EP1703822A1 - Cleaning apparatus with reciprocating or rotating brush head - Google Patents
Cleaning apparatus with reciprocating or rotating brush headInfo
- Publication number
- EP1703822A1 EP1703822A1 EP04814951A EP04814951A EP1703822A1 EP 1703822 A1 EP1703822 A1 EP 1703822A1 EP 04814951 A EP04814951 A EP 04814951A EP 04814951 A EP04814951 A EP 04814951A EP 1703822 A1 EP1703822 A1 EP 1703822A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- head
- housing
- drive shaft
- cleaning apparatus
- recited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 116
- 238000004891 communication Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 230000000994 depressogenic effect Effects 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000004677 Nylon Substances 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims 2
- 230000000881 depressing effect Effects 0.000 claims 1
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 238000005192 partition Methods 0.000 description 10
- 238000005201 scrubbing Methods 0.000 description 9
- 238000009732 tufting Methods 0.000 description 9
- 230000000295 complement effect Effects 0.000 description 6
- 238000012546 transfer Methods 0.000 description 5
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 210000003811 finger Anatomy 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46B—BRUSHES
- A46B13/00—Brushes with driven brush bodies or carriers
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46B—BRUSHES
- A46B5/00—Brush bodies; Handles integral with brushware
- A46B5/002—Brush bodies; Handles integral with brushware having articulations, joints or flexible portions
- A46B5/0054—Brush bodies; Handles integral with brushware having articulations, joints or flexible portions designed to allow relative positioning of the head to body
- A46B5/0075—Brush bodies; Handles integral with brushware having articulations, joints or flexible portions designed to allow relative positioning of the head to body being adjustable and stable during use
- A46B5/0087—Mechanical joint featuring a ball and socket
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46B—BRUSHES
- A46B13/00—Brushes with driven brush bodies or carriers
- A46B13/02—Brushes with driven brush bodies or carriers power-driven carriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/30—Cleaning by methods involving the use of tools by movement of cleaning members over a surface
- B08B1/32—Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
- B08B1/36—Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members rotating about an axis orthogonal to the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H3/00—Mechanisms for operating contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
Definitions
- the present invention relates to hand held cleaning apparatus having a reciprocating or rotating brush head.
- Figure 1 is a an elevated side view of one embodiment of the inventive cleaning apparatus
- Figure 2 is a top plan view of the cleaning apparatus shown in Figure 1
- Figure 3 is an elevated front end view of the cleaning apparatus shown in Figure 1
- Figure 4 is an elevated front view of the front face of the brush head shown in Figure 3
- Figure 5 is an exploded view of the cleaning apparatus shown in Figure 1
- Figure 6 is a cross sectional side view of the cleaning apparatus shown in Figure 1
- Figure 7 is a perspective view of a subassembly of the cleaning apparatus shown in Figure 1 showing a drive shaft coupled with a hub and brush head
- Figure 8 is an enlarged perspective view of the drive shaft shown in Figure 7
- Figure 9A is an enlarged perspective view of the hub shown in Figure 7
- Figure 9B is an enlarged perspective view of an alternative embodiment of the hub shown in Figure 9A
- Figure 10 is an enlarge perspective view of the coupled parts shown in Figure 7
- Figure 11 is a perspective view of an alternative embodiment of a cleaning apparatus
- the present invention relates cleaning apparatus having a reciprocating or rotating brush head.
- the cleaning apparatus is generally designed for domestic use in cleaning small, hard to reach areas such as cracks, comers, grooves and crevices.
- the cleaning apparatus can be used for cleaning comers and around faucets on counter tops and in showers. It can also be used for spot scrubbing materials such as fabric and carpets. It is appreciated, however, that the apparatus can be used for cleaning any type of surface in commercial, residential, or any other application.
- the cleaning apparatus is not designed for use as a toothbrush. Depicted in Figures 1-3 is one embodiment of a cleaning apparatus 4 incorporating features of the present invention.
- Cleaning apparatus 4 generally comprises a body assembly 5 having a removable head assembly 6.
- Head assembly 6 includes a head housing 7 having an upper head housing 22 which mates with a lower head housing 24. Each of head housings 22 and 24 extend between a proximal end 32 and an opposing distal end 34.
- Head assembly 6 further includes a rotatable brush head 14 having a brush 16 mounted thereon.
- brush head 14 comprises an annular carrier plate 122 having a top surface 124 and an opposing bottom surface 125. Depicted in Figure 4, a plurality of tufting holes 170 are formed on bottom surface 125.
