EP1703226B1 - Heat exchanger with optimized heat transfer elements - Google Patents

Heat exchanger with optimized heat transfer elements Download PDF

Info

Publication number
EP1703226B1
EP1703226B1 EP20050112088 EP05112088A EP1703226B1 EP 1703226 B1 EP1703226 B1 EP 1703226B1 EP 20050112088 EP20050112088 EP 20050112088 EP 05112088 A EP05112088 A EP 05112088A EP 1703226 B1 EP1703226 B1 EP 1703226B1
Authority
EP
European Patent Office
Prior art keywords
heat
heat transfer
transverse
heat exchanger
transfer elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20050112088
Other languages
German (de)
French (fr)
Other versions
EP1703226A1 (en
Inventor
Franz Schmuker
Albrecht Schaefer
Manfred Hosch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1703226A1 publication Critical patent/EP1703226A1/en
Application granted granted Critical
Publication of EP1703226B1 publication Critical patent/EP1703226B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body

Definitions

  • the invention relates to a heat exchanger with optimized heat transfer elements for the transfer of heat from a combustion gas through a heat transferring wall on flowing on the outside of the wall in flow channels heating water according to the preamble of claim 1.
  • a heat exchanger having fin and pin shaped heat transfer elements for transferring heat from a combustion gas through a wall to a heating water flowing in flow channels on the outside of the wall.
  • the rib and pin-shaped heat transfer elements are arranged opposite one another on the inside of the wall and run in a single direction.
  • a combustion chamber is formed, in which the fuel gas of a burner is burned.
  • the combustion chamber is adjoined in the direction of flow of the combustion gas in a series formed rib-shaped heat transfer elements.
  • a plurality of rows of pin-shaped heat transfer elements are formed, wherein the pin-shaped heat transfer elements of the individual rows are arranged offset from one another.
  • the pin-shaped heat transfer elements are in several rows successively arranged further pin-shaped heat transfer elements, which are, however, spaced closer than the upstream pin-shaped heat transfer elements.
  • a heat exchanger with heat transfer elements in which the heat transfer elements are integrally formed on the inside of the heat-transferring wall and extend into a combustion gas flowing through the flue gas.
  • the heat transfer elements are integrally formed on the inside of the heat-transferring wall and extend into a combustion gas flowing through the flue gas.
  • at least one transverse heat transfer element is designed with a cross section which has a greater extent transverse to the flow direction of the combustion gas as parallel to the flow direction of the combustion gas.
  • Object of the present invention is to achieve an increase in the heat transfer performance of the heat exchanger, wherein the heat resistance of the heat transfer elements must be ensured under consideration of the required efficiency.
  • the course of the heat transfer elements in only one direction should be maintained.
  • the object of the invention is achieved with the characterizing features of claim 1.
  • the ratio of surface to administratleitquerites is reduced compared with a pin-shaped heat transfer element with in the vertical and horizontal direction almost the same extent.
  • the thermal load of the heat transfer elements is reduced. This protects the heat transfer element from overheating.
  • a flow deflection of the combustion gases is achieved at this point, thereby achieving the reduction of heat transfer to the thermally highly loaded heat transfer element.
  • the transverse to the flow direction of the combustion gas heat transfer element thus acts mainly for the flow deflection of the combustion gas.
  • the flow in the region of the thermally highly loaded heat transfer elements is greatly slowed by a partial shut-off of the flow cross-section at this point. This reduces the flow velocity and thus the heat transfer coefficient at the thermally highly loaded heat transfer elements.
  • By the transverse heat transfer elements also a deflection of the combustion gases is achieved in less thermally highly loaded areas of the heat exchanger.
  • the essential advantage of the invention is also that the Strömungsleitgeometrie is achieved to increase the performance of the heat exchanger without additional components and can be realized by cast-on rib and / or pin-shaped heat transfer elements.
  • the transverse to the flow direction of the combustion gas has at least twice as large extent as parallel to the flow direction of the combustion gas.
  • the transversely located heat transfer element is upstream in the flow direction of the combustion gas extending in the flow direction extended rib-shaped heat transfer element.
  • the transverse heat transfer element has a trough-shaped surface opposite to the flow direction, wherein the trough-shaped surface is substantially a negative image of the opposite surface of the upstream elongate rib-shaped heat transfer element.
