EP1701791A1 - Method for processing methane-carbon dioxide mixtures - Google Patents

Method for processing methane-carbon dioxide mixtures

Info

Publication number
EP1701791A1
EP1701791A1 EP04817594A EP04817594A EP1701791A1 EP 1701791 A1 EP1701791 A1 EP 1701791A1 EP 04817594 A EP04817594 A EP 04817594A EP 04817594 A EP04817594 A EP 04817594A EP 1701791 A1 EP1701791 A1 EP 1701791A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
oxygen
activation
ratio
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04817594A
Other languages
German (de)
French (fr)
Inventor
Cuong Pham-Huu
Marc-Jacques Ledoux
Sabine Savin-Poncet
Jacques Bousquet
Pascaline Leroi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Total Marketing Services SA
TotalEnergies SE
Original Assignee
Total SE
Total France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total SE, Total France SA filed Critical Total SE
Publication of EP1701791A1 publication Critical patent/EP1701791A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • B01J35/613
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for converting methane / carbon dioxide mixtures, substantially in the absence of oxygen to H 2 / CO synthesis gas.
  • PRIOR ART The industrial conversion of methane into synthesis gas by oxidation with oxygen or with water vapor is well known, and generally directed towards the production of synthesis gas characterized by a H 2 / CO ratio> 1.4 .
  • the oxidation of methane by CO 2 which theoretically leads to a synthesis gas of ratio H 2 / CO equal to 1, is more difficult to carry out. Indeed, this highly endothermic process is generally co-generator of soot and coke deposits difficult to control.
  • the object of the invention is to perform a conversion of methane by C0 2 under conditions that limit or even suppress oxygen consumption.
  • SUMMARY OF THE INVENTION The invention achieves this goal by using a catalytic support comprising SiC in ⁇ form.
  • the method according to the invention makes it possible to avoid the use of oxygen in a major way; this allows to possibly allow the air without handicapping the process by the investment of an oxygen separation unit.
  • the invention provides a process for converting methane / carbon dioxide mixtures into a carbon monoxide / hydrogen mixture, characterized in that a catalyst comprising a support containing silicon carbide in beta form is used.
  • the process comprises a step of periodically activating the catalyst by injecting an oxidizing gas containing oxygen onto the catalyst, this oxidizing gas being chosen in particular from air, oxygen or their mixtures .
  • the process is carried out on a petroleum field with a natural gas rich in C0 2 .
  • the subject of the invention is also a catalyst for reforming methane comprising a metal and a support containing silicon carbide, characterized in that the support contains more than 50% by weight of silicon carbide in beta form and in that the catalytic species contains a mixture of a metal in the form of a mixture of silicon-coordinated metal and metal in metal form.
  • FIG. 1 gives the results of conversion of methane and H 2 / CO ratio as a function of time under flow for a first embodiment.
  • FIG. 2A gives the methane conversion results and H 2 / CO ratio as a function of time under flux for a second embodiment, zone I corresponding to the activation period while zone II corresponds to catalytic reforming in the absence of oxygen;
  • FIG. 2B shows the data of FIGS. 1 and 2A for comparison purposes.
  • SiC beta is prepared by a gas / solid reaction between SiO vapor and solid carbon intimately mixed (without liquid).
  • SiC ⁇ reference may be made to the following patent applications and patents incorporated by reference in the present application: EP-A-0 313480, EP-A-0 40569, US-P-5 217 930 , EP-A-0 511919, EP-A-0 543 751 and EP-A-0543752.
  • the ⁇ -SiC is characterized in particular by the fact that it exists in the pure state without a binder. The crystals are of cubic face-centered type.
  • the specific surface area of ⁇ -SiC is between 5 and 40 m 2 / g and preferably between 10 and 25 m 2 / g.
  • SiC ⁇ can be prepared in the form of powder, grains, extrusions (without binder), foam, monolith, etc.
  • the size of the SiC is variable, depending on the type of process used (fixed bed, boiling, "slurry"). It is thus possible, in a variant, to use a size of between 0.1 and 20 mm, preferably between 1 and 15 mm. According to another variant, it is possible to use a size of between 1 and 200 ⁇ m, preferably between 5 and 150 ⁇ m. This SiC ⁇ has very good mechanical properties.
  • the catalyst support contains from 50 to 100% by weight of beta-silicon carbide in the particulate state, and preferably 100% of said silicon carbide.
