EP1702137A1 - Engine with an active mono-energy and/or bi-energy chamber with compressed air and/or additional energy and thermodynamic cycle thereof - Google Patents

Engine with an active mono-energy and/or bi-energy chamber with compressed air and/or additional energy and thermodynamic cycle thereof

Info

Publication number
EP1702137A1
EP1702137A1 EP04805466A EP04805466A EP1702137A1 EP 1702137 A1 EP1702137 A1 EP 1702137A1 EP 04805466 A EP04805466 A EP 04805466A EP 04805466 A EP04805466 A EP 04805466A EP 1702137 A1 EP1702137 A1 EP 1702137A1
Authority
EP
European Patent Office
Prior art keywords
engine
active chamber
energy
piston
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04805466A
Other languages
German (de)
French (fr)
Other versions
EP1702137B1 (en
Inventor
Guy c/o MDI S.A. NEGRE
Cyril c/o MDI S.A. NEGRE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MDI Motor Development International SA
Original Assignee
MDI Motor Development International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MDI Motor Development International SA filed Critical MDI Motor Development International SA
Priority to PL04805466T priority Critical patent/PL1702137T3/en
Priority to SI200430546T priority patent/SI1702137T1/en
Publication of EP1702137A1 publication Critical patent/EP1702137A1/en
Application granted granted Critical
Publication of EP1702137B1 publication Critical patent/EP1702137B1/en
Priority to CY20071101531T priority patent/CY1108097T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B19/00Positive-displacement machines or engines of flexible-wall type
    • F01B19/02Positive-displacement machines or engines of flexible-wall type with plate-like flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups

Definitions

  • the invention relates to an engine operating particularly with compressed air or any other gas, and more particularly using a piston stroke control device having the effect of stopping the piston at its top dead center for a period of time as well as an ambient thermal energy recovery device that can operate in mono energy or bi energy.
  • variable volume expansion chamber consisting of two separate capacitors, one of which is in communication with the compressed air supply and the other paired with the cylinder and can be placed in communication with each other or isolated so that during the exhaust cycle it is possible to charge compressed air the first of these capacities and then to establish the pressure in the second, at the end of the exhaust then that the piston is stopped at its top dead center and before the resumption of its race, the two capacities remaining in communication and relaxing together to perform the engine time and that at least one of the two capacities is provided with means for modifying their volume to allow equal pressure to vary the resulting torque of the engine.
  • the engine according to the invention uses a piston stop device at top dead center. It is preferably supplied with compressed air or any other compressed gas contained in a high-pressure storage tank, through a so-called working capacity buffer capacity.
  • the working capacity in bi energy version comprises an air heating device powered by additional energy (fossil or other energy) for increasing the temperature and / or the pressure of the air passing through it.
  • the engine according to the invention is characterized by the means used taken as a whole or separately and more particularly: -
  • the expansion chamber consists of a variable volume equipped with means for producing a work and that 'it is twinned and in contact by a permanent passage with the space included above the main engine piston, -
  • the air or the pressurized gas is admitted into the expansion chamber when it is at its smallest volume and, under the pressure, will increase its volume producing a work
  • the expansion chamber is maintained substantially at its maximum volume, the compressed air contained therein then relaxes in the engine cylinder thus pushing the engine piston in its downward stroke by providing a work in turn, -
  • the volume varies.
  • the expansion chamber is reduced to its smallest volume to begin a complete work cycle.
  • the engine expansion chamber according to the invention actively participates in the work.
  • the engine according to the invention is called active chamber engine.
  • the engine according to the invention is advantageously equipped with a variable-rate expander according to WO 03/089764 A1, known as a dynamic expander, which makes it possible to supply the working capacity at its operating pressure with compressed air coming from the fuel tank. storage by performing a work-free expansion of the isothermal type.
  • thermodynamic cycle according to the invention is characterized by an isothermal expansion without work allowed by the dynamic expansion valve followed by a transfer accompanied by a very slight relaxation almost isothermal - for example a capacity of 3,000 cubic centimeters in a capacity of 3050 centimeters cubic - with working by the use of the air pressure included in the working capacity during the filling of the expansion chamber, then a polytropic expansion of the expansion chamber in the engine cylinder with work and lowering of the temperature to end with the escape of the air relaxed to the atmosphere.
  • the thermodynamic cycle according to the invention therefore comprises four phases in mono-energy compressed air mode: - Isothermal expansion without work, - Transfer - slight relaxation with work said quasi-isothermal, - Polytropic relaxation with work, - A pressure exhaust room.
  • the compressed air contained in the working capacity is heated by additional energy in a thermal heater.
  • This arrangement makes it possible to increase the quantity of usable and available energy by the fact that the compressed air before its introduction into the active chamber will increase its temperature and increase pressure and / or volume allowing the increase in performance and or of autonomy.
  • the use of a thermal heater has the advantage of being able to use clean continuous combustions that can be catalysed or cleaned up by any known means in order to obtain emissions of minute pollutants.
  • the thermal heater can use for energy a fossil fuel such as gasoline gas, or LPG gas CNG, it can use bio fuels or alcohols - ethanol, methanol - to achieve a bi-energy operation with external combustion where a burner will cause a rise in temperature.
  • the heater advantageously uses thermochemical processes based on absorption and desorption processes, such as those used and described, for example in patents EP 0 307297 A1 and EP 0 382586 B1, these processes using the evaporation transformation of a fluid for example liquid ammonia gas reacting with salts such as calcium chloride, manganese or other, the system operating as a thermal battery.
  • the active chamber motor is equipped with a burner heat heater, or the like, and a thermochemical heater of the aforementioned type that can be used jointly or successively during phase 1 of the thermochemical heater.
  • the thermal burner heater will allow to regenerate (phase 2) the thermochemical heater when the latter is empty by heating the reactor during the continued operation of the group with the use of the burner heater.
  • the active chamber engine according to the invention is an external combustion engine engine said external combustion engine.
  • thermodynamic cycle then comprises five phases: an isothermal expansion, - An increase of the temperature, - A transfer - slight relaxation with quasi-isothermal work, - A polytropic relaxation with work, - An exhaust at ambient pressure.
  • any mechanical, hydraulic or other electrical provisions allowing, with respect to the engine cycle, the completion in three phases of the working cycle of the active chamber, namely: during the stopping of the engine piston at its top dead center: a load in the active chamber producing a work by increasing its volume, - during the expansion stroke of the engine piston: maintaining a predetermined volume which is the actual volume of the expansion chamber, - during the exhaust time of the piston engine: repositioning the active chamber to its minimum volume to allow the renewal of the cycle can be used without changing the principle of the invention described.
  • variable-volume expansion chamber known as the active chamber consists of a so-called sliding piston sliding in a cylinder and connected by a connecting rod to the crankshaft of the engine, a classic concept which determines a two-phase kinematics: downward stroke and ascending race.
  • the engine piston is controlled by a piston stop device at the top dead center which determines a three-phase kinematics: upstroke, stop at top dead center and down stroke.
  • the strokes of the load piston and of the engine piston are different, that of the load piston being longer and predetermined so that when in the downward stroke of the load piston, the volume chosen as the "actual expansion chamber volume" is reached, the downward stroke of the engine piston starts and during this downward stroke, the load piston continues and ends its own down stroke - still producing a job - then begins its upward stroke as the shorter and faster racing engine piston catches it in its upstroke so that both pistons reach their top dead spots substantially at the same time.
  • the load piston undergoes during the beginning of its upward stroke a negative work which, in fact, has been compensated by a surplus of positive work in the end of its downward stroke.
  • the engine according to the invention is driven in torque and in speed, by the control of the pressure in the working capacity, said control being advantageously provided by the dynamic expander, when it operates in dual energy mode with additional energy (fossil or other) an electronic computer controls the amount of additional energy provided, as a function of the pressure in said working capacity
  • the active chamber motor according to the invention is coupled to an air compressor for supplying compressed air to the high pressure compressed air storage tank.
  • the bi-energy active chamber engine thus equipped normally operates in two modes by using, on a vehicle in town for example, zero pollution operation with compressed air contained in the high pressure storage tank, and on the road, always for the example, in operation additional energy with its thermal heater powered by fossil energy or other, while supplying air through an air compressor the high pressure storage tank.
  • the air compressor directly supplies the working capacity.
  • the control of the engine is carried out by the pressure control of the compressor and the dynamic expander between the high pressure storage tank and the working capacity remains closed.
  • the air compressor supplies either the high pressure reservoir or the working capacity or the two volumes in combination.
  • the bi-active active-chamber motor according to the invention actually has three main modes of operation: - mono-energy compressed air, - bi-energy compressed air plus additional energy, - mono energy with additional energy fuel.
  • the active chamber engine is also feasible in mono energy with fossil fuel or other when coupled to an air compressor supplying the working capacity as described above, the high pressure compressed air storage tank being then purely and simply deleted. In the case of operation in additional energy mode, with the use of external-external combustion the exhaust of the active chamber engine can be recycled to the intake of the compressor.
  • the motor consists of several expansion stages, each stage comprising an active chamber according to the invention; between each stage is positioned a heat exchanger for heating the exhaust air of the preceding stage in the case of a mono-energy operation compressed air and / or an additional energy heating device in the case of operation in bi energy.
  • the displacements of the next stage being larger than those of the previous stage.
  • the expansion in the first cylinder having produced a lowering of temperature, the air will be heated advantageously in an air-air heat exchanger with the ambient temperature.
  • a bi-energy engine in additional energy mode, it is proceeded to the heating of the air by additional energy in a thermal heater, for example fossil.
  • FIG. 1 schematically represents an active chamber motor; in cross-section, and its HP air supply device.
  • FIG. 2 to 4 show in schematic views, in cross section, the various phases of operation of the engine according to the invention.
  • - Figure 5 shows a comparative curve of the kinematics of the piston stroke load and engine piston.
  • FIG. 6 represents a graph of the thermodynamic cycle in mono-energy compressed air mode.
