EP1697931B1 - Device and method for determining an estimated value - Google Patents
Device and method for determining an estimated value Download PDFInfo
- Publication number
- EP1697931B1 EP1697931B1 EP05707481A EP05707481A EP1697931B1 EP 1697931 B1 EP1697931 B1 EP 1697931B1 EP 05707481 A EP05707481 A EP 05707481A EP 05707481 A EP05707481 A EP 05707481A EP 1697931 B1 EP1697931 B1 EP 1697931B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- energy
- band
- measure
- signal
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000009826 distribution Methods 0.000 claims abstract description 38
- 230000003595 spectral effect Effects 0.000 claims description 58
- 238000004590 computer program Methods 0.000 claims description 6
- 239000000654 additive Substances 0.000 claims description 4
- 230000000996 additive effect Effects 0.000 claims description 4
- 238000009827 uniform distribution Methods 0.000 claims description 4
- 230000005236 sound signal Effects 0.000 abstract description 9
- 238000004364 calculation method Methods 0.000 description 21
- 238000013139 quantization Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 7
- 238000007493 shaping process Methods 0.000 description 5
- 230000001052 transient effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 208000010201 Exanthema Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/022—Blocking, i.e. grouping of samples in time; Choice of analysis windows; Overlap factoring
- G10L19/025—Detection of transients or attacks for time/frequency resolution switching
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/002—Dynamic bit allocation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
Definitions
- the present invention relates to encoders for encoding a signal comprising audio and / or video information, and more particularly to estimating a need for information units to encode that signal.
- an audio signal to be coded is fed. This is first supplied to a scaling stage 1002 in which a so-called AAC gain control is performed to set the level of the audio signal. Scaling page information is provided to a bitstream formatter 1004, as indicated by the arrow between block 1002 and block 1004. The scaled audio signal is then applied to an MDCT filter bank 1006.
- the filter bank implements a modified discrete cosine transform with 50% overlapping windows, the window length being determined by a block 1008.
- block 1008 is for windowing transient signals with shorter windows, and for windowing stationary signals with longer windows. This serves to achieve a higher time resolution (at the expense of frequency resolution) due to the shorter transient signal windows, while for more stationary signals, higher frequency resolution (at the expense of time resolution) is achieved by longer windows is achieved, with longer windows tend to be preferred because they promise a larger Codier stand.
- temporally successive blocks of spectral values are present, which, depending on the embodiment of the filter bank, may be MDCT coefficients, Fourier coefficients or even subband signals, each subband signal having a certain limited bandwidth passing through the corresponding subband channel in the filter bank 1006, and wherein each subband signal has a certain number of subband samples.
- the filter bank outputs temporally successive blocks of MDCT spectral coefficients, which generally represent successive short-term spectra of the audio signal to be encoded at input 1000.
- a block of MDCT spectral values is then fed to a TNS processing block 1010 where temporal noise shaping (TNS) takes place.
- TNS temporal noise shaping
- the TNS technique is used to shape the temporal shape of the quantization noise within each window of the transform. This is achieved by applying a filtering process to parts of the spectral data of each channel.
- the coding is performed on a window basis. In particular, the following steps are performed to apply the TNS tool to a window of spectral data, that is, to a block of spectral values.
- a frequency range is selected for the TNS tool.
- a suitable choice is to cover a frequency range of 1.5 kHz up to the highest possible scale factor band with a filter. It should be noted that this frequency range of the sampling rate as specified in the MPEG4 standard (ISO / IEC 19496-3: 2001 (E)) Section 4. 6. 9.
- LPC linear predictive coding
- the expected prediction gain PG is obtained. Further, the reflection coefficients or Parcor coefficients are obtained.
- the TNS tool is not applied. In this case, control information is written in the bit stream for a decoder to know that no TNS processing has been performed.
- TNS processing is applied.
- the reflection coefficients are quantized.
- the order of the noise shaping filter used is determined by removing all the reflection coefficients having an absolute value less than a threshold from the "tail" of the reflection coefficient array. The number of remaining reflection coefficients is on the order of the noise shaping filter.
- a suitable threshold is 0.1.
- the remaining reflection coefficients are typically converted to linear prediction coefficients, which technique is also known as a "step-up" procedure.
- the calculated LPC coefficients are then used as coder noise shaping filter coefficients, ie as prediction filter coefficients.
- This FIR filter is routed over the specified target frequency range.
- the decoding uses an autoregressive filter, while the coding uses a so-called moving average filter.
- the page information for the TNS tool is also supplied to the bit stream formatter, as shown by the arrow between the block TNS processing 1010 and the bit stream formatter 1004 in FIG Fig. 3 is shown.
- the center / side encoder 1012 is active when the audio signal to be encoded is a multi-channel signal, that is, a stereo signal having a left channel and a right channel. So far, ie in the processing direction before block 1012 in FIG Fig. 3 For example, the left and right stereo channels were processed separately, that is, scaled, transformed by the filter bank, or not subjected to TNS processing, etc.
- middle / side encoder In the middle / side encoder is then first checked whether a middle / side encoding makes sense, that brings a coding gain at all. A middle / side encoding will then bring a coding gain if the left and the right channel are more similar, because then the center channel, that is the sum of the left and the right channel is almost equal to the left or the right channel, apart from the scaling by the factor 1/2, while the page channel has only very small values, since it is equal to the difference between the left and the right channel.
- the left and right channels are approximately equal, the difference is approximately zero, or includes only very small values that are hopefully quantized to zero in a subsequent quantizer 1014, and thus since the quantizer 1014 is followed by an entropy encoder 1016.
- the quantizer 1014 is given a allowed perturbation per scale factor band by a psycho-acoustic model 1020.
- the quantizer operates iteratively, ie it first calls an outer iteration loop, which then calls an inner iteration loop.
- a quantization of a block of values is made at the input of the quantizer 1014.
- the inner loop quantizes the MDCT coefficients, consuming a certain number of bits.
- the outer loop calculates the distortion and modified energy of the coefficients using the scale factor to again invoke an inner loop. This process is iterated until a certain conditional set is satisfied.
- the signal is reconstructed to compute the perturbation introduced by the quantization and to compare it with the allowable perturbation provided by the psycho-acoustic model 1020. Furthermore, the scale factors are increased from iteration to iteration by one step, for each iteration of the outer iteration loop.
- the iteration ie the analysis-by-synthesis method is terminated, and the resulting scale factors are encoded as set forth in block 1014 and supplied in coded form to the bitstream formatter 1004 as indicated by the arrow between block 1014 and the block Block 1004 is drawn.
- the quantized values are then fed to entropy coder 1016, which typically performs entropy coding using several Huffman code tables for different scale factor bands to transmit the quantized values into a binary format.
- entropy coding in the form of Huffman coding relies on code tables that are created on the basis of expected signal statistics, and that frequently occurring values get shorter code words than less frequent values.
- the entropy-coded values are then also supplied as actual main information to the bitstream formatter 1004, which then outputs the coded audio signal on the output side according to a specific bit stream syntax.
- the data reduction of audio signals is now a known technique that is the subject of a number of international standards (e.g., ISO / MPEG-1, MPEG-2 AAC, MPEG-4).
- the input signal by means of a so-called encoder taking advantage of perceptual effects (psychoacoustics, psycho-optics) is brought into a compact, data-reduced representation.
- a spectral analysis of the signal is usually carried out and the corresponding signal components are quantized taking into account a perceptual model and then coded in a compact manner as so-called bitstream.
- PE perceptual entropy
- the perceptual entropy or demand estimate of information units for encoding a signal may be used to estimate whether the signal is transient or stationary, since transient signals also require more bits to encode than more stationary signals.
- the estimation of a transient property For example, a signal is used to make a window length decision, such as at block 1008 in FIG Fig. 3 is suggested to perform.
- Fig. 6 is the Perceptual Entropy calculated according to ISO / IEC 13818-7, section C.7 (MPEG-2 advanced audio coding (AAC)).
- AAC MPEG-2 advanced audio coding
- the in Fig. 6 illustrated equation used.
- the parameter pe stands for the perceptual entropy.
- width (b) stands for the number of spectral coefficients in the respective band b.
- e (b) is the energy of the signal in this band.
- nb (b) is the appropriate masking threshold, or more generally, the allowable disturbance that can be introduced into the signal, for example, by quantization, so that a human listener still hears no or only a negligible disturbance.
- the bands may differ from the band division of the psychoacoustic model (block 1020 in Fig. 3 ), or it is the so-called scale factor bands (scfb) used in the quantization.
- the psychoacoustic masking threshold is the energy value that the quantization error should not exceed.
- FIG. 6 The figure shows how well such a Perceptual Entropy works as an estimate of the number of bits needed for encoding.
- the respective perceptual entropy was plotted as a function of the consumed bits using the example of an AAC coder at different bit rates for each individual block.
- the test piece used contains a typical mix of music, language and individual instruments.
- the points would gather along a straight line through the zero point.
- the extension of the point sequence with the deviations from the ideal line illustrates the inaccurate estimate.
