EP1700021A1 - Method for real time determination of the mass of particles in a particle filter of a motor vehicle - Google Patents

Method for real time determination of the mass of particles in a particle filter of a motor vehicle

Info

Publication number
EP1700021A1
EP1700021A1 EP04816548A EP04816548A EP1700021A1 EP 1700021 A1 EP1700021 A1 EP 1700021A1 EP 04816548 A EP04816548 A EP 04816548A EP 04816548 A EP04816548 A EP 04816548A EP 1700021 A1 EP1700021 A1 EP 1700021A1
Authority
EP
European Patent Office
Prior art keywords
filter
particles
combustion
mass
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04816548A
Other languages
German (de)
French (fr)
Inventor
Shahin Hodjati
Christian Bert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1700021A1 publication Critical patent/EP1700021A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for the real-time determination of the mass of particles present in a particle filter for the combustion engine of a motor vehicle. motor vehicle.
  • the invention also relates to the use of this method in a management method for an engine, in particular engines operating in lean mixture.
  • the heterogeneity of the combustion processes in engines operating in a lean mixture has the effect of generating carbon particles which cannot be burned efficiently by the engine. This results in the appearance of black smoke at the exhaust; characteristics of this type of engine, in particular during starting phase ⁇ and during strong acceleration.
  • Compliance with future legislative standards requires the implementation of deposition systems making it possible to completely eliminate particles as well as nitrogen oxides. Currently " we have, at this.
  • the means commonly used involve the creation of a gaseous environment heated to a temperature of about 600 ° C. This operation promotes self-ignition of the carbon particles retained in the filter. These are then consumed by releasing energy, which depending on conditions can be transmitted by weight to the particle bed in the filter, to the various components of the depollution system (particle filter, box and holding envelope, pipes, etc.), or else carried by the gas flow; from the engine. It is therefore important to know at all times the mass of particles contained in the filter, in particular after regeneration, so as to optimize the management of the progress of the regeneration phases and. to check the integrity of the filter. Indeed, the combustion of too large a quantity of particles can cause degradation or destruction of the filter due to the high exothermicity of this reaction.
  • the mass of particles present in the filter is estimated from the measurement of the pressure drop generated by the filter, as described for example in document PR-2 774 421.
  • the mass thus estimated, however, does not always have sufficient accuracy, so that the filter may be degraded.
  • Document FR ⁇ : 2,657,649 presents, for different operating conditions, different regeneration strategies and regeneration control. More precisely, this document proposes to use an estimator of mass of particles contained in the filter for setting in motion or stopping the different regeneration strategies used as a function of the speed and of the operating load of the engine.
  • the estimate of the mass of particles contained in the filter is determined using a difference between the mass of particles entering the filter from engine emissions and the mass of particles consumed by the combustion of particles in the filter. These masses are determined directly from maps as a function of the engine operating parameters, so that they also do not always have sufficient precision to avoid degradation of the filter.
  • the invention aims to overcome these drawbacks by proposing a method for determining in real time the mass of particles present in a particle filter, which makes it possible to obtain an improvement in the precision of the calculation of the mass.
  • the method according to the invention also has the advantage of requiring only one temperature sensor. inlet of the filter, which will therefore not be damaged in the event that the combustion of the particles is still too exothermic.
  • the subject of the invention relates to a process for determining in real time the mass of particles present in a particle filter fitted to the exhaust line of an internal combustion engine, characterized in that the the following sequence of operations is repeated at determined time intervals: (i) the temperature T (t) of the exhaust gases at the inlet of the particle filter is measured at instant t using a sensor of temperature, (il) the operating parameters of the engine are measured at the instant t, by means of sensors, (iii) the instant at the time t, as a function of the operating parameters of the engine, is recorded on pre-established tables , the values of the following parameters: oxygen concentration [ ⁇ 2 ⁇ £ ⁇ j and nitrogen oxide concentration [NO x ⁇ t ⁇ of the exhaust gases entering the particle filter, the particle emission speed of the engine F (i) ⁇ (iv) we calculate, using the kinetic laws chemical reactions of particle combustion, at time t, the rate of combustion V (t ⁇ of the inarticulate particles in the particle filter using the following parameters: temperature T (t), oxid
  • the invention also relates to the use of the method for determining in real time the mass of particles according to the invention, for; control and / or command a process for managing the regeneration of a motor vehicle particulate filter.
  • the process according to ; the invention making it possible to obtain a better evaluation of the mass of particles present in the filter at each instant, it is possible to prohibit the initiation of a regeneration if the quantity of particles detected risks endangering the integrity of the filter following an excessive rise in temperature at the time of combustion.
  • the determination method according to the invention is used when the temperature at the inlet of the filter is between approximately 250 ° C. and 500 ° C. Outside this temperature range, another method of mass determination can then be used, for example by using a pressure drop measurement in the â filter. particles.
  • the invention also relates to the use of the method for determining in real time the mass of particles according to the invention, in a method for managing the regeneration of a particle filter of a motor vehicle, for determining a mass of threshold particles. for each operating point of a vehicle engine, below which the filter will tend to load with particles and beyond which the rate of combustion of particles in the filter will tend to increase.
  • Figure 1 is a schematic representation of an engine and its exhaust line equipped with a particle filter
  • Figure 2 is the plot of the mass of particles present in the filter calculated according to the method of invention ( c ) and the mass of particles measured by weighing (trip) as a function of time.
  • an engine 1 is connected to a gas exhaust line; 2 fitted with a particulate filter 3. Upstream of the filter 3, with respect to the direction of circulation of the exhaust gases, an oxidation catalyst 4 is installed on the exhaust line to oxidize the nitrogen monoxide of the exhaust gases to nitrogen oxides NO * . I ; A temperature sensor 5 is provided on the exhaust line, at the input of the particle filter 3.
  • the engine speed sensors 6 and the engine load sensors 7 are provided at the engine level to measure the engine speed Ne ( number of revolutions per minute) and the engine load Q corresponding to depression of the accelerator pedal.
  • Pressure sensors 8 and 9 are placed respectively at the inlet and at the outlet of the particle filter 3.
  • the various sensors 5 to 9 are connected to a computer 10 in which: tables, or maps, characteristics of the engine are recorded. These tables are pre-established by preliminary measurements carried out for each engine.
  • the method for determining the mass of rricft ⁇ particles present at instant î in the filter is now described. This process consists of. repeat at determined time intervals ⁇ t the sequence of operations described below. (i) In a first operation, the temperature T (t) of the exhaust gases at the inlet of the particle filter is measured at instant t using the temperature sensor 5. The value obtained is recorded in the computer 10. fii) Substantially simultaneously, the operating parameters of the engine Ne and Q are measured at time t by means of the sensors 6 and 7. The measured values are also recorded in the computer 10.
  • the computer 10 uses pre-established tables which are functions of the values Ne and Q to read the values of the following parameters using as inputs the values Ne and Q measured at the instant t: oxygen concentration [ ⁇ 2 (t)] and concentration nitrogen oxides; [NO x . (T)] of the exhaust az entering the filter â. particles, and particle emission speed from engine F (î). These recorded values correspond to the values at time t and are recorded in the computer 10. 1! East.
  • the computer uses the parameters previously measured or recorded: temperature T ⁇ t), concentrations of nitrogen oxides ⁇ VO (t ⁇ J and oxygen [ ⁇ a (£) j as well as the mass of particles present in the filter, ⁇ ic (t- ⁇ t), obtained during the cycle of operations preceding at time t- ⁇ t
  • the computer uses the kinetic laws of the chemical reactions of particle combustion, the formulas of which are These laws will be detailed later.
  • the calculator calculates the mass of particles present on the filter at time t, rricft), using the mass of particles obtained during the cycle of operations preceding at time i- ⁇ i, mç (t- ⁇ t) t according to the following formula: rhcft ⁇ ⁇ nic (i- ⁇ t ⁇ + ⁇ F (t ⁇ ⁇ V (t) ⁇ * ⁇ t s (E ) where ⁇ t is the time interval between the instants t- ⁇ t and t (vi) The value of ia mass of particles rrt fi) present on the filter calculated at l 'instant t is then saved to be used as a value ; entry into the following sequence of operations at time t + ⁇ t, in particular in operations fiv) and (v).
  • the mass of particles present on the filter is thus corrected in real time as a function of the operating point of the engine, which makes it possible to achieve a precision much higher than the known methods of determining the mass.
  • the combustion reaction of the particles (soot) in a catalyzed particle filter is initiated according to three different and complementary processes: (1)
  • the first process corresponds to the combustion of the particles by oxidation by the nitrogen oxides NO X contained in the exhaust gases or formed by the reaction of nitrogen monoxide on platinum sites present in the active phase deposited by the filter.
  • ⁇ reaction takes place in the range of 250 to about 50 ° C
  • the second process corresponds to the action of the phase catalyst; filter active.
  • the catalyst has an oxygen donor character and provides oxygen for the oxidation of the particles. This process begins around 350 ° C.
  • the third process corresponds to the combustion of the particles by the oxygen present in the exhaust gases, initiated around 450 ⁇ 5G0 ° C, this process intensifies with the temperature and is responsible in particular for the active regeneration of the filter around 600 ° C.
  • the reaction rates of these different processes can be put into kinetic equations in the following form (the rates are expressed in g / s):
  • ⁇ rto ⁇ t- ⁇ t represents the mass of particles (in grams) present on the filter at time t- ⁇ t and calculated during the sequence of operations previously executed
  • - JO, Kz, K3 are the pre-exponential factors of the combustion reactions of the processes (1), (2), (3) respectively, - Eal.
  • Ea2, Ea3 are the activation energies of the combustion reactions of the processes (1), (2), (3) respectively,
  • This speed V ⁇ i) is the "form of the speeds of the three processes:: V ⁇ t)" ⁇ ⁇ 'O, + ⁇ O- + ⁇ atalseu _ It will be understood, that in this case, only the concentrations f Ox ⁇ j jet fOs (t) ] can possibly be measured by sensors, Step (ii) of measuring the engine operating parameters (Ne, Q) cannot then be deleted. ! When the filter 3 does not include a catalyst, then the combustion reaction according to process (2) does not occur. Speed; combustion temperature is then: A ( AA ⁇ The value of the combustion speed thus calculated can be used for the calculation of the mass of particles present in the filter ⁇ n, - (t), eh using equation (E). ' Figure 2 shows.
  • the sequence of operations used to calculate the mass of particles according to the invention is preferably executed at time intervals ai of the order of one second. Of course, other values can be used.

