EP1708829B1 - Method for removing a layer - Google Patents

Method for removing a layer Download PDF

Info

Publication number
EP1708829B1
EP1708829B1 EP05700980A EP05700980A EP1708829B1 EP 1708829 B1 EP1708829 B1 EP 1708829B1 EP 05700980 A EP05700980 A EP 05700980A EP 05700980 A EP05700980 A EP 05700980A EP 1708829 B1 EP1708829 B1 EP 1708829B1
Authority
EP
European Patent Office
Prior art keywords
removal region
process according
component
salt
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05700980A
Other languages
German (de)
French (fr)
Other versions
EP1708829A1 (en
Inventor
Georg Bostanjoglo
Stefan Krause
Michael Ott
Ralph Reiche
Jan Steinbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07010914A priority Critical patent/EP1818112A3/en
Priority to EP05700980A priority patent/EP1708829B1/en
Publication of EP1708829A1 publication Critical patent/EP1708829A1/en
Application granted granted Critical
Publication of EP1708829B1 publication Critical patent/EP1708829B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents

Definitions

  • the invention relates to a method for removing a layer according to claim 1.
  • Components such as turbine blades, for example, after use corrosion products such as oxides, sulfides, nitrides, carbides, phosphates, etc., which form a layer. Such components can be used again after their use, if, inter alia, the corrosion products have been removed. The complete removal of the corrosion products, for example, by sandblasting, but this can lead to damage to the substrate.
  • corrosion products such as oxides, sulfides, nitrides, carbides, phosphates, etc.
  • the U.S. Patent 5,575,858 describes a method for removing a removal area, in particular a corrosion product of a component, in which the removal area is pre-negotiated before a final cleaning, so that a damage of the removal area takes place, so that then a removal rate in the final cleaning of the removal area is greater than without the damage to the removal area ,
  • the object is achieved by a method according to claim 1.
  • FIG. 1 shows a component 1, which can be treated by the method according to the invention.
  • the component 1 consists of a ceramic or metallic substrate 4 (main body), which is, for example, especially for turbines, a cobalt-, iron- or nickel-based superalloy.
  • the component 1 is, for example, a guide 130 or blade 120 (FIG. FIG. 6 . 8th ) of a gas 100 ( FIG. 6 ), a steam turbine 300, 303 ( FIG. 9 ), or an aircraft turbine, a combustion liner 155 (FIG. Fig. 7 ) or another hot gas charged component of a turbine.
  • the component 1 can either be newly manufactured or remanufactured. Refurbishment means that after use, components 1 may be separated from layers (thermal barrier coating) and corrosion and oxidation products removed. If necessary, cracks still have to be repaired. Thereafter, such a component 1 can be coated again; This is particularly advantageous because the body is very expensive.
  • the component 1 can have at least one ceramic or metallic layer on the surface 13 for use, such as an MCrAlX layer and / or a thermal insulation layer lying thereon, which can be roughly removed in a first method step.
  • the MCrAlX layer can also represent the removal region 10, which is treated by the method according to the invention.
  • the removal region 10 is considered as a corrosion product 10 (corrosion layer 10).
  • the removal region 10 can also be a functional layer without corrosion products.
  • the removal region 10 may be a metallic and / or ceramic layer, wherein the layer may be metallic and has corrosion products.
  • the corrosion product 10, for example an oxide, a sulfide, a nitride, a phosphide or a carbide, etc., may be present on a surface 13 of the component 1 or in a crack 7 of the component 1.
  • the corrosion products 10 must be removed from the crack 7 or from the surface 13, so that the crack 7 can be filled with a solder or weld metal and the surface 13 can be coated again. Corrosion products 10 would otherwise good adhesion of the solder or a renewed Prevent coating or at least reduce it.
  • the prior art corrosion product 10 has a certain removal rate (mass per time) when it is cleaned, for example, by the FIC process. However, this erosion rate is too low and may even be zero after a certain time.
  • FIG. 2 shows schematically the implementation of the method according to the invention.
  • a salt 16 is applied to the corrosion product 10 in order to damage it, which salt can chemically react with the corrosion product 10 in order to damage the removal region 10.
  • the salt used is preferably Na 2 SO 4 (sodium sulfate) and / or CoSO 4 (cobalt sulfate).
  • Other salts or combinations are conceivable.
  • the corrosion products aluminum oxide and / or cobalt oxide and / or titanium oxide of the metals titanium, aluminum and / or cobalt, which are contained in the alloy (for example superalloy) of the substrate 4, can be removed very well.
  • a molten salt can be applied directly in the crack 7 or on the corrosion product 10 or the component 1 is immersed in a molten salt.
  • the salt in the form of a slurry in the crack 7 and on the surface 13.
  • laying a film containing the material 16 or salt 16 is suitable.
  • the salt 16 may, for example, be locally heated by means of a laser 19 and its laser beams 22, so that a chemical reaction of the salt 16 with the corrosion product 10 or a thermal shock takes place.
  • the heating can also be effected by electromagnetic induction, in particular when the substrate 4 is metallic.
  • the heating of the component 1 can take place locally by means of induction or by means of a light source, for example by means of a laser, in that the laser 19 irradiates the laser beam 22 only into the crack 7.
  • the local heating can also be done by means of tunable microwaves. Tunable means that among other things, the wavelength and intensity can be changed.
  • FIG. 3 shows a component 1 with a corrosion product 10 after the damage of the corrosion product 10 by a pretreatment according to the invention.
  • the pretreatment produces cracks 25 which extend from the surface 14 of the layer 10 towards the substrate 4, so that a larger surface of attack of the corrosion product 10 with respect to the acid and / or the fluorine ions, etc. is given.
  • the component 1 is subjected to a final cleaning by means of an acid or fluorine ion treatment, which leads to the complete removal of the corrosion product 10, since the damage rate of the corrosion product 10, the removal rate in FIC or another method is significantly increased and no significant reduction of Removal rate occurs over time.
  • FIG. 4 shows another way to achieve damage to the corrosion product 10.
  • the corrosion product 10, which rests on a surface 13 of the substrate 4 is subjected to a thermal shock.
  • the thermal shock can be done by immersion in a hot salt bath.
  • the corrosion product 10 can also be partially melted.
  • FIG. 5 shows further damage in the corrosion product 10 according to the method of the invention. If the material of the corrosion product 10 has been melted, for example, the material contracts again on cooling, so that mechanical stresses occur which may lead to cracking.
  • cracks 31 within the corrosion product 10 may also be generated.
  • delaminations 34 may form between the corrosion product 10 and a surface 13 on which the corrosion product 10 rests.
  • the special feature of the method is that the damaged by corrosion products 10 and to be repaired component 1 with the corrosion products 10 is damaged again in the field of corrosion products 10.
  • FIG. 6 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
  • annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine 108th Each turbine stage 112 is formed of two blade rings.
  • a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106. In order to withstand the temperatures prevailing there, they are cooled by means of a coolant.
  • the substrates may have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • the material used is iron-, nickel- or cobalt-based superalloys.
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is yttrium (Y) and / or at least one element of the rare Erden) and have heat through a thermal barrier coating.
  • the thermal barrier coating consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • suitable coating processes such as electron beam evaporation (EB-PVD)
  • stalk-shaped grains are produced in the thermal barrier coating.
  • corrosion products 10 can form on the component.
  • the corrosion products must be removed by the method according to the invention if the component is to be recoated. Possibly. Then cracks are still repaired in the substrate of the component.
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • the FIG. 7 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 102 arranged around the turbine shaft 103 in the circumferential direction open into a common combustion chamber space.
  • the combustion chamber 110 in its entirety as an annular Structured structure, which is positioned around the turbine shaft 103 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material. Due to the high temperatures in the interior of the combustion chamber 110, a cooling system is additionally provided for the heat shield elements 155 or for their holding elements.
  • the materials of the combustor wall and their coatings may be similar to the turbine blades 120, 130.
  • the combustion chamber 110 is designed in particular for detecting losses of the heat shield elements 155.
  • a number of temperature sensors 158 are positioned between the combustion chamber wall 153 and the heat shield elements 155.
  • FIG. 8 shows a perspective view of a blade 120, 130 which extends along a longitudinal axis 121.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjoining thereto and an airfoil region 406.
  • a blade root 183 is formed, which serves for fastening the rotor blades 120, 130 to the shaft.
  • the blade root 183 is designed as a hammer head.
  • Other configurations, for example as a Christmas tree or Schwalbenschwanzfuß are possible.
  • With conventional blades 120, 130, in all areas 400, 403, 406 of the blade 120, 130 used massive metallic materials.
  • the blade 120, 130 may be manufactured by a casting process, by a forging process, by a milling process or combinations thereof.
  • FIG. 9 For example, a steam turbine 300, 303 with a turbine shaft 309 extending along a rotation axis 306 is shown.
  • the steam turbine has a high-pressure turbine section 300 and a medium-pressure turbine section 303, each having an inner housing 312 and an outer housing 315 surrounding it.
  • the high-pressure turbine part 300 is designed, for example, in Topfbauart.
  • the medium-pressure turbine section 303 is double-flow. It is also possible for the medium-pressure turbine section 303 to be single-flow.
  • a bearing 318 is arranged between the high-pressure turbine section 300 and the medium-pressure turbine section 303, the turbine shaft 309 having a bearing region 321 in the bearing 318.
  • the turbine shaft 309 is supported on another bearing 324 adjacent to the high pressure turbine sub 300. In the area of this bearing 324, the high-pressure turbine section 300 has a shaft seal 345.
  • the turbine shaft 309 is sealed from the outer housing 315 of the medium-pressure turbine section 303 by two further shaft seals 345. Between a high-pressure steam inflow region 348 and a steam outlet region 351, the turbine shaft 309 in the high-pressure turbine section 300 has the high-pressure impeller blade 354, 357. This high-pressure blading 354, 357 with the associated, not closer provided rotor blades a first Beschaufelungs Suite 360.
  • the medium-pressure turbine section 303 has a central Dampfeinström Suite 333 on.
  • the turbine shaft 309 Associated with the steam inflow region 333, the turbine shaft 309 has a radially symmetrical shaft shield 363, a cover plate, on the one hand for dividing the steam flow into the two flows of the medium-pressure turbine section 303 and for preventing direct contact of the hot steam with the turbine shaft 309.
  • the turbine shaft 309 has in the medium-pressure turbine section 303 a second blading area 366 with the medium-pressure blades 354, 342.
  • the hot steam flowing through the second blading area 366 flows out of the medium-pressure turbine section 303 from a discharge connection 369 to a downstream low-pressure turbine, not shown.
  • the components of the steam turbine 300, 303 have protective layers and / or corrosion products 10, which are removed by the method according to the invention, before a reprocessing of the components can take place.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

