EP1702381A2 - Suspension for the generation of a current of electrons and the use and the preparation thereof - Google Patents
Suspension for the generation of a current of electrons and the use and the preparation thereofInfo
- Publication number
- EP1702381A2 EP1702381A2 EP04793664A EP04793664A EP1702381A2 EP 1702381 A2 EP1702381 A2 EP 1702381A2 EP 04793664 A EP04793664 A EP 04793664A EP 04793664 A EP04793664 A EP 04793664A EP 1702381 A2 EP1702381 A2 EP 1702381A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- suspension according
- suspension
- hollow particle
- polypeptide
- glucose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000725 suspension Substances 0.000 title claims abstract description 70
- 238000002360 preparation method Methods 0.000 title description 2
- 239000002245 particle Substances 0.000 claims abstract description 54
- 229920001184 polypeptide Polymers 0.000 claims abstract description 26
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 26
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 26
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 20
- 239000008103 glucose Substances 0.000 claims abstract description 20
- 239000006185 dispersion Substances 0.000 claims abstract description 15
- 239000000243 solution Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000000446 fuel Substances 0.000 claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 239000007864 aqueous solution Substances 0.000 claims abstract description 7
- 150000001408 amides Chemical class 0.000 claims abstract description 6
- 238000001514 detection method Methods 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims abstract description 4
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 claims abstract description 3
- 125000003226 pyrazolyl group Chemical group 0.000 claims abstract description 3
- YAYGSLOSTXKUBW-UHFFFAOYSA-N ruthenium(2+) Chemical compound [Ru+2] YAYGSLOSTXKUBW-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229940088598 enzyme Drugs 0.000 claims description 25
- 102000004190 Enzymes Human genes 0.000 claims description 24
- 108090000790 Enzymes Proteins 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 235000019420 glucose oxidase Nutrition 0.000 claims description 15
- 108010015776 Glucose oxidase Proteins 0.000 claims description 13
- 239000004366 Glucose oxidase Substances 0.000 claims description 12
- 229940116332 glucose oxidase Drugs 0.000 claims description 12
- 229920000575 polymersome Polymers 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 10
- 229920001400 block copolymer Polymers 0.000 claims description 7
- 229920001940 conductive polymer Polymers 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 7
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 238000006479 redox reaction Methods 0.000 claims description 3
- 108091006149 Electron carriers Proteins 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical class [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 claims description 2
- 229930192474 thiophene Natural products 0.000 claims description 2
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 claims 1
- 230000002209 hydrophobic effect Effects 0.000 claims 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 18
- 239000012528 membrane Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000032258 transport Effects 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000002322 conducting polymer Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000012209 glucono delta-lactone Nutrition 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BUBVLQDEIIUIQG-UHFFFAOYSA-N 3,4,5-tris(phenylmethoxy)-6-(phenylmethoxymethyl)oxan-2-one Chemical compound C=1C=CC=CC=1COC1C(OCC=2C=CC=CC=2)C(OCC=2C=CC=CC=2)C(=O)OC1COCC1=CC=CC=C1 BUBVLQDEIIUIQG-UHFFFAOYSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229940116283 combination glucose Drugs 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229960003681 gluconolactone Drugs 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000441 polyisocyanide Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M10/4257—Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/16—Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0472—Vertically superposed cells with vertically disposed plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1009—Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a suspension that can be used to generate a current of electrons, the use of the suspension for the production of a battery or more specifically of a nano-battery for the use in combination with a microchip.
- the present invention furthermore relates to a battery using the suspension, a fuel cell comprising: an anode compartment including an anode; a cathode compartment including a cathode; and disposed within said anode compartment, within said cathode compartment, or between said anode compartment and said cathode compartment, the suspension, a device for detection of a solute using the suspension, more specifically a device for the detection of glucose, a method of producing electrical power comprising the use of the suspension, and a method for preparing the suspension.
- the present invention relates to a suspension that can be used to generate a current of electrons, which suspension comprises a polypeptide, characterized in that the polypeptide is entrapped in a hollow particle. Because the polypeptide is entrapped and not embedded in the shell of the hollow particle, the hollow particle could have a shell that has unique properties, such as selective permeability, robustness and conductivity.
- the polypeptide can be any polypeptide that is active in an aqueous solution.
- the suspension preferably contains more hollow particles, in which preferably more than one polypeptide is entrapped. Preferably the density of the hollow particles in the suspension is such that the majority of the hollow particles is in close contact to each other for a more efficient generation of current of electrons.
- the hollow particle holds the polypeptide in a certain distribution within the suspension so the activity of the polypeptide is also well distributed and will stay well distributed.