  • FIG. 7 schematically represents an active chamber engine seen in cross section and its HP air supply device comprising a device for heating the air by combustion.
  • FIG. 8 represents a graph of the thermodynamic cycle in dual energy compressed air and additional energy mode.
  • FIG. 9 shows, schematically, an active chamber motor according to the invention coupled to an air compressor allowing autonomous operation.
  • Figure 10 shows schematically an active chamber motor according to the invention coupled to a compressor supplying the storage tank and the working capacity.
  • FIG. 11 schematically represents an active chamber motor according to the invention comprising two expansion stages.
  • FIG. 12 schematically represents an active-chamber motor according to the invention in single-energy mode with fossil fuel.
  • FIG. 1 represents an active chamber motor according to the invention, in which the engine cylinder in which the piston 1 (shown at its top dead center) slides in a cylinder 2, which is controlled by a lever pressure.
  • the piston 1 is connected by its axis to the free end 1A of a pressure lever consisting of an arm 3 articulated on a common axis 5 to another arm 4 fixed oscillating on a stationary axis 6.
  • On the axis common to the two arms 3 and 4 is attached a control rod 7 connected to the crankpin 8 of a crankshaft 9 rotating on its axis 10.
  • the control rod 7 exerts a force on the common axis 5 of the two arms 3 and 4 of the pressure lever, thus allowing the displacement of the piston 1 along the axis of the cylinder 2, and transmits back to the crankshaft 9 the forces exerted on the piston 1 during the engine tempo thus causing its rotation.
  • the engine cylinder is in communication through a passage 12 in its upper part with the active chamber cylinder 13 in which slides a piston 14 said load piston connected by a connecting rod 15 to a crankpin 16 of the crankshaft 9.
  • An intake duct 17 controlled by a valve 18 opens into the passage 12 connecting the engine cylinder 2 and the active chamber cylinder 13 and supplies the engine with compressed air from the working chamber 19 maintained at the working pressure itself fed with compressed air through a conduit 20 controlled by a dynamic expander 21 by the high-pressure storage tank 22.
  • a conduit 20 controlled by a dynamic expander 21 by the high-pressure storage tank 22 In the upper part of the cylinder 1 is formed an exhaust duct 23 controlled by an exhaust valve 24.
  • a device controlled by the accelerator pedal controls the dynamic expander 21 to allow to regulate the pressure in the working chamber and thus drive the motor.
  • FIG. 2 shows schematically, seen in cross section, the active chamber motor according to the invention being admitted; the engine piston 1 is stopped at its top dead position and the intake valve 18 has just been opened, the pressure of the air contained in the working capacity 19 pushes the load piston 14 while filling the cylinder with the active chamber 13 and producing a job by causing by its connecting rod 15 the rotation of the crankshaft 9, the work being considerable because performed at almost constant pressure. By continuing its rotation, the crankshaft authorizes (FIG.
  • phase 5 represents the shape of the comparative curves of the piston strokes where the the rotation of the crankshaft can be seen on the abscissa and the displacement of the pistons, the load and the engine, from their top dead center to their bottom and back dead point, where, according to the invention, the stroke of the load piston is more large than that of the engine piston.
  • the graph is divided into 4 main phases. During phase A, the engine piston is kept at its top dead center and the load piston performs most of its downward stroke producing a job and then in Phase B the engine piston performs its descending downward stroke producing a job. while the load piston finishes its downward stroke also producing a job. As the load piston reaches its bottom dead point, phase C, the engine piston continues its downward stroke and the load piston begins its upward stroke.
  • phase D the two pistons reach their top dead center almost simultaneously for start a new cycle.
  • phases A, B, C the engine produces a job.
  • thermodynamic cycle in mono-energy compressed air mode in which the different phases of the cycle can be seen in the different capacities (on the abscissa) constituting the active-chamber motor according to the invention, the pressures being in the ordinate ; in the first capacity, which is the storage tank, we see a network of isothermal curves ranging from the storage pressure Pst to the initial working pressure P1T, the storage pressure decreasing as the tank is emptied while the PIT pressure will be controlled depending on the desired coupling between a minimum operating pressure and a maximum operating pressure here, for example, between 10 and 30 bar. In the working capacity during the charging of the active chamber, the pressure remains almost identical.
  • the compressed air contained in the working capacity is transferred to the active chamber producing a job accompanied by a very slight pressure decrease, for example, for a working capacity of 3000 cm3. and an active chamber of 35 cm3, the pressure drop is 1.16% and, still for the example, a real working pressure of 29.65 bar for an initial working pressure of 30 bar.
  • the engine piston starts its downward stroke with a polytropic expansion which produces a work with lowering of the pressure until the opening of the exhaust valve (for example around 2 bar) followed by the return to atmospheric pressure. during the escape time, to start a new cycle again.
  • FIG. 7 shows the engine and its assembly in a bi-energy version with additional energy or it can be seen in the working capacity 19 a schematic device for heating the compressed air with additional energy input here, a burner 25
  • the combustion shown in this figure is therefore an external-internal combustion and makes it possible to considerably increase the volume and / or the pressure of the compressed air coming from the storage tank.
  • FIG. 8 represents a graph of the thermodynamic cycle in bi energy compressed air and additional energy mode, in which the different phases of the cycle can be seen in the different capacities constituting the active-chamber motor according to the invention.
  • the first capacity which is the storage tank
  • the storage pressure Pst the storage pressure decreasing as the tank is emptied while the PIT pressure will be controlled according to the desired torque between a minimum operating pressure and a maximum operating pressure here for the example between 10 and 30 bar.
  • the reheating of the compressed air makes it possible to considerably increase the pressure from the initial pressure PIT to the final working pressure PFT: for example for a PIT of 30 bar a temperature increase of the order of 300 degrees makes it possible to obtain a PFT of the order of 60 bar.
  • the inlet valve opens, the compressed air contained in the working capacity is transferred into the active chamber, producing a job, accompanied by a very slight pressure decrease: for example for a working capacity of 3000 cm3 and an active chamber of 35 cm3 the pressure drop is 1.16% is and still for the example, a real working pressure of 59.30 bars for an initial working pressure of 60 bars; then the engine piston starts its downward stroke with a polytropic expansion which produces a work with lowering of the pressure until the opening of the exhaust valve (for example around 4 bars) followed by the return to the atmospheric pressure during the exhaust time, to start a new cycle.
  • the active chamber motor also operates independently of energy with the so-called additional fossil energy (or other) (FIG.
  • the air compressor directly supplies the working capacity; in this case of operation, the dynamic expansion valve 21 is kept closed and the compressor supplies compressed air to the working capacity in which the latter is heated by the heating device and increases pressure and / or volume to supply the active chamber 13 as described in the previous cases.
  • the motor is controlled by the pressure regulation directly by the compressor and the energy loss due to the compressor is much less than in the previous case.
  • the compressor supplies the high-pressure storage tank 22 and the working capacity 19 simultaneously with the energy requirements 19.
  • a bidirectional valve 28 can supply either the reservoir storage 22 is the working capacity 19 or both simultaneously. The choice is then a function of the energy requirements of the engine with regard to the energy requirements of the compressor: if the demand on the engine is relatively low, the high pressure reservoir is then supplied; if the energy needs of the engine are high, only the working capacity is then fed.
  • FIG. 11 schematically represents an active chamber motor according to the invention comprising two stages of relaxation where the storage tank can be seen high pressure compressed air 22 the dynamic expansion valve 21 has working capacity 19 and the first stage comprising a driving cylinder 2 in which the piston 1 slides (shown at its top dead center), which is controlled by a pressure lever.
  • the piston 1 is connected by its axis to the free end 1A of a pressure lever consisting of an arm 3 articulated on a common axis 5 to another arm 4 fixed oscillating on a stationary axis 6.
  • On the axis common to the two arms 3 and 4 is attached a control rod 7 connected to the crank pin 8 of a crankshaft 9 rotating on its axis 10.
  • the engine cylinder is in communication through a passage 12 in its upper part with the active chamber cylinder 13 in which slides a piston 14 said load piston connected by a connecting rod 15 to a crankpin 16 of the crankshaft 9.
  • An intake duct 17 controlled by a valve 18 opens into the passage 12 connecting the engine cylinder 2 and the active chamber cylinder 13 and supplies the engine with compressed air from the working chamber 19 maintained at the working pressure and itself fed compressed by a duct 20 controlled by a dynamic expansion valve 21.
  • the exhaust duct 23 is connected through an exchanger 29 to the inlet 17B of the second stage of the engine comprising a motor cylinder 2B in which slides the piston 1B which is controlled by a pressure lever.
  • the piston 1B is connected by its axis to the free end 1C of a pressure lever consisting of an arm 3B articulated on a common axis 5B to another arm 4B fixed oscillating on a stationary axis 6B.
  • a control rod 7B connected to the crank pin 8B of a crankshaft 9 rotating on its axis 10.
  • the control rod 7B exerts a force on the common axis 5B of the two arms 3B and 4B of the pressure lever, thereby allowing the piston 1B to move along the axis of the cylinder 2B, and in return to the crankshaft 9 transmit the forces exerted on the piston 1B during the engine time thereby causing its rotation.
  • the engine cylinder is in communication through a passage 12B in its upper part with the active chamber cylinder 13B in which slides a piston 14B said load piston connected by a connecting rod 15B to a crank pin 16B of the crankshaft 9.
  • a intake pipe 17B controlled by a valve 18B opens into the passage 12B connecting the engine cylinder 2B and the active chamber cylinder 13B and provides power to the engine with compressed air.
  • the second floor is shown next to the first floor. It goes without saying that preferentially it is used a single crankshaft and that the second floor is on the same longitudinal plane as the first floor.
  • the exhaust duct 23 of the first engine stage is connected to through an air-to-air exchanger 29 to the intake duct 17B of the second engine stage.
  • FIG. 12 shows a monoenergy active chamber engine operating with a fossil fuel, the engine is coupled to a compressor 27 which supplies compressed air to the working capacity 19 which here comprises a burner 25 supplied with energy by a gas cylinder 26.
  • the general operation of the machine is the same as that described above.
  • the active chamber motor is described with operation with compressed air. However, it can use any compressed gas without changing the described invention.
  • the invention is not limited to the embodiments described and shown: the materials, the control means, the devices described may vary within the limit of equivalents, to produce the same results, the number of engine cylinders, their arrangement, and their volume and the number of stages of relaxation, may vary, without thereby changing the invention which has just been described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Wind Motors (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Soil Working Implements (AREA)
  • Supercharger (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