Abstract

The invention relates to a method for real-time determination of the mass of particles in a particle filter (3) fitted to the exhaust line (2) of an internal combustion engine (1). The following data - temperature T(t) of the exhaust gas at the filter input, oxygen [O2 (t)] and nitrogen oxide [NOx(t)] concentration of the exhaust gases entering the filter - is used to calculate the rate of combustion of the particles in the particle filter with the aid of kinetic laws of chemical reactions of particle combustion. Said rate, the rate emission of particles from the engine F(t) and the mass of particles in the filter mc(t- DELTA t) obtained during the cycle of operations prior to the moment t- DELTA t, is then used to calculate the mass of particles in the filter, mc(t): mc(t) = mc(t- DELTA t) + F(t) V(t)* DELTA t.

Description

PROCEDE DE DETERMINATION EN TEMPS REEL DE LA MASSE DE PARTICULES PRESENTE DANS UN FILTRE A PARTICULES DE VEHICULE AUTOMOBILE L'invention concerne un procédé de détermination en temps réel de la masse de particules présente dans un filtre à particules pour le moteur à combustion d'un véhicule automobile. L'invention concerne également l'utilisation, de ce procédé dans un procédé de gestion pour un moteur, notamment les moteurs fonctionnant en mélange pauvre. En effet, l'hétérogénéité des processus de combustion dans les moteurs fonctionnant en mélange pauvre a pour effet de générer des particules de carbone qui ne peuvent être brûlées efficacement par le moteur. Cela se traduit par l'apparition à l'échappement de fumées noires; caractéristiques de ce type de moteur, en particulier lors des phaseέ de démarrage et lors des fortes accélérations. Le respect des futures normes législatives impose la mise en œuvre de systèmes de dépoUύtion permettant d'éliminer en totalité les particules ainsi que les oxydes d'azote. Actuellement» on dispose, à cet. effet, d'un élément semi-poreux formant un filtre à particules dans la ligne d'échappement, qui permet le passage des composés gaze x tout en retenant les composés particulaires. Dans les moteurs Diesel, les fumées constituent l'élément de base de ces composés particulaires, Cependant, lorsque le filtre est jugé plein, il est nécessaire d'effectuer une purge afin de le régénérer. Ainsi, chaque phase de rétention des particules doit être suivie d'une phase de régénération au cours de laquelle les composés retenus sont éliminés en éléments non polluants (dioxyde de carbone et eau). Une nouvelle phase d'accumulation des composés particulaires peut alors commencer. Ces particules sont habituellement éliminées par combustion à une température d'environ 600βC. Cependant, les gaz d'échappement de ces moteurs atteignent rarement une telle température en fonctionnement normal : il est nécessaire d'augmenter spécifiquement la température lors de la phase de régénération. Les moyens couramment utilisés passent par la création d'un environnement gazeux chauffé à une température d'environ 600°C. Cette ^opération permet de favoriser l' auto-inflammation des particules de carbone retenues dans le filtre. Ces dernières se consument alors en dégageant de l'énergie, qui en fonction des conditions peut être ponderalement transmise au lit de particules dans le filtre, aux divers éléments constitutifs du système de dépoilution (filtre à particules, boîte et enveloppe de maintien, tuyaux, etc.), ou bien véhiculée par le flux de gaz; émanant du moteur. Il est donc important de connaître à chaque instant la masse de particules contenues dans le filtre, en particulier à l'issue d'une régénération, de manière à optimiser la gestion du déroulement des phases de régénération et. à contrôler l'intégrité du filtre. En effet, la combustion d'une quantité trop importante de particules peut provoquer une dégradation ou destruction du filtre en raison de la forte exothermicité de cette réaction. En général, la masse de particules présente dans le filtre est estimée à partir de la mesure de la perte de charge engendrée par le filtre, tel que décrit par exemple dans le document PR-2 774 421. La masse; ainsi estimée ne présente toutefois pas toujours une précision suffisante, de sorte que le filtre peut subir des dégradations. Le document FR~:2 657 649 présente, pour différentes conditions de fonctionnement, différentes stratégies de régénération et de pilotage de la régénération. Plus précisément, ce document propose d'utiliser un estimateur de masse de particules contenues dans le filtre pour la mise en œuyre ou l'arrêt des différentes stratégies de régénération utilisées en fonction du régime et de la charge de fonctionnement du moteur.The invention relates to a method for the real-time determination of the mass of particles present in a particle filter for the combustion engine of a motor vehicle. motor vehicle. The invention also relates to the use of this method in a management method for an engine, in particular engines operating in lean mixture. Indeed, the heterogeneity of the combustion processes in engines operating in a lean mixture has the effect of generating carbon particles which cannot be burned efficiently by the engine. This results in the appearance of black smoke at the exhaust; characteristics of this type of engine, in particular during starting phaseέ and during strong acceleration. Compliance with future legislative standards requires the implementation of deposition systems making it possible to completely eliminate particles as well as nitrogen oxides. Currently " we have, at this. effect, of a semi-porous element forming a particle filter in the exhaust line, which allows the passage of the gauze x compounds while retaining the particulate compounds. In diesel engines, the fumes constitute the basic element of these particulate compounds. However, when the filter is deemed to be full, it is necessary to perform a purge in order to regenerate it. Thus, each particle retention phase must be followed by a regeneration phase during which the retained compounds are eliminated in non-polluting elements (carbon dioxide and water). A new phase of accumulation of particulate compounds can then begin. These particles are usually eliminated by combustion at a temperature of around 600 β C. However, the exhaust gases from these engines rarely reach such a temperature in normal operation: it is necessary to specifically increase the temperature during the regeneration. The means commonly used involve the creation of a gaseous environment heated to a temperature of about 600 ° C. This operation promotes self-ignition of the carbon particles retained in the filter. These are then consumed by releasing energy, which depending on conditions can be transmitted by weight to the particle bed in the filter, to the various components of the depollution system (particle filter, box and holding envelope, pipes, etc.), or else carried by the gas flow; from the engine. It is therefore important to know at all times the mass of particles contained in the filter, in particular after regeneration, so as to optimize the management of the progress of the regeneration phases and. to check the integrity of the filter. Indeed, the combustion of too large a quantity of particles can cause degradation or destruction of the filter due to the high exothermicity of this reaction. In general, the mass of particles present in the filter is estimated from the measurement of the pressure drop generated by the filter, as described for example in document PR-2 774 421. The mass; thus estimated, however, does not always have sufficient accuracy, so that the filter may be degraded. Document FR ~: 2,657,649 presents, for different operating conditions, different regeneration strategies and regeneration control. More precisely, this document proposes to use an estimator of mass of particles contained in the filter for setting in motion or stopping the different regeneration strategies used as a function of the speed and of the operating load of the engine.