  • nickel or the noble metals already known from this end, such as Rh, Ru, Pt, Ir, or mixtures of these catalytic species.
  • the catalyst contains from 0.1 to 10% of a Group VIII metal, preferably nickel.
  • nickel may be used, optionally combined with a promoter, for example chosen from the aforementioned noble metals or metalloids.
  • the content of catalytically active compound (s), in particular nickel, is conventionally greater than 0.1%, typically between 1 and 10% of the final weight of the catalyst.
  • the deposition of the catalytic compound is in a conventional manner.
  • the impregnation of the pore volume with a salt of the metal for example nickel nitrate, can be used.
  • a salt of the metal for example nickel nitrate
  • the catalytic bed can be fixed, boiling or
  • the reaction of reforming methane with carbon dioxide is generally carried out under the following operating conditions: total pressure: 0.1 to 50, preferably 1 to 20, advantageously 5 to 20 atmospheres; reaction temperature: greater than 700, preferably between 800 and 1200 ° C .; - WH (GHSV) ranging from 250-20 00Oh "1, preferably 500-15 OOOh" 1, preferably from 2000 to 10 000 h -1; - CH 4 / CO 2 ratio of the starting gas between 0.5 and 6, preferably between 1 and 4; - CH / 0 2 ratio of the activation gas (or regeneration) between 10 and 60, preferably between 20 and 40.
  • the method according to the invention can be implemented in the absence of oxygen.
  • the catalyst is subjected to periodic pretreatment or regeneration or activation with an oxidizing gas containing oxygen.
  • This catalyst activation step is carried out by periodic injection of an oxidizing gas onto the catalyst, this oxidizing gas being chosen from air, oxygen and mixtures thereof.
  • This activation is generally carried out at a periodicity of 20 to 100 hours, preferably 40 to 80 hours.
  • the activation time varies between 0.1 to 10 h, preferably between 0.5 and 5 h. It is possible to proceed by a single passage of oxidizing gas containing oxygen on the catalyst or, advantageously, this injection is carried out in the starting gas, in particular by injecting oxygen or air into this starting gas.
  • This mode of activation by coinjection of an oxidant containing oxygen in the CH 4 / CO 2 mixture of the starting gas is preferred in the present invention.
  • concentration of oxygen introduced during the activation period can be varied over a wide range, as indicated above. Nevertheless, for the sake of convenience, the CH 4 / O 2 ratios of about 32 are preferred for the present application.
  • the Applicant believes that, in the absence of pretreatment with oxygen, there are the presence of peaks (such as X-ray diffraction patterns) of Ni 2 Si whereas with pretreatment with oxygen, there is mainly the presence of peaks of metallic Ni.
  • the catalyst is synthesized in the following manner: the ⁇ -SiC-based support, in the form of extrusions 2 mm in diameter and 5 mm in length, is impregnated by the porous volume method with an aqueous solution containing a sodium salt. nickel nitrate.
  • the specific surface of the support measured by the adsorption of nitrogen at the temperature of the liquid nitrogen is 22 m 2 .g -1 .
  • the concentration of the salt is calculated so as to obtain a final nickel charge of 5% by weight.
  • weight after the weight of the catalyst after heat treatments The support after impregnation is air-dried at room temperature and then calcined under air at 400 ° C. for 2 hours in order to convert the starting nickel salt into its corresponding oxide.
  • the methane reforming reaction with CO 2 is carried out under the following conditions: - atmospheric pressure; - CH 4 / CO ratio 2 : 1; temperature: 900 ° C .; - contact time reagents / catalyst: 0.6 seconds.
  • the results, ie the conversion of methane and H 2 / CO ratio, as a function of time under flow are presented in FIG. 1.
  • the methane conversion is stable at about 81% for more than 80 hours of test and the ratio H 2 / CO is also stable, in the range between 0.9 and 1.1.
  • Example 2 Formation of synthesis gas by reforming methane with CO 2 on a nickel-based catalyst supported on SiC ⁇ .
  • the catalyst is prepared in the same manner as that described in Example 1.
  • the test conditions are slightly modified by adding an activation step during which traces of oxygen have been introduced into the CH 4 : CO mixture. 2 .
  • the final composition of the reactants entering the reactor is as follows during the activation period: CH 4 : 46.4%, C0 2 : 46.4%, O 2 : 1.4% and nitrogen as gas remaining (oxygen and nitrogen is thus in a ratio substantially equal to that of air).
  • CH / O 2 is 32 while the molar ratio CH 4 / CO 2 is 1.