The inventive engine uses a top dead center piston stop device. It is fed by compressed air, which is contained in a high-pressure storage tank, via a working capacity (19), which, in the bi-energy version, comprises a device for heating the air supplied by additional energy. The active expansion chamber consists of a variable volume or charge piston sliding in a cylinder, coupled to space above the engine piston (1) by means of a passage (12). When stoped at upper dead center, the pressurized air is admitted into the expansion chamber with the smallest volume thereof and, under the effect of thrust, increases the volume thereof by producing work; the expansion chamber is then kept at a maximum volume during expansion of the engine cylinder (2) driving back the engine piston (1) in its downward stroke, providing work of its own. During exhaust, the two pistons (1 and 13) travel in an upward stroke and simultaneously reach top dead center in order to resume a new cycle. The invention can be used with land vehicles, cars, buses, motor bikes, boats, auxiliary generator sets, cogeneration units and fixed station motors.

Description

MOTEUR A CHAMBRE ACTIVÉ MONO ET/OU BI ENERGIE A AIR COMPRIME ET/OU ENERGIE ADDITIONNELLE ET SON CYCLE THERMODYNAMIQUE SINGLE AND / OR ENERGY ENHANCED CHIMNEY MOTOR WITH COMPRESSED AIR AND / OR ADDITIONAL ENERGY AND ITS THERMODYNAMIC CYCLE
L'invention concerne un moteur fonctionnant notamment avec de Pair comprimé ou tout autre gaz, et plus particulièrement utilisant un dispositif de contrôle de la course du piston ayant pour effet l'arrêt du piston à son point mort haut durant une période de temps ainsi qu'un dispositif de récupération d'énergie thermique ambiante pouvant fonctionner en mono énergie ou en bi énergie. Le rédacteur a déposé de nombreux brevets concernant des motorisations ainsi que leurs installations utilisant de l'air comprimé pour un fonctionnement totalement propre en site urbain et suburbain : - WO 96/27737 WO 97/00655 - WO 97/48884 WO 98/12062 WO 98/15440 - WO 98/32963 WO 99/37885 WO 99/37885 Pour la mise en œuvre de ces inventions, il a également décrit dans sa demande de brevet WO 99/63206, au contenu duquel on pourra se reporter, un procédé et dispositif de contrôle de la course des pistons de moteur permettant l'arrêt du piston à son point mort haut ; procédé également décrit dans sa demande de brevet WO 99/20881 au contenu duquel on pourra également se reporter et concernant le fonctionnement de ces moteurs en mono énergie ou en bi énergie, bi ou tri modes d'alimentation. Dans sa demande de brevet WO 99/37885 au contenu duquel on pourra également se reporter, il propose une solution qui permet d'augmenter la quantité d'énergie utilisable et disponible caractérisée par le fait que l'air comprimé, avant son introduction dans la chambre de combustion et ou d'expansion, provenant du réservoir de stockage soit directement soit après son passage dans le ou les échangeurs thermiques du dispositif de récupération d'énergie thermique ambiante, et avant son introduction dans la chambre de combustion, est canalisé dans un rèchauffeur thermique où, par accroissement de sa température, il va augmenter encore de pression et/ou de volume avant son introduction dans la chambre de combustion et/ou d'expansion du moteur, augmentant encore ainsi considérablement les performances pouvant être réalisées par ledit moteur. L'utilisation d'un réchauffeur thermique, et ce malgré l'utilisation d'un carburant fossîfe, présente l'avantage de pouvoir utiliser des combustions continues propres qui peuvent être catalysées ou dépolluées par tous moyens connus dans le but d'obtenir des émissions de polluant infimes. L'auteur a déposé un brevet WO 03/036088 A1, au contenu duquel on pourra se reporter, concernant un groupe motocompresseur - motoalternateur à injection d'air comprimé additionnel fonctionnant en mono et pluri énergie. Dans ces types de moteur fonctionnant avec de l'air comprimé et comportant un réservoir de stockage d'air comprimé, il est nécessaire de détendre l'air comprimé stocké à très haute pression dans le réservoir mais dont la pression diminue à mesure que le réservoir se vide à une pression intermédiaire stable dite pression finale d'utilisation dans une capacité tampon dite capacité de travail avant son utilisation dans le ou les cylindres moteur. Les détendeurs conventionnels à clapets et ressorts bien connus ont des débits très faibles et leur utilisation pour cette application demande des appareils très lourds et peu performants ; en outre, ils sont très sensibles au givrage dû à l'humidité de l'air refroidi lors de la détente. Pour résoudre ce problème, l'auteur a également déposé une demande brevet WO 03/089764 A1 , au contenu duquel on pourra se reporter, concernant un détendeur dynamique à débit variable et distribution pour moteurs alimentés avec injection d'air comprimé, comportant un réservoir d'air comprimé haute pression et une capacité de travail. Le rédacteur a également déposé une demande de brevet WO 02/070876 A1 concernant une chambre d'expansion à volume variable constituée de deux capacités distinctes dont l'une est en communication avec l'arrivée d'air comprimé et l'autre jumelée avec le cylindre et pouvant être mises en communication entre elles ou isolées de telle sorte que durant le cycle échappement il est possible de charger en air comprimé la première de ces capacités puis d'établir la pression dans la deuxième, dès la fin de l'échappement alors que le piston est arrêté à son point mort haut et avant la reprise de sa course, les deux capacités restant en communication et se détendant ensemble pour effectuer le temps moteur et qu'au moins une des deux capacités est pourvue de moyens permettant de modifier leur volume pour permettre à pression égale de faire varier le couple résultant du moteur. Dans le fonctionnement de ces moteurs à « détente de charge » le remplissage de la chambre représente toujours une détente nuisible au rendement général de la machine. Le moteur selon l'invention utilise un dispositif d'arrêt du piston au point mort haut. Il est alimenté préférentiellement par de l'air comprimé ou tout autre gaz comprimé contenu dans un réservoir de stockage haute pression, à travers une capacité tampon dite capacité de travail. La capacité de travail en version bi énergie comporte un dispositif de réchauffage de l'air alimenté par une énergie additionnelle (fossile ou autre énergie) permettant d'augmenter la température et/ou la pression de l'air qui la traverse. Le moteur selon l'invention est caractérisé par les moyens mis en œuvre pris dans leur ensemble ou séparément et plus particulièrement : - En ce que la chambre d'expansion est constituée d'un volume variable équipé de moyens permettant de produire un travail et qu'elle est jumelée et en contact par un passage permanent avec l'espace compris au-dessus du piston moteur principal, - En ce que, durant l'arrêt du piston moteur à son point mort haut, l'air ou le gaz sous pression est admis dans la chambre d'expansion lorsque celle-ci est à son plus petit volume et, sous la poussée, va augmenter son volume en produisant un travail, - En ce que la chambre d'expansion étant maintenue sensiblement à son volume maximum, l'air comprimé y contenu se détend ensuite dans le cylindre moteur repoussant ainsi le piston moteur dans sa course descendante en fournissant un travail à son tour, - En ce que, durant la remontée du piston moteur pendant le temps échappement, le volume variable de la chambre d'expansion est ramené à son plus petit volume pour recommencer un cycle de travail complet. La chambre d'expansion du moteur selon l'invention participe activement au travail. Le moteur selon l'invention est dit moteur à chambre active. Le moteur selon l'invention est avantageusement équipé d'un détendeur à débit variable selon WO 03/089764 A1 dit détendeur dynamique qui permet d'alimenter la capacité de travail à sa pression d'utilisation par de l'air comprimé provenant du réservoir de stockage en effectuant une détente sans travail de type isotherme. Le cycle thermodynamique selon l'invention est caractérisé par une détente isotherme sans travail permise par le détendeur dynamique suivi d'un transfert accompagné d'une très légère détente quasi isotherme - par exemple une capacité de 3 000 centimètres cube dans une capacité de 3050 centimètres cube - avec travail par l'utilisation de la pression de l'air compris dans la capacité de travail durant le remplissage de la chambre d'expansion, puis d'une détente polytropique de la chambre d'expansion dans le cylindre moteur avec travail et abaissement de la température pour se terminer par l'échappement de l'air détendu à l'atmosphère. Le cycle thermodynamique selon l'invention comprend donc quatre phases en mode mono énergie air comprimé : - Une détente isotherme sans travail, - Un transfert - légère détente avec travail dit quasi-isotherme, - Une détente polytropique avec travail, - Un échappement à pression ambiante. Dans son application bi-énergie selon l'invention, et en mode carburant additionnel, l'air comprimé contenu dans la capacité de travail est réchauffé par une énergie additionnelle dans un réchauffeur thermique. Cette disposition permet d'augmenter la quantité d'énergie utilisable et disponible par le fait que l'air comprimé avant son introduction dans la chambre active va accroître sa température et augmenter de pression et/ou de volume permettant l'augmentation des performances et ou de l'autonomie. L'utilisation d'un réchauffeur thermique présente l'avantage de pouvoir utiliser des combustions continues propres qui peuvent être catalysées ou dépolluées par tous moyens connus dans le but d'obtenir des émissions de polluants infimes. Le réchauffeur thermique peut utiliser pour énergie un carburant fossile tel qu'essence gazole, ou bien gaz GPL GNV, il peut utiliser des carburants bio ou des alcools - éthanol, methanol - permettant de réaliser ainsi un fonctionnement bi énergie à combustion externe où un brûleur va provoquer une élévation de température. Selon une variante de l'invention, le réchauffeur utilise avantageusement des procédés thermochimiques basés sur des procédés d'absorption et de désorption, tels que ceux utilisés et décrits, par exemple dans les brevets EP O 307297 A1 et EP 0 382586 B1, ces procédés utilisant la transformation par évaporation d'un fluide par exemple d'ammoniac liquide en gaz réagissant avec des sels comme des chlorures de calcium, de manganèse ou autres, le système fonctionnant comme une pile thermique. Selon une variante de l'invention, le moteur à chambre active est équipé d'un réchauffeur thermique à brûleur, ou autre, et d'un réchauffeur thermochimique de type précédemment cité pouvant être utilisé conjointement ou successivement lors de la phase 1 du réchauffeur thermochimique où le réchauffeur thermique à brûleur va permettre de régénérer (phase 2) le réchauffeur thermochimique lorsque ce dernier est vide en réchauffant son réacteur durant la poursuite du fonctionnement du groupe avec l'utilisation du réchauffeur à brûleur. Dans le cas de l'utilisation d'un réchauffeur à combustion, le moteur à chambre active selon l'invention est un moteur à chambre de combustion externe dit moteur à combustion externe. Toutefois, soit les combustions dudit réchauffeur peuvent être internes en amenant la flamme directement au contact de l'air comprimé de fonctionnement, le moteur est alors dit à « combustion externe-interne », soit les combustions dudit réchauffeur sont externes en réchauffant l'air de fonctionnement au travers d'un échangeur et le moteur est alors dit à « combustion externe-externe ». En mode de fonctionnement avec énergie additionnelle, le cycle thermodynamique comprend alors cinq phases : - Une détente isotherme, - Une augmentation de la température, - Un transfert - légère détente avec travail dit quasi-isotherme, - Une détente polytropique avec travail, - Un échappement à pression ambiante. Toutes dispositions mécaniques, hydrauliques électriques ou autres permettant, en regard du cycle du moteur, l'accomplissement en trois phases du cycle de travail de la chambre active, à savoir : - pendant l'arrêt du piston moteur à son point mort haut : admission d'une charge dans la chambre active produisant un travail en augmentant son volume, - pendant la course de détente du piston moteur : maintien à un volume prédéterminé qui est le volume réel de chambre d'expansion, - pendant le temps d'échappement du piston moteur : repositionnement de la chambre active à son volume minimum pour permettre le renouvellement du cycle, peuvent être utilisées sans pour autant changer le principe de l'invention décrite. Préférentiellement, la chambre d'expansion à volume variable dite chambre active est constituée d'un piston dit piston de charge coulissant dans un cylindre et relié par une bielle au vilebrequin du moteur, concept classique qui détermine une cinématique à deux phases : course descendante et course ascendante. Le piston moteur est commandé par un dispositif d'arrêt du piston au point mort haut qui détermine une cinématique à trois phases : course ascendante, arrêt au point mort haut et course descendante. Pour permettre le calage du moteur selon l'invention, les courses du piston de charge et du piston moteur sont différentes, celle du piston de charge étant plus longue et prédéterminée de telle sorte que lorsque dans la course descendante du piston de charge, le volume choisi comme étant le «volume réel de chambre d'expansion » est atteint, la course descendante du piston moteur commence et que, durant cette course descendante, le piston de charge continue et termine sa propre course descendante - produisant toujours un travail - puis commence sa course ascendante alors que le piston moteur de course plus courte et plus rapide, le rattrape dans sa course ascendante afin que les deux pistons atteignent leurs points morts hauts sensiblement en même temps. Il est à noter que le piston de charge subit durant le début de sa course ascendante un travail négatif qui, de fait, a été compensé par un surcroît de travail positif dans la fin de sa course descendante. Lors du fonctionnement en mode air comprimé, sur un véhicule en site urbain pour un fonctionnement sans pollution par exemple, seule la pression de l'air comprimé stocké dans le réservoir haute pression est utilisée; en fonctionnement bî-ênergie en mode énergie additionnelle, (fossile ou autre), sur un véhicule sur route avec une pollution infime par exemple, le réchauffage de la capacité de travail est alors commandé, permettant d'augmenter la température de l'air qui la traverse et par voie de conséquence, son volume et ou sa pression utilisables permettant ainsi de meilleures performances et/ou autonomie. Le moteur selon l'invention est piloté en couple et en régime, par te contrôle dé la pression dans la capacité dé travail, ledit contrôle étant avantageusement assuré par le détendeur dynamique, lorsqu'il fonctionne en mode bi-énergie avec énergie additionnelle (fossile ou autre) un calculateur électronique contrôle la quantité d'énergie additionnelle apportée, en fonction de la pression dans ladite capacité de travail Selon une variante de l'invention, pour permettre le fonctionnement autonome du moteur lors de son utilisation en énergie additionnelle et/ou lorsque le réservoir de stockage d'air comprimé est vide le moteur à chambre active selon l'invention est couplé à un compresseur d'air permettant d'alimenter en air comprimé le réservoir de stockage d'air comprimé haute pression. Le moteur à chambre active bi énergie ainsi équipé fonctionne normalement selon deux modes en utilisant, sur un véhicule en ville par exemple, le fonctionnement zéro pollution avec de l'air comprimé contenu dans le réservoir de stockage haute pression, et sur route, toujours pour l'exemple, en fonctionnement énergie additionnelle avec son réchauffeur thermique alimenté par une énergie fossile ou autre, tout en réalimentant en air par un compresseur d'air le réservoir de stockage haute pression. Selon une autre variante de l'invention le compresseur d'air alimente directement la capacité de travail. Dans ce cas, le pilotage du moteur est réalisé par le pilotage en pression du compresseur et le détendeur dynamique entre le réservoir de stockage haute pression et la capacité de travail reste obturé. Selon une autre variante de ces dispositions, le compresseur d'air alimente soit le réservoir haute pression soit la capacité de travail soit encore les deux volumes en combinaison. Le moteur à chambre active bi énergie selon l'invention possède de fait trois modes principaux de fonctionnement : - mono énergie air comprimé, - bi énergie air comprimé plus énergie additionnelle, - mono énergie à carburant d'énergie additionnelle. Le moteur à chambre active est également réalisable en mono énergie à carburant fossile ou autre lorsqu'il est couplé à un compresseur d'air alimentant la