- a disadvantage of the in Fig. 6 The concept shown here is therefore the deviation that manifests itself as resulting, for example, in too great a value for the perceptual entropy, which in turn means that the quantizer is signaled that more bits than actually required are needed. This results in the quantizer being too finely quantized that it does not exploit the amount of allowed disturbance, resulting in a reduced coding gain.
- the value for the Perceptual Entropy is determined to be too small, then the quantizer is signaled that fewer bits than actually required are needed to encode the signal. This, in turn, causes the quantizer to be coarsely quantized, which would immediately result in an audible disturbance in the signal unless countermeasures are taken.
- the countermeasures can be that the quantizer still requires one or more further iteration loops, which increases the computation time of the coder.
- Fig. 7 To improve the calculation of Perceptual Entropy you could, as in Fig. 7 is shown, introduce a constant term, such as 1.5, in the logarithmic expression. Then there is already a better result, ie a smaller deviation up or down, although it can still be seen that in the consideration of a constant term in the logarithmic expression, although the case is reduced, the Perceptual Entropy signals too optimistic a need for bits. On the other hand is off Fig. 7 however, it can be clearly seen that significantly too many bits are signaled, which leads to the quantizer always becoming too finely quantized, ie that the bit requirement is assumed to be greater than it actually is, which in turn results in a reduced coding gain.
- the constant in the logarithmic expression is a rough estimate of the bits needed for the page information.
- FIG. 8 Another, but very time-consuming computation of Perceptual Entropy is in Fig. 8 shown.
- Fig. 8 the case is shown in which the perceptual entropy is calculated line by line.
- the disadvantage lies in the higher computational complexity of the line-by-line calculation.
- spectral coefficients X (k) are used, where kOffset (b) designates the first index of band b.
- Fig. 8 With Fig. 7 is compared it can be seen clearly in the range between 2000 and 3000 bits, a reduction of the "rashes" upwards.
- the PE estimate will therefore be more accurate, so not too pessimistic, but rather at the optimum, so that the coding gain in comparison to the in Fig. 6 and 7 shown Calculation method may increase, or the number of iterations in the quantizer is reduced.
- the US 2002/103637 A1 discloses a concept for improving the performance of encoding systems employing high frequency reconstruction techniques.
- an encoding difficulty or a measure of the workload of an encoder is calculated on the encoder side in order to control the crossover frequency which determines up to what frequency a signal is coded with a source coder, the proportion of the signal being above the crossover frequency is coded by a high frequency reconstruction method.
- Perceptual Entropy is calculated based on squealing a spectral value and then weighting it with a number equal to the number of lines in the current band divided by the psychoacoustic threshold for it Band is then to form a logarithm of the result.
- a distortion energy at the end of the source coding process can also be calculated by summing the distortion energy in each band and weighting it with a loudness curve.
- the object of the present invention is to provide an efficient yet accurate concept for determining an estimate of a need for information units to encode a signal.
- the present invention is based on the finding that it must be noted in a frequency band-wise calculation of the estimate for a need for information units for computing time reasons, however, that in order to obtain an accurate determination of the estimated value, the distribution the energy in the frequency band, which has to be calculated band by band.
- the entropy coder following the quantizer is implicitly "involved" in determining the estimate of the demand for information units.
- the entropy coding makes it possible that a smaller number of bits is required to transmit smaller spectral values than to transmit larger spectral values.
- the entropy coder is particularly efficient when it is possible to transmit to-zero-quantized spectral values. Since these will typically occur most frequently, the codeword for transmitting a zero-quantized spectral line is the shortest codeword, and the codeword for transmitting an increasingly larger quantized spectral line becomes longer and longer.
- the measure of the distribution of energy in the frequency band can be determined based on the actual amplitudes, or by estimating the frequency lines that are not quantized to zero by the quantizer.
- This measure which is also referred to as "nl", where nl stands for “number of active lines", ie for the number of active lines, is preferred for computing efficiency reasons.
- the number of spectral lines quantized to zero or a finer subdivision can also be taken into account, and this estimate becomes more and more accurate as more information from the downstream entropy coder is taken into account.
- the entropy coder is constructed on the basis of Huffman code tables, properties of these codetables can be integrated particularly well, since the codetables are not calculated on-line on the basis of the signal statistics, but because the codetables are fixed independently of the actual signal anyway.
- the measure of the distribution of the energy in the frequency band is carried out by determining the lines still surviving after the quantization, ie the number of active lines.
- the present invention is advantageous in that an estimate of a need for information content is determined which is more accurate and more efficient than the prior art.
- the present invention is scalable to various applications because, depending on the desired accuracy of the estimate, more and more characteristics of the entropy coder, but at the cost of increased computation time, can be included in the estimation of the bit demand.
- the signal which may be an audio and / or a video signal, is input via an input 100.
- the signal is already present as a spectral representation with spectral values.
- this is not absolutely necessary since some calculations with a time signal can be carried out by appropriate eg bandpass filtering.
- the signal is provided to a device 102 for providing a measure of allowable interference to a frequency band of the signal.
- the allowed disturbance can, for example, by means of a psycho-acoustic model, as shown by Fig. 3 (Block 1020) has been explained.
- the device 102 is also operative to also provide a measure of the energy of the signal in the frequency band.
- the prerequisite for a band-wise calculation is that a frequency band for which an allowable disturbance or a signal energy is specified contains at least two or more spectral lines of the spectral representation of the signal.
- the frequency band will preferably be a scale factor band, since the bit demand estimate is needed directly by the quantizer to determine if a done quantization satisfies a bit criterion or not.
- the device 102 is designed to supply both the allowed disturbance nb (b) and the signal energy e (b) of the signal in the band to a device 104 for calculating the demand for bits.
- the means 104 for calculating the demand for bits is designed to take into account, in addition to the allowed disturbance and the signal energy, a measure nl (b) for a distribution of the energy in the frequency band, the distribution of the energy in the frequency band of deviates from a completely uniform distribution.
- the measure of the energy distribution is computed in a device 106, wherein the device 106 requires at least one band, namely the considered frequency band of the audio or video signal, either as a bandpass signal or directly as a series of spectral lines, e.g. to perform a spectral analysis of the band to get the measure of the distribution of energies in the frequency band.
- the audio or video signal may be supplied to the device 106 as a time signal, the device 106 then performing band filtering as well as analysis in the band.
- the audio or video signal supplied to the device 106 may already be in the frequency domain, such as MDCT coefficients, or as a bandpass signal in the filter bank with a smaller bandpass compared to an MDCT filterbank -Filter.
- means 106 for calculating is adapted to take into account current amounts of spectral values in the frequency band to calculate the estimate.
- the means for calculating the measure of the distribution of the energy can be designed to determine as a measure of the distribution of energy a number of spectral values whose magnitude is greater than or equal to a predetermined magnitude threshold, or whose magnitude is less than or equal to the magnitude threshold wherein the magnitude threshold is preferably an estimated quantizer level that causes a quantizer to quantize values less than or equal to the quantizer level to zero.
- the measure of the energy is the number of active lines, that is, the number of lines that survive after quantization or not equal to zero.
- Fig. 2a shows a preferred embodiment of the means 106 for calculating the measure of the distribution of energy in the frequency band.
- the measure of the distribution of energy in the frequency band is in Fig. 2a denoted by nl (b).
- the form factor ffac (b) is already a measure of the distribution of the energy e (b) or eb or en in the frequency band b.
- the measure of the spectral distribution nl from the form factor ffac (b) is weighted by the 4th root of the signal energy e (b) divided by the bandwidth width (b) and number of lines, respectively determined in the scale factor band b.
- the form factor is also an example of a quantity indicating a measure of the distribution of energies
- nl (b) by contrast, is an example of is a quantity representing an estimate of the number of lines relevant to quantization.
- the form factor ffac (b) is calculated by absolute value formation of a spectral line and subsequent rooting of this spectral line and subsequent summation of the "rooted" amounts of the spectral lines in the band.
- Fig. 2b shows a preferred embodiment of the means 104 for calculating the estimated value pe, wherein in Fig. 2b another case distinction is introduced, namely, when the base 2 logarithm of the energy to allowed disturbance ratio is greater than a constant factor c1 or equal to the constant factor.
- the alternative above in block 104 is taken, ie the measure of the spectral distribution n1 is multiplied by the logarithm expression.
- Fig. 4a shows Fig. 4a a band with four spectral lines, all of the same size. The energy in this band is thus distributed evenly across the band.
- Fig. 4b shows a situation where the energy in the band resides in one spectral line while the other three spectral lines are the same are zero.
- the band shown could be before quantization, or could be obtained after quantization, if the in Fig. 4b zero spectral lines before quantization are smaller than the first quantizer level and thus set to zero by the quantizer, thus not "survive".
- the number of active lines in Fig. 4b is thus equal to 1, with the parameter n1 in Fig. 4b is calculated to the square root of 2.
- the value nl, ie the measure of the spectral distribution of energy in Fig. 4a calculated to 4. This means that the spectral distribution of the energy is more uniform when the measure of the distribution of the spectral energy is greater.