The invention relates to a method for removing a layer. Structural components that are contaminated with corrosion products are often reused, therefore the corrosion product (10) has to be removed. Conventional methods for doing so are time-consuming as the reaction times with the corrosion product are often very long. According to the invention, the corrosion product is pretreated by exposing it to salt, thereby producing a larger working surface, so that the corrosion product (10) can be removed more rapidly. Sodium sulfate (Na2SO4) and/or cobalt sulfate (CoSO4) are used for the salt exposure.

Description

Die Erfindung betrifft ein Verfahren zur Entfernung einer Schicht gemäß Anspruch 1.The invention relates to a method for removing a layer according to claim 1.

Bauteile, wie z.B. Turbinenschaufeln, weisen beispielsweise nach dem Einsatz Korrosionsprodukte wie z.B. Oxide, Sulfide, Nitride, Karbide, Phosphate usw. auf, die eine Schicht bilden.
Solche Bauteile können nach ihrem Einsatz wieder eingesetzt werden, wenn u. a. die Korrosionsprodukte entfernt worden sind.
Die komplette Entfernung der Korrosionsprodukte geschieht beispielsweise durch Sandstrahlen, was aber zu einer Schädigung des Substrats führen kann.
Components such as turbine blades, for example, after use corrosion products such as oxides, sulfides, nitrides, carbides, phosphates, etc., which form a layer.
Such components can be used again after their use, if, inter alia, the corrosion products have been removed.
The complete removal of the corrosion products, for example, by sandblasting, but this can lead to damage to the substrate.

Ebenso ist es möglich das Bauteil komplett mittels Säurestrippen oder Fluorionenreinigung (fluor ion cleaning (FIC)) zu behandeln.
Dies ist jedoch sehr zeitaufwändig, da die Korrosionsprodukte gegenüber der Säure oder dem Fluor und/oder Fluorid teilweise mit der Zeit zu geringe Abtragungsraten aufweisen.
It is also possible to treat the component completely by means of acid stripping or fluorine ion cleaning (FIC).
However, this is very time consuming because the corrosion products have too low removal rates over time with the acid or fluorine and / or fluoride, over time.