Abstract

The invention relates to a method for transforming methane/carbon dioxide mixtures into a carbon dioxide/hydrogen mixture consisting in using a catalyst comprising a support which contains beta-silicon carbide.

Description

PROCEDE DE TRAITEMENT DES MELANGES METHANE/ DIOXYDE DE CARBONE PROCESS FOR TREATING METHANE / CARBON DIOXIDE MIXTURES
DOMAINE TECHNIQUE La présente invention concerne un procédé de transformation de mélanges méthane/dioxyde de carbone, sensiblement en l'absence d'oxygène en gaz de synthèse H2/CO. ART ANTERIEUR La transformation industrielle du méthane en gaz de synthèse par oxydation à l'oxygène ou à la vapeur d'eau est bien connue, et généralement orientée vers la production de gaz de synthèse caractérisée par un ratio H2/CO > 1,4. En revanche, l'oxydation du méthane par le C02, gui conduit théoriquement à un gaz de synthèse de ratio H2/CO égal à 1, est plus délicate à effectuer. En effet ce processus, fortement endothermique, est généralement co-générateur de suies et de dépôts de coke difficiles à maîtriser. Une façon de lutter contre la formation de carbone consiste à introduire de la vapeur d'eau dans la charge gazeuse, ce qui a pour effet à la fois d'augmenter le ratio H2/CO, et de limiter la consommation du C02 conformément aux lois de la thermodynamique. L'addition simultanée de vapeur d'eau et d'oxygène dans la charge gazeuse, dans les proportions judicieusement choisies pour obtenir un ratio H2/C0 proche de 1, tout en consommant des quantités significatives de C02, permet de limiter dans une certaine mesure le phénomène de cokage. Cependant cette addition d'oxygène implique, selon l'art conventionnel, de recourir à la nécessité pratique de séparer l'oxygène de l'air, afin de conserver une taille d'équipement raisonnable. Cette opération de purification représente aujourd'hui un investissement lourd, susceptible d'handicaper fortement l'économie de la filière industrielle. Le but de l'invention est d'effectuer une conversion du méthane par le C02, dans des conditions permettant de limiter, voire de supprimer la consommation d'oxygène. RESUME DE L'INVENTION L'invention permet d'atteindre ce but en utilisant un support catalytique comprenant du SiC sous forme β. Le procédé selon l'invention permet d'éviter le recours à l'oxygène de façon importante; ceci permet d'autoriser éventuellement l'air sans handicaper le procédé par l'investissement d'une unité de séparation d'oxygène. Ainsi, l'invention fournit un procédé de transformation des mélanges méthane/dioxyde de carbone en mélange monoxyde de carbone/hydrogène caractérisé en ce qu'on utilise un catalyseur comprenant un support contenant du carbure de silicium sous forme bêta. Selon un mode de réalisation, le procédé comprend une étape d'activation périodique du catalyseur par injection d'un gaz oxydant contenant de l'oxygène sur le catalyseur, ce gaz oxydant étant notamment choisi parmi l'air, l'oxygène ou leurs mélanges. Selon un mode de réalisation, le procédé est mis en œuvre sur champ pétrolier, avec un gaz naturel riche en C02. L'invention a encore pour objet un catalyseur pour réformage de méthane comprenant un métal et un support contenant du carbure de silicium caractérisé en ce que le support contient plus de 50% en poids de carbure de silicium sous forme bêta et en ce que l'espèce catalytique contient un mélange d'un métal sous la forme d'un mélange de métal coordonné au silicium et de métal sous forme métal. BREVE DESCRIPTION DES DESSINS L'invention est décrite plus en détails en référence aux dessins annexés, dans lesquels: - la figure 1 donne les résultats de conversion du méthane et rapport H2/C0 en fonction du temps sous flux pour un premier mode de réalisation; et - la figure 2A donne les résultats de conversion du méthane et rapport H2/C0 en fonction du temps sous flux pour un second mode de réalisation, la zone I correspondant à la période d'activation tandis que la zone II correspond au réformage catalytique en 1 ' absence d ' oxygène; et - la figure 2B reprend les données des figures 1 et 2A à des fins de comparaison. DESCRIPTION DETAILLEE DE MODES DE REALISATION DE L'INVENTION Le SiC bêta est préparé par une réaction gaz/solide entre du SiO vapeur et du carbone solide intimement mélangés (sans liquide) . Pour plus de détails sur le SiC β, on pourra se référer aux demandes de brevets et brevets suivants, incorporés par référence à la présente demande: EP-A-0 313480, EP-A-0 40569, US-P-5 217 930, EP-A-0 511919, EP-A-0 543751 et EP-A-0543752. Par rapport à la forme alpha, le SiC β se caractérise notamment par le fait qu'il existe à l'état pur sans liant. Les cristaux sont de type cubique face centrée. En général, la surface spécifique du SiC β est entre 5 et 40 m2/g et de préférence entre 10 et 25 m2/g. Le SiC β peut être préparé sous forme de poudre, de grains, d'extrudes (sans liant), de mousse, de monolithe, etc. La taille du SiC est variable, en fonction du type de procédé mis en œuvre (lit fixe, ébullisant, "slurry") . On peut ainsi, selon une variante, utiliser une taille comprise entre 0,1 et 20 mm, de préférence entre 1 et 15 mm. Selon une autre variante, on peut utiliser une taille comprise entre 1 et 200 μm, de préférence entre 5 et 150 μm. Ce SiC β a des propriétés mécaniques très bonnes . Du fait de sa très bonne conductivité thermique, en général très supérieure à celle des oxydes métalliques, on limite les points chauds à la surface du catalyseur. On améliore ainsi la sélectivité . Selon un mode de réalisation, le support du catalyseur contient de 50 à 100% en poids de carbure de silicium bêta à l'état particulaire, et de préférence 100% du dit carbure de silicium. En tant que composant catalytique, on peut utiliser de façon classique le nickel, ou les métaux nobles déjà connus à cette fin, tel que Rh, Ru, Pt, Ir, ou des mélanges de ces espèces catalytiques . Selon un mode de réalisation, le catalyseur contient de 0,1 à 10% d'un métal du groupe VIII, de préférence le nickel. Notamment on peut utiliser le nickel, éventuellement associé avec un promoteur par exemple choisi parmi les métaux nobles précédemment cités ou les métalloïdes. La teneur en composé (s) catalytiquement actif (s), notamment nickel, est classiquement supérieure à 0,1%, typiquement entre 1 et 10% du poids final du catalyseur. Le