- tufting holes 170 are circular and each have a diameter in a range between about 1 mm to about 4 mm with about 2 mm to about 3 mm being more common. Tufting holes 170 are shown disposed in concentric rings. Alternatively, tufting holes 170 can also be randomly disposed or be in other patterns. In the embodiment depicted, tufting holes 170 from an outer ring 172, a middle ring 174, an inner ring 176 and a center tufting hole 178. As seen in Figure 3, disposed within each tufting hole 170 is a tuft 180 which is comprised of a plurality of bristles 182. The combined tufts 180 form brush 16.
- Bristles 182 can be made of a variety of different materials having different lengths and diameters. By adjusting the properties of the bristles 182, brush 16 can be formed having different stiffnesses to better suite different uses. In general, bristles having shorter length and increased diameter have increased stiffness. Bristles 182 can be made from a variety of different natural or synthetic materials. In one embodiment, bristles 182 are comprised of a polymer material such as nylon. In other embodiments, such as for use in cleaning a barbeque grill, bristles 182 can be comprised of a metal such as brass, stainless steel, or copper.
- each bristle has an exposed length L which is typically in a range between about 0.3 cm to about 2.5 cm with about 1 cm to about 2 cm being more common.
- the depicted brush 16 has a substantially cylindrical configuration with a maximum diameter D that is typically in a range between about 1 cm to about 5 cm, with about 1 cm to about 3 cm being common, and about 1.5 cm to about 2.5 cm being more common. Larger brushes may have a diameter in a range from about 3 cm to about 5 cm.
- brush 16 can have any desired configuration and can have any desired dimensions, including longer lengths and diameters, so as to function for a particular purpose.
- head assembly 6 is removable from body assembly 5, it is appreciated that a variety of different head assemblies 6 can be made, each having a brush 16 of different configuration and/or properties.
- head assembly 6 can be formed each having a brush 16 with soft bristles, medium bristles, stiff bristles or combinations thereof.
- the soft bristles are comprised of a polymeric material having a diameter in a range between about 0.15 mm to about 0.25 mm with about 0.18 mm to about 0.23 mm being more common.
- Medium polymeric bristles typically have a diameter in a range between about 0.30 mm to about 0.48 mm with about 0.37 mm to about 0.42 mm being more common.
- polymeric stiff bristles typically have a diameter in a range between about 0.48 mm to about 0.75 mm with about 0.52 mm to about 0.58 mm being more common.
- bristles on tooth brushes typically have a diameter less than 0.15 mm so that the bristles are not so stiff as to damage the gums or enamel of the teeth.
- tufting holes 170 in outer ring 172, middle ring 174, and inner ring 176 are filled with medium bristles while center tufting hole 178 is filled with stiff bristles forming a stopping tuft. The bristles in the stopping tuft are shorter than the other bristles.
- the stiffness of the stopping tuft helps limit the collapse of the other tufts as the brush is pressed against the surface to be cleaned. This helps to ensure that the tips of the bristles, as opposed to the sides, are primarily used for scrubbing.
- Bristles having different properties can also be defined by relative percentages.
- the bristles of the cleaning tufts can have a length that is at least 20% longer or at least 30% longer than the bristles of the stopping tuft and a diameter that is at least 30% smaller or at least 40% smaller than the bristles of the stopping tuft.
- brush 16 can comprise a group of central tufts 8 which are surrounded by outer perimeter tufts 9.
- the outer perimeter tufts 9 are slightly longer and softer than central tufts 8.
- all the tufts/bristles can be the same length, diameter, or stiffness or any combination of lengths, diameters and stiffness can be used.
- Body assembly 5 includes a body housing 12 having a substantially cylindrical configuration.
- Body housing 12 can have a circular, elliptical or any other desired transverse cross section and is sized to comfortably fit within the hand of a user. In one embodiment, body housing 12 has a maximum diameter in a range between about 2.5 cm to about 4.5 cm. Other dimensions can also be used.
- Body housing 12 comprises an upper body housing 18 which mates with a lower body housing 20. Each of body housings 18 and 20 also extend from a proximal end 26 to an opposing distal end 28. Upper body housing 18 has an aperture 21 in which a flexible button 23 is mounted (see Figure 5). Removably mounted to proximal end 26 of body housing 12 is an end cap 30. It is noted that button 23 is positioned on one side of cleaning apparatus 4 while brush 16 projects from the other side of cleaning apparatus 4.
- Housing 36 has a substantially cylindrical configuration with a length extending between proximal end 32 and end cap 30 that is typically in a range between about 15 cm to about 35 cm with about 20 cm to about 30 cm being more common. Other dimensions can also be used. In alternative embodiments housing 36 can have a variety of other configurations. Although housing 36 may not be completely symmetrical along its entire length, housing 36 has a substantially central longitudinal axis 38 extending therethrough.
- body housing 12 bounds a battery compartment 40, a motor compartment 42, and a shaft compartment 43.
- a partition 44 is formed between compartment 40 and 42 while a partition 46 is formed between compartment 42 and 43.