capacité de travail comme décrit ci-dessus, le réservoir de stockage d'air comprimé haute pression étant alors purement et simplement supprimé. Dans le cas d'un fonctionnement en mode énergie additionnelle, avec l'utilisation d'une combustion externe-externe l'échappement du moteur à chambre active peut être recyclé à l'admission du compresseur. Selon une variante de l'invention le moteur est constitué de plusieurs étages de détente, chaque étage comportant une chambre active selon l'invention ; entre chaque étage est positionné un échangeur permettant de réchauffer l'air de l'échappement de l'étage précédent dans le cas d'un fonctionnement mono énergie air comprimé et/ou un dispositif de réchauffage à énergie additionnelle dans le cas d'un fonctionnement en bi énergie. Les cylindrées de l'étage suivant étant plus importantes que celles de l'étage précédent. Dans le cas d'un moteur mono énergie air comprimé la détente dans le premier cylindre ayant produit un abaissement de température, le réchauffement de l'air se fera avantageusement dans un échangeur air-air avec la température ambiante. Dans le cas d'un moteur bi-énergie en mode énergie additionnelle, il est procédé au réchauffement de l'air par une énergie additionnelle dans un réchauffeur thermique, par exemple fossile. Selon une variante de cette disposition, après chaque étage l'air de l'échappement est dirigé vers un seul réchauffeur à plusieurs étages permettant ainsi de n'utiliser qu'une source de combustion. Les échangeurs thermiques peuvent être des échangeurs air-air ou air liquide ou tout autre dispositif ou gaz produisant l'effet recherché. Le moteur à chambre active selon l'invention peut être utilisé sur tous véhicules terrestres, maritimes, ferroviaires, aéronautiques. Le moteur à chambre active selon l'invention peut également et avantageusement trouver son application dans les groupes électrogènes de secours, de même que dans de nombreuses applications domestiques de cogénération produisant de l'électricité, du chauffage et de la climatisation. D'autres buts, avantages et caractéristiques de l'invention apparaîtront à la lecture de la description, à titre non limitatif, de plusieurs modes de réalisation, faite en regard des dessins annexés où : La figure 1 représente schématiquement un moteur à chambre active vu en coupe transversale, et son dispositif d'alimentation en air HP. Les figures 2 à 4 représentent sur des vues schématiques, en coupe transversale, les différentes phases de fonctionnement du moteur selon l'invention. - La Figure 5 représente une courbe comparative de la cinématique des courses de piston de charge et de piston moteur. La figure 6 représente un graphique du cycle thermodynamique en mode mono énergie air comprimé. La figure 7 représente schématiquement un moteur à chambre active vu en coupe transversale et son dispositif d'alimentation en air HP comportant un dispositif de réchauffage de l'air par combustion. La figure 8 représente un graphique du cycle thermodynamique en mode bi-énergie air comprimé et énergie additionnelle. La figure 9 représente, vu schématiquement, un moteur à chambre active selon l'invention couplé à un compresseur d'air permettant un fonctionnement autonome. La figure 10. représente schématiquement un moteur à chambre active selon l'invention couplé à un compresseur alimentant le réservoir de stockage et la capacité de travail. La figure 11 représente schématiquement un moteur à chambre active selon l'invention comportant deux étages de détente. La figure 12 représente schématiquement un moteur à chambre active selon l'invention en mode mono énergie à carburant fossile. La figure 1 représente un moteur à chambre active selon l'invention où l'on peut voir le cylindre moteur dans lequel coulisse le piston 1 (représenté à son point mort haut), coulissant dans un cylindre 2, qui est commandé par un levier à pression. Le piston 1 est relié par son axe à l'extrémité libre 1A d'un levier à pression constitué d'un bras 3 articulé sur un axe commun 5 à un autre bras 4 fixé oscillant, sur un axe immobile 6. Sur l'axe commun 5 aux deux bras 3 et 4 est attachée une bielle 7 de commande reliée au maneton 8 d'un vilebrequin 9 tournant sur son axe 10. Lors de la rotation du vilebrequin, la bielle de commande 7 exerce un effort sur l'axe commun 5 des deux bras 3 et 4 du levier à pression, permettant ainsi le déplacement du piston 1 suivant l'axe du cylindre 2, et transmet en retour au vilebrequin 9 les efforts exercés sur le piston 1 lors du tempέ moteur provoquant ainsi sa rotation. Le cylindre moteur est en communication par un passage 12 dans sa partie haute avec le cylindre de chambre active 13 dans lequel coulisse un piston 14 dit piston de charge relié par une bielle 15 à un maneton 16 du vilebrequin 9. Un conduit d'admission 17 commandé par une soupape 18 débouche dans le passage 12 reliant le cylindre moteur 2 et le cylindre de chambre active 13 et permet d'alimenter le moteur en air comprimé provenant de la chambre de travail 19 maintenu à la pression de travail elle-même alimentée en air comprimé à travers un conduit 20 commandé par un détendeur dynamique 21 par le réservoir de stockage haute pression 22. Dans la partie supérieure du cylindre 1 est ménagé un conduit d'échappement 23 commandé par une soupape d'échappement 24. Un dispositif commandé par la pédale d'accélérateur commande le détendeur dynamique 21 pour permettre de réguler la pression dans la chambre de travail et piloter ainsi le moteur. La figure 2 représente schématiquement, vu en coupe transversale, le moteur à chambre active selon l'invention en cours d'admission ; le piston moteur 1 est arrêté à sa position point mort haut et la soupape d'admission 18 vient d'être ouverte, la pression de l'air contenue dans la capacité de travail 19 repousse le piston de charge 14 tout en remplissant le cylindre de la chambre active 13 et produisant un travail en provoquant par sa bielle 15 la rotation du vilebrequin 9, le travail étant considérable car effectué à pression quasi constante. En poursuivant sa rotation, le vilebrequin autorise (figure 3) le déplacement du piston moteur 1 vers son point mort bas et sensiblement simultanément la soupape d'admission 18 est alors refermée ; la charge contenue dans la chambre active se détend en repoussant le piston moteur 1 qui produit à son tour un travail en provoquant la rotation du vilebrequin 9 au travers de son équipage mobile constitué par les bras 3 et 4 et la bielle de commande 7. Durant ce cycle du piston moteur 1 le piston de charge poursuit sa course vers le point mort bas puis commence sa remontée vers son point mort haut, l'ensemble des éléments étant calé de telle sorte que durant leur course ascendante (figure 4) les pistons arrivent sensiblement ensemble à leur point mort haut où le piston moteur va s'arrêter et le piston de charge recommencer le cycle. Lors de la course ascendante des deux pistons la soupape d'échappement 24 est ouverte afin d'évacuer l'air comprimé détendu à travers le conduit d'échappement 23. La figure 5 représente l'allure des courbes comparatives des courses des pistons où l'on peut voir en abscisse la rotation du vilebrequin et en ordonnée le déplacement des pistons, de charge et moteur, de leur point mort haut à leur point mort bas et retour où, selon l'invention, la course du piston de charge est plus grande que celle du piston moteur. Le graphique est divisé en 4 phases principales. Lors de la phase A, le piston moteur est maintenu à son point mort haut et le piston de charge effectue la majeure partie de sa course descendante en produisant un travail puis en Phase B le piston moteur effectue sa course descendante de détente en produisant un travail alors que le piston de charge termine sa course descendante produisant également un travail. Alors que le piston de charge atteint son point mort bas, phase C, le piston moteur poursuit sa course descendante et le piston de charge commence sa course ascendante. Il est à noter que le piston de charge subit durant cette phase un travail négatif qui, de fait, a été compensé par un surcroît de travail positif lors de la phase B. En phase D les deux pistons rejoignent leur point mort haut quasi simultanément pour recommencer un nouveau cycle. Durant les phases A, B, C le moteur produit un travail. La figure 6 représente le graphique du cycle thermodynamique en mode mono énergie air comprimé où l'on peut voir les différentes phases du cycle dans les différentes capacités (en abscisse) constituant le moteur à chambre active selon l'invention, les pressions étant en ordonnée ; dans la première capacité qui est le réservoir de stockage on voit un réseau de courbes isothermes allant de la pression de stockage Pst à la pression initiale de travail P1T, la pression de stockage diminuant au fur et à mesure de la vidange du réservoir alors que la pression PIT sera contrôlée en fonction du couplé recherché entre une pression minimale de fonctionnement et une pression maximale de fonctionnement ici, pour l'exemple, entre 10 et 30 bar. Dans la capacité de travail durant la charge de la chambre active, la pression reste quasi identique. Dès l'ouverture de la soupape d'admission, l'air comprimé contenu dans la capacité de travail est transféré dans la chambre active produisant un travail accompagné d'une très légère diminution de pression par exemple, pour une capacité de travail de 3000 cm3 et une chambre active de 35 cm3, la chute de pression est de 1,16% soit et, toujours pour l'exemple, une pression réelle de travail de 29,65 bar pour une pression initiale de travail de 30 bar. Puis, le piston moteur commence sa course descendante avec une détente polytropique qui produit un travail avec abaissement de la pression jusqu'à l'ouverture de la soupape d'échappement (par exemple aux environs de 2 bar) suivi au retour à la pression atmosphérique durant le temps échappement, pour recommencer un nouveau cycle. La figure 7 représente le moteur et son ensemble en version bi-énergie avec énergie additionnelle ou l'on peut voir dans la capacité de travail 19 un dispositif schématique de réchauffage de l'air comprimé avec apport d'énergie additionnelle ici, un brûleur 25 alimenté par une bouteille de gaz 26. La combustion représentée sur cette figure est donc une combustion externe-interne et permet d'augmenter considérablement le volume et/ou la pression de l'air comprimé en provenance du réservoir de stockage. La figure 8 représente un graphique du cycle thermodynamique en mode bi énergie air comprimé et énergie additionnelle où l'on peut voir les différentes phases du cycle dans les différentes capacités constituant le moteur à chambre active selon l'invention en ordonnée les pressions... dans la première capacité qui est le réservoir de stockage on voit un réseau de courbes isothermes allant de la pression de stockage Pst à la pression initiale de travail PIT, la pression de stockage diminuant au fur et à mesure de la vidange du réservoir alors que la pression PIT sera contrôlée en fonction du couple recherché entre une pression minimum de fonctionnement et une pression maximale de fonctionnement ici pour l'exemple entre 10 et 30 bar. Dans la capacité de travail, le réchauffage de l'air comprimé permet d'augmenter considérablement la pression de la pression initiale PIT à la pression finale de travail PFT : par exemple pour une PIT de 30 bar une augmentation de température de l'ordre de 300 degrés permet d'obtenir une PFT de l'ordre de 60 bar. Dès l'ouverture de la soupape d'admission, l'air comprimé contenu dans la capacité de travail est transféré dans la chambre active, produisant un travail, accompagné d'une très légère diminution de pression : par exemple pour une capacité de travail de 3000 cm3 et une chambre active de 35 cm3 la chute de pression est de 1,16% soit et toujours pour l'exemple, une pression réelle de travail de 59,30 bars pour une pression initiale de travail de 60 bars ; puis le piston moteur commence sa course descendante avec une détente polytropique qui produit un travail avec abaissement de la pression jusqu'à l'ouverture de fa soupape d'échappement (par exemple aux environs de 4 bars) suivi au retour à la pression atmosphérique durant le temps échappement, pour recommencer un nouveau cycle. Le moteur à chambre active fonctionne également en bî-ênergie d'une manière autonome avec l'énergie dite additionnelle fossile, (ou autre) (figure 9) lorsque, selon une variante de l'invention, il entraîne un compresseur d'air comprimé 27 qui alimente le réservoir de stockage 22. Le fonctionnement général de la machine est le même que celui décrit précédemment sur les figures 1 à 4. Toutefois, cette disposition permet de remplir le réservoir de stockage en cours de fonctionnement avec énergie additionnelle mais occasionne une perte d'énergie relativement importante due au compresseur. Selon une autre variante de l'invention, (non représentée sur les dessins), le compresseur d'air alimente directement la capacité de travail ; dans ce cas de fonctionnement, le détendeur dynamique 21 est maintenu fermé et le compresseur alimente en air comprimé la capacité de travail dans laquelle ce dernier est réchauffé par le dispositif de réchauffe et augmente de pression et/ou de volume pour alimenter la chambre active 13 comme décrit dans les cas précédents. Toujours dans ce cas de fonctionnement, le pilotage du moteur est effectué par la régulation de pression directement par le compresseur et la perte d'énergie due au compresseur est bien moindre que dans le cas précédent. Enfin et selon une autre variante de l'invention (figure 10) le compresseur alimente simultanément ou successivement en fonction des besoins énergétiques le réservoir de stockage haute pression 22 et la capacité de travail 19. Une vanne bidirectionnelle 28 permet d'alimenter soit le réservoir de stockage 22 soit la capacité de travail 19 ou encore les deux simultanément. Le choix est alors fonction des besoins énergétiques du moteur en regard des besoins énergétiques du compresseur : si la demande sur le moteur est relativement faible, le réservoir haute pression est alors alimenté ; si les besoins énergétiques du moteur sont élevés, seule la capacité de travail est alors alimentée. La figure 11 représente schématiquement un moteur à chambre active selon l'invention comportant deux étages de détente où l'on peut voir le réservoir de stockage d'air comprimé haute pression 22 le détendeur dynamique 21 fa capacité de travail 19 ainsi que le premier étage comportant un cylindre moteur 2 dans lequel coulisse le piston 1 (représenté à son point mort haut), qui est commandé par un levier à pression. Le piston 1 est relié par son axe à l'extrémité libre 1A d'un levier à pression constitué d'un bras 3 articulé sur un axe commun 5 à un autre bras 4 fixé oscillant, sur un axe immobile 6. Sur l'axe commun 5 aux deux bras 3 et 4 est attachée une bielle 7 de commande reliée au maneton 8 d'un vilebrequin 9 tournant sur son axe 10. Lors de la rotation du vilebrequin la bielle de commande 7 exerce un effort sur l'axe commun 5 des deux bras 3 et 4 du levier à pression, permettant ainsi le déplacement du piston 1 suivant l'axe du cylindre 2, et transmet en retour au vilebrequin 9 les efforts exercés sur le piston 1 lors du temps moteur provoquant ainsi sa rotation. Le cylindre moteur est en communication par un passage 12 dans sa partie haute avec le cylindre de chambre active 13 dans lequel coulisse un piston 14 dit piston de charge relié par une bielle 15 à un maneton 16 du vilebrequin 9. Un conduit d'admission 17 commandé par une soupape 18 débouche dans le passage 12 reliant le cylindre moteur 2 et le cylindre de chambre active 13 et permet d'alimenter le moteur en air comprimé provenant de la chambre de travail 19 maintenu à la pression de travail et elle-même alimentée en air comprimé par un conduit 20 commandé par un détendeur dynamique 21. Le conduit d'échappement 23 est relié à travers un échangeur 29 à l'admission 17B du deuxième étage du moteur comportant un cylindre moteur 2B dans lequel coulisse le piston 1B qui est commandé par un levier à pression. Le piston 1B est relié par son axe à l'extrémité libre 1C d'un levier à pression constitué d'un bras 3B articulé sur un axe commun 5B à un autre bras 4B fixé oscillant, sur un axe immobile 6B. Sur l'axe commun 5B aux deux bras 3B et 4B est attachée une bielle de commande 7B reliée au maneton 8B d'un vilebrequin 9 tournant sur son axe 10. Lors de la rotation du vilebrequin la bielle de commande 7B exerce un effort sur l'axe commun 5B des deux bras 3B et 4B du levier à pression, permettant ainsi le déplacement du piston 1B suivant l'axe du cylindre 2B, et transmet en retour au vilebrequin 9 les efforts exercés sur le piston 1B lors du temps moteur provoquant ainsi sa rotation. Le cylindre moteur est en communication par un passage 12B dans sa partie haute avec le cylindre de chambre active 13B dans lequel coulisse un piston 14B dit piston de