- the invention thus takes into account how the energy is distributed within the band. This is done as it is done by replacing the number of lines per band in the known equation ( Fig. 6 ) by estimating the number of lines that are nonzero after quantization. This estimate is in Fig. 2a shown.
- Fig. 2a is also required elsewhere in the encoder, for example within the quantization block 1014 to determine the quantization step size. Then, if the form factor is already computed elsewhere, it need not be recalculated for bit estimation, so that the inventive concept of improved estimation of the measure of the required bits requires a minimum of additional computational overhead.
- X (k) is the spectral coefficient to be quantized later, while the variable kOffset (b) designates the first index in band b.
- the new formula for calculating improved band-wise perceptual entropy is thus based on multiplying the measure of the spectral distribution of energy and the logarithmic expression by giving the signal energy e (b) in the numerator and the allowed error in the denominator, as needed a term is used within the logarithm can be, as it is already in Fig. 7 is shown. For example, this term may also be 1.5, but may also be zero, as in FIG Fig. 2b shown case, this z. B. can be determined empirically.
- the method according to the invention can be implemented in hardware or in software.
- the implementation may be on a digital storage medium, in particular a floppy disk or CD with electronically readable control signals, which may interact with a programmable computer system such that the method is performed.
- the invention thus also consists in a computer program product with a program code stored on a machine-readable carrier for carrying out the method according to the invention, when the computer program product runs on a computer.
- the invention can thus be realized as a computer program with a program code for carrying out the method when the computer program runs on a computer.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Control Of Ac Motors In General (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Radar Systems Or Details Thereof (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Measurement Of Current Or Voltage (AREA)
- Branch Pipes, Bends, And The Like (AREA)
- Manufacture Or Reproduction Of Printing Formes (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
Description
Die vorliegende Erfindung bezieht sich auf Codierer zum Codieren eines Signals, das Audio- und/oder Videoinformationen umfasst, und insbesondere auf die Abschätzung für einen Bedarf von Informationseinheiten zum Codieren dieses Signals.The present invention relates to encoders for encoding a signal comprising audio and / or video information, and more particularly to estimating a need for information units to encode that signal.
Nachfolgend wird der bekannte Codierer dargestellt. An einem Eingang 1000 wird ein zu codierendes Audiosignal eingespeist. Dieses wird zunächst einer Skalierungsstufe 1002 zugeführt, in der eine sogenannte AAC-Verstärkungssteuerung durchgeführt wird, um den Pegel des Audiosignals festzulegen. Seiteninformationen aus der Skalierung werden einem Bitstromformatierer 1004 zugeführt, wie es durch den Pfeil zwischen dem Block 1002 und dem Block 1004 dargestellt ist. Das skalierte Audiosignal wird hierauf einer MDCT-Filterbank 1006 zugeführt. Beim AAC-Codierer implementiert die Filterbank eine modifizierte diskrete Cosinustransformation mit 50 % überlappenden Fenstern, wobei die Fensterlänge durch einen Block 1008 bestimmt wird.The known coder is shown below. At an
Allgemein gesagt ist der Block 1008 dazu vorhanden, dass transiente Signale mit kürzeren Fenstern gefenstert werden, und dass eher stationäre Signale mit längeren Fenstern gefenstert werden. Dies dient dazu, dass aufgrund der kürzeren Fenster für transiente Signale eine höhere Zeitauflösung (auf Kosten der Frequenzauflösung) erreicht wird, während für eher stationäre Signale eine höhere Frequenzauflösung (auf Kosten der Zeitauflösung) durch längere Fenster erreicht wird, wobei tendenziell längere Fenster bevorzugt werden, da sie einen größeren Codiergewinn versprechen. Am Ausgang der Filterbank 1006 liegen zeitlich betrachtet aufeinanderfolgende Blöcke von Spektralwerten vor, die je nach Ausführungsform der Filterbank MDCT-Koeffizienten, Fourier-Koeffizienten oder auch Subbandsignale sein können, wobei jedes Subbandsignal eine bestimmte begrenzte Bandbreite hat, die durch den entsprechenden Subbandkanal in der Filterbank 1006 festgelegt wird, und wobei jedes Subbandsignal eine bestimmte Anzahl von Subband-Abtastwerten aufweist.Generally speaking,
Nachfolgend wird beispielhaft der Fall dargestellt, bei dem die Filterbank zeitlich betrachtet aufeinanderfolgende Blöcke von MDCT-Spektralkoeffizienten ausgibt, die allgemein gesagt, aufeinanderfolgende Kurzzeitspektren des zu codierenden Audiosignals am Eingang 1000 darstellen. Ein Block von MDCT-Spektralwerten wird dann in einen TNS-Verarbeitungsblock 1010 eingespeist, in dem eine zeitliche Rauschformung stattfindet (TNS = temporal noise shaping). Die TNS-Technik wird dazu verwendet, um die zeitliche Form des Quantisierungsrauschens innerhalb jedes Fensters der Transformation zu formen. Dies wird dadurch erreicht, dass ein Filterprozess auf Teile der Spektraldaten jedes Kanals angewendet wird. Die Codierung wird auf einer Fensterbasis durchgeführt. Insbesondere werden die folgenden Schritte ausgeführt, um das TNS-Tool auf ein Fenster spektraler Daten, also auf einen Block von Spektralwerten anzuwenden.The following is an example of the case in which the filter bank outputs temporally successive blocks of MDCT spectral coefficients, which generally represent successive short-term spectra of the audio signal to be encoded at
Zunächst wird ein Frequenzbereich für das TNS-Tool ausgewählt. Eine geeignete Auswahl besteht darin, einen Frequenzbereich von 1,5 kHz bis zum höchsten möglichen Skalenfaktorband mit einem Filter abzudecken. Es sei darauf hingewiesen, dass dieser Frequenzbereich von der Abtastrate abhängt, wie es im MPEG4-Standard (ISO/IEC 19496-3: 2001 (E)) Abschnitt 4. 6. 9 spezifiziert ist.First, a frequency range is selected for the TNS tool. A suitable choice is to cover a frequency range of 1.5 kHz up to the highest possible scale factor band with a filter. It should be noted that this frequency range of the sampling rate as specified in the MPEG4 standard (ISO / IEC 19496-3: 2001 (E))
Anschließend wird eine LPC-Berechnung (LPC = linear predictive coding = lineare prädiktive Codierung) ausgeführt, und zwar mit den spektralen MDCT-Koeffizienten, die in dem ausgewählten Zielfrequenzbereich liegen. Für eine erhöhte Stabilität werden Koeffizienten, die Frequenzen unter 2,5 kHz entsprechen, aus diesem Prozess ausgeschlossen. Übliche LPC-Prozeduren, wie sie aus der Sprachverarbeitung bekannt sind, können für die LPC-Berechnung verwendet werden, beispielsweise der bekannte Levinson-Durbin-Algorithmus. Die Berechnung wird für die maximal zulässige Ordnung des Rauschformungsfilters ausgeführt.Subsequently, LPC (LPC = linear predictive coding) calculation is performed with the spectral MDCT coefficients lying within the selected target frequency range. For increased stability, coefficients corresponding to frequencies below 2.5 kHz are excluded from this process. Conventional LPC procedures, as known from speech processing, can be used for the LPC calculation, for example the known Levinson-Durbin algorithm. The calculation is performed for the maximum allowable order of the noise shaping filter.
Als Ergebnis der LPC-Berechnung wird der erwartete Prädiktionsgewinn PG erhalten. Ferner werden die Reflexionskoeffizienten oder Parcor-Koeffizienten erhalten.As a result of the LPC calculation, the expected prediction gain PG is obtained. Further, the reflection coefficients or Parcor coefficients are obtained.
Wenn der Prädiktionsgewinn eine bestimmte Schwelle nicht überschreitet, wird das TNS-Tool nicht angewendet. In diesem Fall wird eine Steuerinformation in den Bitstrom geschrieben, damit ein Decodierer weiß, dass keine TNS-Verarbeitung ausgeführt worden ist.If the prediction gain does not exceed a certain threshold, the TNS tool is not applied. In this case, control information is written in the bit stream for a decoder to know that no TNS processing has been performed.
Wenn der Prädiktionsgewinn jedoch eine Schwelle überschreitet, wird die TNS-Verarbeitung angewendet.However, if the prediction gain exceeds a threshold, TNS processing is applied.
In einem nächsten Schritt werden die Reflexionskoeffizienten quantisiert. Die Ordnung des verwendeten Rauschformungsfilters wird durch Entfernen aller Reflexionskoeffizienten mit einem Absolutwert kleiner als eine Schwelle von dem "Schwanz" des Reflexionskoeffizienten-Arrays bestimmt. Die Anzahl der verbleibenden Reflexionskoeffizienten liegt in der Größenordnung des Rauschformungsfilters. Eine geeignete Schwelle liegt bei 0,1.In a next step, the reflection coefficients are quantized. The order of the noise shaping filter used is determined by removing all the reflection coefficients having an absolute value less than a threshold from the "tail" of the reflection coefficient array. The number of remaining reflection coefficients is on the order of the noise shaping filter. A suitable threshold is 0.1.