- Battery compartment 40 is accessed through an opening 48 formed at proximal end 26 of body housing 12. Opening 48 is selectively closed by end cap 30.
- An annular seal ring 50 forms a liquid tight seal between body housing 12 and end cap 30.
- cleaning apparatus 10 further includes a motor assembly 58.
- Motor assembly 58 comprises a motor 60 having a proximal end 62 and an opposing distal end 64 that is mounted within motor compartment 42.
- Battery compartment 40 is configured to receive a plurality of batteries.
- battery compartment 40 is configured to receive four batteries 78 of a size AA. Other sizes and numbers of batteries can also be used in alternative embodiments.
- the positive end of batteries 78 bias against a first contact plate 80 which is in electrical communication with motor 60.
- Switch 88 comprises an elongated base 92 which extends along battery compartment 40, a riser 94 which extends along partition 44, and a flexible lever arm 96 which projects so as to be disposed between button 23 and motor 60.
- button 23 is manually depressed, lever 96 is biased against motor 60, thereby closing the circuit which is energized by batteries 78.
- the energy from batteries 78 causes motor 60 to rotatably drive drive shaft 66.
- head assembly 6 further comprises a drive shaft 100.
- drive shaft 100 comprises an elongated shaft 102 having a proximal end 104 and an opposing distal end 106. Distal end 106 terminates at a distal end face 108. Radially encircling and outwardly projecting from shaft 102 at distal end 106 is an annular flange 109.
- a bearing or bushing 162 ( Figure 7) is mounted on shaft 102 so as to bias against flange 109.
- a second coupling 110 mounted at proximal end 104 of shaft 102 is a second coupling 110 having an end face 112 that is complementary to end face 70 of first coupling 68. That is, second coupling 110 is configured to mesh with first coupling 68 so that stepped shoulders 74 bias against one another.
- rotation of drive shaft 66 by motor 60 is transferred through couplings 68 and 110 to cause rotation of shaft 102.
- Extending from end face 108 at distal end 107 of shaft 102 is a stem 114.
- a rounded head 116 is mounted on the end of stem 114.
- head 116 is spherical or substantially spherical.
- shaft 102 has a rotational axis and central longitudinal axis 118, which in the depicted embodiment are the same, and stem 114 has a central longitudinal axis 120.
- Stem 114 is eccentrically mounted on end face 108 of shaft 102 so that central longitudinal axis 120 of stem 114 is offset from central longitudinal axis 118 of shaft 102.
- Rotational axis 118 can also be the same axis as the rotational axis and central longitudinal axis of drive shaft 66 and can also be the same as central longitudinal axis 38 of housing 36 ( Figure 1).
- brush head 14 comprises annular carrier plate 122, as previously discussed, having top surface 124. Projecting from top surface 124 is a spindle 126. Spindle 126 comprises a central axle 128 having an arm 130 projecting from each side thereof. A rotational axis 127, about which brush 16 and brush head 14 rotate, extends through spindle 126. Rotational axis 127 can also be the central axis for brush 16 and brush head 14. Mounted on spindle 126 is a hub 132. As depicted in Figure 9A, hub 132 has opposing side surfaces 136 and 138 which extend between a top surface 140 and an opposing bottom surface 142. Hub 132 also includes a front face 144 and an opposing back face 146.
- a passage 148 extends from top surface 140 to bottom surface 142.
- a side channel 150 extends through side surfaces 136 and 138 adjacent to bottom surface 142 so as to intersect with passage 148.
- hub 132 is received over spindle 126 so that axle 128 extends through passage 148 and arms 130 are received within side channel 150.
- a bearing or bushing 151 ( Figure 5) is mounted on axle 128 at top surface 140 of hub 132.
- hub 132 is engaged with spindle 126 such that rotation of hub 132 facilitates rotation of spindle 126 and thus the remainder of brush head 14.
- hub 132 can be integrally formed with brush head 14.
- Hub 132 further comprises a channel 152 formed on front face 144 and extending to top surface 140.
- Channel 152 is vertically aligned with passage 148 and is bounded by a first engagement surface 156, a spaced apart second engagement surface 158, and an inside face 159 extending therebetween.
- Engagement surfaces 156 and 158 are opposingly facing and are in substantially parallel alignment.
- Recessed along each engagement surface 156 and 158 is a locking channel 160.
- Each locking channel 160 is elongated and is slightly arched along the length thereof. The distance between engagement surfaces 156 and 158 of hub 132 is smaller than the diameter of rounded head 116. As depicted in Figures 7 and 10, however, hub 132 is configured so that head
- head 116 can be snap-fit between engagement surfaces 156 and 158 so that head 116 is resiliently captured within locking channels 160 formed on engagement surfaces 156 and 158. In this configuration, head 116 is resiliently biased between faces 156 and 158.