dépôt du composé catalytique se fait de façon conventionnelle. Par exemple on peut utiliser l'imprégnation du volume poreux par un sel du métal, par exemple du nitrate de nickel. On peut aussi utiliser la méthode de la goutte évaporée (dite aussi "egg shell"), par goutte à goutte d'une solution de sel métallique à température ambiante sur un support à température élevée conduisant à un dépôt essentiellement en surface, par exemple une solution de nitrate de nickel sous air sur un support à 200°C. Le lit catalytique peut être fixe, ébullisant ou enTECHNICAL FIELD The present invention relates to a process for converting methane / carbon dioxide mixtures, substantially in the absence of oxygen to H 2 / CO synthesis gas. PRIOR ART The industrial conversion of methane into synthesis gas by oxidation with oxygen or with water vapor is well known, and generally directed towards the production of synthesis gas characterized by a H 2 / CO ratio> 1.4 . On the other hand, the oxidation of methane by CO 2 , which theoretically leads to a synthesis gas of ratio H 2 / CO equal to 1, is more difficult to carry out. Indeed, this highly endothermic process is generally co-generator of soot and coke deposits difficult to control. One way to combat carbon formation is to introduce water vapor into the gaseous feed, which has the effect of both increasing the H 2 / CO ratio, and limiting the consumption of C0 2 according to to the laws of thermodynamics. The simultaneous addition of water vapor and oxygen in the gaseous feed, in the proportions judiciously chosen to obtain a ratio H 2 / CO close to 1, while consuming significant amounts of C0 2 , makes it possible to limit in a to some extent the phenomenon of coking. However, this addition of oxygen implies, according to the conventional art, to resort to the practical necessity of separating oxygen from the air, in order to maintain a reasonable equipment size. This purification operation represents today a heavy investment, likely to strongly handicap the economy of the industrial sector. The object of the invention is to perform a conversion of methane by C0 2 under conditions that limit or even suppress oxygen consumption. SUMMARY OF THE INVENTION The invention achieves this goal by using a catalytic support comprising SiC in β form. The method according to the invention makes it possible to avoid the use of oxygen in a major way; this allows to possibly allow the air without handicapping the process by the investment of an oxygen separation unit. Thus, the invention provides a process for converting methane / carbon dioxide mixtures into a carbon monoxide / hydrogen mixture, characterized in that a catalyst comprising a support containing silicon carbide in beta form is used. According to one embodiment, the process comprises a step of periodically activating the catalyst by injecting an oxidizing gas containing oxygen onto the catalyst, this oxidizing gas being chosen in particular from air, oxygen or their mixtures . According to one embodiment, the process is carried out on a petroleum field with a natural gas rich in C0 2 . The subject of the invention is also a catalyst for reforming methane comprising a metal and a support containing silicon carbide, characterized in that the support contains more than 50% by weight of silicon carbide in beta form and in that the catalytic species contains a mixture of a metal in the form of a mixture of silicon-coordinated metal and metal in metal form. BRIEF DESCRIPTION OF THE DRAWINGS The invention is described in more detail with reference to the accompanying drawings, in which: FIG. 1 gives the results of conversion of methane and H 2 / CO ratio as a function of time under flow for a first embodiment. ; and FIG. 2A gives the methane conversion results and H 2 / CO ratio as a function of time under flux for a second embodiment, zone I corresponding to the activation period while zone II corresponds to catalytic reforming in the absence of oxygen; and FIG. 2B shows the data of FIGS. 1 and 2A for comparison purposes. DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION SiC beta is prepared by a gas / solid reaction between SiO vapor and solid carbon intimately mixed (without liquid). For more details on SiC β, reference may be made to the following patent applications and patents incorporated by reference in the present application: EP-A-0 313480, EP-A-0 40569, US-P-5 217 930 , EP-A-0 511919, EP-A-0 543 751 and EP-A-0543752. With respect to the alpha form, the β-SiC is characterized in particular by the fact that it exists in the pure state without a binder. The crystals are of cubic face-centered type. In general, the specific surface area of β-SiC is between 5 and 40 m 2 / g and preferably between 10 and 25 m 2 / g. SiC β can be prepared in the form of powder, grains, extrusions (without binder), foam, monolith, etc. The size of the SiC is variable, depending on the type of process used (fixed bed, boiling, "slurry"). It is thus possible, in a variant, to use a size of between 0.1 and 20 mm, preferably between 1 and 15 mm. According to another variant, it is possible to use a size of between 1 and 200 μm, preferably between 5 and 150 μm. This SiC β has very good mechanical properties. Because of its very good thermal conductivity, generally much higher than that of metal oxides, the hot spots are limited to the surface of the catalyst. This improves the selectivity. According to one embodiment, the catalyst support contains from 50 to 100% by weight of beta-silicon carbide in the particulate state, and preferably 100% of said silicon carbide. As a catalytic component, nickel, or the noble metals already known from this end, such as Rh, Ru, Pt, Ir, or mixtures of these catalytic species. According to one embodiment, the catalyst contains from 0.1 to 10% of a Group VIII metal, preferably nickel. In particular, nickel may be used, optionally combined with a promoter, for example chosen from the aforementioned noble metals or metalloids. The content of catalytically active compound (s), in particular nickel, is conventionally greater than 0.1%, typically between 1 and 10% of the final weight of the catalyst. The deposition of the catalytic compound is in a conventional manner. For example, the impregnation of the pore volume with a salt of the metal, for example nickel nitrate, can be used. It is also possible to use the method of the evaporated drop (also called "egg shell"), by dropwise drop of a solution of metal salt at room temperature on a high temperature support, leading to a deposit essentially at the surface, for example a solution of nickel nitrate in air on a support at 200 ° C. The catalytic bed can be fixed, boiling or