Die US-PS 5,575,858 beschreibt ein Verfahren zur Entfernung eines Entfernungsbereichs, insbesondere eines Korrosionsproduktes eines Bauteils, bei dem der Entfernungsbereich vor einer Endreinigung vorgehandelt wird, so dass eine Schädigung des Entfernungsbereichs erfolgt, so dass dann eine Abtragungsrate in der Endreinigung des Entfernungsbereichs größer ist als ohne die Schädigung des Entfernungsbereichs.The U.S. Patent 5,575,858 describes a method for removing a removal area, in particular a corrosion product of a component, in which the removal area is pre-negotiated before a final cleaning, so that a damage of the removal area takes place, so that then a removal rate in the final cleaning of the removal area is greater than without the damage to the removal area ,

Ähnliche Verfahren sind in der US-PS 4,439,241 , US-PS 5,464,479 sowie der EP 1 013 797 offenbart.Similar procedures are in the U.S. Patent 4,439,241 . U.S. Patent 5,464,479 as well as the EP 1 013 797 disclosed.

Es ist daher die Aufgabe der Erfindung, ein Verfahren aufzuzeigen, bei dem die Entfernung von Schichten auf einem Bauteil erleichtert und damit zeitlich verkürzt wird.It is therefore the object of the invention to provide a method in which the removal of layers on a component is facilitated and thus shortened in time.

Die Aufgabe wird gelöst durch ein Verfahren gemäß Anspruch 1.The object is achieved by a method according to claim 1.

In den Unteransprüchen sind weitere vorteilhafte Maßnahmen des erfindungsgemäßen Verfahrens aufgelistet.In the subclaims further advantageous measures of the method according to the invention are listed.

Die in den Unteransprüchen aufgelisteten Maßnahmen können in vorteilhafter Art und Weise miteinander kombiniert werden.The measures listed in the subclaims can be combined with each other in an advantageous manner.

Die Erfindung ist schematisch anhand der Figuren erläutert.The invention is explained schematically with reference to the figures.

Es zeigen

Figur 1
ein Bauteil mit einem Korrosionsprodukt,
Figur 2
schematisch die Durchführung des erfindungsgemäßen Verfahrens,
Figur 3, 4, 5
das Bauteil nach Durchführung des erfindungsgemäßen Verfahrens,
Figur 6
eine Gasturbine,
Figur 7
eine Brennkammer,
Figur 8
eine Turbinenschaufel und
Figur 9
eine Dampfturbine.
Show it
FIG. 1
a component with a corrosion product,
FIG. 2
schematically the implementation of the method according to the invention,
FIGS. 3, 4, 5
the component after carrying out the method according to the invention,
FIG. 6
a gas turbine,
FIG. 7
a combustion chamber,
FIG. 8
a turbine blade and
FIG. 9
a steam turbine.

Figur 1 zeigt ein Bauteil 1, das mit dem erfindungsgemäßen Verfahren behandelt werden kann.
Das Bauteil 1 besteht aus einem keramischen oder metallischen Substrat 4 (Grundkörper), das beispielsweise, insbesondere für Turbinen, eine kobalt-, eisen- oder nickelbasierte Superlegierung ist.
Das Bauteil 1 ist beispielsweise eine Leit- 130 oder Laufschaufel 120 (Figur 6, 8) einer Gas- 100 (Figur 6), einer Dampfturbine 300, 303 (Figur 9), oder einer Flugzeugturbine, eine Brennkammerauskleidung 155 (Fig. 7) oder ein anderes heißgasbeaufschlagtes Bauteil einer Turbine.
FIG. 1 shows a component 1, which can be treated by the method according to the invention.
The component 1 consists of a ceramic or metallic substrate 4 (main body), which is, for example, especially for turbines, a cobalt-, iron- or nickel-based superalloy.
The component 1 is, for example, a guide 130 or blade 120 (FIG. FIG. 6 . 8th ) of a gas 100 ( FIG. 6 ), a steam turbine 300, 303 ( FIG. 9 ), or an aircraft turbine, a combustion liner 155 (FIG. Fig. 7 ) or another hot gas charged component of a turbine.

Das Bauteil 1 kann entweder neu hergestellt oder wiederaufgearbeitet sein.
Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 1 nach ihrem Einsatz gegebenenfalls von Schichten (Wärmedämmschicht) getrennt werden und Korrosions- und Oxidationsprodukte entfernt werden. Gegebenenfalls müssen noch Risse repariert werden.
Danach kann ein solches Bauteil 1 wieder beschichtet werden; dies ist besonders vorteilhaft, da der Grundkörper sehr teuer ist.
Das Bauteil 1 kann für den Einsatz zumindest eine keramische oder metallische Schicht auf der Oberfläche 13 aufweisen, wie z.B. eine MCrA1X-Schicht und/oder eine darauf liegende Wärmedämmschicht, die in einem ersten Verfahrensschritt grob entfernt werden kann.
Auch die MCrAlX-Schicht kann den Entfernungsbereich 10 darstellen, der mit dem erfindungsgemäßen Verfahren behandelt wird.
The component 1 can either be newly manufactured or remanufactured.
Refurbishment means that after use, components 1 may be separated from layers (thermal barrier coating) and corrosion and oxidation products removed. If necessary, cracks still have to be repaired.
Thereafter, such a component 1 can be coated again; This is particularly advantageous because the body is very expensive.
The component 1 can have at least one ceramic or metallic layer on the surface 13 for use, such as an MCrAlX layer and / or a thermal insulation layer lying thereon, which can be roughly removed in a first method step.
The MCrAlX layer can also represent the removal region 10, which is treated by the method according to the invention.

Im Folgenden wird der Entfernungsbereich 10 als Korrosionsprodukt 10 (Korrosionsschicht 10) betrachtet. Der Entfernungsbereich 10 kann aber ebenso eine funktionstüchtige Schicht ohne Korrosionsprodukte sein.
Der Entfernungsbereich 10 kann eine metallische und/oder keramische Schicht sein, wobei die Schicht metallisch sein kann und Korrosionsprodukte aufweist.
Das Korrosionsprodukt 10, beispielsweise ein Oxid, ein Sulfid, ein Nitrid, ein Phosphid oder ein Karbid usw. kann auf einer Oberfläche 13 des Bauteils 1 oder in einem Riss 7 des Bauteils 1 vorhanden sein.
In the following, the removal region 10 is considered as a corrosion product 10 (corrosion layer 10). However, the removal region 10 can also be a functional layer without corrosion products.
The removal region 10 may be a metallic and / or ceramic layer, wherein the layer may be metallic and has corrosion products.
The corrosion product 10, for example an oxide, a sulfide, a nitride, a phosphide or a carbide, etc., may be present on a surface 13 of the component 1 or in a crack 7 of the component 1.