- the hollow particle is not permeable to the polypeptide.
- the invention relates to a hollow particle that is a vesicle.
- a vesicle is a particular hollow particle that is composed of amphiphilic molecules that form the outer shell. Vesicles that entrap a polypeptide can be prepared by adding the molecules to the polypeptide.
- the hollow particle is a polymersome.
- a polymersome is a vesicle that is constructed from polymeric amphiphilic building blocks and can have unique properties such as rigidity and the ability to conduct electrons.
- the shell of the hollow particle is conductive. Because of the conductivity the electrons generated within the hollow sphere are transported via the conducting outer shells of the hollow particles and can be transported to the anode. Preferably there is no accumulation of electrons inside the hollow particles and transport of electrons is proceeding via the outer shell.
- the hollow particle is composed of conductive polymer. Specific types of polymers can easily conduct electrons and are readily synthesized.
- the hollow particle is composed of a block-copolymer. This polymer readily forms vesicles and forms a conductive outer shell.
- the hollow particle is composed of a rigid helical polyisocyanide head group and a flexible polystyrene tail, preferably polystyrene- ⁇ -poly(L-isocyanoalanine(2-thiophen-3- yl-ethyl)amide) (PS-PIAT).
- PS-PIAT polystyrene- ⁇ -poly(L-isocyanoalanine(2-thiophen-3- yl-ethyl)amide)
- PS-PIAT polystyrene- ⁇ -poly(L-isocyanoalanine(2-thiophen-3- yl-ethyl)amide)
- PS-PIAT polystyrene- ⁇ -poly(L-isocyanoalanine(2-thiophen-3- yl-ethyl)amide)
- PS-PIAT polystyrene- ⁇ -poly(L-isocyanoalanine(2-thiophen-3- yl-ethy
- the membrane thickness of 30 ⁇ 10 nm was determined by scanning electron micrograph (SEM).
- SEM scanning electron micrograph
- the thiophene side groups present in the side chain of PS-PIAT are polymerized, thereby providing the vesicles with a more conducting polymer outer and inner shell. This can be performed electrochemically or by chemical oxidation. This polymerization results in cross-linking of the polymersome membrane. Studies have shown that the electron conducting properties of the PS-PIAT polymersomes improve after cross-linking.
- the polypeptide is capable of participating in a chemical reaction or is capable in participating in the formation of a molecular structure that facilitate such reaction.
- the chemical reaction can result in release of electrons that can be transported through the shell of the hollow particle, preferably through the conductive outer shell of vesicles.
- Such a polypeptide could potentially be a genetically modified polypeptide that is very stable for a long time.
- the polypeptide could be linked to the inner side of the vesicle by for example a lipophylic tail attached to the enzyme.
- the polypeptide preferably is an enzyme and in a preferred embodiment of the present invention the hollow particle is permeable to a substrate of the enzyme.
- the chemical reaction preferably is a redox reaction. With redox reaction electrons are released and can diffuse to the shell of the hollow particle and can be transported through the shells in a specific direction. More preferred is that the chemical reaction is an oxidation. Many enzymes in nature catalyze an oxidation reaction and the substrates for those enzymes are molecules that are easily available and relatively cheap.
- the polypeptide is a glucose oxidase.
- the chemical reaction is the conversion of ⁇ -D-glucose into D- glucono-l,5-lactone. During this reaction two electrons are released, see below.
- the electrons that are liberated can be easily accepted by the conductive shell of the hollow particles, which also serve as organic electrodes.
- Glucose oxidase is relatively stable and a well known enzyme.
- the invention relates to a suspension wherein the hollow particle is embedded in a gel-like structure. In a gel-like structure the hollow particles diffuse slowly and the substrate diffuses slowly.
- the hollow particle is embedded in a glucose solution.
- Glucose is a good substrate for glucose oxidase and not expensive. In this respect of the invention glucose is the fuel from which electrons will be produced and is readily available and a relatively cheap.
- the combination glucose/glucose oxidase is a good and often used combination of enzyme/substrate.
- Glucose furthermore is stable and is obtainable in a very pure form.
- the electrons can find their path via the conductive outer shell(s) of the hollow particles, on the condition that the majority of the hollow particles contact each other ( Figure 2).
- a preferred embodiment of the invention comprises a matrix to contact at least one hollow particle for carrying out the electron transport, for example a conducting polymer (e.g. a polythiophene) that contacts the vesicles ( Figure 2).
- the matrix can cross-link at least one hollow particle to another hollow particle.
- the matrix can for example be partially embedded in the shell of some of the hollow particles.
- the suspension contains in a preferred embodiment known electron carriers such as ferrocene derivatives and viologen derivatives in order to facilitate electron transport.
