EP1703461A1 - Verfahren und Vorrichtung zur Kodierung und Dekodierung von nutzlasttragenden Zeichen zur Einbettung eines Wasserzeichens in ein Audio- oder Videosignal - Google Patents

Verfahren und Vorrichtung zur Kodierung und Dekodierung von nutzlasttragenden Zeichen zur Einbettung eines Wasserzeichens in ein Audio- oder Videosignal Download PDF

Info

Publication number
EP1703461A1
EP1703461A1 EP06300165A EP06300165A EP1703461A1 EP 1703461 A1 EP1703461 A1 EP 1703461A1 EP 06300165 A EP06300165 A EP 06300165A EP 06300165 A EP06300165 A EP 06300165A EP 1703461 A1 EP1703461 A1 EP 1703461A1
Authority
EP
European Patent Office
Prior art keywords
current
symbol
current frame
symbols
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06300165A
Other languages
English (en)
French (fr)
Other versions
EP1703461B1 (de
Inventor
Peter Georg Baum
Walter Voessing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMSON LICENSING
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP05090072A external-priority patent/EP1703460A1/de
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Priority to EP20060300165 priority Critical patent/EP1703461B1/de
Publication of EP1703461A1 publication Critical patent/EP1703461A1/de
Application granted granted Critical
Publication of EP1703461B1 publication Critical patent/EP1703461B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/018Audio watermarking, i.e. embedding inaudible data in the audio signal