"slurry". On préférera un lit fixe. La réaction de reformage du méthane par le dioxyde ce carbone est en général réalisée dans les conditions opératoires suivantes : - pression totale: 0,1 à 50, de préférence 1 à 20, avantageusement 5 à 20 atmosphères; - température de réaction: supérieure à 700, de préférence entre 800 et 1200 °C; - WH (GHSV) variant de 250 à 20 00Oh"1, de préférence de 500 à 15 OOOh"1, avantageusement de 2000 à 10 000 h-1; - ratio CH4/C02 du gaz de départ compris entre 0,5 et 6, de préférence entre 1 et 4 ; - ratio CH/02 du gaz d'activation (ou régénération) compris entre 10 et 60, de préférence entre 20 et 40. Le procédé selon l'invention peut être mis en œuvre en l'absence d'oxygène. Selon un mode de réalisation, le catalyseur est soumis à un prétraitement ou régénération ou activation périodique avec un gaz oxydant contenant de l'oxygène. Cette étape d'activation du catalyseur est mise en œuvre par injection périodique d'un gaz oxydant sur le catalyseur, ce gaz oxydant étant choisi parmi l'air, l'oxygène et leurs mélanges. Cette activation est effectuée de façon générale selon une périodicité de 20 à 100 h, de préférence de 40 à 80 h. La durée d'activation varie entre 0,1 à 10 h, de préférence entre 0,5 et 5 h. On peut procéder par passage unique de gaz oxydant contenant de 1 ' oxygène sur le catalyseur ou de façon avantageuse, cette injection s'effectue dans le gaz de départ, notamment par injection d'oxygène ou d'air dans ce gaz de départ. Ce mode d'activation par coinjection d'un oxydant contenant de l'oxygène dans le mélange CH4/C02 du gaz de départ est préférée dans la présente invention. Il est à noter que la concentration de l'oxygène introduite durant la période d'activation peut être variée dans une large gamme, telle qu'indiquée ci-dessus. Néanmoins, pour des raisons de commodité les rapports CH4/02 d'environ 32 sont préférés pour la présente demande. Sans vouloir être liée par une théorie, la demanderesse pense qu'en l'absence de prétraitement avec de l'oxygène, on note la présence de pics (tels qu'apparents en diffraction aux rayons X) du Ni2Si alors que avec prétraitement avec de l'oxygène on note principalement la présence de pics du Ni métallique. La présence d'oxygène lors de la période d'activation inhiberait la formation de la phase Ni2Si qui semble être moins active que celle du nickel métallique pour la réaction de reformage selon l'invention. On note en fait un changement de la forme du nickel, passant de la forme coordonnée à la forme métal . Même si l'absence d'oxygène (avec éventuellement activation oxydante périodique) est la condition opératoire préférée, il est aussi possible de travailler en milieu contenant de l'oxygène. Les conditions opératoires sont alors les mêmes que dans l'étape d'activation. Dans la demande, les ratios sont molaires sauf mention du contraire . Les exemples suivants illustrent l'invention sans la limiter. Exemple 1. Formation du gaz de synthèse par reformage du méthane par le C02 sur un catalyseur à base de nickel supporté sur du SiC β. Le catalyseur est synthétisé de la manière suivante : le support à base de SiC β, sous forme d'extrudes de 2 mm de diamètre et de 5 mm de longueur, est imprégné par la méthode du volume poreux par une solution aqueuse contenant un sel de nitrate de nickel . La surface spécifique du support mesurée par l'adsorption d'azote à la température de l'azote liquide est de 22 m2.g"1. La concentration du sel est calculée de manière à obtenir une charge de nickel finale de 5% en poids par rapport au poids du catalyseur après traitements thermiques. Le support après imprégnation est séché à l'air à température ambiante puis calciné sous air à 400°C pendant 2 h afin de transformer le sel de nickel de départ en son oxyde correspondant . La surface spécifique du catalyseur demeure stable après les traitements thermiques à 21 m2. g"1. La réaction de reformage du méthane par le C02 est effectuée sous les conditions suivantes : - pression atmosphérique; - rapport CH4/C02 : 1; - température : 900 °C; - temps de contact réactifs/catalyseur : 0,6 seconde. Les résultats, i.e. conversion du méthane et rapport H2/CO, en fonction du temps sous flux sont présentés sur la Figure 1. La conversion du méthane est stable à environ 81% durant plus de 80 h de test et le rapport H2/CO est également stable, dans la fourchette entre 0,9 et 1,1. Exemple 2. Formation du gaz de synthèse par reformage du méthane par le C02 sur un catalyseur à base de nickel supporté sur du Sic β. Influence de la période d'activation en présence de trace d'oxygène sur l 'activité catalytique en reformage du méthane par le C02. Le catalyseur est préparé de la même manière que celle décrite dans l'exemple 1. Les conditions de test sont légèrement modifiées par addition d'une étape d'activation durant laquelle des traces d'oxygène ont été introduites dans le mélange CH4:C02. La composition finale des réactifs entrant dans le réacteur est la suivante lors de la période d'activation: CH4 : 46,4%, C02 : 46,4%, 02 : 1,4% et de l'azote comme gaz restant (l'oxygène et l'azote étant ainsi dans un ratio sensiblement égal à celui de l'air). Le rapport molaire"Slurry". We prefer a fixed bed. The reaction of reforming methane with carbon dioxide is generally carried out under the following operating conditions: total pressure: 0.1 to 50, preferably 1 to 20, advantageously 5 to 20 atmospheres; reaction temperature: greater than 700, preferably between 800 and 1200 ° C .; - WH (GHSV) ranging from 250-20 00Oh "1, preferably 500-15 OOOh" 1, preferably from 2000 to 10 000 h -1; - CH 4 / CO 2 ratio of the starting gas between 0.5 and 6, preferably between 1 and 4; - CH / 0 2 ratio of the activation gas (or regeneration) between 10 and 60, preferably between 20 and 40. The method according to the invention can be implemented in the absence of oxygen. According to one embodiment, the