- locking channels 160 can be eliminated so that engagement surfaces 156 and 158 are substantially flat. In this embodiment, head 116 can be sized to snugly or loosely fit between engagement surfaces 156 and 158.
- motor 60 is energized causing drive shaft 66 and drive shaft 100 to each rotate about their rotational or central longitudinal axis.
- head 116 rotates in a circle. That is, as shaft 102 spins or rotates, head 116 begins to rotate in an enlarged circle so as to bias against engagement surface 158 of hub 132 causing hub 132 with connected brush head 14 and brush 16 to rotate in a first direction about axle 128.
- the length and arch of locking channels 160 allows for free rotation of head 116 within locking channels 160.
- head 116 Once head 116 has moved to its furthest extent in one direction, head 116 then begins to bias against the opposing engagement surface 156 causing hub 132, with connected brush head 14 and brush 16, to rotate in the opposing direction about axle 128. As such, rapid rotation of drive shaft 100 with head 116 causes hub 132 with connected brush head 14 and brush 16 to rapidly reciprocate.
- head 116 By securing head 116 within locking channels 160, a snug engagement can be formed between hub 132 and head 116. This snug fit optimizes the transfer of movement between drive rod 100 and hub 132. That is, the snug fit eliminates slop between hub 132 and drive rod 100 even after head 116 has begun to wear within locking channels 160.
- cleaning apparatus 10 Once cleaning apparatus 10 is energized, brush 16 can be biased against a surface for cleaning.
- brush 16 is positioned at an orientation relative housing 36 so as to optimize convenience and use.
- brush 16 projects relative to the central longitudinal axis of body assembly 5 or head assembly 6 so as to form a set inside angle ⁇ therewith typically in a range between about 90° to about 180° with about 110° to about 140° being more common. Other angles can also be used.
- rotational axis 127 of brush head 14 or brush 16 intersects with rotational axis 38 of the drive shaft or of central longitudinal axis 118 of housing 36 so as to form the set inside angle ⁇ as discussed above.
- FIG. 11 is an alternative embodiment of a cleaning apparatus 200 incorporating features of the present invention. Like elements between cleaning apparatus 10 and 200 are identified by like reference characters.
- Cleaning apparatus comprises a head assembly 202 and a body assembly 204.
- body assembly 204 comprises a body housing 206 which is molded as a tubular member.
- Body housing 206 comprises a handle portion 208 having a proximal end 210 and an opposing distal end 212.
- Distal end 212 terminates at and end face 214 from which a tapered, tubular stem 216 projects.
- a pair of opposing bayonet slots 217 are formed along stem 216.
- Handle portion 208 and stem 216 are typically comprised of a substantially rigid plastic such as ABS.
- An overly 218, comprised of a softer, flexible plastic such as TPE or rubber, is molded over a section of handle portion 208.
- Overlay 218 allows improved gripping of cleaning apparatus 200.
- Body housing 206 has an interior surface 220 which bounds a chamber 222.
- Guide 224 comprises an elongated partition wall 226 having a proximal end 228 and an opposing distal end 230.
- the sides of partition wall 228 are curved so that batteries 78 can be complementary received on each side thereof.
- a cantilevered latch 232 is formed at proximal end 238 at both the top and bottom of partition wall 226.
- Each latch 232 terminates at a barb 234.
- a spring 236 is positioned between partition wall 226 and each latch 232 so that each latch 232 can be selectively compressed toward partition wall 226 and, when released, each latch 232 resiliently rebounds.
- holes 235 are formed through each side of handle portion 208 at proximal end 210.
- An engaging portion 238 of overlay 218 is molded over holes 235.
- Guide 224 is positioned within chamber 222 to that each latch 232 is aligned with a corresponding hole 235.
- a user is thus able to manually press inward on the flexible engaging portions 238 of overlay 218 so as to selectively inwardly press latches 232.
- Latches 232 are used for securing an end cap 240 to proximal end 210 of body housing 206.
- end cap 210 has an interior surface 242 with a pair of opposing catches 244 formed thereon.
- cupped support 246 is formed at distal end 230 of partition wall 226 and is used to support motor 60. Motor 60 rotates an initial shaft 250 which in turn rotates a drive shaft 254. Drive shaft 254 has a head 255 formed at a distal end thereof.
- Head 255 typically has a non-circular transverse cross section such that it can engage with a coupler as discussed below in greater detail.
- head 255 comprises a flattened portion of drive shaft 254.
- head 255 can have any number of different polygonal or non-circular transverse cross sections.
- a conventional gear assembly 252 extends between initial shaft 250 and drive shaft 254 so that the torque produced by drive shaft 254 is adjusted relative to the torque produced by initial shaft 250 by a ratio in a range between about 1.5:1 to about 3.5:1. Increasing the torque capacity of drive shaft 254 enable brush 16 to continue to reciprocate or rotate even when substantial bearing force is applied to brush 16 while scrubbing.