Die Korrosionsprodukte 10 müssen aus dem Riss 7 oder von der Oberfläche 13 entfernt werden, damit der Riss 7 mit einem Lot oder Schweißgut aufgefüllt werden kann und die Oberfläche 13 erneut beschichtet werden kann. Korrosionsprodukte 10 würden ansonsten eine gute Haftung des Lots oder einer erneuten Beschichtung verhindern oder zumindest verringern.The corrosion products 10 must be removed from the crack 7 or from the surface 13, so that the crack 7 can be filled with a solder or weld metal and the surface 13 can be coated again. Corrosion products 10 would otherwise good adhesion of the solder or a renewed Prevent coating or at least reduce it.

Das Korrosionsprodukt 10 nach dem Stand der Technik weist eine bestimmte Abtragungsrate (Masse pro Zeit) auf, wenn es beispielsweise nach dem FIC-Verfahren gereinigt wird. Diese Abtragungsrate ist jedoch zu gering und kann nach einer gewissen Zeit sogar Null betragen.The prior art corrosion product 10 has a certain removal rate (mass per time) when it is cleaned, for example, by the FIC process. However, this erosion rate is too low and may even be zero after a certain time.

Figur 2 zeigt schematisch die Durchführung des erfindungsgemäßen Verfahrens. FIG. 2 shows schematically the implementation of the method according to the invention.

Auf das Korrosionsprodukt 10 wird, um dieses zu schädigen, ein Salz 16 aufgebracht, das mit dem Korrosionsprodukt 10 chemisch reagieren kann, um den Entfernungsbereich 10 zu schädigen.
Als Salz wird vorzugsweise Na2SO4 (Natriumsulfat) und/oder CoSO4 (Kobaltsulfat) verwendet. Weitere Salze oder Kombinationen sind denkbar.
Insbesondere mit diesen Salzen können die Korrosionsprodukte Aluminiumoxid und/oder Kobaltoxid und/oder Titanoxid der Metalle Titan, Aluminium und/oder Kobalt, die in der Legierung (beispielsweise Superlegierung) des Substrats 4 enthalten sind, sehr gut entfernt werden.
A salt 16 is applied to the corrosion product 10 in order to damage it, which salt can chemically react with the corrosion product 10 in order to damage the removal region 10.
The salt used is preferably Na 2 SO 4 (sodium sulfate) and / or CoSO 4 (cobalt sulfate). Other salts or combinations are conceivable.
In particular, with these salts, the corrosion products aluminum oxide and / or cobalt oxide and / or titanium oxide of the metals titanium, aluminum and / or cobalt, which are contained in the alloy (for example superalloy) of the substrate 4, can be removed very well.

Ebenso kann direkt eine Salzschmelze in dem Riss 7 oder auf das Korrosionsprodukt 10 aufgebracht werden oder das Bauteil 1 wird in eine Salzschmelze eingetaucht.Likewise, a molten salt can be applied directly in the crack 7 or on the corrosion product 10 or the component 1 is immersed in a molten salt.

Ebenso ist es möglich, dass Salz in Form eines Schlickers in den Riss 7 und auf der Oberfläche 13 aufzutragen.
Bei großflächigen Anwendungen eignet sich das Auflegen einer Folie, die das Material 16 oder Salz 16 enthält.
It is also possible to apply the salt in the form of a slurry in the crack 7 and on the surface 13.
For large-area applications, laying a film containing the material 16 or salt 16 is suitable.

Das Salz 16 kann beispielsweise mittels eines Lasers 19 und seiner Laserstrahlen 22 insbesondere lokal erwärmt werden, so dass eine chemische Reaktion des Salzes 16 mit dem Korrosionsprodukt 10 oder ein Thermoschock erfolgt.The salt 16 may, for example, be locally heated by means of a laser 19 and its laser beams 22, so that a chemical reaction of the salt 16 with the corrosion product 10 or a thermal shock takes place.

Die Erwärmung kann auch durch elektromagnetische Induktion erfolgen, insbesondere dann, wenn das Substrat 4 metallisch ist.
Die Erwärmung des Bauteils 1 kann mittels Induktion oder mittels einer Lichtquelle, beispielsweise mittels Laser beispielsweise lokal erfolgen, indem der Laser 19 mit dem Laserstrahl 22 nur in den Riss 7 hineinstrahlt.
Die lokale Erwärmung kann auch mittels durchstimmbarer Mikrowellen erfolgen. Durchstimmbar bedeutet, dass unter anderem die Wellenlänge und Intensität verändert werden können.
The heating can also be effected by electromagnetic induction, in particular when the substrate 4 is metallic.
The heating of the component 1 can take place locally by means of induction or by means of a light source, for example by means of a laser, in that the laser 19 irradiates the laser beam 22 only into the crack 7.
The local heating can also be done by means of tunable microwaves. Tunable means that among other things, the wavelength and intensity can be changed.

Figur 3 zeigt ein Bauteil 1 mit einem Korrosionsprodukt 10 nach der Schädigung des Korrosionsproduktes 10 durch eine erfindungsgemäße Vorbehandlung. FIG. 3 shows a component 1 with a corrosion product 10 after the damage of the corrosion product 10 by a pretreatment according to the invention.

Durch die Vorbehandlung werden Risse 25 erzeugt, die ausgehend von der Oberfläche 14 der Schicht 10 in Richtung Substrat 4 verlaufen, so dass eine größere Angriffsfläche des Korrosionsprodukts 10 gegenüber der Säure und/oder den Fluorionen usw. gegeben ist.The pretreatment produces cracks 25 which extend from the surface 14 of the layer 10 towards the substrate 4, so that a larger surface of attack of the corrosion product 10 with respect to the acid and / or the fluorine ions, etc. is given.