L'estimation de la masse de particules contenue dans le filtre est déterminée en utilisant une différence entre la masse de particules entrant dans le filtre provenant des émissions du moteur et la masse de particules consommée par la combustion des particules dans le filtre. Ces masses sont déterminées directement à partir de cartographies en fonction des paramètres de fonctionnement du moteur, de sorte qu'elles ne présentent pas non plus toujours une précision suffisante pour éviter une dégradation dxi filtre. L'invention vise à pallier ces inconvénients en proposant un procédé de détermination en temps réel de la masse de particules présente dans un filtre à particules, qui permet d'obtenir une amélioration de la précision du calcul de la masse. ;Le procédé selon l'invention présente en outre l'avantage de ne nécessiter qu'un capteur de température en. entrée du filtre, qui ne sera donc pas détérioré an cas où la combustion des particules serait tout de même trop exothermique. A cet effet, l'objet de l'invention concerne un procédé de détermination en temps réel de la masse de particules présente dans un filtre à particules équipant la ligne d'échappement d'un moteur à combustion interne, caractérisé en ce que l'on répète à des intervalles de temps et déterminés la suite d'opérations suivan e : (i) on mesure à l'instant t la température T(t) des gaz d'échappement à l'entrée du filtre à particules en utilisant un capteur de température, (il) on mesure à l'instant t des paramètres de fonctionnement du moteur au moyen de capteurs, (iii) on relève à l'instant t, en fonction des paramètres de fonctionnement du moteur, sur des tables prê-établies, les valeurs des paramètres suivants : concentration en oxygène [θ2{£}j et concentration en oxydes d'azote [NOx {t}} des gaz d'échappement entrant dans le filtre à particules, la vitesse d'émission de particules du moteur F(i)} (iv) on calcule, en utilisant les lois de cinétique des réactions chimiques de combustion des particules, à l'instant t, la vitesse de combustion V(t} des inarticulés dans le filtre â particules à l'aide des paramètres suivants : température T(t), concentrations en oxydants [θ2{£}] i lNOx{t)]t et masse de particules présente dans le filtre, m(.(t-Δt), obtenue lors du cycle d'opérations précédent à l'instant î-Δt, (v) on calcule, à. l'instant t, la masse de particules présente sur le filtre, πicft), en utilisant la masse de particules πiçfi-Δt) obtenue lors du cycle d'opérations précédent suivant la formule suivante : fi) = m (t~Λt) + [F(t) ~ V(tj) * Δtt o Δi est l'intervalle de temps entre les instants t-Δt et t, (vj) on enregistre la valeur de la masse de particules m (t) présente sur le filtre calculée à l'instant t pour l'utiliser dans la suite d'opérations suivante à l'instant t+ t. Dans un autre mode de réalisation, au lieu, de relever une ou plusieurs valeurs des paramètres [ a (i}) ^ [NO t)] s F(t), on la ou les mesure; au moyen de capteurs. Ainsi, dans le cas où les trois valeurs sont -mesurées par des capteurs, les étapes {«), {m) peuvent être supprimées. L'invention concerne également l'utilisation du procédé de détermination en temps réel de la masse de particules selon l'invention, pour ; contrôler et/ ou commander un procédé de gestion de la régénération d'un filtre à particules de véhicule automobile. Le procédé selon ; l'invention permettant d'obtenir une meilleure évaluation de la masse de particules présente dans le filtre à chaque instant, il est- possible d'interdire le déclenchement d'une régénération si la quantité de particules détectées risque de mettre en danger l'intégrité du filtre suite à une élévation trop importante de la température au moment de la combustion. Dans une variante, le procédé de détermination selon l'invention est utilisé lorsque la température en entrée du filtre est comprise entre 250°C et 500 'C environ. En dehors de cette plage de températures, un autre procédé de détermination de la masse peut alors être utilisé, par exemple en utilisant une mesure de perte de charge dans le filtre â. particules. L'invention concerne également l'utilisation du procédé de détermination en temps réel de la masse de particules selon l'invention, dans un procédé de gestion de la régénération d'un filtre à particules de véhicule automobile, pour déterminer une masse de particules seuil pour chaque point de fonctionnement du moteur d'un véhicule, en deçà de laquelle le filtre aura tendance à se charger en particules et au-delà de laquelle la vitesse de combustion des particules dans le filtre aura tendance à augmenter. li'invention est maintenant décrite en référence aux dessins annexés, non limitatifs, dans lesquels : -! la figure 1 est une représentation schématique d'un moteur et de sa ligne d'échappement équipée d'un filtre à particules, - ] la figure 2 est le tracé de la masse de particules présente dans le filtre calculée selon le procédé de l'invention ( c) et la masse de particules mesurée par pesée (trip) en fonction du temps. En référence à la figure 1, un moteur 1 est relié à une ligne d'échappement des gaz; 2 équipée d'un filtre à particules 3. En amont du filtre 3, par rapport aυ sens de circulation des gaz d'échappement, un catalyseur d'oxydation 4 est installé sur la ligne d'échappement pour oxyder le monoxyde d'azote des gaz d'échappement en oxydes d'azote NO*. I ;Un capteur de température 5 est prévu sur la ligne d'échappement, en entrée du filtre à particules 3. es capteurs de vitesse du moteur 6 et de la charge du moteur 7 sont prévus au niveau du moteur pour mesurer la vitesse Ne du moteur (nombre de tours par minute) et la charge Q du moteur correspondant à renfoncement de la pédale d'accélérateur. Des capteurs de pression 8 et 9 sont placés respectivement en entrée et en sortie du filtre à particules 3, Les différents capteurs 5 â 9 sont reliés à un calculateur 10 dans lequel: des tables, ou cartographies, caractéristiques du moteur sont enregistrées. Ces tables sont pré-établies par des mesures préalables réalisées pour chaque moteur. Le procédé de détermination de la masse de particules rricft} présente à l'instant î dans le filtre est maintenant décrit. Ce procédé consiste à. répéter à des intervalles de temps Δt déterminés la suite d'opérations décrite ci-après. (i) Dans une première opération, on mesure, à l'instant, t, la température T(t) des gaz d'écriappement à l'entrée du filtre à particules en utilisant le capteur de température 5. La valeur obtenue est enregistrée dans le calculateur 10. fii) Sensiblement simultanément, on mesure à l'instant t les paramètres de fonctionnement du moteur Ne et Q au moyen des capteurs 6 et 7. Les valeurs mesurées sont également enregistrées dans le calculateur 10. (iii) Ensuite, le calculateur 10 utilise des tables pré-établies fonctions des valeurs Ne et Q pour relever les valeurs des paramètres suivants en utilisant comme entrées les valeurs Ne et Q mesurées â l'instant t : concentration en oxygène [θ2(t)] et concentration en oxydes d'azote; [NOx.(t)] des az d'échappement entrant clans le filtre â. particules, et vitesse d'émission de particules du moteur F(î). Ces valeurs relevées correspondent aux valeurs à l'instant t et sont enregistrées dans le calculateur 10. 1! est. toutefois possible de remplacer cette opération de lecture sur des tables par des mesures de capteur placés en entrée du filtre pour mesurer les concentrations en oxygène [θ3(t)J et en oxydes d'azote [iYCλ,(t)] et par une mesure d'un analyseur de particules (également placé [en entrée du filtre) pour mesurer îa vitesse d'émission de particules du moteur F{t). L'étape (ϋ) peut alors être supprimée. (iv) Le calculateur 10 procède ensuite au calcul de la vitesse de combustion V(t), à l'instant t„ des particules dans le filtre à particules.The estimate of the mass of particles contained in the filter is determined using a difference between the mass of particles entering the filter from engine emissions and the mass of particles consumed by the combustion of particles in the filter. These masses are determined directly from maps as a function of the engine operating parameters, so that they also do not always have sufficient precision to avoid degradation of the filter. The invention aims to overcome these drawbacks by proposing a method for determining in real time the mass of particles present in a particle filter, which makes it possible to obtain an improvement in the precision of the calculation of the mass. The method according to the invention also has the advantage of requiring only one temperature sensor. inlet of the filter, which will therefore not be damaged in the event that the combustion of the particles is still too exothermic. To this end, the subject of the invention relates to a process for determining in real time the mass of particles present in a particle filter fitted to the exhaust line of an internal combustion engine, characterized in that the the following sequence of operations is repeated at determined time intervals: (i) the temperature T (t) of the exhaust gases at the inlet of the particle filter is measured at instant t using a sensor of temperature, (il) the operating parameters of the engine are measured at the instant t, by means of sensors, (iii) the instant at the time t, as a function of the operating parameters of the engine, is recorded on pre-established tables , the values of the following parameters: oxygen concentration [θ 2 {£} j and nitrogen oxide concentration [NO x {t}} of the exhaust gases entering the particle filter, the particle emission speed of the engine F (i) } (iv) we calculate, using the kinetic laws chemical reactions of particle combustion, at time t, the rate of combustion V (t} of the inarticulate particles in the particle filter using the following parameters: temperature T (t), oxidant concentrations [θ 2 { £}] i lNO x {t)] t and mass of particles present in the filter, m ( . (T-Δt), obtained during the previous operating cycle at time î-Δt, (v) we calculate , at. instant t, the mass of particles present on the filter, πicft), using the mass of particles πiçfi-Δt) obtained during the previous cycle of operations according to the following formula: fi) = m (t ~ Λt) + [F (t) ~ V (tj) * Δt t o Δi is the time interval between the instants t-Δt and t, (vj) the value of the mass of particles m (t) present on the filter is recorded calculated at time t for use in the following sequence of operations at time t + t. In another embodiment, instead of reading one or more values of the parameters [ a (i}) ^ [NO t)] s F (t), we measure them ; by means of sensors. So, in case the three values are -measured by sensors, steps {"), {m) can be omitted. The invention also relates to the use of the method for determining in real time the mass of particles according to the invention, for; control and / or command a process for managing the regeneration of a motor vehicle particulate filter. The process according to ; the invention making it possible to obtain a better evaluation of the mass of particles present in the filter at each instant, it is possible to prohibit the initiation of a regeneration if the quantity of particles detected risks endangering the integrity of the filter following an excessive rise in temperature at the time of combustion. In a variant, the determination method according to the invention is used when the temperature at the inlet of the filter is between approximately 250 ° C. and 500 ° C. Outside this temperature range, another method of mass determination can then be used, for example by using a pressure drop measurement in the â filter. particles. The invention also relates to the use of the method for determining in real time the mass of particles according to the invention, in a method for managing the regeneration of a particle filter of a motor vehicle, for determining a mass of threshold particles. for each operating point of a vehicle engine, below which the filter will tend to load with particles and beyond which the rate of combustion of particles in the filter will tend to increase. The invention is now described with reference to the accompanying non-limiting drawings, in which: -! Figure 1 is a schematic representation of an engine and its exhaust line equipped with a particle filter, -] Figure 2 is the plot of the mass of particles present in the filter calculated according to the method of invention ( c ) and the mass of particles measured by weighing (trip) as a function of time. Referring to Figure 1, an engine 1 is connected to a gas exhaust line; 2 fitted with a particulate filter 3. Upstream of the filter 3, with respect to the direction of circulation of the exhaust gases, an oxidation catalyst 4 is installed on the exhaust line to oxidize the nitrogen monoxide of the exhaust gases to nitrogen oxides NO * . I ; A temperature sensor 5 is provided on the exhaust line, at the input of the particle filter 3. The engine speed sensors 6 and the engine load sensors 7 are provided at the engine level to measure the engine speed Ne ( number of revolutions per minute) and the engine load Q corresponding to depression of the accelerator pedal. Pressure sensors 8 and 9 are placed respectively at the inlet and at the outlet of the particle filter 3. The various sensors 5 to 9 are connected to a computer 10 in which: tables, or maps, characteristics of the engine are recorded. These tables are pre-established by preliminary measurements carried out for each engine. The method for determining the mass of rricft} particles present at instant î in the filter is now described. This process consists of. repeat at determined time intervals Δt the sequence of operations described below. (i) In a first operation, the temperature T (t) of the exhaust gases at the inlet of the particle filter is measured at instant t using the temperature sensor 5. The value obtained is recorded in the computer 10. fii) Substantially simultaneously, the operating parameters of the engine Ne and Q are measured at time t by means of the sensors 6 and 7. The measured values are also recorded in the computer 10. (iii) Then, the computer 10 uses pre-established tables which are functions of the values Ne and Q to read the values of the following parameters using as inputs the values Ne and Q measured at the instant t: oxygen concentration [θ 2 (t)] and concentration nitrogen oxides; [NO x . (T)] of the exhaust az entering the filter â. particles, and particle emission speed from engine F (î). These recorded values correspond to the values at time t and are recorded in the computer 10. 1! East. however, it is possible to replace this reading operation on tables with sensor measurements placed at the input of the filter to measure the concentrations of oxygen [θ 3 (t) J and of nitrogen oxides [iYCλ, (t)] and by a measurement of a particle analyzer (also placed [at the inlet of the filter) to measure the particle emission speed of the engine F (t). Step (ϋ) can then be deleted. (iv) The computer 10 then proceeds to calculate the combustion speed V (t), at time t „of the particles in the particle filter.
Comme données d'entrées, le calculateur utilise les paramètres précédemment mesurés ou relevés : température T{t), concentrations en oxydes d'azote μVO (t}J et oxygène [θa(£)j ainsi que la masse de particules présente dans le filtre, πic(t-Δt), obtenue lors du cycle d'opérations précédent à l'instant t-Δt A cet effet, le calculateur utilise les lois de cinétique des réa.ctions chimiques de combustion des particules, dont les formules sont pré-enregistrées. Ces lois seront détaillées plus loin. (v) A l'opération suivante, le calculateur calcule la masse de particules présente sur le filtre à l'instant t, rricft), en utilisant la masse de particules obtenue lors du cycle d'opérations précédent à l'instant i- Δi, mç(t-Δt)t suivant la formule suivante : rhcft} ≈ nic(i-Δt} + \F(t} ~ V(t)} * Δts (E) où Δt est l'intervalle de temps entre les instants t-Δt et t (vi) La valeur de ia masse de particules rrt fi) présente sur le filtre calculée à l'instant t est alors enregistrée pour être utilisée comme valeur ; d'entrée dans la suite d'opérations suivante à l'instant t+Δt, notamment dans les opérations fiv) et (v). La suite d'opérations décrite ci-dessus est ensuite exécutée à nouveau â l'instant t+_ t A l'instant initial tt, aucune masse πic(i-Δt) n'étan disponible, le calculateur utilise alors une masse de particules présente sur le filtre mpres χ> {ti) estimée en utilisant de manière classique la perte de charge ou différence de pression ΔP â l'instant ti entre l'entrée et la sortie du filtre 3. Cette différence de pression est par exemple calculée en utilisant comme valeurs d'entrées les mesures des capteurs de pression 8 et 9. i il est également possible d'avoir recours à cette masse de particules estimée mPr sswn à des instants i ultérieurs du fonctionnement du moteur, par exemple â des fins de contrôle de la masse calculée mc(t) selon le procédé de l'invention. !La masse de particules présente sur le filtre est ainsi corrigée en temps réel en fonction du point de fonctionnement du moteur, ce qui permet d'atteindre une précision nettement supérieure aux procédés connus de détermination de la masse. Nous allons maintenant décrixe les lois de cinétique utilisées par 3e calculateur selon l'invention. La réaction de combustion des particules (suies) dans un filtre à particules catalysé (phase active diα filtre comprenant un catalyseur), est initiée suivant trois processus diïTérents et complémentaires : (1) Le premier processus correspond à la combustion des particules par oxydation par les oxydes d'azote NOX contenus dans les gaz d'échappement ou formés par réaction du monoxyde d'azote sur des sites platine présents dans la phase active déposée par le filtre. CetteAs input data, the computer uses the parameters previously measured or recorded: temperature T {t), concentrations of nitrogen oxides μVO (t} J and oxygen [θ a (£) j as well as the mass of particles present in the filter, πic (t-Δt), obtained during the cycle of operations preceding at time t-Δt For this purpose, the computer uses the kinetic laws of the chemical reactions of particle combustion, the formulas of which are These laws will be detailed later. (v) In the following operation, the calculator calculates the mass of particles present on the filter at time t, rricft), using the mass of particles obtained during the cycle of operations preceding at time i- Δi, mç (t-Δt) t according to the following formula: rhcft} ≈ nic (i-Δt} + \ F (t} ~ V (t)} * Δt s (E ) where Δt is the time interval between the instants t-Δt and t (vi) The value of ia mass of particles rrt fi) present on the filter calculated at l 'instant t is then saved to be used as a value ; entry into the following sequence of operations at time t + Δt, in particular in operations fiv) and (v). The sequence of operations described above is then executed again at time t + _ t At the initial time tt, no mass πic (i-Δt) is available, the computer then uses a mass of particles present on the filter m pr χ > {ti) estimated using the pressure drop or pressure difference ΔP at the time ti between the inlet and the outlet of the filter 3 in a conventional manner. This pressure difference is for example calculated using as input values the measurements of the pressure sensors 8 and 9. i it is also possible to have recourse to this estimated mass of particles m P r sswn at later times i of operation of the engine, for example for the purpose of checking the calculated mass m c (t) according to the method of the invention. ! The mass of particles present on the filter is thus corrected in real time as a function of the operating point of the engine, which makes it possible to achieve a precision much higher than the known methods of determining the mass. We will now decipher the kinetic laws used by the third computer according to the invention. The combustion reaction of the particles (soot) in a catalyzed particle filter (active phase of the filter comprising a catalyst), is initiated according to three different and complementary processes: (1) The first process corresponds to the combustion of the particles by oxidation by the nitrogen oxides NO X contained in the exhaust gases or formed by the reaction of nitrogen monoxide on platinum sites present in the active phase deposited by the filter. This
