EP1697559A1 - Method for the organised growth of nanostructures - Google Patents

Method for the organised growth of nanostructures

Info

Publication number
EP1697559A1
EP1697559A1 EP04816590A EP04816590A EP1697559A1 EP 1697559 A1 EP1697559 A1 EP 1697559A1 EP 04816590 A EP04816590 A EP 04816590A EP 04816590 A EP04816590 A EP 04816590A EP 1697559 A1 EP1697559 A1 EP 1697559A1
Authority
EP
European Patent Office
Prior art keywords
nanostructures
silicon
substrate
growth
semiconductor structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04816590A
Other languages
German (de)
French (fr)
Inventor
Frédéric Mazen
Thierry Baron
Sébastien DECOSSAS
Abdelkader Souifi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1697559A1 publication Critical patent/EP1697559A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Definitions

  • the present invention relates to a process for producing organized 3D nanostructures, in particular in semiconductor material.
  • the nanostructures are in the form of a network. They are produced on a substrate which may be a dielectric layer, for example made of Si0 2 , or Al 2 C> 3, or Si 3 N 4 , or Hf0 2 or another metallic oxide.
  • These nanostructures are intended for the production of optical or opto-electronic electronic devices (memories, tansistors with 1 electron). These are in particular coulomb blocking devices using quantum dots.
  • These nanostructures are also intended for the production of probes for biochips, a piece of DNA that can be attached to a nanostructure.
  • Chemical vapor deposition allows nanostructures to be deposited industrially on a dielectric. These nanostructures have already been able to be integrated into devices such as memories or transistors.
  • the deposition of silicon nanostructures (ns-Si) on dielectric by CVD involves the formation of a new layer of silicon, by CVD, from precursors such as silane or disilane, is of the ' Volmer-ebber type : are first formed three-dimensional islands which grow until coalescing before forming a continuous layer. It is thus possible, by stopping the growth during the first stages of the deposition, to obtain islets of nanometric dimensions.
  • the main limitation of this technique is that the nanostructures are arranged randomly on the substrate, as indicated in the reference [1] cited at the end of this description. This is due to the spontaneous nature of the nucleation process of silicon on dielectric. These nanostructures actually form preferentially on sites or faults which it is not currently possible to. check the arrangement on the surface of the substrate. This severely limits the quality and performance of devices based on such structures. To manage to organize the distribution of these nanostructures, it is therefore necessary to create preferential nucleation sites regularly distributed on the surface of the substrate. For this, it has been proposed to deposit the nanostructures on a Si0 2 substrate having a regular deformation field on its surface.
  • the nanostructures deposited on this kind of substrate are organized along lines, as described in reference [2] cited at the end of this description.
  • the resulting organization is not satisfactory and the spacing between the nanostructures is very difficult to control.
  • this method requires the use of very fine dielectrics which do not guarantee electrical insulation between the nanostructures and the substrate. The problem therefore arises of finding a method for controlling the. localization and growth of nanostructures.
  • the present invention creates a regular network of nucleation sites to control the location and growth of nanostructures. These are for example deposited by chemical vapor deposition (CVD) on a substrate, which may advantageously be made of a dielectric material. In other words, the present invention makes it possible to organize the nanostructures on a surface. First, the surface of the substrate is locally functionalized by depositing a nucleation site using a focused ion beam.
  • CVD chemical vapor deposition
  • FIB for example a beam of silicon ions or germanium ions.
  • the nanostructures grow, for example by chemical vapor deposition (CVD), selectively on the nucleation sites previously formed by the FIB.
  • CVD chemical vapor deposition
  • nucleation centers are therefore regularly deposited by means of a beam of focused ions FIB (Focused Ion Beam).
  • FIB focused ions
  • Three-dimensional nanostructures then grow selectively on the nucleation centers thus formed.