Die verbleibenden Reflexionskoeffizienten werden typischerweise in lineare Prädiktionskoeffizienten umgewandelt, wobei diese Technik auch als "Step-Up"-Prozedur bekannt ist.The remaining reflection coefficients are typically converted to linear prediction coefficients, which technique is also known as a "step-up" procedure.
Die berechneten LPC-Koeffizienten werden dann als Codierer-Rauschformungsfilterkoeffizienten, also als Prädiktionsfilterkoeffizienten verwendet. Dieses FIR-Filter wird über den spezifizierten Zielfrequenzbereich geführt. Bei der Decodierung wird ein autoregressives Filter verwendet, während bei der Codierung ein sogenanntes Moving-Average-Filter verwendet wird. Schließlich werden noch die Seiteninformationen für das TNS-Tool dem Bitstromformatierer zugeführt, wie es durch den Pfeil dargestellt ist, der zwischen dem Block TNS-Verarbeitung 1010 und dem Bitstromformatierer 1004 in
Hierauf werden mehrere in
Im Mitte/Seite-Codierer wird dann zunächst überprüft, ob eine Mitte/Seite-Codierung sinnvoll ist, also überhaupt einen Codiergewinn bringt. Eine Mitte/Seite-Codierung wird dann einen Codiergewinn bringen, wenn der linke und der rechte Kanal eher ähnlich sind, da dann der Mitte-Kanal, also die Summe aus dem linken und dem rechten Kanal nahezu gleich dem linken oder dem rechten Kanal ist, abgesehen von der Skalierung durch den Faktor 1/2, während der Seite-Kanal nur sehr kleine Werte hat, da er gleich der Differenz zwischen dem linken und dem rechten Kanal ist. Damit ist zu sehen, dass dann, wenn der linke und der rechte Kanal annähernd gleich sind, die Differenz annähernd Null ist bzw. nur ganz kleine Werte umfasst, die - so ist die Hoffnung - in einem nachfolgenden Quantisierer 1014 zu Null quantisiert werden und somit sehr effizient übertragen werden können, da dem Quantisierer 1014 ein Entropie-Codierer 1016 nachgeschaltet ist.In the middle / side encoder is then first checked whether a middle / side encoding makes sense, that brings a coding gain at all. A middle / side encoding will then bring a coding gain if the left and the right channel are more similar, because then the center channel, that is the sum of the left and the right channel is almost equal to the left or the right channel, apart from the scaling by the
Dem Quantisierer 1014 wird von einem psycho-akustischen Modell 1020 eine erlaubte Störung pro Skalenfaktorband zugeführt. Der Quantisierer arbeitet iterativ, d. h. es wird zunächst eine äußere Iterationsschleife aufgerufen, die dann eine innere Iterationsschleife aufruft. Allgemein gesagt wird zunächst, ausgehend von Quantisiererschrittweiten-Startwerten, eine Quantisierung eines Blocks von Werten am Eingang des Quantisierers 1014 vorgenommen. Insbesondere quantisiert die innere Schleife die MDCT-Koeffizienten, wobei eine bestimmte Anzahl von Bits verbraucht wird. Die äußere Schleife berechnet die Verzerrung und modifizierte Energie der Koeffizienten unter Verwendung des Skalenfaktors, um wieder eine innere Schleife aufzurufen. Dieser Prozess wird iteriert, bis ein bestimmter Bedingungssatz erfüllt ist. Für jede Iteration in der äußeren Iterationsschleife wird dabei das Signal rekonstruiert, um die durch die Quantisierung eingeführte Störung zu berechnen und mit der von dem psycho-akustischen Modell 1020 gelieferten erlaubten Störung zu vergleichen. Ferner werden die Skalenfaktoren von Iteration zu Iteration um eine Stufe vergrößert, und zwar für jede Iteration der äußeren Iterationsschleife.The
Dann, wenn eine Situation erreicht ist, bei der die durch die Quantisierung eingeführte Quantisierungsstörung unterhalb der durch das psycho-akustische Modell bestimmten erlaubten Störung ist, und wenn gleichzeitig Bitanforderungen erfüllt sind, nämlich, dass eine Maximalbitrate nicht überschritten wird, wird die Iteration, also das Analyse-Durch-Synthese-Verfahren beendet, und es werden die erhaltenen Skalenfaktoren codiert, wie es in dem Block 1014 ausgeführt ist und in codierter Form dem Bitstromformatierer 1004 zugeführt, wie es durch den Pfeil gekennzeichnet ist, der zwischen dem Block 1014 und dem Block 1004 gezeichnet ist. Die quantisierten Werte werden dann dem Entropie-Codierer 1016 zugeführt, der typischerweise unter Verwendung mehrerer Huffman-Code-Tabellen für verschiedene Skalenfaktorbänder eine Entropie-Codierung durchführt, um die quantisierten Werte in ein binäres Format zu übertragen. Wie es bekannt ist, wird bei der Entropie-Codierung in Form der Huffman-Codierung auf Code-Tabellen zurückgegriffen, die aufgrund einer erwarteten Signalstatistik erstellt werden, und bei denen häufig auftretende Werte kürzere Code-Wörter bekommen als seltener auftretende Werte. Die entropiecodierten Werte werden dann ebenfalls als eigentliche Hauptinformationen dem Bitstromformatierer 1004 zugeführt, der dann gemäß einer bestimmten Bitstromsyntax ausgangsseitig das codierte Audiosignal ausgibt.Then, when a situation is reached where the quantization disturbance introduced by the quantization is below the allowed disturbance determined by the psycho-acoustic model, and at the same time bit requirements are met, namely that a maximum bitrate is not exceeded, the iteration, ie the analysis-by-synthesis method is terminated, and the resulting scale factors are encoded as set forth in
Die Datenreduktion von Audiosignalen ist mittlerweile eine bekannte Technik, die Gegenstand einer Reihe von Internationalen Standards ist (z.B. ISO/MPEG-1, MPEG-2 AAC, MPEG-4).The data reduction of audio signals is now a known technique that is the subject of a number of international standards (e.g., ISO / MPEG-1, MPEG-2 AAC, MPEG-4).
Gemeinsam ist den oben genannten Verfahren, dass das Eingangssignal mittels eines sogenannten Encoders unter Ausnutzung wahrnehmungsbezogener Effekte (Psychoakustik, Psychooptik) in eine kompakte, datenreduzierte Darstellung gebracht wird. Hierzu wird üblicherweise eine Spektralanalyse des Signals vorgenommen und die entsprechende Signalkomponenten werden unter Berücksichtigung eines Wahrnehmungsmodells quantisiert und anschließend in möglichst kompakter Weise als sogenannter Bitstrom codiert.Common to the above method is that the input signal by means of a so-called encoder taking advantage of perceptual effects (psychoacoustics, psycho-optics) is brought into a compact, data-reduced representation. For this purpose, a spectral analysis of the signal is usually carried out and the corresponding signal components are quantized taking into account a perceptual model and then coded in a compact manner as so-called bitstream.
Um vor der eigentlichen Quantisierung abzuschätzen, wie viele Bits ein bestimmter zu codierender Abschnitt des Signals benötigen wird, kann die sogenannte Perceptual Entropy (PE) herangezogen werden. Die PE liefert auch ein Maß dafür, wie schwierig es für den Encoder ist, ein bestimmtes Signal oder Teile davon zu codieren.In order to estimate, before the actual quantization, how many bits a particular section of the signal to be coded will require, so-called perceptual entropy (PE) can be used. The PE also provides a measure of how difficult it is for the encoder to encode a particular signal or portions thereof.
Entscheidend für die Qualität der Abschätzung ist die Abweichung der PE von der Anzahl tatsächlich benötigter Bits.Decisive for the quality of the estimation is the deviation of the PE from the number of actually required bits.
Ferner kann die Perceptual Entropy bzw. jeder Schätzwert für einen Bedarf von Informationseinheiten zum Codieren eines Signals dafür herangezogen werden, abzuschätzen, ob das Signal transient oder stationär ist, da transiente Signale ebenfalls mehr Bits zum Codieren benötigen als eher stationäre Signale. Die Abschätzung einer transienten Eigenschaft eines Signal wird beispielsweise dazu verwendet, um eine Fensterlängenentscheidung, wie sie um Block 1008 in
In
Die Bänder können von der Bandeinteilung des psychoakustischen Modells (Block 1020 in
Die in
Idealerweise würden sich die Punkte entlang einer Geraden durch den Nullpunkt versammeln. Die Ausdehnung der Punktfolge mit den Abweichungen von der idealen Linie verdeutlicht die ungenaue Abschätzung.Ideally, the points would gather along a straight line through the zero point. The extension of the point sequence with the deviations from the ideal line illustrates the inaccurate estimate.