charge relié par une bielle 15B à un maneton 16B du vilebrequin 9. Un conduit d'admission 17B commandé par une soupape 18B débouche dans le passage 12B reliant le cylindre moteur 2B et le cylindre de chambre active 13B et permet d'alimenter le moteur en air comprimé. Pour des raisons de simplification du dessin, le deuxième étage est représenté à côté du premier étage. Il va sans dire que préférentiellement il est utilisé un seul vilebrequin et que le deuxième étage est sur le même plan longitudinal que le premier étage. Le conduit d'échappement 23 du premier étage moteur est relié à travers un échangeur air-air 29 au conduit d'admission 17B du deuxième étage moteur. Dans ce type de configuration, le premier étage sera dimensionné de telle sorte qu'en fin de détente moteur, l'air de l'échappement possède une pression résiduelle pour permettre, après son réchauffement dans l'échangeur air air, où il va augmenter de pression et/ou de volume, d'avoir une énergie suffisante pour assurer correctement le fonctionnement de l'étage suivant. La figure 12 montre un moteur à chambre active monoénergie fonctionnant avec un carburant fossile, le moteur est couplé à un compresseur 27 qui alimente en air comprimé la capacité de travail 19 qui comprend ici un brûleur 25 alimenté en énergie par une bouteille de gaz 26. Le fonctionnement général de la machine est le même que celui décrit précédemment. Le moteur à chambre active est décrit avec un fonctionnement avec de l'air comprimé. Toutefois, il peut utiliser n'importe quel gaz comprimé sans pour autant changer l'invention décrite. L'invention n'est pas limitée aux exemples de réalisations décrits et représentés : les matériaux, les moyens de commande, les dispositifs décrits peuvent varier dans la limite des équivalents, pour produire les mêmes résultats, le nombre de cylindres moteur, leur disposition, et leur volume et le nombre d'étages de détente, peuvent varier, sans pour cela changer l'invention qui vient d'être décrite. The invention relates to an engine operating particularly with compressed air or any other gas, and more particularly using a piston stroke control device having the effect of stopping the piston at its top dead center for a period of time as well as an ambient thermal energy recovery device that can operate in mono energy or bi energy. The editor has filed numerous patents relating to engines and their installations using compressed air for a totally clean operation in urban and suburban sites: - WO 96/27737 WO 97/00655 - WO 97/48884 WO 98/12062 WO 98/15440 - WO 98/32963 WO 99/37885 WO 99/37885 For the implementation of these inventions, it has also described in its patent application WO 99/63206, the contents of which we can refer, a method and engine piston stroke control device for stopping the piston at its top dead center; a method also described in its patent application WO 99/20881 whose content can also be referred to and concerning the operation of these motors in mono energy or bi energy, bi or tri modes of supply. In its patent application WO 99/37885 to the content of which we can also refer, it proposes a solution that increases the amount of usable and available energy characterized by the fact that compressed air before its introduction into the combustion chamber and / or expansion, from the storage tank either directly or after passing through the heat exchanger or heat exchangers of the ambient thermal energy recovery device, and before its introduction into the combustion chamber, is channeled into a thermal reheater where, by increasing its temperature, it will increase further pressure and / or volume before its introduction into the combustion chamber and / or expansion of the engine, thus greatly increasing the performance that can be achieved by said engine . The use of a thermal heater, despite the use of a fossil fuel, has the advantage of being able to use clean continuous combustions which can be catalyzed or decontaminated by any known means in order to obtain emissions. pollutant.  The author has filed a patent WO 03/036088 A1, to the content of which we can refer, concerning a motor-compressor unit - motoralternator with additional compressed air injection operating in mono and multiple energy. In these types of engines operating with compressed air and having a compressed air storage tank, it is necessary to relax the compressed air stored at very high pressure in the tank but whose pressure decreases as the reservoir is emptied at a stable intermediate pressure called final pressure of use in a buffer capacity said working capacity before its use in the engine cylinder or cylinders. Conventional valves with valves and springs well known have very low flow rates and their use for this application requires very heavy and inefficient devices; in addition, they are very sensitive to icing due to the humidity of the cooled air during the relaxation. To solve this problem, the author has also filed a patent application WO 03/089764 A1, the content of which we can refer to a variable-speed dynamic valve and distribution for engines powered with compressed air injection, comprising a reservoir high pressure compressed air and working capacity. The editor has also filed a patent application WO 02/070876 A1 concerning a variable volume expansion chamber consisting of two separate capacitors, one of which is in communication with the compressed air supply and the other paired with the cylinder and can be placed in communication with each other or isolated so that during the exhaust cycle it is possible to charge compressed air the first of these capacities and then to establish the pressure in the second, at the end of the exhaust then that the piston is stopped at its top dead center and before the resumption of its race, the two capacities remaining in communication and relaxing together to perform the engine time and that at least one of the two capacities is provided with means for modifying their volume to allow equal pressure to vary the resulting torque of the engine. In the operation of these "load-expansion" motors, the filling of the chamber always represents a detrimental detriment to the overall efficiency of the machine. The engine according to the invention uses a piston stop device at top dead center. It is preferably supplied with compressed air or any other compressed gas contained in a high-pressure storage tank, through a so-called working capacity buffer capacity. The working capacity in bi energy version comprises an air heating device powered by additional energy (fossil or other energy) for increasing the temperature and / or the pressure of the air passing through it.  The engine according to the invention is characterized by the means used taken as a whole or separately and more particularly: - In that the expansion chamber consists of a variable volume equipped with means for producing a work and that 'it is twinned and in contact by a permanent passage with the space included above the main engine piston, - In that, during the stop of the engine piston at its top dead center, the air or the pressurized gas is admitted into the expansion chamber when it is at its smallest volume and, under the pressure, will increase its volume producing a work, - In that the expansion chamber is maintained substantially at its maximum volume, the compressed air contained therein then relaxes in the engine cylinder thus pushing the engine piston in its downward stroke by providing a work in turn, - In that, during the raising of the engine piston during the exhaust time, the volume varies. The expansion chamber is reduced to its smallest volume to begin a complete work cycle. The engine expansion chamber according to the invention actively participates in the work. The engine according to the invention is called active chamber engine. The engine according to the invention is advantageously equipped with a variable-rate expander according to WO 03/089764 A1, known as a dynamic expander, which makes it possible to supply the working capacity at its operating pressure with compressed air coming from the fuel tank. storage by performing a work-free expansion of the isothermal type. The thermodynamic cycle according to the invention is characterized by an isothermal expansion without work allowed by the dynamic expansion valve followed by a transfer accompanied by a very slight relaxation almost isothermal - for example a capacity of 3,000 cubic centimeters in a capacity of 3050 centimeters cubic - with working by the use of the air pressure included in the working capacity during the filling of the expansion chamber, then a polytropic expansion of the expansion chamber in the engine cylinder with work and lowering of the temperature to end with the escape of the air relaxed to the atmosphere. The thermodynamic cycle according to the invention therefore comprises four phases in mono-energy compressed air mode: - Isothermal expansion without work, - Transfer - slight relaxation with work said quasi-isothermal, - Polytropic relaxation with work, - A pressure exhaust room.  In its bi-energy application according to the invention, and in additional fuel mode, the compressed air contained in the working capacity is heated by additional energy in a thermal heater. This arrangement makes it possible to increase the quantity of usable and available energy by the fact that the compressed air before its introduction into the active chamber will increase its temperature and increase pressure and / or volume allowing the increase in performance and or of autonomy. The use of a thermal heater has the advantage of being able to use clean continuous combustions that can be catalysed or cleaned up by any known means in order to obtain emissions of minute pollutants. The thermal heater can use for energy a fossil fuel such as gasoline gas, or LPG gas CNG, it can use bio fuels or alcohols - ethanol, methanol - to achieve a bi-energy operation with external combustion where a burner will cause a rise in temperature. According to a variant of the invention, the heater advantageously uses thermochemical processes based on absorption and desorption processes, such as those used and described, for example in patents EP 0 307297 A1 and EP 0 382586 B1, these processes using the evaporation transformation of a fluid for example liquid ammonia gas reacting with salts such as calcium chloride, manganese or other, the system operating as a thermal battery. According to a variant of the invention, the active chamber motor is equipped with a burner heat heater, or the like, and a thermochemical heater of the aforementioned type that can be used jointly or successively during phase 1 of the thermochemical heater. where the thermal burner heater will allow to regenerate (phase 2) the thermochemical heater when the latter is empty by heating the reactor during the continued operation of the group with the use of the burner heater. In the case of the use of a combustion heater, the active chamber engine according to the invention is an external combustion engine engine said external combustion engine. However, either the combustions of said heater can be internal by bringing the flame directly into contact with the operating compressed air, the engine is then said to "external-internal combustion" or the combustions of said heater are external by heating the air operating through an exchanger and the engine is then said to "external-external combustion". In operation mode with additional energy, the thermodynamic cycle then comprises five phases: an isothermal expansion,  - An increase of the temperature, - A transfer - slight relaxation with quasi-isothermal work, - A polytropic relaxation with work, - An exhaust at ambient pressure. Any mechanical, hydraulic or other electrical provisions allowing, with respect to the engine cycle, the completion in three phases of the working cycle of the active chamber, namely: during the stopping of the engine piston at its top dead center: a load in the active chamber producing a work by increasing its volume, - during the expansion stroke of the engine piston: maintaining a predetermined volume which is the actual volume of the expansion chamber, - during the exhaust time of the piston engine: repositioning the active chamber to its minimum volume to allow the renewal of the cycle can be used without changing the principle of the invention described. Preferably, the variable-volume expansion chamber known as the active chamber consists of a so-called sliding piston sliding in a cylinder and connected by a connecting rod to the crankshaft of the engine, a classic concept which determines a two-phase kinematics: downward stroke and ascending race. The engine piston is controlled by a piston stop device at the top dead center which determines a three-phase kinematics: upstroke, stop at top dead center and down stroke. To enable the engine to be wedged according to the invention, the strokes of the load piston and of the engine piston are different, that of the load piston being longer and predetermined so that when in the downward stroke of the load piston, the volume chosen as the "actual expansion chamber volume" is reached, the downward stroke of the engine piston starts and during this downward stroke, the load piston continues and ends its own down stroke - still producing a job - then begins its upward stroke as the shorter and faster racing engine piston catches it in its upstroke so that both pistons reach their top dead spots substantially at the same time. It should be noted that the load piston undergoes during the beginning of its upward stroke a negative work which, in fact, has been compensated by a surplus of positive work in the end of its downward stroke. When operating in compressed air mode, on a vehicle in an urban site for pollution-free operation, for example, only the pressure of the compressed air stored in the high pressure tank is used; in operation energy-mode additional energy, (fossil or other) on a road vehicle with a small pollution for example, reheating of the working capacity is then controlled, to increase the temperature of the air which the crossbar and consequently, its volume and or pressure usable allowing better performance and / or autonomy. The engine according to the invention is driven in torque and in speed, by the control of the pressure in the working capacity, said control being advantageously provided by the dynamic expander, when it operates in dual energy mode with additional energy (fossil or other) an electronic computer controls the amount of additional energy provided, as a function of the pressure in said working capacity According to a variant of the invention, to allow the autonomous operation of the engine during its use in additional energy and / or when the compressed air storage tank is empty the active chamber motor according to the invention is coupled to an air compressor for supplying compressed air to the high pressure compressed air storage tank. The bi-energy active chamber engine thus equipped normally operates in two modes by using, on a vehicle in town for example, zero pollution operation with compressed air contained in the high pressure storage tank, and on the road, always for the example, in operation additional energy with its thermal heater powered by fossil energy or other, while supplying air through an air compressor the high pressure storage tank. According to another variant of the invention, the air compressor directly supplies the working capacity. In this case, the control of the engine is carried out by the pressure control of the compressor and the dynamic expander between the high pressure storage tank and the working capacity remains closed. According to another variant of these arrangements, the air compressor supplies either the high pressure reservoir or the working capacity or the two volumes in combination. The bi-active active-chamber motor according to the invention actually has three main modes of operation: - mono-energy compressed air, - bi-energy compressed air plus additional energy, - mono energy with additional energy fuel. The active chamber engine is also feasible in mono energy with fossil fuel or other when coupled to an air compressor supplying the working capacity as described above, the high pressure compressed air storage tank being then purely and simply deleted.  