  • the invention makes it possible in particular to produce, on insulator, an organized deposition of semiconductor nano-structures, for example of silicon or Germanium or in semiconductor material of column IV or of type III - V. It is also possible to prepare metallic nanostructures.
  • the localization of these nanostructures is controlled since the FIB allows a very local irradiation, therefore the formation of very localized growth sites, and allows a control of the spacing between nanostructures. Finally, the density of these nanostructures is also controlled, since it is equal to the density of sites created by FIB.
  • the size of the nanostructures is therefore properly controlled, and the size dispersion is reduced compared to a random deposition of nanostructures.
  • the element used to irradiate may be the same as, or may have properties close to, the constituent element of nanostructures. The electrical or optical properties of the nanostructures are therefore not degraded by the presence of impurities.
  • Figures 1 and 2 represent steps of a method according to the invention.
  • a method according to the invention will be described in connection with FIGS. 1 and 2.
  • a surface 2 is exposed to an ion beam in order to locally deposit therein a material which will serve as preferential nucleation sites 4, where the nanostructures can then grow.
  • an ion beam focused in FIB Fluorine Beam
  • FIB workstation used for this purpose, enables the ion beam to be focused very precisely on the surface of substrate 2 with a very high current density. Such a workstation is for example described in the document 4 cited at the end of this description.
  • the exposure of predetermined areas of the surface to the focused ion beam (FIB) generates a local modification of the properties of the substrate 2.
  • a reactive site 4 created by irradiation with the ion beam can be, for example, a cluster (a few atoms) of the element used to irradiate the surface, or an introduction of this element into the substrate, or alternatively defects created by ion bombardment (or implantation). Nucleation sites 4 are therefore first created at the chosen positions, by irradiation of the surface with a localized ion beam (FIB).
  • the element used to irradiate the surface preferably has properties close to the constituent element of the nanostructures which it is desired to produce. To make nanostructures of silicon or germanium, it is possible to irradiate with, for example, silicon. We can also use a germanium beam.
  • a precursor is preferably used which generates a selective deposit on the site relative to the substrate.
  • the dielectric is Si0 2 and if the prior irradiation is done with silicon, it will be possible to deposit nanostructures of silicon or germanium using respectively Dichlorosilane or Germane, which are precursors making it possible to generate a deposit on a site of selective silicon with respect to an Si0 2 substrate. This is particularly the case if the irradiation is such that aggregates of silicon or zones rich in silicon are formed on the surface of the substrate. The nanostructures therefore grow selectively over the irradiated zones 4.
  • the desired material is, for example, selectively deposited on the nucleation sites 4 by chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • a deposit of the nucleation site (a few atoms of a chosen material) is therefore first obtained by FIB, while the FIB technique is known to be in principle ineffective for obtaining a 3D nanostructure, or in volume. Then comes the selective growth of nanostructures 8 on the growth germs deposited by FIB.
  • each nanostructure is thus well localized and its size controlled (maximum diameter D, measured in a plane parallel to plane 2, of the order of a few nanometers, for example between lnm and 10 nm or 15 nm or 20 nm, the height is for example around 100 nm, and the approximate shape of these structures is between a hemisphere and a sphere In microelectronic applications the height will be less than 20 nm and advantageously of the order of 10 nm.
  • the nanostructures thus regularly arranged are formed at a density which may be between 10 8 / cm 2 and 10 13 / cm 2 .
  • the size dispersion obtained is less than 20%: when we average all the sizes, we obtain a difference between crystals of less than 20%.
  • the intervention of an electrochemical process is not essential for obtaining such selective growth as in certain known processes.
  • various heat treatments can be carried out to improve their electrical or optical properties, in particular to cure the defects caused by irradiation in the substrate 2.
  • the invention relates to all materials which have a selectivity of deposition with respect to substrate 2. The irradiation with FIB then brings the nucleation site to the deposited material.