  • a substantial increase in the heat transfer performance is achieved if four transverse heat transfer elements are arranged in a direction perpendicular to the flow direction of the combustion gas level of Thompsonyakes, each extending two transverse heat transfer elements from the opposite side of the heat transferring wall in the same direction.
  • the flow cross-section of the heating gas train is extended in the direction of low-loaded thermal regions of the heat exchanger. It is particularly advantageous if the heat exchanger is produced by casting from a metallic material and if at least the transverse heat transfer element is cast onto the heat-transferring wall.
  • FIG. 1 illustrated heat exchanger for a heater in particular for a condensing boiler, has a base body 10 with a heat-transferring wall 11 and with a burner-side opening 15 and an exhaust-side opening 16.
  • a burner not shown, is used, in which a fuel gas / air mixture is burned.
  • the adjoining the burner space within the body 10 forms a combustion chamber 17, in which the combustible gas / air mixture is burned.
  • a heating gas duct 19 Connected to the combustion chamber 17 within the main body 10 is a heating gas duct 19, through which the combustion gas flows to the exhaust-gas-side opening 16.
  • heat transfer elements are arranged, which protrude into the heating gas 19 and will be discussed in more detail later.
  • On the outside of the heat-transferring wall 11 extends helically a trench-shaped recess 23 which is initially open on the base body 10 to the outside.
  • the base body is surrounded by a jacket, not shown, so that the trench-shaped recess 23 forms a helically extending flow channel for heating water of a heating circuit, not shown, of the heater.
  • the main body 10 is a light metal casting, preferably an aluminum sand casting component, which is particularly suitable as a material for heat exchangers of heaters due to its corrosion resistance and heat absorption and thermal conductivity.
  • the main body 10 is designed with a circular cross-section and is slightly conical in the flow direction of the combustion gas with decreasing diameter. However, it is just as conceivable to carry out the basic body 10 cylindrically or with an oval cross-section.
  • the heat transfer elements projecting into the heating gas duct 19 have different cross-sectional shapes, the different cross-sectional shapes being arranged in different sections 31, 32 and 33 of the heating gas duct 19.
  • First section 31 are formed in the flow direction extending rib-shaped heat transfer elements 34 and, for example, four elongated rib-shaped heat transfer element 40.
  • second section 32 are pin-shaped heat transfer elements 35 and, for example, four transverse heat transfer elements 50 are arranged.
  • the third section 33 adjoining the second section there are further pin-shaped heat transfer elements 36.
  • the elongated rib-shaped heat transfer elements 40 are formed from a rib-shaped heat transfer element 34 and a subsequent pin-shaped heat transfer element 35, wherein at the transition from the rib-shaped heat transfer element to the pin-shaped heat transfer element, a mutual notch is formed.
  • the further pin-shaped heat transfer elements 36 have a cross section with a curved surface facing the flow and a flat surface facing in the flow direction.
  • the extended rib-shaped heat transfer elements 40 arranged in the first section 31 are arranged upstream of the transverse heat transfer elements 50 arranged in the second section 32 in the flow direction.
  • the transverse heat transfer elements 50 have according to FIG. 3 a cross-section, which originates in its outer contour substantially to two adjacent pin-shaped heat transfer elements 35 which are interconnected, wherein between a surface having a trough-shaped recess 51 is formed, which substantially to the shape of the opposite surface of the upstream extended rib-shaped heat transfer element 40th is adjusted.
  • the downstream surface of the transverse heat transfer element 50 is provided with two flats 52 between which a notch 53 is centrally formed.
  • the various heat transfer elements are respectively formed on the inside of the heat-transferring wall 11 and each extending from the opposite side of the heat-transferring wall 11 in a single direction ( FIG. 2 ).
  • the various heat transfer elements are produced by casting together with the heat exchanger, so that at least the transverse heat transfer elements 50 and the extended rib-shaped heat transfer elements 40 are cast onto the heat-transferring wall 11.
  • a Cavity 38 is present, in which an unillustrated displacement body is used, through which the combustion gas is forced in the direction of formed between the heat transfer elements 19 Schugaszuges.

Description

Die Erfindung betrifft einen Wärmetauscher mit optimierten Wärmeübertragungselementen für die Übertragung von Wärme aus einem Verbrennungsgas durch eine wärmeübertragende Wand auf an der Außenseite der Wand in Strömungskanälen strömenden Heizungswasser nach dem Oberbegriff des Anspruchs 1.The invention relates to a heat exchanger with optimized heat transfer elements for the transfer of heat from a combustion gas through a heat transferring wall on flowing on the outside of the wall in flow channels heating water according to the preamble of claim 1.