- Switch 266 is positioned above motor 60 such that when switch 266 is biased against motor 60, the circuit is complete and motor 60 is energized.
- batteries 78 can be positioned in series rather then parallel.
- springs 256 are in electrical communication with each other but transfer spring 256, contact 260, and lead 262 are eliminated.
- the two contacts 264 are separated from each other. One of contacts 264 is in direct electrical communication with motor 60 while the other contact 264 remains connected with switch 266. Placing batteries 78 in series increases the voltage to provide more power to the motor.
- an opening 270 is formed on a top surface body housing 206 so as to communicate with chamber 222. Opening 270 is aligned with motor 60 and switch 266. Secured within opening 270 is a flexible diaphragm 272. Diaphragm 272 has a top surface 274 and an opposing bottom surface 276. A projection 278 is formed on top surface 274. A cover plate 280 has an elongated hole 282 extending therethrough and is secured over opening 270 so that hole 282 is aligned with projection 278. A button 284 is slidably mounted to cover plate 280 by a catch 286 and a retainer 288.
- button 284 comprises a generally cup-shaped body 290 having an interior surface 292 with a stem 294 projecting therefrom.
- Button 284 is comprised of a resiliently flexible material which is typically a natural or synthetic rubber.
- Retainer 288 comprises a substantially circular frame 296 having an opening 298 extending therethrough. Opening 298 is at least partially bounded by a lip 300.
- Retainer 288 is comprised of a substantially rigid material or at least a material that is more rigid than the material used for button 284.
- Button 284 is secured to retainer 288 so that stem 294 passes through opening 298.
- button 284 is secured to retainer 288 by being molded directly onto retainer 288 during the formation of button 284, i.e., overlay molding process.
- Catch 286 ( Figure 14B) comprises a base 302 having an opening 304 extending therethrough. A pair of barbed prongs 306 upwardly project from a top surface of base 302 on opposing sides of opening 304. Catch 286 is used to secure button 284 on cover plate 280. Specifically, button 284 and retainer 288 are positioned on the top surface of cover plate 280 so that stem 294 is aligned with opening 282 of cover plate 280.
- Prongs 306 of catch 286 are then pushed up through opening 282 of cover plate 280 from the bottom surface thereof so that prongs engage with lip 300 of retainer 288 by a snap fit connection.
- button 284 can selectively side on cover plate
- head assembly 202 comprises a head housing 201 which includes upper head housing 22 and lower head housing 24 each having proximal end 32 and opposing distal end 34.
- Head housing 201 bounds a channel 316 extending along the length thereof which is at least partially divided by complementary partition walls 317 formed on housing 22 and 24. Secured between housing 22 and 24 at proximal end 32 is an engagement ring 312. Engagement ring 312 has opposing bayonet prong 318 formed on an interior surface thereof. Head assembly 202 is removably secured to body assembly 204 by inserting stem 216 of body housing 206 within proximal end 32 of head assembly 202 so that bayonet prongs 318 are received within bayonet slots 217 and then rotating head assembly 202 relative to body assembly 204. Head assembly 202 comprises a drive shaft 320 having a proximal end 322 and an opposing distal end 324.
- Proximal end 322 has a coupler 326 secured thereto.
- Coupler 326 has a socket 328 formed on the free end thereof that is designed to removably engage with head 255 on drive shaft 254 extending from motor 60.
- socket 328 has a configuration complementary to head 255 such that when head 255 is received within socket 328, rotation of drive shaft 254 causes rotation of drive shaft 320.
- Head 255 is removably received within socket 328 when head assembly 202 is removably coupled with body assembly 204 as discussed above.
- An enlarged disk 330 is secured to distal end 324 of drive shaft 320.
- disk 330 has a substantially cylindrical configuration that includes a proximal end face 332 and an opposing distal end face 334.
- Distal end 324 of drive shaft 320 is centrally secured to proximal end face 332.
- stem 114 and rounded head 116 are mounted on distal end face 334 at a location spaced radially outward from the rotational axis of drive shaft 320. That is, stem 114 is eccentrically mounted on end face 334 in the same manner as discussed above with regard to cleaning apparatus 4. It is noted that centrally positioning enlarged disk 330 at the end of drive shaft 320 helps to stabilize drive shaft 320 during the rotation of eccentrically mounted rounded head 116.
- drive shaft 320 can have the same diameter as disk 330 or disk 330 can be eliminated and an arm formed between drive shaft 330 and stem 114.
- a cylindrical bushing 336 encircles drive shaft 320 toward distal end 324 and is supported within supports 338 formed on the interior surface of head housing 201.