  • a substrate which may be of an insulating nature (for example Si0 2 , A1 2 0 3 , SiN x , ...), materials from column IV (for example silicon carbide Sic, Diamant C.), or III-V materials (gallium arsenide, gallium nitride, GaP ....), or metals ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The invention relates to a method of forming nanostructures, comprising: the formation of nucleation sites (4) by irradiating a substrate using a silicon or germanium ion beam, and the growth of nanostructures (8) on the nucleation sites thus formed.

Description

CROISSANCE ORGANISEE DE NANO-STRUCTURES DESCRIPTION ORGANIZED GROWTH OF NANO-STRUCTURES DESCRIPTION
DOMAINE TECHNIQUE ET ART ANTERIEUR La présente invention concerne un procédé de réalisation de nano-structures 3D organisées, notamment en matériau semi-conducteur. Les nano-structures se présentent sous la forme d'un réseau. Elles sont réalisées sur un substrat qui peut être une couche diélectrique par exemple en Si02, ou Al2C>3, ou Si3N4, ou Hf02 ou en un autre oxyde métallique. Ces nano-structures sont destinées à la réalisation de dispositifs électroniques (mémoires, tansistors à 1 électron) optiques ou opto- électroniques. Il s'agit en particulier de dispositifs à blocage de coulomb mettant en œuvre des boîtes quantiques. Ces nano-structures sont également destinées à la réalisation de sondes pour bio-puces, un morceau d'ADN pouvant être accroché à une nano- structure. L'amélioration constante des performances des circuits micro-électroniques requiert un taux d'intégration toujours plus important de leur composant élémentaire, le MOSFET. Pour cela, jusqu'à présent, l'industrie micro-électronique a pu diminuer les dimensions du MOSFET en optimisant les procédés technologiques sans rencontrer de limitations physiques majeures à son fonctionnement. Cependant, à court ou moyen terme, la « SIA Roadmap » prévoit une longueur de grille de l'ordre de 35 nm en deçà de laquelle des effets quantiques perturberont le bon fonctionnement des transistors. Il faut donc développer des solutions alternatives à la technologie CMOS . Une des voies les plus prometteuses est l'utilisation des propriétés de rétention de charge et/ou de blocage de coulomb de nano-structures. On cherche donc actuellement à intégrer ces nano- structures, principalement réalisées en silicium, dans des dispositifs. Il existe plusieurs procédés pour réaliser ces nono-structures. Le dépôt chimique en phase vapeur (CVD) permet de déposer de façon industrielle des nano- structures sur un diélectrique. Ces nano-structures, ont déjà pu être intégrées dans des dispositifs tels que des mémoires ou des transistors. Le dépôt de nano-structures en silicium (ns-Si) sur diélectrique par CVD comporte la formation d'une nouvelle couche de silicium, par CVD, à partir de précurseurs tels que le silane ou le disilane, est de' type Volmer- ebber : sont d'abord formés des îlots tridimensionnels qui croissent jusqu'à la coalescence avant de former une couche continue. On peut ainsi, en stoppant la croissance pendant les premiers stades du dépôt, obtenir des îlots de dimensions nano étriques . La principale limitation de cette technique est que les nano-structures sont disposées aléatoirement sur le substrat, comme indiqué dans la référence [1] citée en fin de la présente description. Cela est dû au caractère spontané du processus de nucleation du silicium sur diélectrique. Ces nano-structures se forment en fait preferentiellement sur des sites ou des défauts dont il n'est pas actuellement possible de. contrôler la disposition à la surface du substrat. Cela limite fortement la qualité et les performances des dispositifs basés sur de telles structures. Pour parvenir à organiser la répartition de ces nano-structures, il faut donc créer des sites de nucleation préférentiels répartis régulièrement à la surface du substrat. Pour cela, il a été proposé de déposer les nano-structures sur un substrat de Si02 ayant un champ de déformation régulier à sa surface. Les nano-structures déposées sur ce genre de substrat s'organisent suivant des lignes, comme décrit dans la référence [2] citée en fin de la présente description. Cependant, l'organisation résultante n'est pas satisfaisante et l'espacement entre les nano- structures est très difficilement contrôlable. De plus cette méthode impose l'utilisation de diélectriques très fins qui ne garantissent pas l'isolation électrique entre les nano-structures et le substrat. Il se pose donc le problème de trouver un procédé permettant de contrôler la. localisation et la croissance des nano-structures.TECHNICAL FIELD AND PRIOR ART The present invention relates to a