Stand der TechnikState of the art

Aus DE 103 06 699 A1 ist ein Wärmetauscher mit rippen- und stiftförmigen Wärmeübertragungselementen für die Übertragung von Wärme aus einem Verbrennungsgas durch eine Wand zu einem auf der Außenseite der Wand in Strömungskanälen strömenden Heizungswasser bekannt. Die rippen- und stiftförmigen Wärmeübertragungselemente sind dabei an der Innenseite der Wand gegenüberliegend angeordnet und verlaufen dabei in eine einzige Richtung. Im oberen Bereich des Wärmeübertragers ist eine Brennkammer ausgebildet, in der das Brenngas eines Brenners verbrannt wird. An die Brennkammer schließen sich in Strömungsrichtung des Verbrennungsgases in einer Reihe ausgebildete rippenförmige Wärmeübertragungselemente an. In Strömungsrichtung des Verbrennungsgases anschließend sind mehrere Reihen von stiftförmigen Wärmeübertragungselementen ausgebildet, wobei die stiftförmigen Wärmeübertragungselemente der einzelnen Reihen versetzt zueinander angeordnet sind. In Strömungsrichtung hinter den stiftförmigen Wärmeübertragungselementen befinden sich in mehreren Reihen hintereinander angeordnete weitere stiftförmige Wärmeübertragungselemente, die jedoch enger beabstandet sind als die vorgelagerten stiftförmigen Wärmeübertragungselemente.Out DE 103 06 699 A1 For example, a heat exchanger having fin and pin shaped heat transfer elements for transferring heat from a combustion gas through a wall to a heating water flowing in flow channels on the outside of the wall is known. The rib and pin-shaped heat transfer elements are arranged opposite one another on the inside of the wall and run in a single direction. In the upper region of the heat exchanger, a combustion chamber is formed, in which the fuel gas of a burner is burned. The combustion chamber is adjoined in the direction of flow of the combustion gas in a series formed rib-shaped heat transfer elements. In the flow direction of the combustion gas then a plurality of rows of pin-shaped heat transfer elements are formed, wherein the pin-shaped heat transfer elements of the individual rows are arranged offset from one another. In the flow direction behind the pin-shaped heat transfer elements are in several rows successively arranged further pin-shaped heat transfer elements, which are, however, spaced closer than the upstream pin-shaped heat transfer elements.

Weiterhin ist aus der EP 1424 528 A1 ein Wärmetauscher mit Wärmeübertragungselementen bekannt, bei dem die Wärmeübertragungselemente an der Innenseite der wärmeübertragenden Wand angeformt sind und sich in einen vom Verbrennungsgas durchströmten Heizgaszug erstrecken. Dabei ist in einem Abschnitt des Heizgaszuges mindestens ein quer liegendes Wärmeübertragungselement mit einem Querschnitt ausgeführt, der quer zur Strömungsrichtung des Verbrennungsgases eine größere Ausdehnung aufweist als parallel zur Strömungsrichtung des Verbrennungsgases.Furthermore, from the EP 1424 528 A1 a heat exchanger with heat transfer elements, in which the heat transfer elements are integrally formed on the inside of the heat-transferring wall and extend into a combustion gas flowing through the flue gas. In this case, in a portion of the Heizgaszuges at least one transverse heat transfer element is designed with a cross section which has a greater extent transverse to the flow direction of the combustion gas as parallel to the flow direction of the combustion gas.

Aufgabe der vorliegenden Erfindung ist es, eine Erhöhung der Wärmeübertragungsleistung des Wärmetauschers zu erzielen, wobei unter Beachtung des geforderten Wirkungsgrades die Wärmefestigkeit der Wärmeübertragungselemente gewährleistet werden muss. Außerdem sollte wegen der einfachen gießtechnischen Herstellung des Wärmetauschers der Verlauf der Wärmeübertragungselemente in nur einer Richtung beibehalten werden.Object of the present invention is to achieve an increase in the heat transfer performance of the heat exchanger, wherein the heat resistance of the heat transfer elements must be ensured under consideration of the required efficiency. In addition, because of the simple production by casting the heat exchanger, the course of the heat transfer elements in only one direction should be maintained.