Definitions

  • the invention relates to a method and to an apparatus for encoding symbols carrying payload data for watermarking an audio or video signal, and to a method and to an apparatus for decoding symbols carrying payload data of a watermarked audio or video signal.
  • Watermark information (denoted WM) consists of several symbols which are embedded continuously in the carrier content, e.g. in (encoded) audio or video signals, e.g. in order to identify the author of the signals.
  • the WM is regained, for example by using correlation of the received signal with a known m-sequence if spread spectrum is used as underlying technology.
  • the watermark information is transmitted asynchronously, i.e. it is continuously tested whether or not WM can be embedded imperceptible within the (encoded) audio or video signals. Only if this is true a WM frame is transmitted. But a WM frame consists of some tens of symbols, each carrying one or more bits which are transmitted synchronously.
  • WO-A-01/06755 shows an energy level-dependent insertion of watermark data.
  • the signal in which the WM is embedded must be 'good' for a time period that is at least as long as a frame length, with not more 'bad' parts than the error correction can cope with.
  • a problem to be solved by the invention is to provide a watermarking in which the available time periods for transmitting WM are exploited as far as possible, without spending unnecessary additional redundancy bits for error correction purposes.
  • This problem is solved by the methods disclosed in claims 1 and 3. Apparatuses that utilise these methods are disclosed in claims 2 and 4.
  • each WM symbol carries an identification data item (denoted ID) in addition to its normal payload, and it is already tested in the encoder whether or not the signal is 'good' enough so that the embedded symbol can be recovered at receiver or decoder side. If true, it is embedded normally. If not true, no WM is embedded for the length of one symbol and the test is repeated for the following signal and the same symbol.
  • the sequence of IDs is known at the encoder, which can therefore detect using the ID whether or not a symbol has been skipped.
  • the signal must be 'good' only for a time period that is as long as a symbol length. If not, it is transmitted later when the content is better suited for embedding it.
  • the invention makes watermarking of critical sound signals much more robust, which may make the difference between receiving WM and receiving no WM at all.
  • the above tests carried out in the encoder cost more processing power since multiple correlations are to be calculated following empty blocks. But advantageously, for non-critical sound signals, i.e. signals in which no empty blocks are inserted and which result in a clear peak in the correlation with a predetermined data sequence, the inventive processing does not even use more processing power in the decoder.
  • the invention is not limited to using spread spectrum technology. Instead e.g. carrier based technology or echo hiding technology can be used for the watermarking coding and decoding.
  • the inventive method is suited for encoding symbols carrying payload data for watermarking therewith an audio or video signal, said watermarking using for example spread spectrum modulation whereby said symbols can be recovered by de-spreading and demodulation using correlation with a known data sequence, whereby said symbols can be recovered at decoding side, and whereby at least one of said symbols and at least one synchronisation block are combined to form a current watermark frame, said method including the steps:
  • the inventive apparatus is suited for encoding symbols carrying payload data for watermarking therewith frame-by-frame an audio or video signal, said watermarking using for example spread spectrum modulation whereby said symbols can be recovered by de-spreading and demodulation using correlation with a known data sequence, whereby said symbols can be recovered at decoding side, and whereby at least one of said symbols and at least one synchronisation block are combined to form a current watermark frame, said apparatus including:
  • the inventive method is suited for decoding symbols carrying payload data of a watermarked audio or video signal, said watermarking using for example spread spectrum modulation, whereby at least one of said symbols and at least one synchronisation block were combined to form a current watermark frame, for example by de-spreading and demodulating using correlation with a predetermined data sequence, and whereby said audio or video signal was watermarked by:
  • the inventive apparatus is suited for decoding symbols carrying payload data of a watermarked audio or video signal, said watermarking using for example spread spectrum modulation, whereby at least one of said symbols and at least one synchronisation block were combined to form a current watermark frame, and whereby said decoding apparatus includes decoding means being adapted for recovering said symbols, for example by de-spreading and demodulating using correlation with a predetermined data sequence, and wherein said audio or video signal was watermarked by:
  • a frame consists of a number of synchronisation blocks SYNBL (at least one synchronisation block) which are needed to detect the start of the frame at decoder side, and a number of payload blocks PLBL (at least one valid payload block or symbol) which carry the actual information.
  • Frames are inserted synchronously or asynchronously in the audio stream, dependent on the technology. The insertion of the payload blocks is done consecutively, i.e. synchronised after the SYNBL blocks. Each payload block holds one or more bits of information.
  • a payload block is therefore also called a symbol.
  • the payload symbols include the information to be inserted into the WM, and optionally contain redundancy information used for error correction.
  • a typical setting is for example 5 synchronisation blocks and 36 payload blocks per frame, each payload block carrying 2 bits, whereby 24 of these 72 bits are used for error correction resulting in a net payload of 48 bits per frame.