catalyst is subjected to periodic pretreatment or regeneration or activation with an oxidizing gas containing oxygen. This catalyst activation step is carried out by periodic injection of an oxidizing gas onto the catalyst, this oxidizing gas being chosen from air, oxygen and mixtures thereof. This activation is generally carried out at a periodicity of 20 to 100 hours, preferably 40 to 80 hours. The activation time varies between 0.1 to 10 h, preferably between 0.5 and 5 h. It is possible to proceed by a single passage of oxidizing gas containing oxygen on the catalyst or, advantageously, this injection is carried out in the starting gas, in particular by injecting oxygen or air into this starting gas. This mode of activation by coinjection of an oxidant containing oxygen in the CH 4 / CO 2 mixture of the starting gas is preferred in the present invention. It should be noted that the concentration of oxygen introduced during the activation period can be varied over a wide range, as indicated above. Nevertheless, for the sake of convenience, the CH 4 / O 2 ratios of about 32 are preferred for the present application. Without wishing to be bound by theory, the Applicant believes that, in the absence of pretreatment with oxygen, there are the presence of peaks (such as X-ray diffraction patterns) of Ni 2 Si whereas with pretreatment with oxygen, there is mainly the presence of peaks of metallic Ni. The presence of oxygen during the activation period would inhibit the formation of the Ni 2 Si phase, which seems to be less active than that of the nickel metal for the reforming reaction according to the invention. In fact, there is a change in the shape of the nickel from the coordinated form to the metal form. Even if the absence of oxygen (with possibly periodic oxidative activation) is the preferred operating condition, it is also possible to work in a medium containing oxygen. The operating conditions are then the same as in the activation step. In the application, the ratios are molar unless otherwise stated. The following examples illustrate the invention without limiting it. EXAMPLE 1 Formation of synthesis gas by reforming methane with CO 2 on a nickel-based catalyst supported on β-SiC. The catalyst is synthesized in the following manner: the β-SiC-based support, in the form of extrusions 2 mm in diameter and 5 mm in length, is impregnated by the porous volume method with an aqueous solution containing a sodium salt. nickel nitrate. The specific surface of the support measured by the adsorption of nitrogen at the temperature of the liquid nitrogen is 22 m 2 .g -1 .The concentration of the salt is calculated so as to obtain a final nickel charge of 5% by weight. weight after the weight of the catalyst after heat treatments The support after impregnation is air-dried at room temperature and then calcined under air at 400 ° C. for 2 hours in order to convert the starting nickel salt into its corresponding oxide. Specific surface area of the catalyst remains stable after the heat treatments at 21 m 2 g -1 . The methane reforming reaction with CO 2 is carried out under the following conditions: - atmospheric pressure; - CH 4 / CO ratio 2 : 1; temperature: 900 ° C .; - contact time reagents / catalyst: 0.6 seconds. The results, ie the conversion of methane and H 2 / CO ratio, as a function of time under flow are presented in FIG. 1. The methane conversion is stable at about 81% for more than 80 hours of test and the ratio H 2 / CO is also stable, in the range between 0.9 and 1.1. Example 2 Formation of synthesis gas by reforming methane with CO 2 on a nickel-based catalyst supported on SiC β. Influence of the activation period in the presence of oxygen trace on the catalytic activity in reforming methane by CO 2 . The catalyst is prepared in the same manner as that described in Example 1. The test conditions are slightly modified by adding an activation step during which traces of oxygen have been introduced into the CH 4 : CO mixture. 2 . The final composition of the reactants entering the reactor is as follows during the activation period: CH 4 : 46.4%, C0 2 : 46.4%, O 2 : 1.4% and nitrogen as gas remaining (oxygen and nitrogen is thus in a ratio substantially equal to that of air). The molar ratio
CH/02 est de 32 tandis que le rapport molaire CH4/C02 est de 1.CH / O 2 is 32 while the molar ratio CH 4 / CO 2 is 1.
Après la période d'activation (8 h, période I sur la figure 2A) le flux d'oxygène est arrêté et seul le mélange contenant duAfter the activation period (8 h, period I in FIG. 2A) the flow of oxygen is stopped and only the mixture containing
CH4 et du C02 est passé sur le catalyseur maintenu dans les mêmes conditions de pression et de température que précédemment . Les résultats obtenus sont présentés sur la Figure 2A en fonction du temps sous flux. Comme on peut le constater la période d'activation a permis d'augmenter d'une manière significative l'activité de reformage du méthane par le C02 du catalyseur Ni/SiC β. Une comparaison des activités obtenues après une période d'activation et en absence de la période d'activation est présentée sur la Figure 2B. La conversion du méthane est passée de 80%, en absence de la période d'activation, à environ 96% lorsque le catalyseur est activé en présence de trace d'oxygène. Les résultats obtenus montrent que la période d'activation en présence de trace d'oxygène est bénéfique pour obtenir un catalyseur actif dans la réaction de reformage du méthane par du C02. CH 4 and CO 2 is passed over the catalyst maintained under the same conditions of pressure and temperature as before. The results obtained are shown in Figure 2A as a function of time under flow. As can be seen, the activation period made it possible to significantly increase the methane reforming activity by the C0 2 of the Ni / SiC β catalyst. A comparison of the activities obtained after an activation period and in the absence of the activation period is presented in Figure 2B. The conversion of methane increased from 80%, in the absence of the activation period, to about 96% when the catalyst is activated in the presence of trace oxygen. The results obtained show that the activation period in the presence of trace oxygen is beneficial to obtain an active catalyst in the methane reforming reaction with C0 2 .