Vorteile der ErfindungAdvantages of the invention

Die Aufgabe der Erfindung wird mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst. Durch die Ausbildung mindestens eines Wärmeübertragungselementes mit einer quer zur Strömungsrichtung des Verbrennungsgases größeren Ausdehnung als parallel zur Strömungsrichtung des Verbrennungsgases wird das Verhältnis von Oberfläche zu Wärmeleitquerschnitt verringert im Vergleich mit einem stiftförmigen Wärmeübertragungselement mit in senkrechter und waagerechter Richtung nahezu gleicher Ausdehnung. Die thermische Belastung der Wärmeübertragungselemente wird dabei verringert. Dadurch wird das Wärmeübertragungselement vor Überhitzung geschützt. Durch das quer zur Strömungsrichtung sich erstreckende Wärmeübertragungselement wird eine Strömungsumlenkung der Verbrennungsgase an dieser Stelle erzielt und dadurch die Verringerung des Wärmeübergangs an dem thermisch hoch belasteten Wärmeübertragungselement erreicht. Das quer zur Strömungsrichtung des Verbrennungsgases liegende Wärmeübertragungselement wirkt somit hauptsächlich zur Strömungsumlenkung des Verbrennungsgases. Die Strömung im Bereich der thermisch hoch belasteten Wärmeübertragungselemente wird durch ein teilweises Absperren des Strömungsquerschnittes an dieser Stelle stark gebremst. Dadurch verringert sich die Strömungsgeschwindigkeit und damit die Wärmeübergangszahl an den thermisch hoch belasteten Wärmeübertragungselementen. Durch die quer liegenden Wärmeübertragungselemente wird außerdem eine Umlenkung der Verbrennungsgase in weniger thermisch hoch belastete Bereiche des Wärmetauschers erzielt. Der wesentliche Vorteil der Erfindung besteht außerdem darin, dass die Strömungsleitgeometrie zur Erhöhung der Leistung des Wärmetauschers ohne zusätzliche Bauteile erreicht wird und durch angegossene rippen- und/oder stiftförmige Wärmeübertragungselemente realisierbar ist.The object of the invention is achieved with the characterizing features of claim 1. By forming at least one heat transfer element with a transverse to the flow direction of the combustion gas expansion as parallel to the flow direction of the combustion gas, the ratio of surface to Wärmeleitquerschnitt is reduced compared with a pin-shaped heat transfer element with in the vertical and horizontal direction almost the same extent. The thermal load of the heat transfer elements is reduced. This protects the heat transfer element from overheating. By the transverse to the flow direction extending heat transfer element, a flow deflection of the combustion gases is achieved at this point, thereby achieving the reduction of heat transfer to the thermally highly loaded heat transfer element. The transverse to the flow direction of the combustion gas heat transfer element thus acts mainly for the flow deflection of the combustion gas. The flow in the region of the thermally highly loaded heat transfer elements is greatly slowed by a partial shut-off of the flow cross-section at this point. This reduces the flow velocity and thus the heat transfer coefficient at the thermally highly loaded heat transfer elements. By the transverse heat transfer elements also a deflection of the combustion gases is achieved in less thermally highly loaded areas of the heat exchanger. The essential advantage of the invention is also that the Strömungsleitgeometrie is achieved to increase the performance of the heat exchanger without additional components and can be realized by cast-on rib and / or pin-shaped heat transfer elements.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen der Erfindung möglich. Als eine besonders zweckmäßige Ausführungsform hat sich eine Geometrie des quer liegenden Wärmeübertragungselements mit einem Querschnitt ergeben, der quer zur Strömungsrichtung des Verbrennungsgases eine mindestens doppelt so große Ausdehnung besitzt als parallel zur Strömungsrichtung des Verbrennungsgases. Als weiterhin zweckmäßig hat sich herausgestellt, dass dem quer liegenden Wärmeübertragungselement in Strömungsrichtung des Verbrennungsgases ein sich in Strömungsrichtung erstreckendes verlängertes rippenförmiges Wärmeübertragungselement vorgelagert ist. Dadurch wird dem thermisch hochbelasteten quer liegenden Wärmeübertragungselement ein weiteres Wärmeübertragungselement mit ebenfalls günstigem Verhältnis von Oberfläche und Wärmeleitquerschnitt zugeordnet, so dass dadurch der Wärmeübergang in dieser Stelle noch weiter verringert und eine Überhitzung der Wärmeübertragungselemente an dieser Stelle vermieden wird. Gemäß der Erfindung weist das quer liegende Wärmeübertragungselement entgegen der Strömungsrichtung eine muldenförmige Oberfläche auf, wobei die muldenförmige Oberfläche im Wesentlichen ein negatives Abbild der gegenüberliegenden Oberfläche des vorgelagerten verlängerten rippenförmigen Wärmeübertragungselements ist. Eine wesentliche Erhöhung der Wärmeübertragungsleistung wird erzielt, wenn in einer senkrecht zur Strömungsrichtung des Verbrennungsgases liegenden Ebene des Heizgaszuges vier quer liegende Wärmeübertragungselemente angeordnet sind, wobei sich jeweils zwei quer liegende Wärmeübertragungselemente von der gegenüberliegenden Seite der wärmeübertragenden Wand aus in gleicher Richtung erstrecken. Außerdem ist es zweckmäßig, wenn benachbart zu den quer liegenden Wärmeübertragungselementen der Strömungsquerschnitt des Heizgaszuges in Richtung niedrig belasteter thermischer Bereiche des Wärmeübertragers erweitert ausgeführt wird. Besonders vorteilhafte ist, wenn der Wärmetauscher gießtechnisch aus einem metallischen Werkstoff hergestellt wird und wenn zumindest das quer liegende Wärmeübertragungselement an die wärmeübertragende Wand angegossen ist.The measures listed in the dependent claims advantageous developments of the invention are possible. As a particularly advantageous embodiment a geometry of the transverse heat transfer element with a cross-section result, the transverse to the flow direction of the combustion gas has at least twice as large extent as parallel to the flow direction of the combustion gas. As further expedient it has been found that the transversely located heat transfer element is upstream in the flow direction of the combustion gas extending in the flow direction extended rib-shaped heat transfer element. As a result, the thermally highly loaded transverse heat transfer element is assigned a further heat transfer element with likewise favorable ratio of surface and Wärmeleitquerschnitt, thereby further reducing the heat transfer in this point and overheating of the heat transfer elements is avoided at this point. According to the invention, the transverse heat transfer element has a trough-shaped surface opposite to the flow direction, wherein the trough-shaped surface is substantially a negative image of the opposite surface of the upstream elongate rib-shaped heat transfer element. A substantial increase in the heat transfer performance is achieved if four transverse heat transfer elements are arranged in a direction perpendicular to the flow direction of the combustion gas level of Heizgaszuges, each extending two transverse heat transfer elements from the opposite side of the heat transferring wall in the same direction. In addition, it is expedient if, adjacent to the transverse heat transfer elements, the flow cross-section of the heating gas train is extended in the direction of low-loaded thermal regions of the heat exchanger. It is particularly advantageous if the heat exchanger is produced by casting from a metallic material and if at least the transverse heat transfer element is cast onto the heat-transferring wall.