- cleaning apparatus 200 includes brush head 14.
- Brush head 14 comprises carrier plate 122 having bottom surface 125 with brush 16 comprised of bristles formed thereon. Plate 122 also has top surface 124 with spindle 126 and arms 130 projecting therefrom.
- Axle 128 centrally projects from spindle 126 and has a rotational axis extending therethrough.
- a tubular bushing 340 is secured to upper head housing 22 and encircles axle 128 ( Figure 13).
- hub 342 comprises a substantially cylindrical base 344 having a front face 346, a back face 348, and opposing side faces 350 and 351 which each extend between a top surface 352 and an opposing bottom surface 354.
- a passage 356 centrally extends through base 344 from top surface 352 to bottom surface 354.
- a side channel 358 extends through side surfaces 350 and 351 adjacent to bottom surface 354 so as to intersect with passage 356.
- Side channel 358 is configured so that when spindle 126 is received within passage 356, arms 130 are received within side channel 358 so that hub 342 is interlocked with brush head 14.
- Wear plate 341 also has tabs projecting from the side thereof which are received within side channel 358 of hub 342 so that wear plate 341 is secured to hub 342.
- wear plate 341 prevents bushing 340 from producing undue wear on spindle 126.
- Projecting from back face 348 of base 344 is a guide 360.
- Guide 360 comprises a first side wall 362, a complementary spaced apart second side wall 364, and a back wall 366 extending therebetween.
- Guide 360 partially bounds a channel 368 that is vertically aligned with passage 356.
- Channel 368 is bounded by a first engagement surface 370, a spaced apart second engagement surface 372, and an inside face 374 extending therebetween.
- Engagement surfaces 370 and 372 are opposingly facing, are substantially flat, and are in substantially parallel alignment.
- the distance between engagement surfaces 370 and 372 of hub 342 is substantially equal to the diameter of rounded head 116.
- rounded head 116 is received within channel 368.
- rounded head 116 is continuously rotated about the rotational axis of drive shaft 320 due to the rotation of drive shaft 254, rounded head 116 alternatingly pushes against opposing engagement surfaces 370 and 372 so as to cause hub 342, brush head 14, and brush 16 to reciprocate in a rotational pattern about the rotation axis extending through spindle 126.
- the rotational axis of drive shaft 320 intersects with the rotational axis of brush head 14 so as to form an inside angle ⁇ that is typically greater than 95° and is more commonly in a range between about 110° to about 140°.
- rounded head 116 travels longitudinally along the length of side walls 362 and 364. Because of the above discussed angular orientation of brush head 14, rounded head 116 is disposed farther away from the rotational axis of brush head 14 when rounded head 166 is disposed at the bottom of side walls 362 and 364 and is closer to the rotational axis of brush head 14 when rounded head 166 is disposed at the top of side walls 362 and 364.
- rounded head 116 has a substantially spherical configuration. This design has a number of benefits. For example, in part because of the above discussed angular orientation of brush head 14, rounded head 116 contacts engagement surfaces 370 and 372 along a number of different points on rounded head 116 that are longitudinally spaced proximal to distal and top to bottom. By making rounded head 116 spherical, this helps to ensure continued minimal contact between rounded head 116 and engagement surfaces 370 and 372 so as to minimize wear.
- bush 16 has a fixed orientation relative to body assembly 204.
- a cleaning apparatus 386 is provided having a head assembly 388 wherein brush 16 can be pivoted along arrow 390 so as to selectively adjust the orientation of brash 16 relative body assembly 204.
- Head assembly 388 comprises a proximal head housing 392, a distal head housing 394, and a hinge 396 pivotally connecting housing 392 and 394 together.
- proximal housing 392 has a distal end 398.
- An opening 399 is formed at distal end 398 through which drive shaft 320 extends ( Figure 18A).
- Hinge 396 comprises a pair of rounded prongs 400A and 400B projecting on each side of opening 399. Hinge 396 comprises two identical halves with the components for the two halves identified by the suffixes A and B. Only one of the halves will be described in detail herein with the understanding that the other half is identical thereto.
- Projecting from an outside face of prong 400A is a circular ring 402A.
- a pair of opposing notches 404 A are formed on ring 402A.
- Hinge 396 also comprises a pair of rounded arms 406A and 406B projecting from a proximal end of distal head housing 394. Arm 406A has an inside face 410A to an outside face 412A.
- a substantially circular recessed pocket 414A is formed on inside face 410A.
- Pocket 414A has a plurality of rounded notches 416A formed on the perimeter edge of pocket 414A on opposing sides thereof. Each notch 416A is separated by a ridge 417A.
- a circular recess 408A is formed on the floor of pocket 414A and is sized to receive ring 402 A.