Claims

REVENDICATIONS
1. Procédé de transformation des mélanges méthane/dioxyde de carbone en mélange monoxyde de carbone/hydrogêne caractérisé en ce qu'on utilise un catalyseur comprenant un support contenant plus de 50% en poids de carbure de silicium sous forme bêta.1. Process for converting methane / carbon dioxide mixtures into a carbon monoxide / hydrogen mixture, characterized in that a catalyst comprising a support containing more than 50% by weight of silicon carbide in beta form is used.
2. Procédé selon la revendication 1 caractérisé en ce que le support du catalyseur contient de 50 à 100% en poids de carbure de silicium bêta à l'état particulaire, et de préférence 100% du dit carbure de silicium.2. Method according to claim 1 characterized in that the support of the catalyst contains from 50 to 100% by weight of beta-silicon carbide in the particulate state, and preferably 100% of said silicon carbide.
3. Procédé selon la revendication 1 ou 2 caractérisé en ce que le SiC bêta est sous forme de poudre, de grains, d'extrudes, de mousse ou de monolithe.3. Method according to claim 1 or 2 characterized in that the beta SiC is in the form of powder, grains, extrusions, foam or monolith.
4. Procédé selon l'une des revendications 1 à 3 caractérisé en ce que le catalyseur contient de 0,1 à 10% d'un métal du groupe VIII, de préférence le nickel.4. Method according to one of claims 1 to 3 characterized in that the catalyst contains from 0.1 to 10% of a Group VIII metal, preferably nickel.
5. Procédé selon l'une des revendications 1 à 4 caractérisé en ce que le catalyseur est utilisé en lit fixe, en lit ébullisant ou en slurry.5. Method according to one of claims 1 to 4 characterized in that the catalyst is used fixed bed, boiling bed or slurry.
6. Procédé selon l'une des revendications 1 à 5 caractérisé en ce qu'il est mis en œuvre en l'absence d'oxygène.6. Method according to one of claims 1 to 5 characterized in that it is implemented in the absence of oxygen.
7. Procédé selon l'une des revendications 1 à 6 caractérisé en ce qu'il comprend une étape d'activation périodique du catalyseur par injection d'un gaz oxydant contenant de l'oxygène sur le catalyseur.7. Method according to one of claims 1 to 6 characterized in that it comprises a step of periodic activation of the catalyst by injecting an oxidizing gas containing oxygen on the catalyst.
8. Procédé selon la revendication 7 caractérisé en ce que l' activation du catalyseur est effectuée selon une périodicité de 20 à 100 h, de préférence de 40 à 80 h, pour une durée d'activation entre 0,1 à 10 h, de préférence entre 0,5 et 5 h.8. Process according to claim 7, characterized in that the activation of the catalyst is carried out at a periodicity of 20 to 100 hours, preferably 40 to 80 hours, for an activation time between 0.1 to 10 h, preferably between 0.5 and 5 h.
9. Procédé selon l'une des revendications 7 ou 8 caractérisé en ce que l'étape d'activation périodique est effectuée par injection d'oxygène, d'air ou leurs mélanges dans le mélange méthane/dioxyde de carbone de départ .9. Method according to one of claims 7 or 8 characterized in that the periodic activation step is performed by injecting oxygen, air or mixtures thereof in the starting methane / carbon dioxide mixture.
10. Procédé selon l'une des revendications 1 à 5 caractérisé en ce qu'il est mis en œuvre en présence d'oxygène.10. Method according to one of claims 1 to 5 characterized in that it is implemented in the presence of oxygen.
11. Procédé selon l'une des revendications 1 à 10 caractérisé en ce qu'on opère dans les conditions opératoires suivantes : - pression totale: 0,1 à 50 atmosphères ; - température de réaction: supérieure à 700 °C; - WH (GHSV) variant de 250 à 20000h~1; - ratio CH4/C02 du gaz de départ compris entre 0,5 et 6/ - ratio CH4/O2, le cas échéant, du gaz d'activation compris entre 10 et 60.11. Method according to one of claims 1 to 10 characterized in that it operates under the following operating conditions: - total pressure: 0.1 to 50 atmospheres; reaction temperature: above 700 ° C .; - WH (GHSV) ranging from 250 to 20000h ~ 1 ; - CH 4 / CO 2 ratio of the starting gas between 0.5 and 6 / - ratio CH4 / O 2 , if necessary, activation gas between 10 and 60.
12. Procédé selon l'une des revendications 1 à 11 caractérisé en ce qu'on opère dans les conditions opératoires suivantes : - pression totale: 1 à 20 atmosphères; - température de réaction: entre 800 et 1200°C; - WH (GHSV) variant de 500 à 15 OOOh"1; - ratio CH4/C02 du gaz de départ compris entre 1 et 4 ; - ratio CH4/O2, le cas échéant, du gaz d'activation entre 20 et 40.12. Method according to one of claims 1 to 11 characterized in that it operates under the following operating conditions: - total pressure: 1 to 20 atmospheres; reaction temperature: between 800 and 1200 ° C .; WH (GHSV) varying from 500 to 15,000 h -1 , CH 4 / CO 2 ratio of the starting gas of between 1 and 4, CH 4 / O 2 ratio, if appropriate, of the activation gas between 20 and 40.
13. Procédé selon l'une des revendications 1 à 12 caractérisé en ce qu'il est mis en œuvre sur champ pétrolier avec un gaz naturel riche en C02. 13. Method according to one of claims 1 to 12 characterized in that it is implemented on a petroleum field with a natural gas rich in C0 2 .
EP04817594A 2003-12-31 2004-12-24 Method for processing methane-carbon dioxide mixtures Withdrawn EP1701791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0315623A FR2864528B1 (en) 2003-12-31 2003-12-31 PROCESS FOR TREATING METHANE / CARBON DIOXIDE MIXTURES
PCT/FR2004/003381 WO2005072867A1 (en) 2003-12-31 2004-12-24 Method for processing methane-carbon dioxide mixtures

Publications (1)

Publication Number Publication Date
EP1701791A1 true EP1701791A1 (en) 2006-09-20

Family

ID=34639732

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04817594A Withdrawn EP1701791A1 (en) 2003-12-31 2004-12-24 Method for processing methane-carbon dioxide mixtures

Country Status (12)

Country Link
US (1) US20050169835A1 (en)
EP (1) EP1701791A1 (en)
JP (1) JP2007516924A (en)
AR (1) AR047784A1 (en)
AU (1) AU2004314634A1 (en)
BR (1) BRPI0418295A (en)
CA (1) CA2547599A1 (en)
FR (1) FR2864528B1 (en)
MX (1) MXPA06007478A (en)
PE (1) PE20051043A1 (en)
RU (1) RU2006125387A (en)
WO (1) WO2005072867A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015525668A (en) 2012-06-29 2015-09-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se High pressure method for carbon dioxide reforming of hydrocarbons in the presence of iridium containing actives
KR20140122117A (en) 2013-04-09 2014-10-17 삼성전자주식회사 Catalysts for carbon dioxide reforming of hydrocarbons