Ausführungsbeispielembodiment

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

Figur 1
einen Längsschnitt durch einen erfindungsgemäßen Wärmetauscher,
Figur 2
einen Schnitt nach der Linie II-II in Figur 1 und
Figur 3
eine vergrößerte Schnittdarstellung durch ein quer liegendes Wärmeübertragungselement.
An embodiment of the invention is illustrated in the drawing and explained in more detail in the following description. Show it:
FIG. 1
a longitudinal section through a heat exchanger according to the invention,
FIG. 2
a section along the line II-II in FIG. 1 and
FIG. 3
an enlarged sectional view through a transverse heat transfer element.

Der in Figur 1 dargestellte Wärmetauscher für ein Heizgerät, insbesondere für ein Brennwertgerät, weist einen Grundkörper 10 mit einer wärmeübertragenden Wand 11 sowie mit einer brennerseitigen Öffnung 15 und einer abgasseitigen Öffnung 16 auf. In die brennerseitigen Öffnung 15 wird ein nicht dargestellter Brenner eingesetzt, in dem ein Brenngas/Luftgemisch verbrannt wird. Der sich an den Brenner anschließende Raum innerhalb des Grundkörpers 10 bildet eine Brennkammer 17 aus, in der vom Brenner das Brenngas/Luftgemisch verbrannt wird. An die Brennkammer 17 schließt sich innerhalb des Grundkörpers 10 ein Heizgaszug 19 an, durch den das Verbrennungsgas bis zur abgasseitigen Öffnung 16 strömt.The in FIG. 1 illustrated heat exchanger for a heater, in particular for a condensing boiler, has a base body 10 with a heat-transferring wall 11 and with a burner-side opening 15 and an exhaust-side opening 16. In the burner-side opening 15, a burner, not shown, is used, in which a fuel gas / air mixture is burned. The adjoining the burner space within the body 10 forms a combustion chamber 17, in which the combustible gas / air mixture is burned. Connected to the combustion chamber 17 within the main body 10 is a heating gas duct 19, through which the combustion gas flows to the exhaust-gas-side opening 16.