process for producing organized 3D nanostructures, in particular in semiconductor material. The nanostructures are in the form of a network. They are produced on a substrate which may be a dielectric layer, for example made of Si0 2 , or Al 2 C> 3, or Si 3 N 4 , or Hf0 2 or another metallic oxide. These nanostructures are intended for the production of optical or opto-electronic electronic devices (memories, tansistors with 1 electron). These are in particular coulomb blocking devices using quantum dots. These nanostructures are also intended for the production of probes for biochips, a piece of DNA that can be attached to a nanostructure. The constant improvement in the performance of microelectronic circuits requires an ever higher rate of integration of their elementary component, the MOSFET. For this, so far, the microelectronics industry has been able to reduce the dimensions of the MOSFET by optimizing technological processes without encountering major physical limitations to its operation. However, in the short or medium term, the “SIA Roadmap” provides a grid length of the order of 35 nm below which quantum effects will disturb the proper functioning of the transistors. It is therefore necessary to develop alternative solutions to CMOS technology. One of the most promising ways is the use of charge retention and / or coulomb blocking properties of nanostructures. We are therefore currently seeking to integrate these nanostructures, mainly made of silicon, into devices. There are several methods for producing these non-structures. Chemical vapor deposition (CVD) allows nanostructures to be deposited industrially on a dielectric. These nanostructures have already been able to be integrated into devices such as memories or transistors. The deposition of silicon nanostructures (ns-Si) on dielectric by CVD involves the formation of a new layer of silicon, by CVD, from precursors such as silane or disilane, is of the ' Volmer-ebber type : are first formed three-dimensional islands which grow until coalescing before forming a continuous layer. It is thus possible, by stopping the growth during the first stages of the deposition, to obtain islets of nanometric dimensions. The main limitation of this technique is that the nanostructures are arranged randomly on the substrate, as indicated in the reference [1] cited at the end of this description. This is due to the spontaneous nature of the nucleation process of silicon on dielectric. These nanostructures actually form preferentially on sites or faults which it is not currently possible to. check the arrangement on the surface of the substrate. This severely limits the quality and performance of devices based on such structures. To manage to organize the distribution of these nanostructures, it is therefore necessary to create preferential nucleation sites regularly distributed on the surface of the substrate. For this, it has been proposed to deposit the nanostructures on a Si0 2 substrate having a regular deformation field on its surface. The nanostructures deposited on this kind of substrate are organized along lines, as described in reference [2] cited at the end of this description. However, the resulting organization is not satisfactory and the spacing between the nanostructures is very difficult to control. In addition, this method requires the use of very fine dielectrics which do not guarantee electrical insulation between the nanostructures and the substrate. The problem therefore arises of finding a method for controlling the. localization and growth of nanostructures.
EXPOSE DE L'INVENTIONSTATEMENT OF THE INVENTION
La présente invention permet de créer un réseau régulier de sites de nucleation pour contrôler la localisation et la croissance de nano-structures. Celles-ci sont par exemple déposées par dépôt chimique en phase vapeur (CVD) sur un substrat, qui pourra être avantageusement en un matériau diélectrique. En d'autres termes, la présente invention permet d'organiser les nano-structures sur une surface. Dans un premier temps, la surface du substrat est fonctionnalisée localement par dépôt d'un site de nucleation à l'aide d'un faisceau d'ions focalisésThe present invention creates a regular network of nucleation sites to control the location and growth of nanostructures. These are for example deposited by chemical vapor deposition (CVD) on a substrate, which may advantageously be made of a dielectric material. In other words, the present invention makes it possible to organize the nanostructures on a surface. First, the surface of the substrate is locally functionalized by depositing a nucleation site using a focused ion beam.