< réaction se déroule dans la plage de 250 â SÛO^C environ, (2) Le second processus correspond à l'action du catalyseur de la phase ; active du filtre. Le catalyseur présente un caractère donneur d'oxygène et fournit de l'oxygène pour l'oxydation des particules. Ce processus débute autour de 350°C. (3) Le troisième processus correspond â la combustion des particules par l'oxygène présent dans les gaz d'échappement, initié vers 450~5G0°C, ce processus s'intensifie avec la température et est responsable en particulier de la régéxiération active du filtre vers 600°C. îles vitesses de réaction de ces différents processus peuvent être mises en équations cinétiques sous la forme suivante (les vitesses sont exprimées en g/ s) :<reaction takes place in the range of 250 to about 50 ° C, (2) The second process corresponds to the action of the phase catalyst; filter active. The catalyst has an oxygen donor character and provides oxygen for the oxidation of the particles. This process begins around 350 ° C. (3) The third process corresponds to the combustion of the particles by the oxygen present in the exhaust gases, initiated around 450 ~ 5G0 ° C, this process intensifies with the temperature and is responsible in particular for the active regeneration of the filter around 600 ° C. The reaction rates of these different processes can be put into kinetic equations in the following form (the rates are expressed in g / s):
Processus (1) : VAO. ≈ rA£Q!/Rr!" x « - Δt)fl - [NOx{t)fProcess (1): VAO. ≈ rA £ Q! / Rr! "x" - Δt) f l - [NO x {t) f
Processus (2) : Yo^^ ≈ Kie-***™ [ e(t - Δt) x [θ^seîJr (t) Processus (3) : 1A = K^** x [me(t - At)f2 * [θ2(t)f •Dans lesquelles :Process (2): Y o ^^ ≈ Kie - *** ™ [ e (t - Δt) x [θ ^ seîJr (t) Process (3): 1A = K ^ ** x [m e (t - At) f 2 * [θ 2 (t) f •In which :
'i- T(t) représente la. température mesurée en entrée du filtre, τrto{t-Δt) représente la masse de particules (en grammes) présente sur le filtre à l'instant t-Δt et calculée lors de la suite d'opérations précédemment exécutée, ' i- T (t) represents the. temperature measured at the input of the filter, τrto {t-Δt) represents the mass of particles (in grams) present on the filter at time t-Δt and calculated during the sequence of operations previously executed,
- {NOxft}} représente la concentration en oxydes d'azote (en pprn) dans les gaz d'échappement entrant dans le filtre à l'instant t,- {NOxft}} represents the concentration of nitrogen oxides (in pprn) in the exhaust gases entering the filter at time t,
1 lθ c t iys ur(t)} représente la. concentration en oxygène (en pourcentage) disponible dans la phase active f'wash coat") â l'instant t, 1 lθ ct iys ur (t)} represents the. oxygen concentration (in percentage) available in the active phase f'wash coat ") at time t,
- [OzftJl représente la concentration, en oxygène (en pourcentage) dans les gaz d'échappement entrant dans le filtre â l'instant t,- [OzftJl represents the oxygen concentration (in percentage) in the exhaust gases entering the filter at time t,
- JO, Kz, K3 sont les facteurs pré exponentiels des réactions de combustion des processus (1), (2), (3) respectivement, - Eal. Ea2, Ea3 sont les énergies d'activation des réactions de combustion des processus (1), (2), (3) respectivement,- JO, Kz, K3 are the pre-exponential factors of the combustion reactions of the processes (1), (2), (3) respectively, - Eal. Ea2, Ea3 are the activation energies of the combustion reactions of the processes (1), (2), (3) respectively,
- al, a2, a3> £>, c, d sont les ordres partiels des réactions vis à vis de la masse de suie et de l'oxydant (NOx ou Os),- al, a2, a3 > £>, c, d are the partial orders of the reactions with respect to the mass of soot and the oxidant (NO x or Os),
- ï? est la constante des gaz parfaits. Les paramètres cinétiques Kιf K2S K3, Eal, Ea2, Ea3, alf α2 a3, h c, d, sont déterminés expérimentalement de manière classique. Dans le cas de la première équation de vitesse : VNOi = jr^™ x [mc(i - άtjf1 {NOx(t}f f . les valeurs suivantes peuvent être utilisées (pour x ≈ 2) : 1-5000 < Eal/R < -20O0 !θ,2 < al < ï :O,2 < b < 2 Le facteur pré-expone iel Ki varie en fonction de la concentrationxyde d'azote : ' Si [NOs(t)} > 90 pprn : K, = |NOa {t}f x m)- VOa (t) χ n])+ p ;θû : 10-s < m < 10-6 10-6.< n < 10-» 10^ < p < 0-2, Si [NOsftfi < 90 pprn : K} « q où 1O& < q < 10~3. Dans le cas de la deuxième équation de vitesse : Λe-*>v*™ x [mc{t - At)f2 x les valeurs suivantes peuvent être utilisées : :~250Q<Eα2/.R<~lO0Q 1 < a2 < 2,5 : O < c< 1,5 : Le facteur pré-exponentiel K2 varie en fonction de la température d'entrée dans le filtre ou de la quantité d'oxygène : ; Si Tft) > 260°C ; K ≈ τ{î}f x j)~ (|r(f}χ fcj+ 1 ; OÙ : 10-9 <j< 10-7 10-6 < Je < 10-4 " 10-3 < ι< 1.0-2, ; Si rt < 260βC ou < 4,6 % :K3~i où O < i < 0,2.- ï? is the constant of ideal gases. The kinetic parameters Kι f K2 S K3, Eal, Ea2, Ea3, al f α2 a3, hc, d, are determined experimentally in a conventional manner. In the case of the first speed equation: V NOi = j r ^ ™ x [m c (i - άtjf 1 {NO x (t} f f . The following values can be used (for x ≈ 2): 1 -5000 <Eal / R <-20O0! Θ, 2 <al <ï: O, 2 <b <2 The pre-expon ial factor Ki varies according to the nitrogen oxide concentration: 'Si [NOs (t)} > 90 pprn: K, = | NO a {t} fxm) - VO a (t) χ n]) + p; θû: 10-s <m <10-6 10-6 . < n <10- "10 ^ <p <0-2, If [NOsftfi <90 pprn: K } " q where 1O & <q <10 ~ 3 . In the case of the second speed equation: Λ e- * > v * ™ x [m c {t - At) f 2 x the following values can be used: ~ 250Q <Eα2 / .R <~ lO0Q 1 <a2 <2,5: O <c <1,5: The pre-exponential factor K2 varies according to the input temperature in the filter or the amount of oxygen:; If Tft)> 260 ° C; K ≈ τ {î} fxj) ~ (| r (f} χ fcj + 1; WHERE: 10-9 <j < 10 -7 10- 6 <Je <10- 4 " 10- 3 <ι <1.0- 2 , ; If rt <260 β C or <4.6%: K 3 ~ i where O <i <0.2.
Dans le cas de la troisième équation de vitesse : V - K^-*"***™ x [rnc(t - Δîf3 x [θ2(t) les valeurs suivantes peuvent être utilisées : ; -25000 < Ea3/R < - I 0000 :0,5<α3<2 0 < d < 1,5 i si (O2) < 4,6 % tf, ≈ e* où 15 < gf < 30. sinon K3 -n où 0 < n < 0,2 Ces para.mètres, ainsi que les formules des vitesses cinétiques, sont enregistrés dans le calculateur 10 et utilisés pour calculer la vitesse de combustion V{t) des particules dans le filtre. Cette vitesse V{i) est la «fomrne des vitesses des trois processus : : V{t) " ^Λ'O, + ^O- + ^atalseu _ On comprendra, que dans ce cas, seules les concentrations f Ox^j jet fOs (t)] peuvent être éventuellement mesurées par des capteurs, L'étape (ii) de mesure des paramètres de fonctionnement du moteur (Ne, Q) ne peut alors être supprimée. ! Lorsque le filtre 3 ne comporte pas de catalyseur, alors la réaction de combustion selon le processus (2) ne se produit pas. La vitesse; de combustion est alors : A(AA ^ La valeur de la vitesse de combustion ainsi calculée peut être utilisée pour le calcul de la masse de particules présente dans le filtre τn,-(t), eh utilisant l'équation (E). ' La figure 2 montre la. bonne adéquation entre la masse de particules calculée selon le procédé de l'invention (mΛ et la masse de particules effectivement, présente dans le filtre et déterminée par pesée {mP). : La suite d'opérations utilisée pour calculer la masse de particules selon l'invention est exécutée de préférence à des intervalles de temps ai de l'ordre d'une seconde. Bien entendu, d'autres valeurs peuvent être utilisées. In the case of the third speed equation: V - K ^ - * "*** ™ x [rn c (t - Δîf 3 x [θ 2 (t) the following values can be used:; -25000 <Ea3 / R <- I 0000: 0.5 <α3 <2 0 <d <1.5 i if (O2) <4.6% tf, ≈ e * where 15 <gf <30. otherwise K 3 -n where 0 <n <0.2 These parameters, as well as the formulas for the kinetic velocities, are recorded in the computer 10 and used to calculate the combustion speed V {t) of the particles in the filter. This speed V {i) is the "form of the speeds of the three processes:: V {t)" ^ Λ'O, + ^ O- + ^ atalseu _ It will be understood, that in this case, only the concentrations f Ox ^ j jet fOs (t) ] can possibly be measured by sensors, Step (ii) of measuring the engine operating parameters (Ne, Q) cannot then be deleted. ! When the filter 3 does not include a catalyst, then the combustion reaction according to process (2) does not occur. Speed; combustion temperature is then: A ( AA ^ The value of the combustion speed thus calculated can be used for the calculation of the mass of particles present in the filter τn, - (t), eh using equation (E). 'Figure 2 shows. good adequacy between the mass of particles calculated according to the method of the invention (mΛ and the mass of particles actually present in the filter and determined by weighing {m P ). : The sequence of operations used to calculate the mass of particles according to the invention is preferably executed at time intervals ai of the order of one second. Of course, other values can be used.

