US20060233642A1 (en) 2006-10-19
EP1712744A1 (en) 2006-10-18
DE502005006421D1 (en) 2009-02-26
US7588414B2 (en) 2009-09-15

Similar Documents

Publication Publication Date Title
EP1712744B1 (en) Arrangement in a high pressure turbine for passive tip clearance control
EP1580404B1 (en) Arrangement for self adjusting the tip clearance in a two or multiple stage turbine
DE3325291C2 (en) Rotor assembly
EP1536103B1 (en) Turbo machine having inlet guide vanes and attachment arrangement therefor
DE3446389C2 (en) Stator structure for an axial gas turbine
EP2209969B1 (en) Supercharger device
EP3152407B1 (en) Vane ring, inner ring, and turbomachine
EP2696037B1 (en) Sealing of the flow channel of a fluid flow engine
EP2179143B1 (en) Gap cooling between combustion chamber wall and turbine wall of a gas turbine installation
EP2344723B1 (en) Gas turbine with seal plates on the turbine disk
EP2342425B1 (en) Gas turbine with securing plate between blade base and disk
WO2000070191A1 (en) Sealing system for a rotor of a turbo engine
EP1653049B1 (en) Vane ring assembly for gas turbines and method to modify the same
EP2428647B1 (en) Transitional Region for a Combustion Chamber of a Gas Turbine
EP1462616B1 (en) Assembly for the axial and radial fastening of a guide vane ring in a casing of a turbine engine
EP2526263B1 (en) Housing system for an axial turbomachine
WO2009109430A1 (en) Sealing arrangement and gas turbine
EP2955336B1 (en) Intermediate housing for a gas turbine and gas turbine with such an intermediate housing
EP3312388B1 (en) Rotor part, corresponding compressor, turbine and manufacturing method
EP3109520B1 (en) Seal carrier, guide blade assembly and fluid flow engine
CH643050A5 (en) Gas turbine with ring combustion chamber.
EP3613952B1 (en) Variable guide blade assembly, guide blade, seal carrier, and turbomachine
EP3670845B1 (en) Turbomachine with static seal assembly
EP0520258B1 (en) System for keying rotor blades
WO2010083805A1 (en) Turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005006421

Country of ref document: DE

Date of ref document: 20090226

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005006421

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170426

Year of fee payment: 13

Ref country code: GB

Payment date: 20170427

Year of fee payment: 13

Ref country code: DE

Payment date: 20170427

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005006421

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430