(FIB) , par exemple un faisceau d'ions silicium ou d'ions germanium. Dans un deuxième temps, les nano-structures croissent, par exemple par dépôt chimique en phase vapeur (CVD) , sélectivement sur les sites de nucleation préalablement formés par le FIB. Selon l'invention des centres de nucleation sont donc régulièrement déposés au moyen d'un faisceau d'ions focalisés FIB (Focused Ion Beam) . Des nano- structures tridimensionnelles croissent ensuite sélectivement sur les centres de nucleation ainsi formés. L'invention permet notamment de réaliser, sur isolant, un dépôt organisé de nano-structures semi- conductrices, par exemple de Silicium ou en Germanium ou en matériau semi-conducteur de la colonne IV ou de type III - V. Il est également possible de préparer des nano-structures métalliques. La localisation de ces nano-structures est maîtrisée puisque le FIB permet une irradiation très locale, donc la formation de sites de croissance très localisés, et permet un contrôle de l'espacement entre nano-structures . Enfin, la densité de ces nano-structures est elle aussi contrôlée, puisqu'elle est égale à la densité de sites créés par FIB. La taille des nano-structures est donc correctement contrôlée, et la dispersion en taille est réduite par rapport à un dépôt aléatoire de nano- structures . L'élément utilisé pour irradier peut être le même que, ou peut avoir des propriétés proches de, l'élément constitutif des nano-structures. Les propriétés électriques ou optiques des nano-structures ne sont alors pas dégradées par la présence d' impuretés .(FIB), for example a beam of silicon ions or germanium ions. In a second step, the nanostructures grow, for example by chemical vapor deposition (CVD), selectively on the nucleation sites previously formed by the FIB. According to the invention, nucleation centers are therefore regularly deposited by means of a beam of focused ions FIB (Focused Ion Beam). Three-dimensional nanostructures then grow selectively on the nucleation centers thus formed. The invention makes it possible in particular to produce, on insulator, an organized deposition of semiconductor nano-structures, for example of silicon or Germanium or in semiconductor material of column IV or of type III - V. It is also possible to prepare metallic nanostructures. The localization of these nanostructures is controlled since the FIB allows a very local irradiation, therefore the formation of very localized growth sites, and allows a control of the spacing between nanostructures. Finally, the density of these nanostructures is also controlled, since it is equal to the density of sites created by FIB. The size of the nanostructures is therefore properly controlled, and the size dispersion is reduced compared to a random deposition of nanostructures. The element used to irradiate may be the same as, or may have properties close to, the constituent element of nanostructures. The electrical or optical properties of the nanostructures are therefore not degraded by the presence of impurities.