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2062615A5 (en) * 1969-11-19 1971-06-25 Ustav Pro Vyzkum Vyuziti Nickel/gamma-alumina as catalyst for steam cracking - natural gas
CA1084235A (en) * 1976-05-24 1980-08-26 Ryo Enomoto PROCESS AND AN APPARATUS FOR PRODUCING SILICON CARBIDE CONSISTING MAINLY OF .beta.-TYPE CRYSTAL
DE2837850C2 (en) * 1978-08-30 1983-05-05 Siemens AG, 1000 Berlin und 8000 München Unsupported metal catalyst for soot-free partial oxidation of liquid hydrocarbons with air
US4690777A (en) * 1982-01-04 1987-09-01 The Standard Oil Company Production of synthesis gas
EP0084273A3 (en) * 1982-01-04 1984-05-23 The Standard Oil Company Production of synthesis gas
US5023276A (en) * 1982-09-30 1991-06-11 Engelhard Corporation Preparation of normally liquid hydrocarbons and a synthesis gas to make the same, from a normally gaseous hydrocarbon feed
GB8411210D0 (en) * 1984-05-02 1984-06-06 British Petroleum Co Plc Conversion process
GB9028034D0 (en) * 1990-12-24 1991-02-13 Isis Innovation Improved processes for the conversion of methane to synthesis gas
GB9114314D0 (en) * 1991-07-02 1991-08-21 British Petroleum Co Plc Catalyst treatment for fisher-tropsch process
FR2684092B1 (en) * 1991-11-21 1994-03-04 Pechiney Recherche PROCESS FOR THE PREPARATION OF LARGE SPECIFIC METAL CARBIDES FROM ACTIVATED CARBON FOAMS.
JP3313766B2 (en) * 1992-07-15 2002-08-12 財団法人石油産業活性化センター Thin film catalyst for steam reforming
US5648312A (en) * 1994-12-29 1997-07-15 Intevep, S.A. Hydrogenation catalyst with improved attrition resistance and heat dissipation
US6296757B1 (en) * 1995-10-17 2001-10-02 Exxon Research And Engineering Company Synthetic diesel fuel and process for its production
IT1289579B1 (en) * 1997-01-30 1998-10-15 Agip Petroli USEFUL CATALYTIC COMPOSITION IN THE REACTION OF FISCHER TROPSCH
US6254807B1 (en) * 1998-01-12 2001-07-03 Regents Of The University Of Minnesota Control of H2 and CO produced in partial oxidation process
US6361861B2 (en) * 1999-06-14 2002-03-26 Battelle Memorial Institute Carbon nanotubes on a substrate
US6402989B1 (en) * 1999-07-30 2002-06-11 Conoco Inc. Catalytic partial oxidation process and promoted nickel based catalysts supported on magnesium oxide
EP1338335A4 (en) * 2000-11-08 2005-01-19 Idemitsu Kosan Co Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
CN1142086C (en) * 2000-11-15 2004-03-17 中国科学院金属研究所 Microwave catalyst for methane and CO2 reforming reaction
FR2826293B1 (en) * 2001-06-21 2004-01-30 Elf Antar France PROCESS FOR OBTAINING SYNTHESIS GAS BY PARTIAL CATALYTIC OXIDATION
US6911161B2 (en) * 2002-07-02 2005-06-28 Conocophillips Company Stabilized nickel-containing catalysts and process for production of syngas
FR2842125B1 (en) * 2002-07-09 2006-03-31 Sicat PROCESS FOR THE PREPARATION BY BIPHASIC IMPREGNATION OF NEW CATALYSTS FOR HETEROGENEOUS CATALYSIS, AND THE USE OF SAID CATALYSTS
US7008560B2 (en) * 2003-02-10 2006-03-07 Conocophillips Company Silicon carbide-supported catalysts for partial oxidation of natural gas to synthesis gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005072867A1 *

Also Published As

Publication number Publication date
WO2005072867A1 (en) 2005-08-11
FR2864528A1 (en) 2005-07-01
AR047784A1 (en) 2006-02-22
US20050169835A1 (en) 2005-08-04
FR2864528B1 (en) 2006-12-15
PE20051043A1 (en) 2006-02-22
BRPI0418295A (en) 2007-05-02
AU2004314634A1 (en) 2005-08-11
RU2006125387A (en) 2008-02-10
JP2007516924A (en) 2007-06-28
MXPA06007478A (en) 2007-01-26
CA2547599A1 (en) 2005-08-11

Similar Documents

Publication Publication Date Title
US6315977B1 (en) Process and apparatus for producing hydrogen by thermocatalytic decomposition of hydrocarbons
EP3137417B1 (en) Method for dry reforming of at least one alkane
US9227185B2 (en) Nickel/lanthana catalyst for producing syngas
US8100995B2 (en) Multiple stage method of reforming a gas containing tarry impurities employing a zirconium-based catalyst
EP2542654B1 (en) Method of reforming gasification gas
FR2887545A1 (en) PROCESS FOR TRANSFORMATION OF SYNTHETIC GAS INTO HYDROCARBONS IN THE PRESENCE OF SIC FOAM
FR2684313A1 (en) METHOD AND DEVICE FOR THE MANUFACTURE OF SYNTHESIS GAS AND.
CA2050712C (en) Process for the activation of the surface of heavy metal carbides with high specific surface in view of catalytic reactions
EP2565155B1 (en) Method of reforming gasification gas
WO2005072867A1 (en) Method for processing methane-carbon dioxide mixtures
EP1702025B1 (en) Method for converting a synthesis gas into hydrocarbons in the presence of beta-sic and the effluent of said method
EP1101531A1 (en) Process for activating a Fischer-Tropsch-synthesis catalyst
FR2567866A1 (en) Process for the preparation of a gas rich in hydrogen
FR2850665A1 (en) Total hydrogenation of polyunsaturated compounds in hydrocarbon charge involves using catalytic reactor having hydrogen-selective membrane with specific reaction conditions
RU2351392C1 (en) Catalyst and method of light hydrocarbon carbon-dioxide conversion
EP1647590A1 (en) Process for the selective desulfurisation of olefinic gasolines comprising a hydrogen purification step
CH704017A2 (en) Use of material based on a mixed oxyhydride of rare earth metal and metal element other than zirconium and rare earth metal, to catalyze a partial oxidation reaction of alkane in a mixture of hydrogen and carbon monoxide
EP2610004A1 (en) Method for producing hydrocarbons with catalyst conditioning
Hahn et al. Comparison of nanocrystalline and polycrystalline oxide supports for catalytic oxidation of methane
WO2003040029A1 (en) Method for hydrogen production by catalytic decomposition of hydrocarbons, method and installation for electric power production using same
Uemura et al. Dehydrogenation of ethane and hydrogenation of carbon dioxide in a catalytic membrane reactor using copper-plated LaNi5 as a membrane material
JPS6173795A (en) Preparation of high-calorie gas
EP1349656A1 (en) Catalyst capable of selectively oxidizing hydrogen, use thereof and a method of preparing said catalyst

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060731

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LEDOUX, MARC-JACQUES

Inventor name: PHAM-HUU, CUONG

Inventor name: BOUSQUET, JACQUES

Inventor name: SAVIN-PONCET, SABINE

Inventor name: LEROI, PASCALINE

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090701