- the present invention also relates to the use of the suspension described above for the production of a battery.
- the suspension described above is used for the production of a nano-battery for the use in combination with a microchip.
- the present invention furthermore relates to a battery using the suspension described above.
- Such a battery can use relatively cheap fuel, like glucose, and can deliver a constant current. Since it can be chosen that the components of such a battery are not toxic it is saver for use in for example a pace maker in humans. No known toxic compounds (except for the viologen derivatives) are included so there is no toxicity risk involved. In addition such a battery is not harmful for the environment.
- the present invention furthermore relates to a fuel cell comprising: an anode compartment including an anode; a cathode compartment including a cathode; and disposed within said anode compartment, within said cathode compartment, or between said anode compartment and said cathode compartment, the suspension described above.
- the electrons can find their path in the direction of the anode via the conductive outer shell of the hollow particle(s). See figure 1.
- the present invention also relates to a device for detection of a solute using the suspension described above.
- the suspension preferably comprises an enzyme that can chemically convert the solute. Preferably with these conversion electrons are released.
- a specific embodiment of the present invention in this respect relates to a glucose sensor using the suspension described above.
- the polypeptide in this embodiment is a glucose oxidase.
- glucose oxidase uses the glucose as a substrate and electrons are released. The electrons move via the outer shells of the hollow particles to an anode and a current of electrons can be detected.
- the present invention relates to a method of producing electrical power comprising the use of the suspension described above. Because of the natural source of energy this kind of electrical power is not harmful for the environment. The electrical power can for example be used for cars.
- the present invention furthermore relates to the process for preparing the suspension described above, comprising the steps of: (a) making an aqueous solution of bis(2,2'- bipyridine)ruthenium(II)bis(pyrazolyl); (b) injecting a solution containing polystyrene-6- poly(L-isocyanoalanine(2-thiophen-3-yl-ethyl)amide) in THF into the solution made in step (a). See example 1 for more details.
- the process furthermore comprises: (c) placing the dispersion made in step (b) at 60 °C; (d) cooling the dispersion to room temperature, and (e) filter dispersion of step (d) using a filter with a cutoff of 100 kDa. See example 1 for more details.
- Figure 1 shows a schematic picture of a designed battery.
- the plates are representations of electrodes of which the upper is the cathode and the plate below is the anode.
- the hollow particles are represented as circles of which one is enlarged at the right of the picture.
- the large arrows indicate the flow of respectively glucose (left arrow) and gluconolactone (right arrow), which is respectively the substrate and the product of the enzyme glucose oxidase which is indicated as circles entrapped in the hollow particle.
- the shell of the particle is shown as a shell composed of amphiphilic molecules. The small arrow indicates the flow of electrons.
- Figure 2 is a schematic representation of two different ways of electron transport pathways, (a) Hollow particles contact each other and create an electronic pathway via their conductive outer shells, (b) Vesicles are entrapped in a matrix of a conductive polymer which transports the electrons.
- Figure 4 TEM micrograph of the aggregates formed by the compartmentalization of GOx within PS-PIAT polymersomes.
- Encapsulation of the GOx enzymes was carried out by preparing a solution of 48 mg.1 "1 GOx dissolved in phosphate buffer (20 mM, pH 7.0). Into this solution a 1.0 mg-rnl "1 solution of PS-PIAT in THF was injected resulting in a final buffer to THF ratio of 6:1 (v/v). The free enzyme was removed by size exclusion chromatography using Sephadex G- 50 and an aqueous phosphate buffer (pH 7.5) as eluent. TEM micrographs of the resulting aggregates are shown in Figure 4.
- Cross-linking of the PS-PIAT polymersome membrane was done by making an aqueous solution of 0.20 ml of 30 mg.l "1 CAL B and 1.0 ml of 1.3 ⁇ M BRP in which 0.10 ml of a solution containing 0.50 g.l "1 PS-PIAT in THF was injected, resulting in a final water/THF ratio of 12:1 (v/v).
- a concentration of BRP was chosen that was comparable to the amount of thiophene groups present (2xl0 "7 M).
- the dispersion was placed in a water bath of 60 °C for the desired period of time.
- Reaction chamber A confined reaction chamber of about 1-2 cm 3 is filled with a water-based dispersion of the Glucose Oxidase-containing vesicles.
- the 'fuel' glucose can be dissolved in this dispersion up to relatively high concentrations.
- two electrodes are attached (constructed of e.g. Indium Tin Oxide (ITO)).
- ITO Indium Tin Oxide
- the battery can operate continuously for a period of about 8700 hours (1 year).