In einem abschließenden Verfahrensschritt wird das Bauteil 1 einer Endreinigung mittels einer Säure- oder Fluorionenbehandlung unterzogen, die zur vollständigen Entfernung des Korrosionsprodukts 10 führt, da durch die Schädigung des Korrosionsprodukts 10 die Abtragungsrate beim FIC oder einem anderen Verfahren deutlich erhöht ist und keine deutliche Verringerung der Abtragungsrate mit der Zeit eintritt.In a final process step, the component 1 is subjected to a final cleaning by means of an acid or fluorine ion treatment, which leads to the complete removal of the corrosion product 10, since the damage rate of the corrosion product 10, the removal rate in FIC or another method is significantly increased and no significant reduction of Removal rate occurs over time.

Figur 4 zeigt eine weitere Möglichkeit um eine Schädigung des Korrosionsprodukts 10 zu erreichen.
Das Korrosionsprodukt 10, das auf einer Oberfläche 13 des Substrats 4 aufliegt wird einem Thermoschock unterzogen.
Der Thermoschock kann durch Eintauchen in ein heißes Salzbad erfolgen.
FIG. 4 shows another way to achieve damage to the corrosion product 10.
The corrosion product 10, which rests on a surface 13 of the substrate 4 is subjected to a thermal shock.
The thermal shock can be done by immersion in a hot salt bath.

Bei dem Thermoschock kann das Korrosionsprodukt 10 auch teilweise aufgeschmolzen werden.In the thermal shock, the corrosion product 10 can also be partially melted.

Figur 5 zeigt weitere Schädigungen im Korrosionsprodukt 10 gemäß dem erfindungsgemäßen Verfahren.
Wenn das Material des Korrosionsprodukts 10 beispielsweise aufgeschmolzen wurde, zieht sich das Material beim Abkühlen wieder zusammen, so dass mechanische Spannungen auftreten, die gegebenenfalls zu einer Rissbildung führen.
FIG. 5 shows further damage in the corrosion product 10 according to the method of the invention.
If the material of the corrosion product 10 has been melted, for example, the material contracts again on cooling, so that mechanical stresses occur which may lead to cracking.

Neben Rissen 25 in der Oberfläche des Korrosionsprodukts 10 können auch Risse 31 innerhalb des Korrosionsprodukts 10 erzeugt werden.In addition to cracks 25 in the surface of the corrosion product 10, cracks 31 within the corrosion product 10 may also be generated.

Ebenso können sich Delaminationen 34 zwischen dem Korrosionsprodukt 10 und einer Oberfläche 13, auf der das Korrosionsprodukt 10 aufliegt, bilden.Likewise, delaminations 34 may form between the corrosion product 10 and a surface 13 on which the corrosion product 10 rests.

Das Besondere an dem Verfahren ist es, dass das durch Korrosionsprodukte 10 geschädigte und zu reparierende Bauteil 1 mit den Korrosionsprodukten 10 nochmals im Bereich der Korrosionsprodukte 10 geschädigt wird.The special feature of the method is that the damaged by corrosion products 10 and to be repaired component 1 with the corrosion products 10 is damaged again in the field of corrosion products 10.

Die Figur 6 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt.
Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 auf, der auch als Turbinenläufer bezeichnet wird.
The FIG. 6 shows by way of example a gas turbine 100 in a longitudinal partial section.
The gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.

Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer 106, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
Die Ringbrennkammer 106 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinandergeschaltete Turbinenstufen 112 die Turbine 108.
Jede Turbinenstufe 112 ist aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
Along the rotor 103 follow one another an intake housing 104, a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
The annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example. There, for example, form four successive turbine stages 112, the turbine 108th
Each turbine stage 112 is formed of two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.

Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind. An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).The guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).

Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt.
Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.
During operation of the gas turbine 100, air 105 is sucked in and compressed by the compressor 105 through the intake housing 104. The compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel. The mixture is then burned to form the working fluid 113 in the combustion chamber 110.
From there, the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120. On the rotor blades 120, the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.

Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 106 auskleidenden Hitzeschildsteinen am meisten thermisch belastet.
Um den dort herrschenden Temperaturen standzuhalten, werden diese mittels eines Kühlmittels gekühlt.
The components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100. The guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106.
In order to withstand the temperatures prevailing there, they are cooled by means of a coolant.

Ebenso können die Substrate eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).
Als Material werden eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X steht für Yttrium (Y) und/oder zumindest ein Element der Seltenen Erden) und Wärme durch eine Wärmedämmschicht aufweisen. Die Wärmedämmschicht besteht beispielsweise ZrO2, Y2O4-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
Trotz der Schutzschichten können sich Korrosionsprodukte 10 auf dem Bauteil bilden. Für eine Wiederaufarbeitung (Refurbishment) müssen die Korrosionsprodukte nach dem erfindungsgemäßen Verfahren entfernt werden, wenn das Bauteil neu beschichtet werden soll.
Ggf. werden dann noch Risse in dem Substrat des Bauteils repariert.
Likewise, the substrates may have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
The material used is iron-, nickel- or cobalt-based superalloys.
Also, the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is yttrium (Y) and / or at least one element of the rare Erden) and have heat through a thermal barrier coating. The thermal barrier coating consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
By means of suitable coating processes, such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.
Despite the protective layers, corrosion products 10 can form on the component. For refurbishment, the corrosion products must be removed by the method according to the invention if the component is to be recoated.
Possibly. Then cracks are still repaired in the substrate of the component.

Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.The vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot. The vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Die Figur 7 zeigt eine Brennkammer 110 einer Gasturbine.
Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um die Turbinenwelle 103 herum angeordneten Brennern 102 in einen gemeinsamen Brennkammerraum münden. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Turbinenwelle 103 herum positioniert ist.
The FIG. 7 shows a combustion chamber 110 of a gas turbine.
The combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 102 arranged around the turbine shaft 103 in the circumferential direction open into a common combustion chamber space. For this purpose, the combustion chamber 110 in its entirety as an annular Structured structure, which is positioned around the turbine shaft 103 around.

Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen. Jedes Hitzeschildelement 155 ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht ausgestattet oder aus hochtemperaturbeständigem Material gefertigt. Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 ist zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen.To achieve a comparatively high efficiency, the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C. In order to enable a comparatively long service life even with these, for the materials unfavorable operating parameters, the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155. Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material. Due to the high temperatures in the interior of the combustion chamber 110, a cooling system is additionally provided for the heat shield elements 155 or for their holding elements.

Die Materialien der Brennkammerwand und deren Beschichtungen können ähnlich der Turbinenschaufeln 120, 130 sein.The materials of the combustor wall and their coatings may be similar to the turbine blades 120, 130.