An der Innenseite der wärmeübertragenden Wand 11 sind Wärmeübertragungselemente angeordnet, die in den Heizgaszug 19 hineinragen und auf die später noch näher eingegangen wird. An der Außenseite der wärmeübertragenden Wand 11 verläuft wendelförmig eine grabenförmige Vertiefung 23, die am Grundkörper 10 nach außen hin zunächst offen ist. Zum Verschließen der nach außen hin offenen Vertiefung 23 ist der Grundkörper von einem nicht dargestellten Mantel umgeben, sodass die grabenförmige Vertiefung 23 einen wendelförmig verlaufenden Strömungskanal für Heizungswasser eines nicht dargestellten Heizkreises des Heizgerätes bildet.On the inside of the heat-transferring wall 11 heat transfer elements are arranged, which protrude into the heating gas 19 and will be discussed in more detail later. On the outside of the heat-transferring wall 11 extends helically a trench-shaped recess 23 which is initially open on the base body 10 to the outside. For closing the recess 23, which is open towards the outside, the base body is surrounded by a jacket, not shown, so that the trench-shaped recess 23 forms a helically extending flow channel for heating water of a heating circuit, not shown, of the heater.

Der Grundkörper 10 ist Leichtmetall-Gussteil, vorzugsweise ein Aluminium-Sandguss-Bauteil, das sich aufgrund seiner Korrosionsbeständigkeit sowie Wärmeaufnahmefähigkeit und Wärmeleitfähigkeit besonders als Material für Wärmetauscher von Heizgeräten eignet. Der Grundkörper 10 ist mit einem kreisförmigen Querschnitt ausgeführt und verläuft in Strömungsrichtung des Verbrennungsgases mit abnehmendem Durchmesser leicht konisch. Es ist aber genauso denkbar, den Grundkörper 10 zylindrisch oder mit einem ovalen Querschnitt auszuführen.The main body 10 is a light metal casting, preferably an aluminum sand casting component, which is particularly suitable as a material for heat exchangers of heaters due to its corrosion resistance and heat absorption and thermal conductivity. The main body 10 is designed with a circular cross-section and is slightly conical in the flow direction of the combustion gas with decreasing diameter. However, it is just as conceivable to carry out the basic body 10 cylindrically or with an oval cross-section.

Die in den Heizgaszug 19 hineinragenden Wärmeübertragungselemente weisen verschiedene Querschnittsformen auf, wobei die verschiedenen Querschnittsformen in unterschiedlichen Abschnitten 31, 32 und 33 des Heizgaszuges 19 angeordnet sind. In dem an die Brennkammer 17 in Strömungsrichtung des Verbrennungsgases sich anschließenden ersten Abschnitt 31 sind in Strömungsrichtung erstreckende rippenförmige Wärmeübertragungselemente 34 sowie bspw. vier verlängerte rippenförmige Wärmeübertragungselement 40 ausgebildet. Im sich daran anschließenden zweiten Abschnitt 32 sind stiftförmige Wärmeübertragungselemente 35 sowie bspw. vier quer liegende Wärmeübertragungselemente 50 angeordnet. In dem sich an den zweiten Abschnitt anschließenden dritten Abschnitt 33 befinden sich weitere stiftförmige Wärmeübertragungselemente 36.The heat transfer elements projecting into the heating gas duct 19 have different cross-sectional shapes, the different cross-sectional shapes being arranged in different sections 31, 32 and 33 of the heating gas duct 19. In which adjoining the combustion chamber 17 in the flow direction of the combustion gas First section 31 are formed in the flow direction extending rib-shaped heat transfer elements 34 and, for example, four elongated rib-shaped heat transfer element 40. In the adjoining second section 32 are pin-shaped heat transfer elements 35 and, for example, four transverse heat transfer elements 50 are arranged. In the third section 33 adjoining the second section there are further pin-shaped heat transfer elements 36.

Die verlängerten rippenförmigen Wärmeübertragungselemente 40 sind aus einem rippenförmigen Wärmeübertragungselement 34 und einem sich anschließenden stiftförmigen Wärmeübertragungselement 35 geformt, wobei beim Übergang vom rippenförmigen Wärmeübertragungselement zum stiftförmigen Wärmeübertragungselement eine beiderseitige Einkerbung ausgebildet ist. Die weiteren stiftförmigen Wärmeübertragungselemente 36 weisen einen Querschnitt mit einer entgegen der Strömung weisenden gewölbten Oberfläche und einer in Strömungsrichtung weisenden ebenen Oberfläche auf.The elongated rib-shaped heat transfer elements 40 are formed from a rib-shaped heat transfer element 34 and a subsequent pin-shaped heat transfer element 35, wherein at the transition from the rib-shaped heat transfer element to the pin-shaped heat transfer element, a mutual notch is formed. The further pin-shaped heat transfer elements 36 have a cross section with a curved surface facing the flow and a flat surface facing in the flow direction.