- a spring 418 A is provided and is comprised of a resilient flexible material such as metal commonly used in springs. Spring 418A comprises a ring body 420A having an exterior surface 422A and an interior surface 424A. A pair of rounded tabs 426 A project from exterior surface 422 A on opposing sides of ring body 420 A.
- a pair of rectangular tabs 428A project from interior surface 424A on opposing sides of ring body 420A.
- tabs 428A of spring 418A are received within corresponding notches 404A on prong 400A so that spring 418A is secured to prong 400A.
- arm 406A is positioned so that spring 418A is received within pocket 414A and ring 402A is received within recess 408A.
- Tabs 426A are received within corresponding notches 416A so that arm 406A is fixed relative to prong 400A.
- spring 418A deflects as tabs 426A pass over ridges 417A and then resiliently rebounds as tabs 426A pass into the adjacent notches 416A.
- the resistance of the movement of distal head assembly 394 is based on the stiffness of springs 418A and 418B.
- brush head 14 can now rotate over an angle of 90°.
- the angle ⁇ previously discussed can be selectively adjusted from about 90° to about 180°.
- the internal components of head assembly 388 are substantially the same as the internal components of head assembly 202.
- hub 342 has been modified slightly so that rounded head 116 is retained between sidewalls 362 and 364 as head 116 moves in the circular pattern, independent of the orientation of brush head 14.
- brush 16 has a larger diameter than prior depicted brushes 16 and that some bristles 182 are longer than others.
- the present invention can comprise a kit having a single body assembly and a plurality of different head assemblies which can be selectively secured to the body assembly.
- Each head assembly can have a brush having a different size, configuration, and/or physical properties, such as stiffness of bristles.
- depicted in Figure 19 is a brush 16 having a conical tip 434 for better reaching and scrubbing the inside of comers.
- head assemblies are designed so that the brushes rotate in a reciprocating manner.
- the head assembly can be designed so that the brush rotates in a continuous circular manner.
- FIG. 20 A depicted in Figure 20 A is a head assembly 436.
- Head assembly 436 comprises proximal head housing 392, distal head housing 394 and hinge 396.
- a brush head 438 has a first side with brush 16 projecting therefrom and an opposing second side with a spindle 440 projecting therefrom.
- Spindle 440 is coupled with a universal joint 441.
- a drive shaft 442 is disposed within proximal housing 392.
- Universal joint 441 comprises a cup 444 and a ball 446.
- Spindle 440 projects from one side of cup 444 while a rounded socket 448 is formed on the opposing side of cup 444.
- Socket 448 is bounded by an interior surface 450 from which a pair of opposingly, spaced apart, rounded projections 452 extend adjacent to the mouth of socket 448.
- Ball 446 is rounded and is adapted to fit within socket 448.
- An elongated, rounded slot 454 is recessed on each opposing side of ball 446.
- Slots 454 are configured so that when ball 446 is received within socket 448, projections 452 are received within corresponding slots 454.
- slots 454 can be combined to form one long slot.
- continuous rotation of drive shaft 442 causes rotation of ball 446, which, due to the engagement between projections 452 and slots 454, causes continuous rotation of cup 444, spindle 440, brush head 438 and brush 16.
- slots 454 are elongated, ball 446 can rotate within socket 448 by projections 452 sliding longitudinally within elongated slots 454.
- FIG. 22 Depicted in Figure 22 is an alternative embodiment of cleaning apparatus 200.
- a light source 460 such as a light emitting diode (LED) is mounted on the bottom side of body assembly 204 toward the distal end thereof.
- Light source 460 is oriented so as to direct light toward brush 16 so as to increase visibility of the cleaning surface during use.
- Leads 462 extend from light source 460 to motor 60 such that when motor 60 is energized, light source 460 is also energized.
- a second button switch can also be provided for light source 460.
- FIG 21 is another alternative embodiment of cleaning apparatus 200.
- light source 460 is mounted on the bottom surface of head assembly 202 so as to direct light toward brush 16.
- leads 462 extend between light source 460 and motor 60.