- the performance-limiting factor is the amount of glucose present and the build up of side products glucoselactone and protons.
- the system will, however, be subject to other factors that can affect its performance. One can think about enzyme degradation, in particular when the system is operating for a longer time.
- an important factor determining performance will be the efficiency of electron transport from the battery to the anode.
- the parameters of the battery can however be easily varied (e.g. the amounts of vesicles or glucose, the nature of the matrix).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Inert Electrodes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Secondary Cells (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1024573 | 2003-10-20 | ||
PCT/NL2004/000739 WO2005038968A2 (en) | 2003-10-20 | 2004-10-19 | Suspension for the generation of a current of electrons and the use and the preparation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1702381A2 true EP1702381A2 (en) | 2006-09-20 |
EP1702381B1 EP1702381B1 (en) | 2010-06-09 |
Family
ID=34464917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04793664A Expired - Lifetime EP1702381B1 (en) | 2003-10-20 | 2004-10-19 | Suspension for the generation of a current of electrons and the use and the preparation thereof |
Country Status (8)
Country | Link |
---|---|
US (1) | US20070224490A1 (en) |
EP (1) | EP1702381B1 (en) |
JP (1) | JP5132936B2 (en) |
CN (1) | CN100401572C (en) |
AT (1) | ATE470964T1 (en) |
DE (1) | DE602004027659D1 (en) |
ES (1) | ES2347251T3 (en) |
WO (1) | WO2005038968A2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1027428C2 (en) * | 2004-11-05 | 2006-05-09 | Encapson V O F | Permeable capsules, method of manufacture as well as use thereof. |
GB2449453A (en) * | 2007-05-22 | 2008-11-26 | Ugcs | A Biological fuel cell |
JP2009158458A (en) * | 2007-12-06 | 2009-07-16 | Sony Corp | Fuel cell, method of manufacturing fuel cell, electronic apparatus, enzyme immobilization electrode, biosensor, bioreactor, energy conversion element, and enzyme reaction utilization device |
JP5325540B2 (en) * | 2008-11-04 | 2013-10-23 | オリンパス株式会社 | Portable device |
WO2015007771A1 (en) * | 2013-07-18 | 2015-01-22 | Stichting Katholieke Universiteit, More Particularly Radboud Universiteit Nijmegen | Polymer suitable for use in cell culture |
CN105680056B (en) * | 2016-01-19 | 2018-07-10 | 南京斯博伏特新材料有限公司 | A kind of preparation method of the anode assembly of microbiological fuel cell |
NL2028542B1 (en) * | 2021-06-25 | 2023-01-02 | Philippina JANSSEN Catharina | A contrast agent for mri imaging diagnostics |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2077696B1 (en) * | 1970-02-06 | 1973-03-16 | Synthelabo | |
US4622294A (en) * | 1985-02-08 | 1986-11-11 | Kung Viola T | Liposome immunoassay reagent and method |
JPS6457152A (en) * | 1987-08-28 | 1989-03-03 | Nippon Suisan Kaisha Ltd | Analyzing method utilizing ribosome including enzyme |
JP2883132B2 (en) * | 1989-11-22 | 1999-04-19 | 沖電気工業株式会社 | Bio element |
US6022500A (en) * | 1995-09-27 | 2000-02-08 | The United States Of America As Represented By The Secretary Of The Army | Polymer encapsulation and polymer microsphere composites |
ATE231652T1 (en) * | 1998-07-09 | 2003-02-15 | Univ Michigan State | ELECTROCHEMICAL METHOD FOR GENERATING A BIOLOGICAL PROTON DRIVING FORCE AND REGENERATION OF THE PYRIDINE-NUCLEOTIDE COFACTOR |
KR100303611B1 (en) * | 1999-07-07 | 2001-09-24 | 박호군 | An Electrochemical Method for Enrichment of Microorganism, and a Biosensor for Analyzing Organic Substance and BOD |
AU2002353776A1 (en) * | 2001-12-11 | 2003-06-23 | Powerzyme, Inc. | Biocompatible membranes of block copolymers and fuel cells produced therewith |
US6781616B2 (en) * | 2002-09-12 | 2004-08-24 | Eastman Kodak Company | Preventing crease formation in donor web in dye transfer printer that can cause line artifact on print |
US7638228B2 (en) * | 2002-11-27 | 2009-12-29 | Saint Louis University | Enzyme immobilization for use in biofuel cells and sensors |
-
2004
- 2004-10-19 ES ES04793664T patent/ES2347251T3/en not_active Expired - Lifetime
- 2004-10-19 JP JP2006536467A patent/JP5132936B2/en not_active Expired - Lifetime
- 2004-10-19 CN CNB2004800308591A patent/CN100401572C/en not_active Expired - Lifetime
- 2004-10-19 AT AT04793664T patent/ATE470964T1/en not_active IP Right Cessation
- 2004-10-19 DE DE602004027659T patent/DE602004027659D1/en not_active Expired - Lifetime
- 2004-10-19 US US10/576,701 patent/US20070224490A1/en not_active Abandoned
- 2004-10-19 EP EP04793664A patent/EP1702381B1/en not_active Expired - Lifetime
- 2004-10-19 WO PCT/NL2004/000739 patent/WO2005038968A2/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2005038968A2 * |
Also Published As
Publication number | Publication date |
---|---|
CN1871738A (en) | 2006-11-29 |
DE602004027659D1 (en) | 2010-07-22 |
US20070224490A1 (en) | 2007-09-27 |
EP1702381B1 (en) | 2010-06-09 |