Claims

; REVENDICATIONS il. Procédé de détermination en temps réel de la masse de particμles présente dans un filtre à particules (3) équipant la ligne d'échappement (2) d'un moteur à combustion interne (1), caractérisé en ce que l'on répète à des intervalles de temps Δt déterminés la suite d'opérations suivante : (i) on mesure à l'instant r la température T(î) des gaz d'échappement à l'entrée du filtre à particules (3) en utilisant un capteur de température (5), (ϋ) on mesure à l'instant t des paramètres de fonctionnement du moteur (Ne, Q) au moyen de capteurs (6, 7), (iii) on relève à l'instant t, en fonction des paramètres de fonctionnement du moteur (Ne, Q), sur des tables pré-étabïies, les valeurs des paramètres suivants : concentration en oxygène jp2(r)j et concentration en oxydes d'azote Ox(t)j des gaz d'échappement entrant dans le filtre à particules, la vitesse d'émission de particules du moteur F(t), . (iv) on calcule, en utilisant les lois de cinétique des réactions chimiques de combustion des particules, à l'instant t, la vitesse de combustion V(t) des particules dans le filtre à particules â l'aide des paramètres suivants : température T(t), concentrations en oxydants; CLAIMS it. Method for determining in real time the mass of particles present in a particle filter (3) fitted to the exhaust line (2) of an internal combustion engine (1), characterized in that repetitions are made time intervals Δt determined the following sequence of operations: (i) the temperature T (î) of the exhaust gases at the inlet of the particulate filter (3) is measured at instant r using a temperature sensor (5), (ϋ) the operating parameters of the engine (Ne, Q) are measured at the instant t by means of sensors (6, 7), (iii) the measurement is made at the instant t, as a function of the parameters of engine operation (Ne, Q), on pre-stage tables, the values of the following parameters: oxygen concentration jp 2 (r) j and nitrogen oxide concentration O x (t) j of the exhaust gases entering the particle filter, the particle emission speed of the engine F (t),. (iv) using the kinetic laws of the chemical reactions of combustion of the particles, the combustion speed V (t) of the particles in the particle filter is calculated using the following parameters: temperature T (t), oxidant concentrations
1^2^)] : l^ vW], et masse de particules présente dans le filtre,. mc(t~Δt), obtenue lors du cycle d'opérations précédent â l'instant t-Δt, ( ) on calcule, à l'instant t, la masse de particules présente sur le filtre, r cft), en utilisant la masse de particules πic(t-Δt) obtenue lors du cycle d'opérations précédent suivant la formule suivante : (t) ≈ mc(t~Δt) + [F(t) - V(t)) * Δt, où Δt est l'intervalle de temps entre les instants t-Δt et t, (γi)-on enregistre la valeur de la masse de particules mc(t) présente sur le filtre calculée à l'instant t pour l'utiliser dans la suite d'opérations suivante à l'instant t+Δt. 2. Procédé selon la revendication 1 , caractérisé en ce que, au lieu de relever une ou plusieurs valeurs des paramètres [Os(^)J ι [^Ox(f}] t F(t}t sur des tables prê-établies, on la ou les mesure au moyen de capteurs. 3v Procédé selon la revendication 1 ou 2, caractérisé en ce que, pour le calcul de la vitesse de combustion V(t), on considère les réactions de combustion des particules par les oxydes d'azote NOx et par l'oxygène Oa, la vitesse de combustion étant la somme des vitesses des réactions de combustion des particules par les oxydes d'azote V,Vo- et pa l'oxygène ^0j • pu ; VNO^ ≈ ιe-*".'≈r(., χ [m . {tΔt)j.ι χ [/vo^^f 1 ^ 2 ^)] : l ^ v W], and mass of particles present in the filter ,. mc (t ~ Δt), obtained during the cycle of operations preceding at time t-Δt, () we calculate, at time t, the mass of particles present on the filter, r cft), using the mass of particles πic (t-Δt) obtained during the previous cycle of operations according to the following formula: (t) ≈ m c (t ~ Δt) + [F (t) - V (t)) * Δt, where Δt is the time interval between the instants t-Δt and t, (γi) -we record the value of the mass of particles mc (t) present on the filter calculated at time t for use in the sequence d 'following operations at time t + Δt. 2. Method according to claim 1, characterized in that, instead of reading one or more values of the parameters [Os (^) J ι [^ O x (f}] t F (t} t on pre-established tables , or they are measured by means of sensors. 3v Method according to claim 1 or 2, characterized in that, for the calculation of the combustion rate V (t), the combustion reactions of the particles by the oxides d NOx nitrogen and by oxygen Oa, the rate of combustion being the sum of the rates of reactions of combustion of particles by nitrogen oxides V, Vo - and pa oxygen ^ 0j • pu; V NO ^ ≈ ιe - * ". '≈r (., Χ [ m . {TΔt) j . Ι χ [ / vo ^ ^ f
: = if3 -£oa'îfîriî! x [mc(t - Δî)]"3 x [θ?(t)]d où Tïλ [ΛOA.(t;)| sont déterminées au cours de l'opération précédente (iii), ai, a3, b et d sont les ordres partiels des réactions de combustion, et Eal et Ea3 sont les énergies d'activatior. des réactions de combustion par les oxydes d'azote et l'oxygène respectivement. 4. Procédé selon la revendication 3, dans lequel le filtre à particules comporte une phase active pour catalyser la combustion des particules, caractérisé en ce que, lors du calcul de la vitesse de combustion, on considère en outre la réaction de combustion des particules par l'oxygène présent dans la phase active du filtre à particules, la. vitesse de combustion étant la somme des vitesses des réactions de combustion des particules par les oxydes d'azote vm , par l'oxygène V0^ et par l'oxygène de la phase active V^^,^. . V{t) ≈ VM, + v^ + vc^a(a! SιW OÙ * <3jc«aβft*$e«r ≈ K2 β ' X [mc (t ~ At }} X i zcatalyseur Wj o lθ2œtαjysβur (t)J est la concentrat on d'oxygène dans la phase active du filtre relevée sur une table prê-établie lors d'une opération précédente en fonction des paramètres de fonctionnement du moteur: = if 3 - £ oa ' îfîriî! x [m c (t - Δî)] " 3 x [θ ? (t)] d where Tïλ [ΛO A. (T ; ) | are determined during the previous operation (iii), ai, a3, b and d are the partial orders of the combustion reactions, and Eal and Ea3 are the activating energies. combustion reactions with nitrogen oxides and oxygen respectively. 