Die im ersten Abschnitt 31 angeordneten verlängerten rippenförmigen Wärmeübertragungselemente 40 sind den im zweiten Abschnitt 32 angeordneten quer liegenden Wärmeübertragungselementen 50 in Strömungsrichtung vorgelagert. Die quer liegenden Wärmeübertragungselemente 50 weisen gemäß Figur 3 einen Querschnitt auf, der an seiner Außenkontur im Wesentlichen auf zwei benachbarte stiftförmige Wärmeübertragungselemente 35 zurückgeht, die miteinander verbunden sind, wobei dazwischen eine Oberfläche mit einer muldenförmigen Vertiefung 51 ausgebildet ist, die im Wesentlichen an die Form der gegenüberliegenden Oberfläche des vorgelagerten verlängerten rippenförmigen Wärmeübertragungselements 40 angepasst ist. Die stromab ausgebildete Oberfläche des quer liegenden Wärmeübertragungselements 50 ist mit zwei Abflachungen 52 versehen, zwischen denen mittig eine Einkerbung 53 ausgebildet ist.The extended rib-shaped heat transfer elements 40 arranged in the first section 31 are arranged upstream of the transverse heat transfer elements 50 arranged in the second section 32 in the flow direction. The transverse heat transfer elements 50 have according to FIG. 3 a cross-section, which originates in its outer contour substantially to two adjacent pin-shaped heat transfer elements 35 which are interconnected, wherein between a surface having a trough-shaped recess 51 is formed, which substantially to the shape of the opposite surface of the upstream extended rib-shaped heat transfer element 40th is adjusted. The downstream surface of the transverse heat transfer element 50 is provided with two flats 52 between which a notch 53 is centrally formed.

Die verschiedenen Wärmeübertragungselemente sind jeweils an der Innenseite der wärmeübertragenden Wand 11 angeformt und erstrecken sich jeweils von der gegenüberliegenden Seite der wärmeübertragenden Wand 11 in eine einzige Richtung (Figur 2). Dabei sind die verschiedenen Wärmeübertragungselemente gießtechnisch zusammen mit dem Wärmetauscher hergestellt, so dass zumindest die quer liegenden Wärmeübertragungselemente 50 und die verlängerten rippenförmigen Wärmeübertragungselemente 40 an die wärmeübertragende Wand 11 angegossen sind. Im Zentrum des Grundkörpers ist ein Hohlraum 38 vorhanden, in den ein nicht dargestellter Verdrängungskörper eingesetzt wird, durch den das Verbrennungsgas in Richtung des zwischen den Wärmeübertragungselementen ausgebildeten Heizgaszuges 19 abgedrängt wird.The various heat transfer elements are respectively formed on the inside of the heat-transferring wall 11 and each extending from the opposite side of the heat-transferring wall 11 in a single direction ( FIG. 2 ). In this case, the various heat transfer elements are produced by casting together with the heat exchanger, so that at least the transverse heat transfer elements 50 and the extended rib-shaped heat transfer elements 40 are cast onto the heat-transferring wall 11. In the center of the main body is a Cavity 38 is present, in which an unillustrated displacement body is used, through which the combustion gas is forced in the direction of formed between the heat transfer elements 19 Heizgaszuges.

Claims (7)

  1. A heat exchanger having heat transfer elements for the transfer of heat from a combustion gas through a heat-transferring wall (11) to heating water flowing in flow channels on the outer side of the heat-transferring wall (11), wherein the heat-transfer elements are formed on the inner side of the heat-transferring wall (11) and extend in a heating gas flue (19) through which the combustion gas flows and wherein in one section of the heating gas flue (19), at least one transverse heat-transfer element (50) is designed with a cross-section which has a greater expansion transverse to the flow direction of the combustion gas than parallel to the flow direction of the combustion gas, characterised in that the transverse heat-transfer element (50) has a surface having a trough-shaped recess (51) in the direction opposite to the flow direction of the combustion gas.
  2. The heat exchanger according to claim 1, characterised in that the surface of the trough-shaped recess (51) is substantially a negative image of an opposite surface of an upstream heat-transfer element in the flow direction.
  3. The heat exchanger according to claim 1 or 2, characterised in that the transverse heat-transfer element (50) downstream has a surface having two flattened sections (52) between which an indentation (53) is formed centrally.
  4. The heat exchanger according to any one of the preceding claims, characterised in that in a plane of the heating gas flue (19) located perpendicular to the flow direction of the combustion gas, four transverse heat-transfer elements (50) are located, wherein respectively two transverse heat transfer elements (50) extend from the opposite heat-transferring side of the heat-transferring wall (11) in the same direction.
  5. The heat exchanger according to any one of the preceding claims, characterised in that an extended fin-shaped heat-transfer element (40) extending in the flow direction is mounted upstream of the transverse heat transfer element (50) in the flow direction of the combustion gas.
  6. The heat exchanger according to any one of the preceding claims, characterised in that adjacent to the transverse heat transfer elements (50), the flow cross-section of the heating gas flue (19) is expanded in the direction of the low-loaded thermal regions of the heat exchanger.
  7. The heat exchanger according to any one of the preceding claims, characterised in that the heat exchanger is made from a metal material by casting and that at least the transverse heat-transfer element (50) is cast onto the heat-transferring wall (11).
EP20050112088 2005-02-02 2005-12-14 Heat exchanger with optimized heat transfer elements Expired - Fee Related EP1703226B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510004740 DE102005004740B3 (en) 2005-02-02 2005-02-02 Heat exchanger for hot water heating has in one section of hot gas flue at least one transversely lying heat transfer element with cross section with larger extent at right angles to direction of exhaust gas flow than that parallel to it