WO2005038968A2 (en) | 2005-04-28 |
ES2347251T3 (en) | 2010-10-27 |
WO2005038968A3 (en) | 2005-06-02 |
CN100401572C (en) | 2008-07-09 |
ATE470964T1 (en) | 2010-06-15 |
JP2007509479A (en) | 2007-04-12 |
JP5132936B2 (en) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Heller | Electron-conducting redox hydrogels: design, characteristics and synthesis | |
Lutkenhaus et al. | Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors | |
ul Haque et al. | A review: Evolution of enzymatic biofuel cells | |
Srinophakun et al. | Application of modified chitosan membrane for microbial fuel cell: Roles of proton carrier site and positive charge | |
Sumisha et al. | Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications-a comparative study | |
US10505197B2 (en) | Unitized electrode assembly with high equivalent weight ionomer | |
Hammond et al. | Solubilized Enzymatic Fuel Cell (SEFC) for quasi-continuous operation exploiting carbohydrate block copolymer glyconanoparticle mediators | |
Wang et al. | Direct electrochemistry and electrocatalysis of hemoglobin incorporated in composite film based on diblock weak polyelectrolyte PHAEMA-b-PDMAEMA and multi-walled carbon nanotubes | |
Qi et al. | Shape-controllable binderless self-supporting hydrogel anode for microbial fuel cells | |
Kaneko et al. | Redox‐Active Polymers Connecting Living Microbial Cells to an Extracellular Electrical Circuit | |
Ikram et al. | Chitosan-based polymer electrolyte membranes for fuel cell applications | |
Lee et al. | Maximizing the enzyme immobilization of enzymatic glucose biofuel cells through hierarchically structured reduced graphene oxide | |
EP1702381B1 (en) | Suspension for the generation of a current of electrons and the use and the preparation thereof | |
KR101350382B1 (en) | Styrene-butadiene triblock copolymer, and preparing method of the same | |
Hossain et al. | Effect of pore size of MgO-templated porous carbon electrode on immobilized crosslinked enzyme–mediator redox network | |
Kangkamano et al. | Product-to-intermediate relay achieving complete oxygen reduction reaction (cORR) with Prussian blue integrated nanoporous polymer cathode in fuel cells | |
US20080213631A1 (en) | Hybrid Power Strip | |
Kuwahara et al. | Bioelectrocatalytic fructose oxidation with fructose dehydrogenase-bearing conducting polymer films for biofuel cell application | |
Shen et al. | An electrodeposited redox polymer–laccase composite film for highly efficient four-electron oxygen reduction | |
Ghimire et al. | Three-dimensional, enzyme biohydrogel electrode for improved bioelectrocatalysis | |
La Rotta et al. | Synthesis and characterization of chemical modified carbon-chitosan composites applied to glucose oxidase fuel cells | |
WO2011006216A1 (en) | Electrode for electrochemical cells | |
Sahai et al. | High performance polymer hydrogel based materials for fuel cells | |
Nikiforidis et al. | Redox-active polymers in biofuel cells | |
Ahmed et al. | Menadione-modified anodes for power enhancement in single chamber microbial fuel cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060519 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20061027 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602004027659 Country of ref document: DE Date of ref document: 20100722 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2347251 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100609 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100609 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100910 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100609 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100609 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100609 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101011 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100609 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100609 |
|
26N | No opposition filed |
Effective date: 20110310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004027659 Country of ref document: DE Effective date: 20110309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100609 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101210 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100909 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20200206 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201019 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20221026 Year of fee payment: 19 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230507 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231027 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231102 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231023 Year of fee payment: 20 Ref country code: FR Payment date: 20231025 Year of fee payment: 20 Ref country code: DE Payment date: 20231027 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231027 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231101 |