Nachteilig an dem in
Zur Verbesserung der Berechnung der Perceptual Entropy könnte man, wie es in
So liefert das Einfügen eines Terms in den Logarithmus-Ausdruck zwar eine Verbesserung der bandweisen Perceptual Entropy, wie es in
Eine weitere, jedoch sehr Rechenzeit-aufwendige Berechnung der Perceptual Entropy ist in
Nachteilig an der linienweise Berechnung der Perceptual Entropy ist jedoch die Rechenzeit, die benötigt wird, um die in
So spielen solche Rechenzeitennachteile zwar nicht unbedingt eine Rolle, wenn der Codierer auf einem leistungsstarken PC oder einer leistungsstarken Workstation läuft. Ganz anders ist sieht es dagegen aus, wenn der Codierer in einem tragbaren Gerät, wie beispielsweise einem UMTS-Handy untergebracht ist, das einerseits klein und billig sein muss, das andererseits einen niedrigen Strombedarf haben muss, und das zusätzlich schnell arbeiten muss, um die Codierung eines über die UMTS-Verbindung übertragenen Audiosignals oder Videosignals zu ermöglichen.While such computational drawbacks do not necessarily matter if the encoder is running on a high-performance PC or a high-performance workstation. On the other hand, it looks quite different when the encoder is housed in a portable device, such as a UMTS mobile phone, which on the one hand needs to be small and cheap, which, on the other hand, has a low power requirement and which, in addition, has to work very fast to handle the Encoding a transmitted via the UMTS connection audio signal or video signal to allow.
Die
Die Aufgabe der vorliegenden Erfindung besteht darin, ein effizientes und dennoch genaues Konzept zum Ermitteln eines Schätzwerts für einen Bedarf von Informationseinheiten zum Codieren eines Signals zu schaffen.The object of the present invention is to provide an efficient yet accurate concept for determining an estimate of a need for information units to encode a signal.
Diese Aufgabe wird durch eine Vorrichtung gemäß Patentanspruch 1, ein Verfahren gemäß Patentanspruch 10 oder ein Computerprogramm nach Patentanspruch 11 gelöst.This object is achieved by a device according to
Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass an einer frequenzbandweisen Berechnung des Schätzwerts für einen Bedarf an Informationseinheiten aus Rechenzeitgründen festgehalten werden muss, dass jedoch, um eine genaue Ermittlung des Schätzwerts zu erhalten, die Verteilung der Energie in dem Frequenzband, das bandweise zu berechnen ist, berücksichtigt werden muss.The present invention is based on the finding that it must be noted in a frequency band-wise calculation of the estimate for a need for information units for computing time reasons, however, that in order to obtain an accurate determination of the estimated value, the distribution the energy in the frequency band, which has to be calculated band by band.
Damit wird gewissermaßen implizit der dem Quantisierer nachfolgende Entropie-Codierer in die Ermittlung des Schätzwerts für den Bedarf von Informationseinheiten "hineingezogen". Die Entropy-Codierung ermöglicht es nämlich, dass zur Übertragung von kleineren Spektralwerten eine geringere Anzahl an Bits benötigt wird als zur Übertragung von größeren Spektralwerten. Besonders effizient ist der Entropie-Codierer dann, wenn zu-Null-quantisierte Spektralwerte übertragen werden können. Da diese typischerweise am häufigsten auftreten werden, ist das Codewort zum Übertragen einer zu-Null-quantisierten Spektrallinie das kürzeste Codewort, und ist das Codewort zum Übertragen einer immer größeren quantisierten Spektrallinie immer länger. Darüber hinaus kann für ein besonders effizientes Konzept zum Übertragen einer Folge von zu-Null-quantisierten Spektralwerten sogar auf eine Lauflängencodierung zurückgegriffen werden, was zur Folge hat, dass im Falle eines Laufs von Nullen pro zu-Null-quantisiertem Spektralwert durchschnittlich betrachtet nicht einmal ein einziges Bit benötigt wird.Thus, to a certain extent, the entropy coder following the quantizer is implicitly "involved" in determining the estimate of the demand for information units. The entropy coding makes it possible that a smaller number of bits is required to transmit smaller spectral values than to transmit larger spectral values. The entropy coder is particularly efficient when it is possible to transmit to-zero-quantized spectral values. Since these will typically occur most frequently, the codeword for transmitting a zero-quantized spectral line is the shortest codeword, and the codeword for transmitting an increasingly larger quantized spectral line becomes longer and longer. Moreover, for a particularly efficient concept of transmitting a sequence of zero-to-zero quantized spectral values, even run-length coding can be resorted to, with the result that, in the case of a run of zeros per zero-quantized spectral value, not even one single bit is needed.
Es wurde herausgefunden, dass die im Stand der Technik verwendete bandweise Perceptual-Entropy-Berechnung zur Ermittlung des Schätzwerts für den Bedarf von Informationseinheiten die Wirkungsweise des nachgeschalteten Entropie-Codierers völlig ignoriert, wenn die Verteilung der Energie in dem Frequenzband von einer vollständig gleichmäßigen Verteilung abweicht.It has been found that the band-wise perceptual entropy calculation used in the prior art for determining the estimate of the demand for information units completely ignores the operation of the downstream entropy coder when the distribution of energy in the frequency band deviates from a completely uniform distribution ,
Erfindungsgemäß wird somit zur Reduktion der Ungenauigkeiten der bandweisen Berechnung berücksichtigt, wie die Energie innerhalb eines Bandes verteilt ist.Thus, according to the invention, to reduce the inaccuracies of the band-wise calculation, it is considered how the energy is distributed within a band.
Je nach Implementierung kann das Maß für die Verteilung der Energie in dem Frequenzband auf der Basis der tatsächlichen Amplituden ermittelt werden, oder durch eine Schätzung der Frequenzlinien, die durch den Quantisierer nicht zu null quantisiert werden. Dieses Maß, das auch als "nl" bezeichnet wird, wobei nl für "number of active lines", also für die Anzahl von aktiven Linien, steht, wird aus Rechenzeit-Effizienzgründen bevorzugt. Es kann jedoch auch die Anzahl der zu null quantisierten Spektrallinien oder eine feinere Unterteilung berücksichtigt werden, wobei diese Schätzung immer genauer wird, je mehr Informationen des nachgeschalteten Entropie-Codierers berücksichtigt werden. Ist der Entropie-Codierer auf der Basis von Huffman-Codetabellen aufgebaut, so können Eigenschaften dieser Codetabellen besonders gut integriert werden, da die Codetabellen nicht aufgrund der Signalstatistik gewissermaßen on-line berechnet werden, sondern da die Codetabellen unabhängig von dem tatsächlichen Signal ohnehin feststehen.Depending on the implementation, the measure of the distribution of energy in the frequency band can be determined based on the actual amplitudes, or by estimating the frequency lines that are not quantized to zero by the quantizer. This measure, which is also referred to as "nl", where nl stands for "number of active lines", ie for the number of active lines, is preferred for computing efficiency reasons. However, the number of spectral lines quantized to zero or a finer subdivision can also be taken into account, and this estimate becomes more and more accurate as more information from the downstream entropy coder is taken into account. If the entropy coder is constructed on the basis of Huffman code tables, properties of these codetables can be integrated particularly well, since the codetables are not calculated on-line on the basis of the signal statistics, but because the codetables are fixed independently of the actual signal anyway.
Je nach Rechenzeit-Einschränkungen wird jedoch im Falle einer besonders effizienten Berechnung das Maß für die Verteilung der Energie in dem Frequenzband durch die Ermittlung der nach der Quantisierung noch überlebenden Linien, also der Anzahl von aktiven Linien, durchgeführt.Depending on the calculation time constraints, however, in the case of a particularly efficient calculation, the measure of the distribution of the energy in the frequency band is carried out by determining the lines still surviving after the quantization, ie the number of active lines.
Die vorliegende Erfindung ist dahingehend vorteilhaft, dass ein Schätzwert für einen Bedarf an Informationsinhalten ermittelt wird, der zum einen genauer und zum anderen effizienter als im Stand der Technik ist.The present invention is advantageous in that an estimate of a need for information content is determined which is more accurate and more efficient than the prior art.
Darüber hinaus ist die vorliegende Erfindung für verschiedene Anwendungen skalierbar, da je nach erwünschter Genauigkeit des Schätzwerts immer mehr Eigenschaften des Entropie-Codierers, jedoch zum Preis einer erhöhten Rechenzeit, in die Schätzung des Bitbedarfs mit hereingenommen werden können.In addition, the present invention is scalable to various applications because, depending on the desired accuracy of the estimate, more and more characteristics of the entropy coder, but at the cost of increased computation time, can be included in the estimation of the bit demand.
Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeiten detailliert erläutert. Es zeigen:
- Fig. 1
- ein Blockschaltbild der erfindungsgemäßen Vorrichtung zum Ermitteln eines Schätzwerts;
- Fig. 2a
- eine bevorzugte Ausführungsform der Einrichtung zum Berechnen eines Maßes für die Verteilung der Energie in dem Frequenzband;
- Fig. 2b
- eine bevorzugte Ausführungsform der Einrichtung zum Berechnen des Schätzwerts für den Bedarf an Bits;
- Fig. 3
- ein Blockschaltbild eines bekannten AudioCodierers;
- Fig. 4
- eine Prinzipdarstellung zur Erläuterung des Einflusses der Energieverteilung innerhalb eines Bandes auf die Ermittlung des Schätzwerts;
- Fig. 5
- ein Diagramm zur Schätzwertberechnung gemäß der vorliegenden Erfindung;
- Fig. 6
- ein Diagramm zur Schätzwertberechnung gemäß ISO/IEC IS 13818-7(AAC);
- Fig. 7
- ein Diagramm zur Schätzwertberechnung mit konstantem Term;
- Fig. 8
- ein Diagramm zur linienweisen Schätzwertberechnung mit konstantem Term.
- Fig. 1
- a block diagram of the device according to the invention for determining an estimated value;
- Fig. 2a
- a preferred embodiment of the means for calculating a measure of the distribution of energy in the frequency band;
- Fig. 2b
- a preferred embodiment of the means for calculating the estimate of the need for bits;
- Fig. 3
- a block diagram of a known audio encoder;
- Fig. 4
- a schematic diagram for explaining the influence of the energy distribution within a band on the determination of the estimated value;
- Fig. 5
- a diagram for estimated value calculation according to the present invention;
- Fig. 6
- a diagram for estimating according to ISO / IEC IS 13818-7 (AAC);
- Fig. 7
- a diagram for estimated value calculation with constant term;
- Fig. 8
- a diagram for linear estimation calculation with constant term.
Nachfolgend wird bezugnehmend auf
Das Signal wird einer Einrichtung 102 zum Liefern eines Maßes für eine erlaubte Störung für ein Frequenzband des Signals zugeführt. Die erlaubte Störung kann beispielsweise mittels eines psycho-akustischen Modells, wie es anhand von
Die Einrichtung 102 ist ausgebildet, um sowohl die erlaubte Störung nb(b), als auch die Signalenergie e(b) des Signals in dem Band einer Einrichtung 104 zum Berechnen des Schätzwerts für den Bedarf an Bits zuzuführen.The
Erfindungsgemäß ist die Einrichtung 104 zum Berechnen des Schätzwerts für den Bedarf von Bits ausgebildet, um neben der erlaubten Störung und der Signalenergie ein Maß nl(b) für eine Verteilung der Energie in dem Frequenzband zu berücksichtigten, wobei die Verteilung der Energie in dem Frequenzband von einer vollständig gleichmäßigen Verteilung abweicht. Das Maß für die Verteilung der Energie wird in einer Einrichtung 106 berechnet, wobei die Einrichtung 106 zumindest ein Band, nämlich das betrachtete Frequenzband des Audio- oder Videosignals entweder als Bandpass-Signal oder direkt als Folge von Spektrallinien benötigt, um z.B. eine spektrale Analyse des Bandes durchführen zu können, um das Maß für die Verteilung der Energien im Frequenzband zu erhalten.According to the invention, the
Selbstverständlich kann das Audio- oder Videosignal der Einrichtung 106 als Zeitsignal zugeführt werden, wobei die Einrichtung 106 dann eine Bandfilterung sowie eine Analyse in dem Band durchführt. Alternativ kann das Audio- oder Videosignal, das der Einrichtung 106 zugeführt wird, bereits im Frequenzbereich vorliegen, wie z.B. als MDCT-Koeffizienten, oder aber auch als Bandpass-Signal in der Filterbank mit einer im Vergleich zu einer MDCT-Filterbank kleineren Anzahl an Bandpass-Filtern.Of course, the audio or video signal may be supplied to the
Bei einem bevorzugten Ausführungsbeispiel ist die Einrichtung 106 zum Berechnen ausgebildet, um zur Berechnung des Schätzwerts aktuelle Beträge von Spektralwerten in dem Frequenzband zu berücksichtigen.In a preferred embodiment, means 106 for calculating is adapted to take into account current amounts of spectral values in the frequency band to calculate the estimate.
Ferner kann die Einrichtung zum Berechnen des Maßes für die Verteilung der Energie ausgebildet sein, um als Maß für die Verteilung der Energie eine Anzahl von Spektralwerten zu ermitteln, deren Betrag größer oder gleich einer vorbestimmten Betragsschwelle sind, oder deren Betrag kleiner oder gleich der Betragsschwelle ist, wobei die Betragsschwelle vorzugsweise eine geschätzte Quantisiererstufe ist, die in einem Quantisierer bewirkt, dass Werte kleiner oder gleich der Quantisiererstufe zu null quantisiert werden. In diesem Fall ist das Maß für die Energie die Anzahl von aktiven Linien, also die Anzahl der Linien, die nach der Quantisierung überleben bzw. nicht gleich null sind.Furthermore, the means for calculating the measure of the distribution of the energy can be designed to determine as a measure of the distribution of energy a number of spectral values whose magnitude is greater than or equal to a predetermined magnitude threshold, or whose magnitude is less than or equal to the magnitude threshold wherein the magnitude threshold is preferably an estimated quantizer level that causes a quantizer to quantize values less than or equal to the quantizer level to zero. In this case, the measure of the energy is the number of active lines, that is, the number of lines that survive after quantization or not equal to zero.
Der Formfaktor ffac(b) errechnet sich durch Betragsbildung einer Spektrallinie und anschließender Wurzelbildung dieser Spektrallinie und anschließender Aufsummierung der "gewurzelten" Beträge der Spektrallinien in dem Band.The form factor ffac (b) is calculated by absolute value formation of a spectral line and subsequent rooting of this spectral line and subsequent summation of the "rooted" amounts of the spectral lines in the band.
Wird dagegen festgestellt, dass der Logarithmus zur Basis 2 aus dem Verhältnis der Signalenergieen bzw. eb zur erlaubten Störung kleiner als der Wert c1 ist, so wird die untere Alternative im Block 104 von
Nachfolgend wird anhand von
Die Anzahl von aktiven Linien in
Es sei darauf hingewiesen, dass die bandweise Berechnung der Perceptual Entropy gemäß dem Stand der Technik (ISO/IEC 13818-7, Abschnitt C.7) keinen Unterschied zwischen den beiden Fällen feststellt. Insbesondere wird kein Unterschied festgestellt, wenn in den beiden Bändern, die in
Offensichtlich ist jedoch der in
Erfindungsgemäß wird somit berücksichtigt, wie die Energie innerhalb des Bands verteilt ist. Dies erfolgt, wie es ausgeführt worden ist, durch Ersetzen der Anzahl der Linien pro Band in der bekannten Gleichung (
Ferner sei darauf hingewiesen, dass der in
Wie es bereits ausgeführt worden ist, handelt es sich bei X(k) um den später zu quantisierenden Spektralkoeffizienten, während die Variable kOffset(b) den ersten Index im Band b bezeichnet.As has already been stated, X (k) is the spectral coefficient to be quantized later, while the variable kOffset (b) designates the first index in band b.
Wie es aus
Die neue Formel zur Berechnung einer verbesserten bandweisen Perceptual Entropie basiert somit auf der Multiplikation des Maßes für die spektrale Verteilung der Energie und des Logarithmus-Ausdrucks, indem die Signalenergie e(b) im Zähler und die erlaubte Störung im Nenner auftreten, wobei je nach Bedarf ein Term innerhalb des Logarithmus eingesetzt werden kann, wie es bereits in
An dieser Stelle sei nochmals auf
Abhängig von der Gegebenheit, kann das erfindungsgemäße Verfahren in Hardware oder in Software implementiert werden. Die Implementierung kann auf einem digitalen Speichermedium, insbesondere einer Diskette oder CD mit elektronisch auslesbaren Steuersignalen erfolgen, die so mit einem programmierbaren Computersystem zusammenwirken können, dass das Verfahren ausgeführt wird. Allgemein besteht die Erfindung somit auch in einem Computer-Programm-Produkt mit einem auf einem maschinenlesbaren Träger gespeicherten Programmcode zur Durchführung des erfindungsgemäßen Verfahrens, wenn das Computer-Programm-Produkt auf einem Rechner abläuft. In anderen Worten ausgedrückt, kann die Erfindung somit als ein Computer-Programm mit einem Programmcode zur Durchführung des Verfahrens realisiert werden, wenn das Computer-Programm auf einem Computer abläuft.Depending on the circumstances, the method according to the invention can be implemented in hardware or in software. The implementation may be on a digital storage medium, in particular a floppy disk or CD with electronically readable control signals, which may interact with a programmable computer system such that the method is performed. In general, the invention thus also consists in a computer program product with a program code stored on a machine-readable carrier for carrying out the method according to the invention, when the computer program product runs on a computer. In other words, the invention can thus be realized as a computer program with a program code for carrying out the method when the computer program runs on a computer.