Publications (2)

Publication Number Publication Date
EP1703226A1 EP1703226A1 (en) 2006-09-20
EP1703226B1 true EP1703226B1 (en) 2011-07-27

Family

ID=36286174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050112088 Expired - Fee Related EP1703226B1 (en) 2005-02-02 2005-12-14 Heat exchanger with optimized heat transfer elements

Country Status (2)

Country Link
EP (1) EP1703226B1 (en)
DE (1) DE102005004740B3 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR957533A (en) * 1950-02-23
US1855777A (en) * 1928-03-28 1932-04-26 Bryant Heater & Mfg Company Boiler section
DE9017405U1 (en) * 1990-12-22 1991-03-21 Buderus Heiztechnik Gmbh, 6330 Wetzlar, De
DE10013608C2 (en) * 2000-03-18 2002-01-31 Bosch Gmbh Robert Heat exchanger for a gas condensing boiler
DE10255464A1 (en) * 2002-11-28 2004-06-09 Robert Bosch Gmbh Heat exchanger for a heater
DE10306699A1 (en) * 2003-02-18 2004-09-02 Robert Bosch Gmbh Heat exchanger with a flow-optimized heat-absorbing flow channel, in particular for a heater

Also Published As

Publication number Publication date
DE102005004740B3 (en) 2006-06-14
EP1703226A1 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
EP3040638B1 (en) Heat transfer pipe and boiler comprising one such heat transfer pipe
WO2010142552A2 (en) Sectional boiler
EP0544853A1 (en) Air heater.
EP2313698B1 (en) Cast iron or aluminum sectional boiler
DE4207500C2 (en) Boiler with reduced NO¶x¶ emissions
EP2250448B1 (en) Cast-iron or aluminium sectional boiler
EP1108963B1 (en) Combustion gas heat exchanger
EP2438382B1 (en) Sectional boiler
EP1703226B1 (en) Heat exchanger with optimized heat transfer elements
EP1602886B1 (en) Boiler
DE2016560A1 (en) Space heater for small rooms
EP1221571B1 (en) Cooled combustion apparatus
EP0618410A2 (en) Heat exchanger for a condensing boiler
EP0816776B1 (en) Gas fired water heater and water cooled combustion chamber
EP0031571B1 (en) Boiler
WO1994017338A1 (en) Heating boiler
DE3509887C2 (en)
AT3686U1 (en) BOILER WITH A COMBUSTION CHAMBER
DE2154714C3 (en) Heater for a hot gas engine
EP1790507B1 (en) Heat exchanger assembly for a vehicle air conditioning unit
AT504771B1 (en) HEAT EXCHANGER WITH FIRE CHAMBER FOR A FUEL-HEATED HEATER
DE7136314U (en) Heating boiler
DE2028191A1 (en) boiler
DE3423628A1 (en) Heating boiler with a combustion chamber and a burner arranged therein
DE2116993A1 (en) Overpressure steel boiler in horizontal design for oil and gas heating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070320

AKX Designation fees paid

Designated state(s): DE FR GB IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005011671

Country of ref document: DE

Effective date: 20110922

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005011671

Country of ref document: DE

Effective date: 20120502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502005011671

Country of ref document: DE

Effective date: 20120919

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181217

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181010

Year of fee payment: 15

Ref country code: IT

Payment date: 20181218

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190221

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005011671

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191214

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

REG Reference to a national code

Ref country code: GB

Ref legal event code: S28

Free format text: APPLICATION FILED

REG Reference to a national code

Ref country code: GB

Ref legal event code: S28

Free format text: RESTORATION ALLOWED

Effective date: 20221222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 19