4. Method according to claim 3, in which the particle filter comprises an active phase for catalyzing the combustion of the particles, characterized in that, when calculating the combustion rate, the combustion reaction of the particles is also considered by the oxygen present in the active phase of the particulate filter, la. combustion rate being the sum of the rates of combustion reactions of the particles by the nitrogen oxides v m , by the oxygen V 0 ^ and by the oxygen in the active phase V ^^, ^ . . V {t) ≈ V M , + v ^ + v c ^ a (a! SιW OÙ * < 3j c "aβ f t * $ e" r ≈ K 2 β ' X [m c (t ~ At}} X i zca t a l yseur Wj o lθ 2œtα j ysβur (t) J is the oxygen concentrat in the active phase of the filter measured on a pre-established table during a previous operation depending on the engine operating parameters
(Ne, Q à l'instant t, a2 et c sont les ordres partiels et Ea.2 l'énergie d'activàtion de la réaction de combustion par l'oxygène de la phase active. : 5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que, à l'instant initial tt, la masse de particules présente dans le filtre mc(î-Δt) utilisée dans les opérations (iv) et. (v) est remplacée par une masse de particules présente dans le filtre {mpression(t estimée à partir d'une mesure, à l'instant &-, de la perte de charge entre l'entrée et la sortie du filtre. (Ne, Q at time t, a2 and c are the partial orders and Ea.2 the energy of activation of the combustion reaction by oxygen of the active phase.: 5. Method according to one of Claims 1 to 4, characterized in that, at the initial instant tt, the mass of particles present in the filter mc (î-Δt) used in operations (iv) and. (v) is replaced by a mass of particles present in the filter {m pr ession (t estimated from a measurement, at time & -, of the pressure drop between the inlet and the outlet of the filter.
.6. Procédé selon la. revendication 5, caractérisé en ce que la masse de particules présente dans le filtre impression) estimée à partir d'une mesure de la perte de charge entre l'entrée et. la sortie du filtre est utilisée dans les opérations (iv) et (v) à un instant t différent de l'instant initiaL 7. Procédé selon l'une des revendications 1 â 6, caractérisé en ce que ia: mesure des paramètres de fonctionnement du moteur comprend les étapes consistant à : t capter la vitesse de rotation du moteur, Ne, en utilisant un capte tir de vitesse (6), - capter la. charge du moteur, Q, en utilisant un capteur de charge (7). ; S. Utilisation du procédé de détermination selon l'une des revendications précédentes, pour contrôler et/ u commander un procédé de gestion de la régénération d'un filtre à particules de véhicule automobile. 9. Utilisation selon la revendication 8, dans laquelle le procédé de détermination est utilisé lorsque la température en entrée du filtre est comprise entre 250°C et 500°C environ. 10. Utilisation du. procédé de détermination selon l'une des revendications 1 à. 7, dans un procédé de gestion de la régénération d'un filtre à particules de véhicule automobile, pour déterminer une m se ! de particules seuil pour chaque point de fonctionnement du moteur d'un véhicule, en deçà de laquelle le filtre aura tendance à se charger en particules et au-delà de laquelle la vitesse de combustion des particules dans le filtre aura tendance à augmenter. .6. Method according to. claim 5, characterized in that the mass of particles present in the print filter) estimated from a measurement of the pressure drop between the inlet and. the filter output is used in operations (iv) and (v) at a time t different from the initial time 7. Method according to one of claims 1 to 6, characterized in that ia : measurement of the operating parameters of the engine comprises the steps consisting in: t sensing the speed of rotation of the engine, Ne, using a speed shooting sensor (6), - sensing the. engine load, Q, using a load sensor (7). ; S. Use of the determination method according to one of the preceding claims, for controlling and / or controlling a method for managing the regeneration of a particulate filter of a motor vehicle. 9. Use according to claim 8, in which the determination method is used when the temperature at the inlet of the filter is between approximately 250 ° C and 500 ° C. 10. Use of. determination method according to one of claims 1 to. 7, in a method for managing the regeneration of a motor vehicle particle filter, to determine a m se! of threshold particles for each operating point of the engine of a vehicle, below which the filter will tend to load into particles and beyond which the rate of combustion of the particles in the filter will tend to increase.
EP04816548A 2003-12-23 2004-12-15 Method for real time determination of the mass of particles in a particle filter of a motor vehicle Withdrawn EP1700021A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0315259A FR2864146B1 (en) 2003-12-23 2003-12-23 METHOD FOR REAL-TIME DETERMINATION OF THE PARTICLE MASS PRESENT IN A PARTICULAR FILTER OF A MOTOR VEHICLE
PCT/FR2004/050694 WO2005064143A1 (en) 2003-12-23 2004-12-15 Method for real time determination of the mass of particles in a particle filter of a motor vehicle

Publications (1)