Claims (11)
- Apparatus for determining an estimate (pe) of a need for information units for encoding a signal having audio or video information, wherein the signal has several frequency bands, comprising:a means (102) for providing a measure (nb(b)) for an admissible interference for a frequency band (b) of the signal, wherein the frequency band (b) includes at least two spectral values of a spectral representation of the signal, and a measure (e(b)) for an energy of the signal in the frequency band;a means (106) for calculating a measure (nl(b)) for a distribution of the energy (e(b)) in the frequency band (b), wherein the distribution of the energy in the frequency band deviates from a completely uniform distribution,wherein the means (106) for calculating the measure (nl(b)) for the distribution of the energy (e(b)) is formed to determine, as a measure for the distribution of the energy, an estimate for a number of spectral values the magnitudes of which are greater than or equal to a predetermined magnitude threshold, or the magnitudes of which are smaller than or equal to the magnitude threshold, wherein the magnitude threshold is an exact or estimated quantizer stage causing, in a quantizer (1014), values smaller than or equal to the quantizer stage to be quantized to zero; anda means (104) for calculating the estimate (pe) using the measure (nb(b)) for the admissible interference, the measure (e(b)) for the energy, and the measure (nl(b)) for the distribution of the energy,wherein the means (104) for calculating the estimate is formed to calculate the estimate using the following expression:
wherein pe is the estimate, wherein nl(b) represents the measure for the distribution of the energy in the band b, wherein e(b) is an energy of the signal in the band b, wherein nb(b) is the admissible interference in the band b, and wherein s is an additive term. - Apparatus of claim 1, wherein the means (106) for calculating is formed to take magnitudes of spectral values in the frequency band into account for the calculating the measure for the distribution of the energy.
- Apparatus of one of the preceding claims, wherein the means (106) for calculating is formed to calculate a form factor according to the following equation:
wherein X(k) is a spectral value at a frequency index k, wherein kOffset is a first spectral value in a band b, and wherein ffac(b) is the form factor. - Apparatus of one of the preceding claims,
wherein the means (106) for calculating is formed to take a fourth root of a ratio between the energy in the frequency band and a width of the frequency band or number of the spectral values in the frequency band into account. - Apparatus of one of the preceding claims,
wherein the means (106) for calculating is formed to calculate the measure for the distribution of the energy according to the following equations:
wherein X(k) is a spectral value at a frequency index k, wherein kOffset is a first spectral value in a band b, wherein ffac(b) is a form factor, wherein nl(b) represents the measure for the distribution of the energy in the band b, wherein e(b) is a signal energy in the band b, and wherein width(b) is a width of the band. - Apparatus of one of the preceding claims,
wherein the means (104) for calculating the estimate is formed to use a quotient of the energy in the frequency band and the interference in the frequency band. - Apparatus of one of the preceding claims,
wherein s is equal to 1.5. - Apparatus of one of the preceding claims,
wherein the means (104) for calculating the estimate is formed to calculate the estimate according to the following equation:
wherein:
wherein:
wherein pe is the estimate, wherein nl(b) represents the measure for the distribution of the energy in the band b, wherein e(b) is an energy of the signal in the band b, wherein nb(b) is the admissible interference in the band b, wherein s is an additive term preferably equal to 1.5, wherein X(k) is a spectral value at a frequency index k, wherein kOffset is a first spectral value in a band b, wherein ffac(b) is a form factor, and wherein width(b) is a width of the band. - Apparatus of one of the preceding claims,
wherein the signal is given as a spectral representation with spectral values. - Method of determining an estimate of a need for information units for encoding a signal having audio or video information, wherein the signal has several frequency bands, comprising the steps of:providing (102) a measure (nb(b)) for an admissible interference for a frequency band (b) of the signal, wherein the frequency band includes at least two spectral values of a spectral representation of the signal, and a measure (e(b)) for an energy of the signal in the frequency band (b);calculating (106) a measure (nl(b)) for a distribution of the energy in the frequency band (b), wherein the distribution of the energy in the frequency band deviates from a completely uniform distribution, wherein, as the measure (nl(b)) for the distribution of the energy, an estimate for a number of spectral values the magnitudes of which are greater than or equal to a predetermined magnitude threshold, or the magnitudes of which are smaller than or equal to the magnitude threshold, is determined, wherein the magnitude threshold is an exact or estimated quantizer stage causing, in a quantizer (1014), values smaller than or equal to the quantizer stage to be quantized to zero; andcalculating (104) the estimate (pe) using the measure (nb(b)) for the admissible interference, the measure (e(b)) for the energy, and the measure (nl(b)) for the distribution of the energy using the following expression:
wherein pe is the estimate, wherein nl(b) represents the measure for the distribution of the energy in the band b, wherein e(b) is an energy of the signal in the band b, wherein nb(b) is the admissible interference in the band b, and wherein s is an additive term. - Computer program with program code for performing the method of determining an estimate of a need for information units for encoding a signal of claim 10, when the program is executed on a computer.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19167397.9A EP3544003B1 (en) | 2004-03-01 | 2005-02-17 | Device and method of determining an estimated value |
PL08021083T PL2034473T3 (en) | 2004-03-01 | 2005-02-17 | Device and method of emitting an estimated value |
EP08021083.4A EP2034473B1 (en) | 2004-03-01 | 2005-02-17 | Device and method of emitting an estimated value |
PL19167397T PL3544003T3 (en) | 2004-03-01 | 2005-02-17 | Device and method of determining an estimated value |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004009949A DE102004009949B4 (en) | 2004-03-01 | 2004-03-01 | Device and method for determining an estimated value |
PCT/EP2005/001651 WO2005083680A1 (en) | 2004-03-01 | 2005-02-17 | Device and method for determining an estimated value |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08021083.4A Division EP2034473B1 (en) | 2004-03-01 | 2005-02-17 | Device and method of emitting an estimated value |
EP19167397.9A Division EP3544003B1 (en) | 2004-03-01 | 2005-02-17 | Device and method of determining an estimated value |
EP08021083.4 Division-Into | 2008-12-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1697931A1 EP1697931A1 (en) | 2006-09-06 |
EP1697931B1 true EP1697931B1 (en) | 2011-11-02 |
Family
ID=34894902
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05707481A Active EP1697931B1 (en) | 2004-03-01 | 2005-02-17 | Device and method for determining an estimated value |
EP08021083.4A Active EP2034473B1 (en) | 2004-03-01 | 2005-02-17 | Device and method of emitting an estimated value |
EP19167397.9A Active EP3544003B1 (en) | 2004-03-01 | 2005-02-17 | Device and method of determining an estimated value |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08021083.4A Active EP2034473B1 (en) | 2004-03-01 | 2005-02-17 | Device and method of emitting an estimated value |
EP19167397.9A Active EP3544003B1 (en) | 2004-03-01 | 2005-02-17 | Device and method of determining an estimated value |
Country Status (19)
Country | Link |
---|---|
US (1) | US7318028B2 (en) |
EP (3) | EP1697931B1 (en) |
JP (1) | JP4673882B2 (en) |
KR (1) | KR100852482B1 (en) |
CN (1) | CN1938758B (en) |
AT (1) | ATE532173T1 (en) |
AU (1) | AU2005217507B2 (en) |
BR (1) | BRPI0507815B1 (en) |
CA (1) | CA2559354C (en) |
DE (1) | DE102004009949B4 (en) |
DK (1) | DK1697931T3 (en) |
ES (3) | ES2376887T3 (en) |
HK (1) | HK1093813A1 (en) |
IL (1) | IL176978A (en) |
NO (1) | NO338917B1 (en) |
PL (2) | PL3544003T3 (en) |
PT (2) | PT2034473T (en) |
RU (1) | RU2337414C2 (en) |
WO (1) | WO2005083680A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2707873B1 (en) | 2011-05-09 | 2015-04-08 | Dolby International AB | Method and encoder for processing a digital stereo audio signal |
FR2977439A1 (en) * | 2011-06-28 | 2013-01-04 | France Telecom | WINDOW WINDOWS IN ENCODING / DECODING BY TRANSFORMATION WITH RECOVERY, OPTIMIZED IN DELAY. |
CN110998722B (en) * | 2017-07-03 | 2023-11-10 | 杜比国际公司 | Low complexity dense transient event detection and decoding |
EP3483884A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Signal filtering |
WO2019091573A1 (en) | 2017-11-10 | 2019-05-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for encoding and decoding an audio signal using downsampling or interpolation of scale parameters |
EP3483880A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Temporal noise shaping |
EP3483879A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Analysis/synthesis windowing function for modulated lapped transformation |
EP3483886A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Selecting pitch lag |