In the case of operation in additional energy mode, with the use of external-external combustion the exhaust of the active chamber engine can be recycled to the intake of the compressor. According to a variant of the invention, the motor consists of several expansion stages, each stage comprising an active chamber according to the invention; between each stage is positioned a heat exchanger for heating the exhaust air of the preceding stage in the case of a mono-energy operation compressed air and / or an additional energy heating device in the case of operation in bi energy. The displacements of the next stage being larger than those of the previous stage. In the case of a mono-energy compressed air engine, the expansion in the first cylinder having produced a lowering of temperature, the air will be heated advantageously in an air-air heat exchanger with the ambient temperature. In the case of a bi-energy engine in additional energy mode, it is proceeded to the heating of the air by additional energy in a thermal heater, for example fossil. According to a variant of this arrangement, after each stage, the exhaust air is directed to a single multi-stage heater, thus making it possible to use only one combustion source. The heat exchangers may be air-to-air exchangers or liquid air or any other device or gas producing the desired effect. The active chamber engine according to the invention can be used on all land, maritime, railway, aeronautical vehicles. The active chamber motor according to the invention can also and advantageously find its application in the emergency generator sets, as well as in many domestic cogeneration applications producing electricity, heating and air conditioning. Other objects, advantages and features of the invention will become apparent on reading the description, without limitation, of several embodiments, with reference to the accompanying drawings, in which: FIG. 1 schematically represents an active chamber motor; in cross-section, and its HP air supply device. Figures 2 to 4 show in schematic views, in cross section, the various phases of operation of the engine according to the invention. - Figure 5 shows a comparative curve of the kinematics of the piston stroke load and engine piston. FIG. 6 represents a graph of the thermodynamic cycle in mono-energy compressed air mode.  FIG. 7 schematically represents an active chamber engine seen in cross section and its HP air supply device comprising a device for heating the air by combustion. FIG. 8 represents a graph of the thermodynamic cycle in dual energy compressed air and additional energy mode. FIG. 9 shows, schematically, an active chamber motor according to the invention coupled to an air compressor allowing autonomous operation. Figure 10 shows schematically an active chamber motor according to the invention coupled to a compressor supplying the storage tank and the working capacity. FIG. 11 schematically represents an active chamber motor according to the invention comprising two expansion stages. FIG. 12 schematically represents an active-chamber motor according to the invention in single-energy mode with fossil fuel. FIG. 1 represents an active chamber motor according to the invention, in which the engine cylinder in which the piston 1 (shown at its top dead center) slides in a cylinder 2, which is controlled by a lever pressure. The piston 1 is connected by its axis to the free end 1A of a pressure lever consisting of an arm 3 articulated on a common axis 5 to another arm 4 fixed oscillating on a stationary axis 6. On the axis common to the two arms 3 and 4 is attached a control rod 7 connected to the crankpin 8 of a crankshaft 9 rotating on its axis 10. During the rotation of the crankshaft, the control rod 7 exerts a force on the common axis 5 of the two arms 3 and 4 of the pressure lever, thus allowing the displacement of the piston 1 along the axis of the cylinder 2, and transmits back to the crankshaft 9 the forces exerted on the piston 1 during the engine tempo thus causing its rotation. The engine cylinder is in communication through a passage 12 in its upper part with the active chamber cylinder 13 in which slides a piston 14 said load piston connected by a connecting rod 15 to a crankpin 16 of the crankshaft 9. An intake duct 17 controlled by a valve 18 opens into the passage 12 connecting the engine cylinder 2 and the active chamber cylinder 13 and supplies the engine with compressed air from the working chamber 19 maintained at the working pressure itself fed with compressed air through a conduit 20 controlled by a dynamic expander 21 by the high-pressure storage tank 22. In the upper part of the cylinder 1 is formed an exhaust duct 23 controlled by an exhaust valve 24.  A device controlled by the accelerator pedal controls the dynamic expander 21 to allow to regulate the pressure in the working chamber and thus drive the motor. 2 shows schematically, seen in cross section, the active chamber motor according to the invention being admitted; the engine piston 1 is stopped at its top dead position and the intake valve 18 has just been opened, the pressure of the air contained in the working capacity 19 pushes the load piston 14 while filling the cylinder with the active chamber 13 and producing a job by causing by its connecting rod 15 the rotation of the crankshaft 9, the work being considerable because performed at almost constant pressure. By continuing its rotation, the crankshaft authorizes (FIG. 3) the displacement of the engine piston 1 towards its bottom dead point and substantially simultaneously the intake valve 18 is then closed again; the charge contained in the active chamber expands by pushing the engine piston 1 which in turn produces a job by causing the rotation of the crankshaft 9 through its movable assembly constituted by the arms 3 and 4 and the control rod 7. Durant this cycle of the engine piston 1 the load piston continues its race towards the bottom dead center and then begins its ascent towards its top dead center, the set of elements being wedged so that during their ascending race (figure 4) the pistons arrive substantially together at their top dead point where the engine piston will stop and the charge piston start the cycle again. During the upward stroke of the two pistons, the exhaust valve 24 is opened in order to evacuate the compressed compressed air through the exhaust pipe 23. FIG. 5 represents the shape of the comparative curves of the piston strokes where the the rotation of the crankshaft can be seen on the abscissa and the displacement of the pistons, the load and the engine, from their top dead center to their bottom and back dead point, where, according to the invention, the stroke of the load piston is more large than that of the engine piston. The graph is divided into 4 main phases. During phase A, the engine piston is kept at its top dead center and the load piston performs most of its downward stroke producing a job and then in Phase B the engine piston performs its descending downward stroke producing a job. while the load piston finishes its downward stroke also producing a job. As the load piston reaches its bottom dead point, phase C, the engine piston continues its downward stroke and the load piston begins its upward stroke. It should be noted that the load piston undergoes during this phase a negative work which, in fact, has been compensated by a surplus of positive work during phase B. In phase D the two pistons reach their top dead center almost simultaneously for start a new cycle. During phases A, B, C the engine produces a job.  FIG. 6 represents the graph of the thermodynamic cycle in mono-energy compressed air mode, in which the different phases of the cycle can be seen in the different capacities (on the abscissa) constituting the active-chamber motor according to the invention, the pressures being in the ordinate ; in the first capacity, which is the storage tank, we see a network of isothermal curves ranging from the storage pressure Pst to the initial working pressure P1T, the storage pressure decreasing as the tank is emptied while the PIT pressure will be controlled depending on the desired coupling between a minimum operating pressure and a maximum operating pressure here, for example, between 10 and 30 bar. In the working capacity during the charging of the active chamber, the pressure remains almost identical. As soon as the intake valve opens, the compressed air contained in the working capacity is transferred to the active chamber producing a job accompanied by a very slight pressure decrease, for example, for a working capacity of 3000 cm3. and an active chamber of 35 cm3, the pressure drop is 1.16% and, still for the example, a real working pressure of 29.65 bar for an initial working pressure of 30 bar. Then, the engine piston starts its downward stroke with a polytropic expansion which produces a work with lowering of the pressure until the opening of the exhaust valve (for example around 2 bar) followed by the return to atmospheric pressure. during the escape time, to start a new cycle again. FIG. 7 shows the engine and its assembly in a bi-energy version with additional energy or it can be seen in the working capacity 19 a schematic device for heating the compressed air with additional energy input here, a burner 25 The combustion shown in this figure is therefore an external-internal combustion and makes it possible to considerably increase the volume and / or the pressure of the compressed air coming from the storage tank. FIG. 8 represents a graph of the thermodynamic cycle in bi energy compressed air and additional energy mode, in which the different phases of the cycle can be seen in the different capacities constituting the active-chamber motor according to the invention. in the first capacity, which is the storage tank, we see a network of isothermal curves ranging from the storage pressure Pst to the initial working pressure PIT, the storage pressure decreasing as the tank is emptied while the PIT pressure will be controlled according to the desired torque between a minimum operating pressure and a maximum operating pressure here for the example between 10 and 30 bar. In the working capacity, the reheating of the compressed air makes it possible to considerably increase the pressure from the initial pressure PIT to the final working pressure PFT: for example for a PIT of 30 bar a temperature increase of the order of 300 degrees makes it possible to obtain a PFT of the order of 60 bar. As soon as the inlet valve opens, the compressed air contained in the working capacity is transferred into the active chamber, producing a job, accompanied by a very slight pressure decrease: for example for a working capacity of 3000 cm3 and an active chamber of 35 cm3 the pressure drop is 1.16% is and still for the example, a real working pressure of 59.30 bars for an initial working pressure of 60 bars; then the engine piston starts its downward stroke with a polytropic expansion which produces a work with lowering of the pressure until the opening of the exhaust valve (for example around 4 bars) followed by the return to the atmospheric pressure during the exhaust time, to start a new cycle. The active chamber motor also operates independently of energy with the so-called additional fossil energy (or other) (FIG. 9) when, according to a variant of the invention, it drives a compressed air compressor. 27 which feeds the storage tank 22. The general operation of the machine is the same as that described previously in FIGS. 1 to 4. However, this arrangement makes it possible to fill the storage tank during operation with additional energy but causes a relatively high energy loss due to the compressor. According to another variant of the invention, (not shown in the drawings), the air compressor directly supplies the working capacity; in this case of operation, the dynamic expansion valve 21 is kept closed and the compressor supplies compressed air to the working capacity in which the latter is heated by the heating device and increases pressure and / or volume to supply the active chamber 13 as described in the previous cases. Still in this case of operation, the motor is controlled by the pressure regulation directly by the compressor and the energy loss due to the compressor is much less than in the previous case. Finally, and according to another variant of the invention (FIG. 10), the compressor supplies the high-pressure storage tank 22 and the working capacity 19 simultaneously with the energy requirements 19. A bidirectional valve 28 can supply either the reservoir storage 22 is the working capacity 19 or both simultaneously. The choice is then a function of the energy requirements of the engine with regard to the energy requirements of the compressor: if the demand on the engine is relatively low, the high pressure reservoir is then supplied; if the energy needs of the engine are high, only the working capacity is then fed. FIG. 11 schematically represents an active chamber motor according to the invention comprising two stages of relaxation where the storage tank can be seen high pressure compressed air 22 the dynamic expansion valve 21 has working capacity 19 and the first stage comprising a driving cylinder 2 in which the piston 1 slides (shown at its top dead center), which is controlled by a pressure lever. The piston 1 is connected by its axis to the free end 1A of a pressure lever consisting of an arm 3 articulated on a common axis 5 to another arm 4 fixed oscillating on a stationary axis 6. On the axis common to the two arms 3 and 4 is attached a control rod 7 connected to the crank pin 8 of a crankshaft 9 rotating on its axis 10. During the rotation of the crankshaft the control rod 7 exerts a force on the common axis 5 two arms 3 and 4 of the pressure lever, thus allowing the displacement of the piston 1 along the axis of the cylinder 2, and transmits back to the crankshaft 9 the forces exerted on the piston 1 during the engine time thus causing its rotation. The engine cylinder is in communication through a passage 12 in its upper part with the active chamber cylinder 13 in which slides a piston 14 said load piston connected by a connecting rod 15 to a crankpin 16 of the crankshaft 9. An intake duct 17 controlled by a valve 18 opens into the passage 12 connecting the engine cylinder 2 and the active chamber cylinder 13 and supplies the engine with compressed air from the working chamber 19 maintained at the working pressure and itself fed compressed by a duct 20 controlled by a dynamic expansion valve 21. The exhaust duct 23 is connected through an exchanger 29 to the inlet 17B of the second stage of the engine comprising a motor cylinder 2B in which slides the piston 1B which is controlled by a pressure lever. The piston 1B is connected by its axis to the free end 1C of a pressure lever consisting of an arm 3B articulated on a common axis 5B to another arm 4B fixed oscillating on a stationary axis 6B. On the common axis 5B to the two arms 3B and 4B is attached a control rod 7B connected to the crank pin 8B of a crankshaft 9 rotating on its axis 10. During the rotation of the crankshaft the control rod 7B exerts a force on the common axis 5B of the two arms 3B and 4B of the pressure lever, thereby allowing the piston 1B to move along the axis of the cylinder 2B, and in return to the crankshaft 9 transmit the forces exerted on the piston 1B during the engine time thereby causing its rotation. The engine cylinder is in communication through a passage 12B in its upper part with the active chamber cylinder 13B in which slides a piston 14B said load piston connected by a connecting rod 15B to a crank pin 16B of the crankshaft 9. A intake pipe 17B controlled by a valve 18B opens into the passage 12B connecting the engine cylinder 2B and the active chamber cylinder 13B and provides power to the engine with compressed air. For reasons of simplification of the drawing, the second floor is shown next to the first floor. It goes without saying that preferentially it is used a single crankshaft and that the second floor is on the same longitudinal plane as the first floor. The exhaust duct 23 of the first engine stage is connected to  through an air-to-air exchanger 29 to the intake duct 17B of the second engine stage. In this type of configuration, the first stage will be dimensioned so that at the end of engine relaxation, the exhaust air has a residual pressure to allow, after its heating in the air-air exchanger, where it will increase pressure and / or volume, to have sufficient energy to properly ensure the operation of the next stage. FIG. 12 shows a monoenergy active chamber engine operating with a fossil fuel, the engine is coupled to a compressor 27 which supplies compressed air to the working capacity 19 which here comprises a burner 25 supplied with energy by a gas cylinder 26. The general operation of the machine is the same as that described above. The active chamber motor is described with operation with compressed air. However, it can use any compressed gas without changing the described invention. The invention is not limited to the embodiments described and shown: the materials, the control means, the devices described may vary within the limit of equivalents, to produce the same results, the number of engine cylinders, their arrangement, and their volume and the number of stages of relaxation, may vary, without thereby changing the invention which has just been described.