Die Brennkammer 110 ist insbesondere für eine Detektion von Verlusten der Hitzeschildelemente 155 ausgelegt. Dazu sind zwischen der Brennkammerwand 153 und den Hitzeschildelementen 155 eine Anzahl von Temperatursensoren 158 positioniert.The combustion chamber 110 is designed in particular for detecting losses of the heat shield elements 155. For this purpose, a number of temperature sensors 158 are positioned between the combustion chamber wall 153 and the heat shield elements 155.

Figur 8 zeigt in perspektivischer Ansicht eine Schaufel 120, 130, die sich entlang einer Längsachse 121 erstreckt.
Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie einen Schaufelblattbereich 406 auf. Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildes, der zur Befestigung der Laufschaufeln 120, 130 an der Welle dient. Der Schaufelfuß 183 ist als Hammerkopf ausgestaltet. Andere Ausgestaltungen, beispielsweise als Tannenbaum- oder Schwalbenschwanzfuß sind möglich. Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Laufschaufel 120, 130 massive metallische Werkstoffe verwendet. Die Laufschaufel 120, 130 kann hierbei durch ein Gussverfahren, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
FIG. 8 shows a perspective view of a blade 120, 130 which extends along a longitudinal axis 121.
The blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjoining thereto and an airfoil region 406. In the attachment region 400, a blade root 183 is formed, which serves for fastening the rotor blades 120, 130 to the shaft. The blade root 183 is designed as a hammer head. Other configurations, for example as a Christmas tree or Schwalbenschwanzfuß are possible. With conventional blades 120, 130, in all areas 400, 403, 406 of the blade 120, 130 used massive metallic materials. The blade 120, 130 may be manufactured by a casting process, by a forging process, by a milling process or combinations thereof.

In Figur 9 ist beispielhaft eine Dampfturbine 300, 303 mit einer sich entlang einer Rotationsachse 306 erstreckenden Turbinenwelle 309 dargestellt.In FIG. 9 For example, a steam turbine 300, 303 with a turbine shaft 309 extending along a rotation axis 306 is shown.

Die Dampfturbine weist eine Hochdruck-Teilturbine 300 und eine Mitteldruck-Teilturbine 303 mit jeweils einem Innengehäuse 312 und einem dieses umschließendes Außengehäuses 315 auf. Die Hochdruck-Teilturbine 300 ist beispielsweise in Topfbauart ausgeführt. Die Mitteldruck-Teilturbine 303 ist zweiflutig ausgeführt. Es ist ebenfalls möglich, dass die Mitteldruck-Teilturbine 303 einflutig ausgeführt ist. Entlang der Rotationsachse 306 ist zwischen der Hochdruck-Teilturbine 300 und der Mitteldruck-Teilturbine 303 ein Lager 318 angeordnet, wobei die Turbinenwelle 309 in dem Lager 318 einen Lagerbereich 321 aufweist. Die Turbinenwelle 309 ist auf einem weiteren Lager 324 neben der Hochdruck-Teilturbine 300 aufgelagert. Im Bereich dieses Lagers 324 weist die Hochdruck-Teilturbine 300 eine Wellendichtung 345 auf. Die Turbinenwelle 309 ist gegenüber dem Außengehäuse 315 der Mitteldruck-Teilturbine 303 durch zwei weitere Wellendichtungen 345 abgedichtet. Zwischen einem Hochdruck-Dampfeinströmbereich 348 und einem Dampfaustrittsbereich 351 weist die Turbinenwelle 309 in der Hochdruck-Teilturbine 300 die Hochdruck-Laufbeschaufelung 354, 357 auf. Diese Hochdruck-Laufbeschaufelung 354, 357 stellt mit den zugehörigen, nicht näher dar gestellten Laufschaufeln einen ersten Beschaufelungsbereich 360 dar. Die Mitteldruck-Teilturbine 303 weist einen zentralen Dampfeinströmbereich 333 auf. Dem Dampfeinströmbereich 333 zugeordnet weist die Turbinenwelle 309 eine radialsymmetrische Wellenabschirmung 363, eine Abdeckplatte, einerseits zur Teilung des Dampfstromes in die beiden Fluten der Mitteldruck-Teilturbine 303 sowie zur Verhinderung eines direkten Kontaktes des heißen Dampfes mit der Turbinenwelle 309 auf. Die Turbinenwelle 309 weist in der Mitteldruck-Teilturbine 303 einen zweiten Beschaufelungsbereich 366 mit den Mitteldruck-Laufschaufeln 354, 342 auf. Der durch den zweiten Beschaufelungsbereich 366 strömende heiße Dampf strömt aus der Mitteldruck-Teilturbine 303 aus einem Abströmstutzen 369 zu einer strömungstechnisch nachgeschalteten, nicht dargestellten Niederdruck-Teilturbine.The steam turbine has a high-pressure turbine section 300 and a medium-pressure turbine section 303, each having an inner housing 312 and an outer housing 315 surrounding it. The high-pressure turbine part 300 is designed, for example, in Topfbauart. The medium-pressure turbine section 303 is double-flow. It is also possible for the medium-pressure turbine section 303 to be single-flow. Along the axis of rotation 306, a bearing 318 is arranged between the high-pressure turbine section 300 and the medium-pressure turbine section 303, the turbine shaft 309 having a bearing region 321 in the bearing 318. The turbine shaft 309 is supported on another bearing 324 adjacent to the high pressure turbine sub 300. In the area of this bearing 324, the high-pressure turbine section 300 has a shaft seal 345. The turbine shaft 309 is sealed from the outer housing 315 of the medium-pressure turbine section 303 by two further shaft seals 345. Between a high-pressure steam inflow region 348 and a steam outlet region 351, the turbine shaft 309 in the high-pressure turbine section 300 has the high-pressure impeller blade 354, 357. This high-pressure blading 354, 357 with the associated, not closer provided rotor blades a first Beschaufelungsbereich 360. The medium-pressure turbine section 303 has a central Dampfeinströmbereich 333 on. Associated with the steam inflow region 333, the turbine shaft 309 has a radially symmetrical shaft shield 363, a cover plate, on the one hand for dividing the steam flow into the two flows of the medium-pressure turbine section 303 and for preventing direct contact of the hot steam with the turbine shaft 309. The turbine shaft 309 has in the medium-pressure turbine section 303 a second blading area 366 with the medium-pressure blades 354, 342. The hot steam flowing through the second blading area 366 flows out of the medium-pressure turbine section 303 from a discharge connection 369 to a downstream low-pressure turbine, not shown.