- contacts 464 are formed at the connection between head assembly 202 and body assembly 204.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Brushes (AREA)
Abstract
Description
Claims
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53401004P | 2004-01-02 | 2004-01-02 | |
US21723104A | 2004-11-15 | 2004-11-15 | |
US11/014,626 US20050144744A1 (en) | 2004-01-02 | 2004-12-15 | Cleaning apparatus with reciprocating or rotating brush head |
PCT/US2004/042819 WO2005067764A1 (en) | 2004-01-02 | 2004-12-16 | Cleaning apparatus with reciprocating or rotating brush head |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1703822A1 true EP1703822A1 (en) | 2006-09-27 |
EP1703822A4 EP1703822A4 (en) | 2012-02-22 |
Family
ID=36847652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04814951A Withdrawn EP1703822A4 (en) | 2004-01-02 | 2004-12-16 | Cleaning apparatus with reciprocating or rotating brush head |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1703822A4 (en) |
KR (1) | KR101009684B1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120093051A (en) | 2011-02-12 | 2012-08-22 | 박성귀 | Various porposes clense and brush |
KR101427839B1 (en) * | 2012-07-17 | 2014-08-11 | 주식회사 힌트 | Rotary toothbrush |
US9138303B2 (en) | 2012-07-17 | 2015-09-22 | Hint Co., Ltd. | Rotary toothbrush |
KR101639314B1 (en) * | 2016-01-13 | 2016-07-14 | 이승민 | Power toothbrush |
KR102133470B1 (en) * | 2018-08-10 | 2020-07-14 | 주식회사 제노스 | Electric toothbrush and case for electric toothbrush |
KR102668830B1 (en) * | 2021-08-24 | 2024-05-23 | 주식회사 오토닉스 | Device |
KR102435261B1 (en) * | 2022-06-08 | 2022-08-23 | 강진아 | Multifunctional eyebrow makeup tool |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4025743A (en) * | 1975-09-05 | 1977-05-24 | Bright Star Industries, Inc. | Three position flashlight switch |
DE2730659B1 (en) * | 1977-07-07 | 1978-08-24 | Standard Elek K Lorenz Ag | Push button switch |
US5120922A (en) * | 1991-02-22 | 1992-06-09 | Augat Inc. | Momentary pushbutton slide switch |
US5590434A (en) * | 1994-06-10 | 1997-01-07 | Kitano Co., Ltd. | Electric toothbrush |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6000083A (en) * | 1998-09-30 | 1999-12-14 | Dr. Johns Products, Ltd. | Electric toothbrush |
US20060021538A1 (en) * | 2002-08-29 | 2006-02-02 | Lloyd Richard M | Kinetic energy rod warhead deployment system |
US8287633B2 (en) * | 2004-10-28 | 2012-10-16 | Hewlett-Packard Development Company, L.P. | Restoration of black to color bleed performance of amphoteric pigment dispersion based inks of low pigment loads |
-
2004
- 2004-12-16 KR KR1020067013309A patent/KR101009684B1/en not_active IP Right Cessation
- 2004-12-16 EP EP04814951A patent/EP1703822A4/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4025743A (en) * | 1975-09-05 | 1977-05-24 | Bright Star Industries, Inc. | Three position flashlight switch |
DE2730659B1 (en) * | 1977-07-07 | 1978-08-24 | Standard Elek K Lorenz Ag | Push button switch |
US5120922A (en) * | 1991-02-22 | 1992-06-09 | Augat Inc. | Momentary pushbutton slide switch |
US5590434A (en) * | 1994-06-10 | 1997-01-07 | Kitano Co., Ltd. | Electric toothbrush |
Non-Patent Citations (1)
Title |
---|
See also references of WO2005067764A1 * |
Also Published As
Publication number | Publication date |
---|---|
KR20070000421A (en) | 2007-01-02 |
KR101009684B1 (en) | 2011-01-19 |
EP1703822A4 (en) | 2012-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2553164C (en) | Cleaning apparatus with reciprocating or rotating brush head | |
US7614107B2 (en) | Cleaning apparatus with reciprocating brush head | |
US7360269B2 (en) | Cleaning apparatus with reciprocating brush head | |
US8801861B2 (en) | Cleaning apparatus with brush head disengager | |
US20120192366A1 (en) | Cleaning apparatus with rotating and detachable brush head | |
US6836917B2 (en) | Replaceable head electric toothbrush and connection structure therefor | |
CA2644300C (en) | Electric toothbrushes | |
JP5558584B2 (en) | Oral cleaning section of oral cleaning device and oral cleaning device | |
US20030221270A1 (en) | Electrical dentifrice-dispensing toothbrush with replaceable bristle unit and refillable cartridge | |
US20090044357A1 (en) | Electric toothbrushes | |
EP1703822A1 (en) | Cleaning apparatus with reciprocating or rotating brush head | |
KR20060136391A (en) | Cleaning apparatus with reciprocating or rotating brush head | |
CN218356435U (en) | Electric toothbrush | |
KR200258312Y1 (en) | Rotation toothbrush |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060731 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SONICSCRUBBERS, INC., |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20120125 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A46B 13/02 20060101ALI20120119BHEP Ipc: B08B 1/04 20060101AFI20120119BHEP Ipc: H01H 13/52 20060101ALI20120119BHEP Ipc: A61C 17/24 20060101ALI20120119BHEP Ipc: A61C 17/22 20060101ALI20120119BHEP Ipc: A61C 17/34 20060101ALI20120119BHEP Ipc: H01H 15/10 20060101ALI20120119BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160701 |