Claims

REVENDICATIONS
1.- Moteur à chambre active comportant au moins un piston (1) coulissant dans un cylindre, (2) commandé par un dispositif d'arrêt du piston au point mort haut et alimenté par de l'air comprimé, ou tout autre gaz, haute pression contenu dans un réservoir de stockage (22), qui est détendu à une pression moyenne dite pression de travail dans une capacité de travail (19) préferentiellement à travers un dispositif de détendeur dynamique caractérisé : - En ce que la chambre d'expansion est constituée d'un volume variable équipé de moyens permettant de produire un travail et, qu'elle est jumelée et en contact permanent par un passage (12), avec l'espace compris au-dessus du piston moteur principal, * En ce que, durant l'arrêt du piston moteur à son point mort haut, l'air ou le gaz sous pression est admis dans la chambre d'expansion lorsque celle-ci est à son plus petit volume et que, sous la poussée de cet air sous pression, cette dernière va augmenter son volume en produisant un travail, - En ce que la chambre d'expansion étant maintenue sensiblement à son volume maximum, l'air comprimé y contenu se détend ensuite dans le cylindre moteur repoussant ainsi le piston moteur dans sa course descendante en fournissant un travail à son tour, - En ce que durant la course ascendante du piston moteur pendant le temps échappement le volume variable de la chambre d'expansion est ramené à son plus petit volume pour recommencer un cycle de travail complet. 1.- active chamber motor comprising at least one piston (1) sliding in a cylinder, (2) controlled by a piston stop device at the top dead center and powered by compressed air, or any other gas, high pressure contained in a storage tank (22), which is expanded to a mean pressure known as working pressure in a working capacity (19) preferably through a dynamic expansion device characterized in: - In that the expansion chamber consists of a variable volume equipped with means for producing a work and, that it is twinned and in permanent contact by a passage (12), with the space included above the main engine piston, * In that during the stopping of the engine piston at its top dead center, the air or the pressurized gas is admitted into the expansion chamber when the latter is at its smallest volume and that, under the pressure of this air under pressure, the latter will increase its volume pro In that the expansion chamber is maintained substantially at its maximum volume, the compressed air contained therein then relaxes in the engine cylinder thus pushing the engine piston in its downward stroke by providing a job in turn - In that during the upward stroke of the engine piston during the exhaust time the variable volume of the expansion chamber is reduced to its smallest volume to start a complete work cycle.
2.- Moteur à chambre active selon la revendication 1 caractérisé en ce que le cycle de travail de la chambre active en regard du cycle du piston moteur comporte trois phases telles que : - pendant l'arrêt du piston moteur à son point mort haut : admission d'une charge dans la chambre active produisant un travail en augmentant son volume, - pendant la course de détente du piston moteur : maintien à un volume prédéterminé qui est le volume réel de chambre d'expansion, - pendant le temps d'échappement du piston moteur : repositionnement de la chambre active à son volume minimum pour permettre le renouvellement du cycle. 2. Active chamber motor according to claim 1 characterized in that the working cycle of the active chamber facing the engine piston cycle comprises three phases such that: - during the stop of the engine piston at its top dead center: admission of a load into the active chamber producing a work by increasing its volume, - during the expansion stroke of the engine piston: maintaining a predetermined volume which is the actual volume of the expansion chamber, - during the exhaust time of the engine piston: repositioning the active chamber to its minimum volume to allow the renewal of the cycle.
3.- Moteur à chambre active selon les revendications 1 et 2 dont le cycle thermodynamique de fonctionnement en mode monoénergie air comprimé est caractérisé par une détente isotherme sans travail avec conservation d'énergie, effectuée entre le réservoir de stockage d'air comprimé haute pression et la capacité de travail, suivie d'un transfert accompagné d'une très légère détente dans te cylindre de charge dite quasi-isotherme avec travail, puis d'une détente polytropique avec travail dans le cylindre moteur et enfin, d'un échappement à pression atmosphérique, soit quatre phases comme suit : - Une détente isotherme sans travail, - Un transfert - légère détente avec travail dit quasi isotherme, Une détente polytropique avec travail, . - Un échappement à pression ambiante. 3.- active chamber motor according to claims 1 and 2, the thermodynamic cycle of operation in monoenergy mode compressed air is characterized by an energy-saving, non-working, isothermal expansion performed between the high pressure compressed air storage tank and the working capacity, followed by a transfer accompanied by a slight expansion in the so-called quasi-charge cylinder -isotherm with work, then a polytropic relaxation with work in the engine cylinder and finally, an exhaust at atmospheric pressure, four phases as follows: - Isothermal relaxation without work, - A transfer - slight relaxation with work said quasi isothermal, A polytropic relaxation with work,. - An exhaust at ambient pressure.
4.- Moteur à chambre active selon les revendications 1 à 3 caractérisé en ce que fa capacité de travail (19) comporte un dispositif de réchauffage (25,26) de l'air comprimé avec une énergie additionnelle fossile ou autre, ledit dispositif permettant d'augmenter la température et/ou la pression de l'air qui la traverse. 4.- active chamber motor according to claims 1 to 3 characterized in that the working capacity (19) comprises a device for heating (25,26) the compressed air with additional fossil energy or the like, said device allowing to increase the temperature and / or the pressure of the air passing through it.
5.- Moteur à chambre active selon ta revendication 4 caractérisé en ce que le réchauffage de l'air comprimé est assuré par la combustion d'un carburant -fossile ou biologique- directement dans l'air comprimé, le moteur est alors dit à combustion externe interne. 5.- active chamber motor according to claim 4 characterized in that the heating of the compressed air is ensured by the combustion of a fuel-fossil or biological- directly in the compressed air, the engine is then said to be burning internal external.
6.- Moteur à chambre active selon la revendication 4 caractérisé en ce que le réchauffage de l'air contenu dans la capacité de travail est assuré par ta combustion d'un carburant -fossile ou biologique- à travers un échangeur, la flamme n'ayant pas de contact avec l'air comprimé ; le moteur est alors dit à combustion externe-externe. 6.- active chamber engine according to claim 4 characterized in that the heating of the air contained in the working capacity is ensured by burning a fuel-fossil or biological- through an exchanger, the flame n ' having no contact with compressed air; the engine is then called external-external combustion.
7.- Moteur à chambre active selon l'une quelconque des revendications 4 à 6 caractérisé en ce que le réchauffeur thermique utilise un procédé thermochimique de réaction gaz solide basé sur la transformation par évaporation d'un fluide réactif contenu dans un évaporateur , par exemple de l'ammoniac liquide en un gaz qui vient réagir avec un réactif solide contenu dans un réacteur, par exemple des sels tels que des chlorures de calcium, de manganèse, de baryum ou autres dont la réaction chimique produit de la chaleur, et qui, lorsque la réaction est terminée peut être régénéré en apportant de la chaleur au réacteur pour provoquer la désorption de l'ammoniac gazeux qui va se recondenser dans l'évaporateur. 7.- active chamber motor according to any one of claims 4 to 6 characterized in that the thermal heater uses a thermochemical method of solid gas reaction based on the evaporation of a reactive fluid contained in an evaporator, for example from liquid ammonia to a gas that reacts with a solid reagent contained in a reactor, for example salts such as calcium, manganese, barium or other chlorides whose chemical reaction produces heat, and which, when the reaction is complete can be regenerated by supplying heat to the reactor to cause the desorption of gaseous ammonia which will recondense in the evaporator.
8.- Moteur à chambre active selon l'une quelconque des revendications 4 à 7 dont le cycle thermodynamique en fonctionnement bi-énergie en mode énergie additionnelle est caractérisé par une détente isotherme sans travail avec conservation d'énergie effectuée dans la capacité de travail, par une augmentation de la température par le réchauffage de l'air par une énergie fossile, suivie d'une très légère détente dite quasi- isotherme avec travail, d'une détente polytropique avec travail dans le cylindre moteur et enfin d'un échappement à pression atmosphérique représentant 5 phases successives comme suit : - Une détente isotherme, - Une augmentation de la température, - Un transfert - légère détente avec travail dit quasi isotherme, - Une détente polytropique avec travail, Un échappement à pression ambiante. 8.- active chamber motor according to any one of claims 4 to 7, the thermodynamic cycle in dual-energy operation in additional energy mode is characterized by an isothermal expansion without work with energy conservation carried out in the working capacity, by an increase of the temperature by the heating of the air by a fossil energy, followed by a very slight relaxation called quasi-isothermal with work, of a polytropic relaxation with work in the cylinder engine and finally an exhaust at atmospheric pressure representing 5 successive phases as follows: - Isothermal expansion, - An increase in temperature, - A transfer - slight relaxation with work said almost isothermal, - A polytropic relaxation with work, An exhaust to ambient pressure.
9.- Moteur à chambre active selon l'une quelconque des revendications ci-dessus caractérisé en ce que le couple et le régime du moteur sont pilotés par le contrôle de la pression dans la capacité de travail (19). 9. Active chamber motor according to any one of the preceding claims characterized in that the torque and the speed of the motor are controlled by the pressure control in the working capacity (19).
10.- Moteur à chambre active selon l'une quelconque des revendications ci-dessus caractérisé en ce que, lors du fonctionnement en mode bi-énergie avec énergie additionnelle, un calculateur électronique contrôle la quantité d'énergie apportée en fonction de la pression de l'air comprimé donc de la masse d'air introduite dans ladite capacité e travail. 10. Active chamber motor according to any one of the preceding claims characterized in that, during operation in dual energy mode with additional energy, an electronic computer controls the amount of energy supplied as a function of the pressure of the compressed air therefore the air mass introduced into said work capacity.
11.- Moteur à chambre active selon l'une quelconque des revendications ci-dessus caractérisé en ce que le volume de la chambre active est constitué d'un piston (14) dit piston de charge coulissant dans un cylindre (13) et relié par une bielle (15) au vilebrequin du moteur (9) selon une cinématique classique. 11. Active chamber motor according to any one of the preceding claims characterized in that the volume of the active chamber is constituted by a piston (14) said load piston sliding in a cylinder (13) and connected by a connecting rod (15) to the crankshaft of the engine (9) according to a conventional kinematics.
12.- Moteur à chambre active selon la revendication 11 caractérisé en ce que la course du piston de charge (14) est déterminée de telle sorte que, lorsque le volume choisi comme volume de chambre ayant été atteint et durant la course descendante du piston moteur (1), le piston de charge . (14) termine sa course descendante et commence sa course ascendante de manière à atteindre son point mort haut sensiblement en même temps que le piston moteur atteint son propre point mort haut. 12. Active chamber motor according to claim 11, characterized in that the stroke of the charge piston (14) is determined so that when the volume chosen as chamber volume has been reached and during the downward stroke of the piston engine (1), the load piston. (14) ends its downstroke and begins its upstroke to reach its top dead center substantially as the engine piston reaches its own top dead center.
13.- Moteur à chambre active selon l'une quelconque des revendications ci-dessus caractérisé en ce que, pour permettre le fonctionnement autonome lors de son utilisation en énergie additionnelle et/ou lorsque le réservoir de stockage d'air comprimé (22) est vide, le moteur à chambre active selon l'invention est couplé à un compresseur d'air (27) permettant d'alimenter en air comprimé le réservoir de stockage d'air comprimé haute pression (22). 13. Active chamber motor according to any one of the preceding claims characterized in that, to allow autonomous operation when it is used in additional energy and / or when the compressed air storage tank (22) is Vacuum, the active chamber engine according to the invention is coupled to an air compressor (27) for supplying compressed air to the high pressure compressed air storage tank (22).
14. -Moteur à chambre active selon la revendication 13 ci-dessus caractérisé en ce que le compresseur d'air (27) alimente directement la capacité de travail (19). Dans ce cas, le pilotage du moteur est réalisé par le pilotage en pression du compresseur (27) et le détendeur dynamique, (21) entre le réservoir de stockage haute pression et la capacité de travail, reste obturé. 14. Active-chamber engine according to claim 13 above characterized in that the air compressor (27) directly feeds the working capacity (19). In this case, the engine control is performed by the pressurized control of the compressor (27) and the dynamic expansion valve (21) between the high pressure storage tank and the working capacity remains closed.
15.- Moteur à chambre active selon les revendicatîons!3 et 14 caractérisé en ce que le compresseur d'air (27) accouplé alimente simultanément ou successivement en combinaison le réservoir de stockage (22) et la capacité de travail (19). 15.- active chamber motor according to revendications! 3 and 14 characterized in that the air compressor (27) coupled feeds simultaneously or successively in combination the storage tank (22) and the working capacity (19).
16.- Moteur à chambre active selon l'une quelconque des revendications ci-dessus caractérisé par un fonctionnement mono énergie avec un carburant fossile (ou autre), la capacité de travail (19) étant alimentée uniquement par le compresseur accouplé16.- active chamber engine according to any one of the preceding claims characterized by a mono energy operation with a fossil fuel (or other), the working capacity (19) being fed only by the coupled compressor
(27), le réservoir de stockage d'air comprimé haute pression étant alors purement et simplement supprimé. (27), the high pressure compressed air storage tank then being purely and simply deleted.
17.- Moteur à chambre active selon la revendication 6 et l'une quelconque des revendications 13 à 16 caractérisé en ce que l'échappement après détente est recirculé à l'admission du compresseur accouplé. 17.- active chamber engine according to claim 6 and any one of claims 13 to 16 characterized in that the exhaust after expansion is recirculated to the inlet of the coupled compressor.
18.- Moteur à chambre active selon l'une quelconque des revendications ci-dessus fonctionnant en monoénergie air comprimé caractérisé en ce que le moteur est constitué de plusieurs étages de détente de cylindrée croissante chaque étage comportant une chambre active selon l'invention et en ce que, entre chaque étage, est positionné un échangeur (29) permettant de réchauffer l'air de l'échappement de l'étage précédent. 18.- active chamber engine according to any one of the above claims operating in compressed air monoenergy characterized in that the engine consists of several expansion stages of increasing cubic capacity each stage comprising an active chamber according to the invention and in that, between each stage, is positioned an exchanger (29) for heating the exhaust air of the previous stage.
19.- Moteur à chambre active selon la revendication 18 fonctionnant en bi-énergie caractérisé en ce que l'échangeur positionné entre chaque étage est équipé d'un dispositif de réchauffage à énergie additionnelle. 19.- active chamber motor according to claim 18 operating in dual energy characterized in that the exchanger positioned between each stage is equipped with an additional energy heating device.
20.- Moteur à chambre active selon les revendications 18 et 19 caractérisé en ce que les échangeurs et le dispositif de réchauffage sont combinés ensembles ou séparément dans un dispositif à plusieurs étages et utilisant la même source d'énergie. 20.- active chamber motor according to claims 18 and 19 characterized in that the heat exchangers and the heating device are combined together or separately in a multi-stage device and using the same energy source.
EP04805466A 2003-11-17 2004-11-17 Engine with an active mono-energy and/or bi-energy chamber with compressed air and/or additional energy and thermodynamic cycle thereof Active EP1702137B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL04805466T PL1702137T3 (en) 2003-11-17 2004-11-17 Engine with an active mono-energy and/or bi-energy chamber with compressed air and/or additional energy and thermodynamic cycle thereof
SI200430546T SI1702137T1 (en) 2003-11-17 2004-11-17 Engine with an active mono-energy and/or bi-energy chamber with compressed air and/or additional energy and thermodynamic cycle thereof
CY20071101531T CY1108097T1 (en) 2003-11-17 2007-12-03 SINGLE OR DOUBLE POWER ENGINE ENGINE WITH COMPRESSED AIR Ή / AND ADDITIONAL POWER AND THERMAL CYCLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0313401A FR2862349B1 (en) 2003-11-17 2003-11-17 ACTIVE MONO AND / OR ENERGY-STAR ENGINE WITH COMPRESSED AIR AND / OR ADDITIONAL ENERGY AND ITS THERMODYNAMIC CYCLE
PCT/FR2004/002929 WO2005049968A1 (en) 2003-11-17 2004-11-17 Engine with an active mono-energy and/or bi-energy chamber with compressed air and/or additional energy and thermodynamic cycle thereof

Publications (2)

Publication Number Publication Date
EP1702137A1 true EP1702137A1 (en) 2006-09-20
EP1702137B1 EP1702137B1 (en) 2007-09-19

Family

ID=34508500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04805466A Active EP1702137B1 (en) 2003-11-17 2004-11-17 Engine with an active mono-energy and/or bi-energy chamber with compressed air and/or additional energy and thermodynamic cycle thereof

Country Status (30)