WO2019091576A1 (en) | 2017-11-10 | 2019-05-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio encoders, audio decoders, methods and computer programs adapting an encoding and decoding of least significant bits |
EP3483882A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Controlling bandwidth in encoders and/or decoders |
EP3483883A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio coding and decoding with selective postfiltering |
EP3483878A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio decoder supporting a set of different loss concealment tools |
CN111405419B (en) * | 2020-03-26 | 2022-02-15 | 海信视像科技股份有限公司 | Audio signal processing method, device and readable storage medium |
CN116707557B (en) * | 2022-12-20 | 2024-05-03 | 荣耀终端有限公司 | Channel selection method, receiver and storage medium |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69127842T2 (en) * | 1990-03-09 | 1998-01-29 | At & T Corp | Hybrid perceptual coding of audio signals |
US5285498A (en) * | 1992-03-02 | 1994-02-08 | At&T Bell Laboratories | Method and apparatus for coding audio signals based on perceptual model |
CA2090052C (en) * | 1992-03-02 | 1998-11-24 | Anibal Joao De Sousa Ferreira | Method and apparatus for the perceptual coding of audio signals |
EP0559348A3 (en) * | 1992-03-02 | 1993-11-03 | AT&T Corp. | Rate control loop processor for perceptual encoder/decoder |
ES2122021T3 (en) * | 1992-06-24 | 1998-12-16 | British Telecomm | METHOD AND APPARATUS FOR THE OBJECTIVE MEASUREMENT OF THE SPEECH QUALITY OF TELECOMMUNICATION EQUIPMENT. |
JP2927660B2 (en) * | 1993-01-25 | 1999-07-28 | シャープ株式会社 | Method for manufacturing resin-encapsulated semiconductor device |
US5632003A (en) * | 1993-07-16 | 1997-05-20 | Dolby Laboratories Licensing Corporation | Computationally efficient adaptive bit allocation for coding method and apparatus |
US5623577A (en) * | 1993-07-16 | 1997-04-22 | Dolby Laboratories Licensing Corporation | Computationally efficient adaptive bit allocation for encoding method and apparatus with allowance for decoder spectral distortions |
US5956674A (en) * | 1995-12-01 | 1999-09-21 | Digital Theater Systems, Inc. | Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels |
DE19736669C1 (en) * | 1997-08-22 | 1998-10-22 | Fraunhofer Ges Forschung | Beat detection method for time discrete audio signal |
DE19747132C2 (en) * | 1997-10-24 | 2002-11-28 | Fraunhofer Ges Forschung | Methods and devices for encoding audio signals and methods and devices for decoding a bit stream |
US6351730B2 (en) * | 1998-03-30 | 2002-02-26 | Lucent Technologies Inc. | Low-complexity, low-delay, scalable and embedded speech and audio coding with adaptive frame loss concealment |
WO2000060575A1 (en) * | 1999-04-05 | 2000-10-12 | Hughes Electronics Corporation | A voicing measure as an estimate of signal periodicity for a frequency domain interpolative speech codec system |
JP3762579B2 (en) * | 1999-08-05 | 2006-04-05 | 株式会社リコー | Digital audio signal encoding apparatus, digital audio signal encoding method, and medium on which digital audio signal encoding program is recorded |
JP2001166797A (en) * | 1999-12-07 | 2001-06-22 | Nippon Hoso Kyokai <Nhk> | Encoding device for audio signal |
US6937979B2 (en) * | 2000-09-15 | 2005-08-30 | Mindspeed Technologies, Inc. | Coding based on spectral content of a speech signal |
EP1199711A1 (en) * | 2000-10-20 | 2002-04-24 | Telefonaktiebolaget Lm Ericsson | Encoding of audio signal using bandwidth expansion |
SE0004187D0 (en) | 2000-11-15 | 2000-11-15 | Coding Technologies Sweden Ab | Enhancing the performance of coding systems that use high frequency reconstruction methods |
US6636830B1 (en) * | 2000-11-22 | 2003-10-21 | Vialta Inc. | System and method for noise reduction using bi-orthogonal modified discrete cosine transform |
US6996523B1 (en) * | 2001-02-13 | 2006-02-07 | Hughes Electronics Corporation | Prototype waveform magnitude quantization for a frequency domain interpolative speech codec system |
US6871176B2 (en) * | 2001-07-26 | 2005-03-22 | Freescale Semiconductor, Inc. | Phase excited linear prediction encoder |
US6912495B2 (en) * | 2001-11-20 | 2005-06-28 | Digital Voice Systems, Inc. | Speech model and analysis, synthesis, and quantization methods |
-
2004
- 2004-03-01 DE DE102004009949A patent/DE102004009949B4/en not_active Expired - Fee Related
-
2005
- 2005-02-17 PL PL19167397T patent/PL3544003T3/en unknown
- 2005-02-17 PT PT08021083T patent/PT2034473T/en unknown
- 2005-02-17 CN CN2005800067994A patent/CN1938758B/en active Active
- 2005-02-17 DK DK05707481.7T patent/DK1697931T3/en active
- 2005-02-17 EP EP05707481A patent/EP1697931B1/en active Active
- 2005-02-17 ES ES05707481T patent/ES2376887T3/en active Active
- 2005-02-17 PT PT191673979T patent/PT3544003T/en unknown
- 2005-02-17 CA CA2559354A patent/CA2559354C/en active Active
- 2005-02-17 ES ES19167397T patent/ES2847237T3/en active Active
- 2005-02-17 EP EP08021083.4A patent/EP2034473B1/en active Active
- 2005-02-17 BR BRPI0507815A patent/BRPI0507815B1/en active IP Right Grant
- 2005-02-17 RU RU2006134638/09A patent/RU2337414C2/en active
- 2005-02-17 ES ES08021083T patent/ES2739544T3/en active Active
- 2005-02-17 JP JP2007501149A patent/JP4673882B2/en active Active
- 2005-02-17 PL PL08021083T patent/PL2034473T3/en unknown
- 2005-02-17 AT AT05707481T patent/ATE532173T1/en active
- 2005-02-17 WO PCT/EP2005/001651 patent/WO2005083680A1/en active Application Filing
- 2005-02-17 KR KR1020067016835A patent/KR100852482B1/en active IP Right Grant
- 2005-02-17 EP EP19167397.9A patent/EP3544003B1/en active Active
- 2005-02-17 AU AU2005217507A patent/AU2005217507B2/en active Active
-
2006
- 2006-07-20 IL IL176978A patent/IL176978A/en active IP Right Grant
- 2006-08-31 US US11/469,418 patent/US7318028B2/en active Active
- 2006-09-29 NO NO20064432A patent/NO338917B1/en unknown
-
2007
- 2007-01-25 HK HK07100908.4A patent/HK1093813A1/en unknown
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1697931B1 (en) | Device and method for determining an estimated value | |
EP1687810B1 (en) | Device and method for determining a quantiser step size | |
EP1697930B1 (en) | Device and method for processing a multi-channel signal | |
DE60014363T2 (en) | REDUCING DATA QUANTIZATION DATA BLOCK DISCOUNTS IN AN AUDIO ENCODER | |
DE60004814T2 (en) | QUANTIZATION IN PERCEPTUAL AUDIO ENCODERS WITH COMPENSATION OF NOISE LUBRICATED BY THE SYNTHESIS FILTER | |
EP2022043B1 (en) | Information signal coding | |
DE19811039B4 (en) | Methods and apparatus for encoding and decoding audio signals | |
DE69915400T2 (en) | Device for coding and decoding audio signals | |
DE69518452T2 (en) | Procedure for the transformation coding of acoustic signals | |
DE60317722T2 (en) | Method for reducing aliasing interference caused by the adjustment of the spectral envelope in real value filter banks | |
EP1495464B1 (en) | Device and method for encoding a time-discrete audio signal and device and method for decoding coded audio data | |
DE69810361T2 (en) | Method and device for multi-channel acoustic signal coding and decoding | |
EP1397799B1 (en) | Method and device for processing time-discrete audio sampled values | |
WO2001043503A2 (en) | Method and device for processing a stereo audio signal | |
EP1525576B1 (en) | Arrangement and method for the generation of a complex spectral representation of a time-discrete signal | |
DE60224100T2 (en) | GENERATION OF LSF VECTORS | |
DE10010849C1 (en) | Analysis device for analysis time signal determines coding block raster for converting analysis time signal into spectral coefficients grouped together before determining greatest common parts | |
DE19742201C1 (en) | Method of encoding time discrete audio signals, esp. for studio use | |
DE10065363B4 (en) | Apparatus and method for decoding a coded data signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060712 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1093813 Country of ref document: HK |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20070717 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005012097 Country of ref document: DE Effective date: 20120105 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2376887 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120320 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120302 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120203 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1093813 Country of ref document: HK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120803 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005012097 Country of ref document: DE Effective date: 20120803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050217 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20240220 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240319 Year of fee payment: 20 Ref country code: IE Payment date: 20240216 Year of fee payment: 20 Ref country code: NL Payment date: 20240220 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240216 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20240219 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20240219 Year of fee payment: 20 Ref country code: DE Payment date: 20240216 Year of fee payment: 20 Ref country code: CH Payment date: 20240301 Year of fee payment: 20 Ref country code: GB Payment date: 20240222 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240221 Year of fee payment: 20 Ref country code: IT Payment date: 20240229 Year of fee payment: 20 Ref country code: FR Payment date: 20240222 Year of fee payment: 20 Ref country code: DK Payment date: 20240221 Year of fee payment: 20 Ref country code: BE Payment date: 20240219 Year of fee payment: 20 |