  • a watermarking encoder in Fig. 1 payload data PLD to be used for watermarking an audio signal AS is input to an error correction and/or detection encoding stage ECDE which adds redundancy bits facilitating a recovery from erroneously detected symbols in the decoder.
  • an identification data item ID is combined with the signal.
  • the output signal of stage MS is fed to a psycho-acoustical shaping stage PAS which shapes the WS signal such that the WM is not audible or visible, and which feeds its output signal to a signal adder and decision stage SAD and to a decoder stage DEC.
  • the decoder stage DEC implements a decoder according to Fig. 2.
  • Stages PAS and SAD each receive the audio stream signal AS and process the WM frames symbol by symbol.
  • Stage SAD determines whether the payload data PLD have been decoded correctly in decoder DEC for a current WM frame FR n . If true, the psycho-acoustical shaped WM symbol is added to the current frame. If not true, the current symbol in the current frame FR n is skipped. Thereafter the processing continues for the next symbol following the current symbol. After the processing for a WM frame is completed a correspondingly watermarked frame WAS embedded in the audio signal is output. Thereafter the processing continues for the frame FR n+1 following the current frame.
  • a watermarked frame WAS of the audio signal passes through a spectral whitening stage SPW (which reverses the shaping that was done in stage PAS) and a de-spreading and demodulation stage DSPDM (which retrieves the embedded data from the signal WAS) to an ID evaluation and skip stage IDESK.
  • stage IDESK it is checked whether or not a received symbol or block of a received WM frame has a correct ID, i.e. whether or not the received ID is in a chronological order. If not true, the corresponding WM symbol is skipped. If true, the WM symbol is passed to an error correction and/or detection decoding stage ECDD that outputs the valid payload data PLD.
  • the watermark is shaped block wise according to psycho-acoustic principles, i.e. the ratio between watermark and audio energy may change from symbol to symbol. For some signals the possible quality of the embedded watermark is so poor, that it is known already at encoder side that symbols which are embedded in these signals cannot be recovered correctly at decoder side.
  • each symbol to be embedded in the audio signal it is decided in the encoder, whether or not it can be recovered correctly in a decoder. If the probability that it can be recovered is high, it is inserted in the audio. If not, no additional WM signal is inserted for a time duration of one symbol length, or an empty symbol representing zeroes only is inserted, and the test is repeated until the signal is suitable for embedding of the next WM item.
  • Each empty symbol inserted increases the frame length by one symbol length, such that each frame carries the same number of payload bits per frame.
  • Fig. 4A shows an example in which the depicted part of the signal is suitable for embedding of WM. The symbols are therefore embedded continuously.
  • Fig. 4B the signal is not suitable for embedding a WM at the third symbol. Therefore no symbol is embedded after symbol two (instead an empty symbol is inserted), and the signal is tested at the next possible insertion point again, but the signal is still not suitable. So, the insertion of a non-empty symbol is postponed again. The next test is successful and symbol three is inserted. This means that the decoder receives symbol one, then symbol two, then two times empty symbols (i.e. a pure audio signal without watermark), then symbol number three.
  • the decoder must distinguish between a symbol or block which cannot be recovered due to noise or an attack between emission and reception, and a signal in which no watermark was embedded. This is facilitated by assigning to a symbol an additional ID in the encoder and evaluating it in the decoder. This can be performed by using for example a pre-determined quantity of different maximum-length data sequences in spread spectrum technology, e.g. different m-sequences. In Fig. 4 three different m-sequences are used. All symbols or blocks can be BPSK encoded, i.e. each one carries one bit of information.
  • the first block uses the first m-sequence, the second block the second m-sequence, the third block the third m-sequence, the fourth block again the first m-sequence, and so on.
  • the decoder uses the same m-sequence in the same order.
  • the m-sequences are used in the order 1, 2, 3, 1, 2, 3.
  • the correlation of the third block with m-sequence three does not show a clear result (i.e. there is no clear magnitude peak in the corresponding correlation result). This means that either the WM symbol has been disturbed or that no WM symbol was embedded.
  • the fourth block is therefore correlated with m-sequences one and three, which in this example both give no clear correlation result.
  • the fifth block is correlated with the m-sequences one, two and three. Only the correlation with sequence three gives a clear peak, which means that the two previous blocks (3rd and 4th block) were empty and did not carry a WM symbol.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
EP20060300165 2005-03-18 2006-02-27 Verfahren und Vorrichtung zur Kodierung und Dekodierung von nutzlasttragenden Zeichen zur Einbettung eines Wasserzeichens in ein Audio- oder Videosignal Expired - Fee Related EP1703461B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20060300165 EP1703461B1 (de) 2005-03-18 2006-02-27 Verfahren und Vorrichtung zur Kodierung und Dekodierung von nutzlasttragenden Zeichen zur Einbettung eines Wasserzeichens in ein Audio- oder Videosignal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05090072A EP1703460A1 (de) 2005-03-18 2005-03-18 Verfahren und Vorrichtung zur Kodierung und Dekodierung von Nutzlast tragenden Zeichen zur Einbetung eines Wasserzeichens in ein Audio- oder Videosignal
EP20060300165 EP1703461B1 (de) 2005-03-18 2006-02-27 Verfahren und Vorrichtung zur Kodierung und Dekodierung von nutzlasttragenden Zeichen zur Einbettung eines Wasserzeichens in ein Audio- oder Videosignal