Country Link
US (1) US7469527B2 (en)
EP (1) EP1702137B1 (en)
JP (2) JP2007511697A (en)
KR (1) KR101156726B1 (en)
CN (1) CN100439655C (en)
AP (1) AP2006003652A0 (en)
AT (1) ATE373769T1 (en)
AU (1) AU2004291704B2 (en)
BR (1) BRPI0416222A (en)
CY (1) CY1108097T1 (en)
DE (1) DE602004009104T2 (en)
DK (1) DK1702137T3 (en)
EA (1) EA008067B1 (en)
EC (1) ECSP066652A (en)
ES (1) ES2294572T3 (en)
FR (1) FR2862349B1 (en)
GE (1) GEP20084479B (en)
HK (1) HK1103779A1 (en)
HR (1) HRP20060223B1 (en)
IL (1) IL175697A (en)
MA (1) MA28332A1 (en)
MX (1) MXPA06005551A (en)
NO (1) NO339215B1 (en)
NZ (1) NZ547975A (en)
PL (1) PL1702137T3 (en)
PT (1) PT1702137E (en)
SI (1) SI1702137T1 (en)
TN (1) TNSN06143A1 (en)
WO (1) WO2005049968A1 (en)
ZA (1) ZA200604895B (en)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887591B1 (en) * 2005-06-24 2007-09-21 Mdi Motor Dev Internat Sa MOTOR-COMPRESSOR GROUP LOW COMBUSTION TEMPERATURE "CONTINUOUS" CONTINUOUS PRESSURE AND ACTIVE CHAMBER
CN100364800C (en) * 2006-04-21 2008-01-30 江苏大学 Solar energy, compressed air or liquid nitrogen powered automobile
FR2902285A1 (en) * 2006-06-19 2007-12-21 Guy Negre METHOD AND DEVICE FOR SOIL DISINFECTION BY GENERATION OF HUMIDIFIED HOT COMPRESSED AIR
FR2904054B1 (en) * 2006-07-21 2013-04-19 Guy Joseph Jules Negre CRYOGENIC MOTOR WITH AMBIENT THERMAL ENERGY AND CONSTANT PRESSURE AND ITS THERMODYNAMIC CYCLES
FR2905404B1 (en) * 2006-09-05 2012-11-23 Mdi Motor Dev Internat Sa ACTIVE MONO AND / OR ENERGY CHAMBER MOTOR WITH COMPRESSED AIR AND / OR ADDITIONAL ENERGY.
US9435202B2 (en) 2007-09-07 2016-09-06 St. Mary Technology Llc Compressed fluid motor, and compressed fluid powered vehicle
WO2009033191A2 (en) * 2007-09-07 2009-03-12 Rafalski Leroy J Jr Compressed fluid motor
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
EP2280841A2 (en) 2008-04-09 2011-02-09 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US20100307156A1 (en) 2009-06-04 2010-12-09 Bollinger Benjamin R Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage and Recovery Systems
US20110266810A1 (en) 2009-11-03 2011-11-03 Mcbride Troy O Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
USRE47647E1 (en) 2008-04-26 2019-10-15 Timothy Domes Pneumatic mechanical power source
US8561747B2 (en) * 2008-04-26 2013-10-22 Timothy Domes Pneumatic mechanical power source
US8225900B2 (en) * 2008-04-26 2012-07-24 Domes Timothy J Pneumatic mechanical power source
WO2009152141A2 (en) 2008-06-09 2009-12-17 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
WO2010105155A2 (en) 2009-03-12 2010-09-16 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8436489B2 (en) 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8247915B2 (en) 2010-03-24 2012-08-21 Lightsail Energy, Inc. Energy storage system utilizing compressed gas
US8196395B2 (en) 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8146354B2 (en) 2009-06-29 2012-04-03 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
DE102009033249B3 (en) * 2009-07-14 2011-01-20 Konrad Heimanns crankshaft
MX2011011837A (en) * 2010-03-15 2011-11-29 Scuderi Group Llc Electrically alterable circuit for use in an integrated circuit device.
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
FR2965581B1 (en) * 2010-10-04 2014-05-16 Motor Development Int Sa MOTOR WITH ACTIVE CHAMBER INCLUDING MONO AND / OR ENERGY WITH COMPRESSED AIR AND / OR ADDITIONAL ENERGY
FR2965582B1 (en) 2010-10-05 2016-01-01 Motor Development Int Sa PLURIMODAL AUTODETENDER MOTOR WITH COMPRESSED AIR WITH ACTIVE CHAMBER INCLUDED
US8591449B2 (en) 2010-10-18 2013-11-26 Dennis Sheanne Hudson Vessel for storing fluid at a constant pressure across a range of internal deformations
CN102031994A (en) * 2010-10-27 2011-04-27 王超 Gasification and expansion power device of liquid gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
CN102094679B (en) * 2010-12-02 2017-03-15 无锡中阳新能源科技有限公司 A kind of ring penetrates formula plural serial stage compressed air engine and its working medium flow
WO2012158781A2 (en) 2011-05-17 2012-11-22 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
CN102226425A (en) * 2011-05-23 2011-10-26 浙江大学 Pneumatic internal combustion hybrid engine
US20130091836A1 (en) 2011-10-14 2013-04-18 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
CN103061817B (en) 2011-10-18 2014-12-03 周登荣 Two-stroke aerodynamic engine assembly
CN103061818B (en) 2011-10-18 2014-09-03 周登荣 Compressed air power engine assembly with compressed air supplementary return circuit
CN103089936B (en) * 2011-10-28 2014-03-26 周登荣 Multi-cylinder power distributor used for aerodynamic engine
CN103306728A (en) * 2012-03-13 2013-09-18 周登荣 V-shaped multi-cylinder aerodynamic engine
CN103452590B (en) * 2012-06-05 2016-02-17 周登荣 A kind of air-powered motor method of controlling operation thereof
CN103485829B (en) * 2012-06-15 2015-08-12 周登荣 A kind of safety monitoring controlling method of air-powered motor
CN103510987B (en) * 2012-06-20 2016-03-30 周登荣 A kind of cylinder deactivation control method of multi-cylinder aerodynamic engine assembly
WO2014161065A1 (en) * 2013-04-03 2014-10-09 Sigma Energy Storage Inc. Compressed air energy storage and recovery
CN104121158B (en) * 2013-04-25 2017-11-10 牛顺喜 Cycle engine and solar power system in gas
CN103742261A (en) * 2014-01-23 2014-04-23 马平川 Capacity expansion circle engine
FR3021347B1 (en) * 2014-05-22 2016-05-20 Motor Dev Int S A COMPRESSED AIR MOTOR WITH ACTIVE CHAMBER INCLUSIVE AND ACTIVE DISTRIBUTION AT ADMISSION
CN106089424A (en) * 2016-08-18 2016-11-09 江苏三能动力总成有限公司 A kind of variable-displacement electromotor
CN110469399B (en) * 2019-08-01 2021-03-02 燕山大学 Liquid air and fuel dual-energy hybrid engine
CN111691925B (en) * 2020-06-24 2021-11-09 张谭伟 Air engine
CN112267954A (en) * 2020-10-20 2021-01-26 朱国钧 Oilless aerodynamic power generation engine
CN116745503A (en) 2020-11-11 2023-09-12 汽车发展国际股份公司 Active distribution type compressed air engine with built-in active chamber and balance valve
FR3135486A1 (en) 2022-05-10 2023-11-17 Motor Development International Sa Compressed air motor with active chamber included and active distribution with balanced exhaust valve allowing cylinder deactivation
CN114909197B (en) * 2022-06-23 2023-06-27 西安热工研究院有限公司 Gravity compressed air energy storage device and operation method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961607A (en) * 1972-05-12 1976-06-08 John Henry Brems Internal combustion engine
JPS5240243Y2 (en) * 1973-06-07 1977-09-12
JPS51105508A (en) * 1975-03-14 1976-09-18 Shigeto Fukuzawa KAPURUENJIN
US4149370A (en) * 1977-02-28 1979-04-17 Eduardo Ayala Vargas Self starting internal combustion engine with means for changing the expansion ratio
US4444024A (en) * 1981-08-04 1984-04-24 Mcfee Richard Dual open cycle heat pump and engine
US4696158A (en) * 1982-09-29 1987-09-29 Defrancisco Roberto F Internal combustion engine of positive displacement expansion chambers with multiple separate combustion chambers of variable volume, separate compressor of variable capacity and pneumatic accumulator
JPH08158887A (en) * 1992-09-24 1996-06-18 Saburo Shirayanagi Engine
DE19515325A1 (en) * 1995-04-18 1996-10-24 Juergen Peter Hill Valve controlled two-stroke diesel motor with articulated connecting rod
FR2749882B1 (en) * 1996-06-17 1998-11-20 Guy Negre POLLUTION ENGINE PROCESS AND INSTALLATION ON URBAN BUS AND OTHER VEHICLES
FR2753487B1 (en) * 1996-09-19 1998-11-20 Guy Negre INSTALLATION OF HIGH-PRESSURE COMPRESSED AIR SUPPLY COMPRESSORS FOR DE-EMISSION OR DEPOLLUTING ENGINE
FR2754309B1 (en) * 1996-10-07 1998-11-20 Guy Negre REACCELERATION METHOD AND DEVICE FOR VEHICLE EQUIPPED WITH COMPRESSORS FOR SUPPLYING HIGH-PRESSURE COMPRESSED AIR FOR DE-EMISSION OR DEPOLLUTING ENGINE
FR2758589B1 (en) * 1997-01-22 1999-06-18 Guy Negre PROCESS AND DEVICE FOR RECOVERING AMBIENT THERMAL ENERGY FOR VEHICLE EQUIPPED WITH DEPOLLUTE ENGINE WITH ADDITIONAL COMPRESSED AIR INJECTION
FR2769949B1 (en) * 1997-10-17 1999-12-24 Guy Negre METHOD FOR CONTROLLING THE MOVEMENT OF A MACHINE PISTON, DEVICE FOR IMPLEMENTING AND BALANCING THE DEVICE
FR2773849B1 (en) * 1998-01-22 2000-02-25 Guy Negre ADDITIONAL THERMAL HEATING METHOD AND DEVICE FOR VEHICLE EQUIPPED WITH ADDITIONAL COMPRESSED AIR INJECTION ENGINE
FR2779480B1 (en) * 1998-06-03 2000-11-17 Guy Negre OPERATING PROCESS AND DEVICE OF ADDITIONAL COMPRESSED AIR INJECTION ENGINE OPERATING IN SINGLE ENERGY, OR IN TWO OR THREE-FUEL SUPPLY MODES
US6568186B2 (en) * 2001-06-21 2003-05-27 Nano Precision, Inc. Hybrid expansible chamber engine with internal combustion and pneumatic modes
FR2831598A1 (en) * 2001-10-25 2003-05-02 Mdi Motor Dev Internat COMPRESSOR COMPRESSED AIR-INJECTION-MOTOR-GENERATOR MOTOR-GENERATOR GROUP OPERATING IN MONO AND PLURI ENERGIES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005049968A1 *

Also Published As

Publication number Publication date
NZ547975A (en) 2010-09-30
PL1702137T3 (en) 2008-02-29
AU2004291704A1 (en) 2005-06-02
NO339215B1 (en) 2016-11-14
HRP20060223A2 (en) 2007-05-31
SI1702137T1 (en) 2008-02-29
ATE373769T1 (en) 2007-10-15
DK1702137T3 (en) 2008-01-28
ES2294572T3 (en) 2008-04-01
TNSN06143A1 (en) 2007-11-15
JP5001421B2 (en) 2012-08-15
HRP20060223B1 (en) 2012-05-31
AU2004291704B2 (en) 2011-05-26
US7469527B2 (en) 2008-12-30
NO20062827L (en) 2006-08-17
BRPI0416222A (en) 2007-01-02
FR2862349A1 (en) 2005-05-20
MXPA06005551A (en) 2007-01-26
ZA200604895B (en) 2008-08-27
MA28332A1 (en) 2006-12-01
CN100439655C (en) 2008-12-03
EA200600967A1 (en) 2006-10-27
JP2007511697A (en) 2007-05-10
WO2005049968A1 (en) 2005-06-02
DE602004009104T2 (en) 2008-06-12
EP1702137B1 (en) 2007-09-19
IL175697A (en) 2010-11-30
FR2862349B1 (en) 2006-02-17
HK1103779A1 (en) 2007-12-28
CN1926307A (en) 2007-03-07
PT1702137E (en) 2007-11-21
US20070101712A1 (en) 2007-05-10
KR101156726B1 (en) 2012-06-14
KR20060124650A (en) 2006-12-05
DE602004009104D1 (en) 2007-10-31
IL175697A0 (en) 2008-02-09
EA008067B1 (en) 2007-02-27
CY1108097T1 (en) 2014-02-12
ECSP066652A (en) 2007-02-28
AP2006003652A0 (en) 2006-06-30
GEP20084479B (en) 2008-09-10
JP2011094629A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
EP1702137B1 (en) Engine with an active mono-energy and/or bi-energy chamber with compressed air and/or additional energy and thermodynamic cycle thereof
FR2905404A1 (en) ACTIVE MONO AND / OR ENERGY CHAMBER MOTOR WITH COMPRESSED AIR AND / OR ADDITIONAL ENERGY.
EP1899578B1 (en) Low-temperature motor compressor unit with continuous "cold" combustion at constant pressure and with active chamber
FR2831598A1 (en) COMPRESSOR COMPRESSED AIR-INJECTION-MOTOR-GENERATOR MOTOR-GENERATOR GROUP OPERATING IN MONO AND PLURI ENERGIES
US7975485B2 (en) High efficiency integrated heat engine (HEIHE)
US8082892B2 (en) High efficiency integrated heat engine-2 (HEIHE-2)
CA2810930C (en) Mono-energy and/or dual-energy engine with compressed air and/or additional energy, comprising an active chamber included in the cylinder
FR2904054A1 (en) CRYOGENIC MOTOR WITH AMBIENT THERMAL ENERGY AND CONSTANT PRESSURE AND ITS THERMODYNAMIC CYCLES
FR2965582A1 (en) PLURIMODAL AUTODETENDER MOTOR WITH COMPRESSED AIR WITH ACTIVE CHAMBER INCLUDED
FR2922162A1 (en) Thermal-pneumatic hybrid motorization system for passenger car, has three-way switching valve connecting supply/discharge pipe, chamber and reservoir, with respect to one another to ensure communication between pipe, chamber and reservoir
WO2016038384A1 (en) An internal combustion engine with a 4-stroke expansion cycle
FR2978799A1 (en) PNEUMATIC-THERMAL HYBRID ENGINE
FR2945578A1 (en) Working chambers integrated twin-cylinder hybrid engine system for vehicle, has prechamber connected to relaxation chamber by non-return valve that is opened by pressure differential of chamber towards another chamber
FR3066227B1 (en) INTERNAL COMBUSTION ENGINE WITH HIGH PRESSURE ISOTHERMAL COMPRESSION OF AN ADJUSTED AIR FLOW
WO2014154715A1 (en) Mechanical system for the production and storage of liquid nitrogen and for the production of mechanical energy from said liquid nitrogen
FR2668543A1 (en) Hot gas engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK YU

RAX Requested extension states of the european patent have changed

Extension state: LV

Payment date: 20060614

Extension state: YU

Payment date: 20060614

Extension state: AL

Payment date: 20060614

Extension state: LT

Payment date: 20060614

Extension state: MK

Payment date: 20060614

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK YU

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REF Corresponds to:

Ref document number: 602004009104

Country of ref document: DE

Date of ref document: 20071031

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071025

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20071109

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070403522

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E001705

Country of ref document: EE

Effective date: 20071219

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2294572

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E002690

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20140506

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: EE

Payment date: 20140506

Year of fee payment: 10

Ref country code: IE

Payment date: 20140509

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20140510

Year of fee payment: 10

Ref country code: IS

Payment date: 20140507

Year of fee payment: 10

Ref country code: SK

Payment date: 20140505

Year of fee payment: 10

Ref country code: AT

Payment date: 20140506

Year of fee payment: 10

Ref country code: CZ

Payment date: 20140506

Year of fee payment: 10

Ref country code: SI

Payment date: 20140506

Year of fee payment: 10

Ref country code: FI

Payment date: 20140505

Year of fee payment: 10

Ref country code: RO

Payment date: 20140506

Year of fee payment: 10

Ref country code: SE

Payment date: 20140505

Year of fee payment: 10

Ref country code: TR

Payment date: 20140506

Year of fee payment: 10

Ref country code: PT

Payment date: 20140507

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20140506

Year of fee payment: 10

Ref country code: HU

Payment date: 20140430

Year of fee payment: 10

Ref country code: DK

Payment date: 20140505

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20140507

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20150518

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20141130

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM9D

Effective date: 20141117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 373769

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141117

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E001705

Country of ref document: EE

Effective date: 20141130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141118

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150518

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141118

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 2780

Country of ref document: SK

Effective date: 20141117

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141118

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150531

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: BE

Effective date: 20150528

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20150720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180426

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180503

Year of fee payment: 14

Ref country code: DE

Payment date: 20180427

Year of fee payment: 14

Ref country code: CH

Payment date: 20180427

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180507

Year of fee payment: 14

Ref country code: GR

Payment date: 20180427

Year of fee payment: 14

Ref country code: FR

Payment date: 20180425

Year of fee payment: 14

Ref country code: BE

Payment date: 20180427

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180427

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004009104

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20181201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190605

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181117

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181118