Publication Number Publication Date
EP1700021A1 true EP1700021A1 (en) 2006-09-13

Family

ID=34630509

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04816548A Withdrawn EP1700021A1 (en) 2003-12-23 2004-12-15 Method for real time determination of the mass of particles in a particle filter of a motor vehicle

Country Status (5)

Country Link
US (1) US7319928B2 (en)
EP (1) EP1700021A1 (en)
JP (1) JP4609815B2 (en)
FR (1) FR2864146B1 (en)
WO (1) WO2005064143A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2888617B1 (en) * 2005-07-12 2007-10-12 Peugeot Citroen Automobiles Sa SYSTEM FOR DETERMINING THE QUANTITY OF BURNED SUES WHEN REGENERATING A PARTICLE FILTER
JP4591319B2 (en) * 2005-11-09 2010-12-01 株式会社デンソー Exhaust purification device for internal combustion engine
JP4622864B2 (en) * 2006-01-10 2011-02-02 株式会社デンソー Overcombustion detection method during particulate filter regeneration processing
FR2914692B1 (en) * 2007-04-06 2009-05-29 Renault Sas METHOD FOR REAL-TIME DETERMINATION OF PASSIVE-REGENERATED PARTICLE BURN MASS IN A MOTOR VEHICLE PARTICLE FILTER
JP2009108809A (en) * 2007-10-31 2009-05-21 Nissan Diesel Motor Co Ltd Exhaust emission control device and exhaust emission control method
DE102008005640A1 (en) 2008-01-23 2009-07-30 Daimler Ag Method for determining nitrogen dioxide concentration in exhaust gases
JP5645418B2 (en) * 2009-08-10 2014-12-24 三菱重工業株式会社 PM emission estimation device for diesel engine
FR2964147B1 (en) * 2010-08-31 2012-09-28 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING THE PHYSICAL STATE OF A PARTICLE FILTER
DE102011083909A1 (en) * 2011-09-30 2013-04-04 Deere & Company Regeneration method for an exhaust gas flow-through soot particle filter
WO2014020065A1 (en) * 2012-07-31 2014-02-06 Fpt Industrial S.P.A. Exhaust gas treatment system (ats) for internal combustion engine
EP2693025A1 (en) * 2012-07-31 2014-02-05 FPT Industrial S.p.A. Exhaust gas treatment system (ATS) based on a PM-CAT filter
EP2693024A1 (en) * 2012-07-31 2014-02-05 FPT Industrial S.p.A. Exhaust gas treatment system (ATS) based on a particulate filter (F) unable to remove/convert unburned hydrocarbons HC
CN105229284A (en) * 2013-05-24 2016-01-06 万国引擎知识产权有限责任公司 Motor NOx model
US11118518B2 (en) 2019-07-23 2021-09-14 Caterpillar Inc. Method and system for aftertreatment control
CN111257181A (en) * 2020-02-10 2020-06-09 江西众安职业危害评价检测有限公司 Method for measuring total dust concentration

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175522A (en) * 1985-01-30 1986-08-07 Hitachi Ltd Digital sensor unit
US5195316A (en) 1989-12-27 1993-03-23 Nissan Motor Co., Ltd. Exhaust gas purifying device for an internal combustion engine
FR2774421B1 (en) 1998-02-02 2000-04-21 Peugeot SYSTEM FOR MANAGING THE OPERATION OF A PARTICLE FILTER ASSOCIATED WITH A DIESEL ENGINE IN PARTICULAR OF A MOTOR VEHICLE
JP2000042420A (en) * 1998-07-31 2000-02-15 Ibiden Co Ltd Exhaust gas purifier
DE19961166A1 (en) * 1999-12-17 2001-06-21 Volkswagen Ag Method and device for reducing harmful components in the exhaust gas of an internal combustion engine
JP3807234B2 (en) * 2000-02-16 2006-08-09 トヨタ自動車株式会社 Exhaust gas purification method and exhaust gas purification device
JP3598961B2 (en) * 2000-09-26 2004-12-08 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2002332823A (en) * 2001-05-01 2002-11-22 Toyota Motor Corp Exhaust emission control device of internal combustion engine
DE10234340B4 (en) * 2002-03-27 2009-08-20 Volkswagen Ag Method for determining the loading state of a particle filter of an internal combustion engine
JP4158679B2 (en) * 2003-10-29 2008-10-01 日産自動車株式会社 Engine intake gas temperature estimation device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2005064143A1 *

Also Published As

Publication number Publication date
FR2864146A1 (en) 2005-06-24
US20070150162A1 (en) 2007-06-28
US7319928B2 (en) 2008-01-15
FR2864146B1 (en) 2006-03-03
WO2005064143A1 (en) 2005-07-14
JP4609815B2 (en) 2011-01-12
JP2007515595A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
EP3014082B1 (en) System and method for diagnosing the selective catalytic reduction system of a motor vehicle
EP1700021A1 (en) Method for real time determination of the mass of particles in a particle filter of a motor vehicle
EP1759107B1 (en) Method and device for managing the operation of a nitrogen oxide trap, and diagnosing its ageing condition
FR3029973A1 (en) METHOD FOR MONITORING AN OXIDATION CATALYSIS DEVICE
EP2501909B1 (en) Method for controlling pollutant emissions from a combustion engine
WO2017216440A1 (en) Process for correcting diagnosis of a catalyst taking into account a regeneration of a particle filter in an exhaust line
EP2092168B1 (en) Method for determining the amount of fuel to be injected in an exhaust line for regenerating a particle filter
FR2829798A1 (en) Engine exhaust management system for ensuring optimum regeneration of particle filter in exhaust system comprises determining loaded state of filter and monitoring regeneration process
EP2520785B1 (en) Method for estimating the dilution of fuel in the oil of an internal combustion engine
EP1281843B1 (en) Method to determine the loading state of a particulate filter
EP1320668B1 (en) Method for controlling the operation of a particle filter for internal combustion engine
EP2145081A2 (en) Method of monitoring the effectiveness of a catalytic converter storing the noxs located in an exhaust line of an internal combustion engine and engine comprising a device implementing said method
FR2940356A1 (en) Diagnostic system for catalytic converter in internal combustion engine of motor vehicle, has determination unit for determining failure state of catalytic converter by reducing flow during phase
EP2423477B1 (en) Method for determining the physical state of a particle filter
FR2807473A1 (en) Procedure for coordination of exhaust relevant measures with direct fuel injected internal combustion engine entails determining by use of measuring, evaluating and control equipment the state of NOx storage catalyser
FR3029974A1 (en) METHOD FOR PURGING A NITROGEN OXIDE TRAP AND ASSOCIATED MOTORIZATION DEVICE
FR3057022A1 (en) METHOD FOR MONITORING A CATALYST ASSOCIATED WITH A CONTROLLING IGNITION ENGINE
EP2507491B1 (en) System and method for estimating the mass of particles stored in a particle filter of a motor vehicle
EP1413720B1 (en) Method to determine the internal temperature of a particulate filter, method to control the regeneration of said particulate filter, control system and particulate filter thereof
FR2893979A1 (en) Pressure measurement for post-treatment system of diesel type heat engine, involves calculating difference between signals, delivered by upstream and downstream probes of particle filter after retiming, to provide pressure difference
FR2914692A1 (en) Burnt particle mass determining method for e.g. oil engine&#39;s particle filter, involves calculating mass by multiplying co-efficients that respectively correspond to impact of oxide concentration, temperature and particle mass in filter
EP2147200B1 (en) Method and device for adapting the temperature estimator of an exhaust gas post processing system
FR2855213A1 (en) Internal combustion engine exhaust particle filter monitoring and regeneration process consists of establishing and storing mathematical relationships and effecting regeneration above pre-set threshold level for soot content
FR2919667A3 (en) Particle filter diagnosing system for combustion engine, has memory storing comparison of number stored in meter to critical number for generating dilapidation signal, when number attains or exceeds critical number
FR2849471A1 (en) Internal combustion engine exhaust system catalytic converter condition diagnosis uses rich and lean exhaust gas feeds and signals from probe downstream of converter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090306

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171031