Auch die Bauteile der Dampfturbine 300, 303 weisen Schutzschichten und/oder Korrosionsprodukte 10 auf, die mit dem erfindungsgemäßen Verfahren entfernt werden, bevor eine Wiederaufarbeitung der Bauteile erfolgen kann.The components of the steam turbine 300, 303 have protective layers and / or corrosion products 10, which are removed by the method according to the invention, before a reprocessing of the components can take place.

Claims (23)

  1. Process for removing a removal region (10),
    in particular a corrosion product (10),
    of a component (1),
    in which the removal region (10), prior to final cleaning, is pretreated in such a way
    that a material-removal rate during the final cleaning of the removal region (10) is greater than without the damage to the removal region (10),
    characterized in that
    a larger attackable surface area is produced by a salt attack, in particular by a fused salt, so that the removal region (10) is damaged,
    the salt sodium sulfate (Na2SO4) and/or cobalt sulfate (COSO4) being used for the salt attack.
  2. Process according to Claim 1,
    characterized in that
    the damage to the removal region (10) is produced in such a manner as to produce a larger attackable surface area.
  3. Process according to Claim 1 or 2,
    characterized in that
    cracks (25, 31), which damage the removal region (10), are produced in the removal region (10).
  4. Process according to Claim 1,
    characterized in that
    delaminations (34) are produced between the removal region (10) in layer form and a surface (13)
    on which the removal region (10) is arranged.
  5. Process according to Claim 1, 2, 3 or 4,
    characterized
    in that a material (16) for the salt attack is applied to the removal region (10) in order to damage the removal region (10), and
    in that the material (16) is applied in the form of a slurry.
  6. Process according to Claim 1, 2, 3 or 4,
    characterized in that
    a material (16) for the salt attack is applied to the removal region (10)
    in order to damage the removal region (10), and
    in that the material (16) is laid on the removal region (10) in the form of a sheet.
  7. Process according to Claim 5 or 6,
    characterized in that
    the material (16) for the salt attack which is present on the removal region (10) is heated.
  8. Process according to Claim 7,
    characterized in that
    the component (1) is heated,
    in particular only locally in the removal region (10).
  9. Process according to Claim 7 or 8,
    characterized in that
    the heating of the material (16),
    in particular the local heating,
    is effected by a light source, in particular by a laser (19).
  10. Process according to Claim 7 or 8,
    characterized in that
    the heating,
    in particular the local heating,
    is generated by electromagnetic induction.
  11. Process according to Claim 7 or 8,
    characterized in that
    the heating,
    in particular the local heating,
    is generated by means of microwaves.
  12. Process according to Claim 1,
    characterized in that
    the removal region (10) is a corrosion product,
    and in that the process removes the corrosion products (10) aluminum oxide (Al2O3) and/or cobalt oxide (CoO2) and/or titanium oxide (TiO2) .
  13. Process according to Claim 1, 2, 3, 4 or 5,
    characterized in that
    the damage to the removal region (10) is effected by the thermal shock of a fused salt.
  14. Process according to Claim 1,
    characterized in that
    a fluoride ion cleaning (FIC) of the component (1) is carried out as the final cleaning
    in order to completely remove the removal region (10).
  15. Process according to Claim 1,
    characterized in that
    in one of the final process steps, the damaged removal region (10) is completely removed by an acid treatment.
  16. Process according to Claim 1,
    characterized in that
    the removal region (10) is present on a metallic substrate (4).
  17. Process according to Claim 16,
    characterized in that
    the substrate (4) is a nickel-base, cobalt-base or iron-base superalloy.
  18. Process according to Claim 1,
    characterized in that
    the removal region (10) is present as a layer on an MCrAlX layer,
    where M stands for at least one element selected from the group consisting of iron, cobalt or nickel,
    and X stands for yttrium and/or at least one rare earth element.
  19. Process according to Claim 1 or 18,
    characterized in that
    the removal region (10) is metallic.
  20. Process according to Claim 1 or 18,
    characterized in that
    the removal region (10) is ceramic.
  21. Process according to Claim 1, 19 or 20,
    characterized in that
    the metallic removal region (10), in particular as a layer, includes corrosion products.
  22. Process according to Claim 1,
    characterized in that
    the component (1) is a component (1) of a gas turbine (100) or steam turbine (300, 300), in particular a rotor blade or guide vane (120, 130) or a combustion chamber lining (155).
  23. Process according to Claim 1,
    characterized in that
    the process is carried out on a component (1)
    which is to be refurbished.
EP05700980A 2004-01-30 2005-01-17 Method for removing a layer Not-in-force EP1708829B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07010914A EP1818112A3 (en) 2004-01-30 2005-01-17 Method for removing a layer
EP05700980A EP1708829B1 (en) 2004-01-30 2005-01-17 Method for removing a layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04002158A EP1559485A1 (en) 2004-01-30 2004-01-30 Method for removing a layer
PCT/EP2005/000405 WO2005072884A1 (en) 2004-01-30 2005-01-17 Method for removing a layer
EP05700980A EP1708829B1 (en) 2004-01-30 2005-01-17 Method for removing a layer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP07010914A Division EP1818112A3 (en) 2004-01-30 2005-01-17 Method for removing a layer

Publications (2)

Publication Number Publication Date
EP1708829A1 EP1708829A1 (en) 2006-10-11
EP1708829B1 true EP1708829B1 (en) 2009-03-11

Family

ID=34639430

Family Applications (3)

Application Number Title Priority Date Filing Date
EP04002158A Withdrawn EP1559485A1 (en) 2004-01-30 2004-01-30 Method for removing a layer
EP07010914A Withdrawn EP1818112A3 (en) 2004-01-30 2005-01-17 Method for removing a layer
EP05700980A Not-in-force EP1708829B1 (en) 2004-01-30 2005-01-17 Method for removing a layer

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP04002158A Withdrawn EP1559485A1 (en) 2004-01-30 2004-01-30 Method for removing a layer
EP07010914A Withdrawn EP1818112A3 (en) 2004-01-30 2005-01-17 Method for removing a layer

Country Status (5)