Publications (2)

Publication Number Publication Date
EP1703461A1 true EP1703461A1 (de) 2006-09-20
EP1703461B1 EP1703461B1 (de) 2010-05-26

Family

ID=36809416

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060300165 Expired - Fee Related EP1703461B1 (de) 2005-03-18 2006-02-27 Verfahren und Vorrichtung zur Kodierung und Dekodierung von nutzlasttragenden Zeichen zur Einbettung eines Wasserzeichens in ein Audio- oder Videosignal

Country Status (1)

Country Link
EP (1) EP1703461B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074240A (zh) * 2010-12-24 2011-05-25 中国科学院声学研究所 一种用于版权管理的数字音频水印算法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913952A2 (de) * 1997-10-30 1999-05-06 Audiotrack Limited Partnership Verfahren zum Einbetten eines Kodes in ein Tonsignal und zum Detektieren des eingebettenen Kodes
EP1220152A2 (de) * 2000-12-07 2002-07-03 Sony United Kingdom Limited Dateneinbettung in Werkstoff
EP1306802A2 (de) * 2001-10-22 2003-05-02 Ricoh Company, Ltd. Kodierer und Dekodierer für elektronisches Wasserzeichen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913952A2 (de) * 1997-10-30 1999-05-06 Audiotrack Limited Partnership Verfahren zum Einbetten eines Kodes in ein Tonsignal und zum Detektieren des eingebettenen Kodes
EP1220152A2 (de) * 2000-12-07 2002-07-03 Sony United Kingdom Limited Dateneinbettung in Werkstoff
EP1306802A2 (de) * 2001-10-22 2003-05-02 Ricoh Company, Ltd. Kodierer und Dekodierer für elektronisches Wasserzeichen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LOBOGUERRERO A ET AL: "Iterative informed audio data hiding scheme using optimal filter", COMMUNICATION TECHNOLOGY PROCEEDINGS, 2003. ICCT 2003. INTERNATIONAL CONFERENCE ON APRIL 9 - 11, 2003, PISCATAWAY, NJ, USA,IEEE, vol. 2, 9 April 2003 (2003-04-09), pages 1408 - 1411, XP010644113, ISBN: 7-5635-0686-1 *
YING-FEN HSIA ET AL: "Multiple-description coding for robust image watermarking", ICIP '04. INTERNATIONAL CONFERENCE ON SINGAPORE, PISCATAWAY, NJ, USA,IEEE, 24 October 2004 (2004-10-24) - 27 October 2004 (2004-10-27), pages 2163 - 2166, XP010786211, ISBN: 0-7803-8554-3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074240A (zh) * 2010-12-24 2011-05-25 中国科学院声学研究所 一种用于版权管理的数字音频水印算法
CN102074240B (zh) * 2010-12-24 2012-03-14 中国科学院声学研究所 一种用于版权管理的数字音频水印算法

Also Published As

Publication number Publication date
EP1703461B1 (de) 2010-05-26

Similar Documents

Publication Publication Date Title
US7634031B2 (en) Method and apparatus for encoding symbols carrying payload data for watermarking an audio or video signal, and method and apparatus for decoding symbols carrying payload data of a watermarked audio or video signal
EP2059923B1 (de) Verfahren und vorrichtung zum kodieren/dekodieren von nutzinformationsdaten tragenden symbolen für wasserzeichen in einem audio- oder videosignal
EP1886305B1 (de) Verfahren und vorrichtung zur kennzeichnung eines audio- oder videosignals mit wasserzeichendaten mittels eines spreizspektrums
JP4690366B2 (ja) 音声透かしをベースとするメディア・プログラムの識別方法及び装置
KR101355297B1 (ko) 두 개의 데이터 섹션을 상관시키는 방법 및 장치
US7886152B2 (en) Method and device for embedding watermark information and method and device for extracting embedded watermark information
JP2006259747A5 (de)
EP1826909A3 (de) Verfahren und Vorrichtung zur Bestimmung der Datenrate eines empfangenen Signals in einem Übertragungssystem mit veränderlicher Datenrate
RU2481649C2 (ru) Способ и устройство для определения и использования частоты дискретизации для декодирования информации водяного знака, встроенной в принимаемый сигнал, выбранный с помощью исходной частоты дискретизации на стороне кодера
EP1635348A2 (de) Steuerfaktoren zur Einbettung von Schallfeldern
JP2002305730A (ja) 埋込データ及び埋込データを検出し、回復する方法及び装置
US8041073B2 (en) Decoding watermark information items of a watermarked audio or video signal using correlation
EP1703461B1 (de) Verfahren und Vorrichtung zur Kodierung und Dekodierung von nutzlasttragenden Zeichen zur Einbettung eines Wasserzeichens in ein Audio- oder Videosignal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061018

17Q First examination report despatched

Effective date: 20061115

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON LICENSING

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006014459

Country of ref document: DE

Date of ref document: 20100708

Kind code of ref document: P

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20100628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100526

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006014459

Country of ref document: DE

Effective date: 20110228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Representative=s name: HOFSTETTER, SCHURACK & PARTNER - PATENT- UND R, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006014459

Country of ref document: DE

Representative=s name: HOFSTETTER, SCHURACK & PARTNER PATENT- UND REC, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006014459

Country of ref document: DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006014459

Country of ref document: DE

Representative=s name: KASTEL PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006014459

Country of ref document: DE

Representative=s name: HOFSTETTER, SCHURACK & PARTNER - PATENT- UND R, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006014459

Country of ref document: DE

Representative=s name: HOFSTETTER, SCHURACK & PARTNER PATENT- UND REC, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006014459

Country of ref document: DE

Representative=s name: HOFSTETTER, SCHURACK & PARTNER - PATENT- UND R, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200219

Year of fee payment: 15

Ref country code: DE

Payment date: 20200211

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200228

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006014459

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210227

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901