Country Link
US (1) US20070170150A1 (en)
EP (3) EP1559485A1 (en)
CN (1) CN1929931A (en)
DE (1) DE502005006806D1 (en)
WO (1) WO2005072884A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1559485A1 (en) * 2004-01-30 2005-08-03 Siemens Aktiengesellschaft Method for removing a layer
DE102004061269A1 (en) * 2004-12-10 2006-06-14 Siemens Ag Method for cleaning a workpiece with halogen ions
DE102006030364A1 (en) * 2006-06-27 2008-01-03 Siemens Ag Method for removing a protective coating from a component
KR100840902B1 (en) 2007-03-20 2008-06-24 주식회사 에이팩 Peeling apparatus of reflect layer makes use microwave
JP5470244B2 (en) 2007-05-24 2014-04-16 トリュッチュラー・ノンウーヴェンス・アンド・マン−メイド・ファイバーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for operating a stretching section or stretching unit
DE102008005168A1 (en) * 2008-01-19 2009-07-23 Mtu Aero Engines Gmbh A method of at least selectively removing a first layer of an engine component
ES2367855T3 (en) * 2008-12-17 2011-11-10 Saab Ab RESTORATION OF FORCE AND WEAR RESISTANCE OF A METAL MATRIX COMPOUND (MMC).
SG165202A1 (en) * 2009-03-25 2010-10-28 United Technologies Corp Method and apparatus for cleaning a component using microwave radiation
EP2327813A1 (en) * 2009-11-11 2011-06-01 Siemens Aktiengesellschaft Reinforced fluor-ion cleaning of dirty fissures
US9061375B2 (en) * 2009-12-23 2015-06-23 General Electric Company Methods for treating superalloy articles, and related repair processes
US9205509B2 (en) * 2011-08-31 2015-12-08 General Electric Company Localized cleaning process and apparatus therefor
CN102392249B (en) * 2011-11-28 2013-06-05 江西省科学院应用物理研究所 Method for removing coatings on surfaces of hard alloys
EP2716788A1 (en) * 2012-10-08 2014-04-09 Siemens Aktiengesellschaft Method for removing a metallic layer from a substrate
JP6508823B2 (en) * 2015-05-08 2019-05-08 三菱重工航空エンジン株式会社 Oxide film removal method
CN105297056A (en) * 2015-10-15 2016-02-03 谭华 Washing method for silver alloy solder
US11247249B2 (en) * 2017-04-18 2022-02-15 General Electric Company Method for removing oxide materials from a crack
CN110497049B (en) * 2019-07-19 2020-08-25 江苏江航智飞机发动机部件研究院有限公司 Machining method of nickel-based superalloy material blade
EP4175772A1 (en) * 2020-07-03 2023-05-10 Applied Materials, Inc. Methods for refurbishing aerospace components

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2120494A (en) * 1935-09-25 1938-06-14 Keystone Steel & Wire Co Method of cleaning metal articles
US2710271A (en) * 1951-08-09 1955-06-07 Int Nickel Co Process for annealing and cleaning oxidized metal in a salt bath
US3266477A (en) * 1964-04-15 1966-08-16 Du Pont Self-cleaning cooking apparatus
US4098450A (en) * 1977-03-17 1978-07-04 General Electric Company Superalloy article cleaning and repair method
US4439241A (en) * 1982-03-01 1984-03-27 United Technologies Corporation Cleaning process for internal passages of superalloy airfoils
KR940008936B1 (en) * 1990-02-15 1994-09-28 가부시끼가이샤 도시바 Highly purified metal material and sputtering target using the same
US5575858A (en) * 1994-05-02 1996-11-19 United Technologies Corporation Effective cleaning method for turbine airfoils
US5464479A (en) * 1994-08-31 1995-11-07 Kenton; Donald J. Method for removing undesired material from internal spaces of parts
US6174380B1 (en) * 1998-12-22 2001-01-16 General Electric Company Method of removing hot corrosion products from a diffusion aluminide coating
EP1312437A1 (en) * 2001-11-19 2003-05-21 ALSTOM (Switzerland) Ltd Crack repair method
EP1411149A1 (en) * 2002-10-18 2004-04-21 Siemens Aktiengesellschaft Process for stripping coatings from components
EP1559485A1 (en) * 2004-01-30 2005-08-03 Siemens Aktiengesellschaft Method for removing a layer

Also Published As

Publication number Publication date
US20070170150A1 (en) 2007-07-26
EP1559485A1 (en) 2005-08-03
EP1818112A2 (en) 2007-08-15
EP1818112A3 (en) 2007-09-12
WO2005072884A1 (en) 2005-08-11
CN1929931A (en) 2007-03-14
DE502005006806D1 (en) 2009-04-23
EP1708829A1 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
EP1708829B1 (en) Method for removing a layer
EP1693473B1 (en) MCrAlX-alloy, protective coating made thereof and method for its production
WO2005044508A1 (en) Method for the production of a hole and device
EP2547488B1 (en) Method for reconditioning a turbine blade with at least one platform
EP1722901B1 (en) Method for plasma cleaning of a component
EP1864742A1 (en) Method of electric discharge machining for electrically insulating material
WO2007048696A1 (en) Fluoride ion cleaning method for oxidised or corroded components
EP2230041B1 (en) Process for the fabrication of a hole
WO2008128848A1 (en) Polymer-based ceramic coatings for protecting surfaces against fluoride ions during a cleaning process
EP1666625A1 (en) Method of coating a component inside an apparatus
EP1797985A1 (en) Method and device for welding
WO2009053154A1 (en) Method for removing a metal layer by means of fic in an intermediate step
EP1967615A1 (en) Method for applying a heat insulation coating and turbine components with a heat insulation coating
EP1772529A1 (en) Dry chemical composition, use thereof to form a layer system and method for coating
DE202006021040U1 (en) Cast component with a marker and a group of components
EP1508628A1 (en) Part comprising a masking layer and method for coating a part
EP1808236A1 (en) Process of masking cooling holes, espacially of turbine blades
WO2007085512A1 (en) Method for producing a component with holes
EP1674193A1 (en) Method of the fabrication of a hole
EP1676938A1 (en) Method of manufacturing a component part of a turbine and a component of a turbine
EP1867749A1 (en) Method to deposit a material on to a workpiece
EP1561839A1 (en) Process of manufacturing a layered structure comprising a columnar ceramic layer
WO2006053838A2 (en) Casting method and cast component
EP1808251A1 (en) Method of dressing an erosion electrode and electroerosive machining method
EP1536033B1 (en) Vapour phase deposition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE GB IT LI

17Q First examination report despatched

Effective date: 20070706

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 502005006806

Country of ref document: DE

Date of ref document: 20090423

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311