BREVE DESCRIPTION DES FIGURES Les figures 1 et 2 représentent des étapes d'un procédé selon l'invention.BRIEF DESCRIPTION OF THE FIGURES Figures 1 and 2 represent steps of a method according to the invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION DE L'INVENTIONDETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
Un procédé selon l'invention va être décrit en liaison avec les figures 1 et 2. Dans une première étape, une surface 2 est exposée à un faisceau d'ions pour y déposer localement un matériau qui servira de sites 4 de nucleation préférentiels, où les nano-structures peuvent ensuite croître. On utilise pour cela un faisceau d'ions focalisé en FIB (Focused Ion Beam) . Une station de travail FIB, utilisée à cet effet, permet de focaliser très précisément sur la surface du substrat 2 le faisceau d'ions avec une très haute densité de courant. Une telle station de travail est par exemple décrite dans le document 4 cité à la fin de la présente description. L'exposition de zones prédéterminées de la surface au faisceau d'ions focalisés (FIB) génère une modification locale des propriétés du substrat 2. Un site réactif 4 créé par l'irradiation par le faisceau d'ion peut être, par exemple, un amas (quelques atomes) de l'élément utilisé pour irradier la surface, ou encore une introduction de cet élément dans le substrat, ou encore des défauts créés par le bombardement (ou l'implantation) ionique. Des sites de nucleation 4 sont donc d'abord créés aux positions choisies, par irradiation de la surface avec un faisceau d'ions localisé (FIB). L'élément utilisé pour irradier la surface a preferentiellement des propriétés proches de l'élément constitutif des nano-structures que l'on souhaite réaliser. Pour faire des nano-structures de silicium ou de germanium, on peut irradier avec, par exemple, du silicium. On peut aussi utiliser un faisceau de germanium. Dans une deuxième étape, on réalise la formation de nano-structures 8 (figure 2) , en trois dimensions, sur les sites 4 précédemment formés. Pour cela, on emploie preferentiellement un précurseur qui engendre un dépôt sélectif sur le site par rapport au substrat . Par exemple, si le diélectrique est du Si02 et si l'irradiation préalable est faite avec du silicium, on pourra déposer des nano-structures de silicium ou de germanium en utilisant respectivement du Dichlorosilane ou du Germane, qui sont des précurseurs permettant d'engendrer un dépôt sur un site de silicium sélectif par rapport à un substrat en Si02. C'est notamment le cas si l'irradiation est telle que se forment des agrégats de silicium ou des zones très riches en silicium à la surface du substrat. Les nano-structures croissent donc sélectivement sur les zones 4 irradiées. Le matériau voulu est par exemple déposé sélectivement sur les sites 4 de nucleation par dépôt chimique en phase vapeur (CVD) . Selon l'invention, un dépôt du site de nucleation (quelques atomes d'un matériau choisi) est donc d'abord obtenu par FIB, alors que la technique FIB est connue pour être en principe inefficace pour obtenir une nano-structure 3D, ou en volume. Puis, intervient la croissance sélective des nano-structures 8 sur les germes de croissance déposés par FIB. La croissance de chaque nano-structure est ainsi bien localisée et sa taille contrôlée (diamètre maximum D, mesuré dans un plan parallèle au plan 2, de l'ordre de quelques nanometres, par exemple compris entre lnm et 10 nm ou 15 nm ou 20 nm ; la hauteur est par exemple d'environ 100 nm, et la forme approximative de ces structures est comprise entre une hémisphère et une sphère. Dans des applications microélectroniques la hauteur sera inférieure à 20 nm et avantageusement de l'ordre de 10 nm. Les nano-structures ainsi régulièrement disposées sont formées à une densité pouvant être comprise entre 108/cm2 et 1013/cm2. La dispersion de taille obtenue est inférieure à 20 % : quand on fait la moyenne de toutes les tailles, on obtient une différence entre cristaux inférieure à 20 %. En outre, l'intervention d'un procédé électrochimique n'est pas indispensable à l'obtention d'une telle croissance sélective comme dans certains procédés connus. Après la croissance de nano-structures, différents traitements thermiques peuvent être réalisés pour améliorer leurs propriétés électriques ou optiques, notamment pour guérir les défauts engendrés par l'irradiation dans le substrat 2. L'invention concerne tous les matériaux qui présentent une sélectivité de dépôt par rapport au substrat 2. L'irradiation par FIB apporte alors le site de nucleation au matériau déposé. Par exemple, on pourra avantageusement utiliser l'invention pour déposer sélectivement et localement, sur un substrat qui peut être de nature isolante (par exemple Si02, A1203, SiNx,...), des matériaux de la colonne IV (par exemple carbure de silicium Sic, Diamant C.) , ou des matériaux III—V (arséniure de gallium, nitrure de gallium, GaP....), ou des métaux.... REFERENCES CITEES DANS LA PRESENTE DESCRIPTIONA method according to the invention will be described in connection with FIGS. 1 and 2. In a first step, a surface 2 is exposed to an ion beam in order to locally deposit therein a material which will serve as preferential nucleation sites 4, where the nanostructures can then grow. For this, an ion beam focused in FIB (Focused Ion Beam) is used. A FIB workstation, used for this purpose, enables the ion beam to be focused very precisely on the surface of substrate 2 with a very high current density. Such a workstation is for example described in the document 4 cited at the end of this description. The exposure of predetermined areas of the surface to the focused ion beam (FIB) generates a local modification of the properties of the substrate 2. A reactive site 4 created by irradiation with the ion beam can be, for example, a cluster (a few atoms) of the element used to irradiate the surface, or an introduction of this element into the substrate, or alternatively defects created by ion bombardment (or implantation). Nucleation sites 4 are therefore first created at the chosen positions, by irradiation of the surface with a localized ion beam (FIB). The element used to irradiate the surface preferably has properties close to the constituent element of the nanostructures which it is desired to produce. To make nanostructures of silicon or germanium, it is possible to irradiate with, for example, silicon. We can also use a germanium beam. In a second step, the formation of nanostructures 8 (FIG. 2), in three dimensions, is carried out on the sites 4 previously formed. For this, a precursor is preferably used which generates a selective deposit on the site relative to the substrate. For example, if the dielectric is Si0 2 and if the prior irradiation is done with silicon, it will be possible to deposit nanostructures of silicon or germanium using respectively Dichlorosilane or Germane, which are precursors making it possible to generate a deposit on a site of selective silicon with respect to an Si0 2 substrate. This is particularly the case if the irradiation is such that aggregates of silicon or zones rich in silicon are formed on the surface of the substrate. The nanostructures therefore grow selectively over the irradiated zones 4. The desired material is, for example, selectively deposited on the nucleation sites 4 by chemical vapor deposition (CVD). According to the invention, a deposit of the nucleation site (a few atoms of a chosen material) is therefore first obtained by FIB, while the FIB technique is known to be in principle ineffective for obtaining a 3D nanostructure, or in volume. Then comes the selective growth of nanostructures 8 on the growth germs deposited by FIB. The growth of each nanostructure is thus well localized and its size controlled (maximum diameter D, measured in a plane parallel to plane 2, of the order of a few nanometers, for example between lnm and 10 nm or 15 nm or 20 nm, the height is for example around 100 nm, and the approximate shape of these structures is between a hemisphere and a sphere In microelectronic applications the height will be less than 20 nm and advantageously of the order of 10 nm. The nanostructures thus regularly arranged are formed at a density which may be between 10 8 / cm 2 and 10 13 / cm 2 . The size dispersion obtained is less than 20%: when we average all the sizes, we obtain a difference between crystals of less than 20%. In addition, the intervention of an electrochemical process is not essential for obtaining such selective growth as in certain known processes. After the growth of nanostructures, various heat treatments can be carried out to improve their electrical or optical properties, in particular to cure the defects caused by irradiation in the substrate 2. The invention relates to all materials which have a selectivity of deposition with respect to substrate 2. The irradiation with FIB then brings the nucleation site to the deposited material. For example, it is advantageously possible to use the invention to deposit selectively and locally, on a substrate which may be of an insulating nature (for example Si0 2 , A1 2 0 3 , SiN x , ...), materials from column IV (for example silicon carbide Sic, Diamant C.), or III-V materials (gallium arsenide, gallium nitride, GaP ....), or metals ... REFERENCES CITED IN THIS DESCRIPTION
[1] : T. Baron, F. Martin, P. Mur, C. Wyon, M. Dupuy, Journal of Crystal Growth 290 (2000), 1004-1008.[1]: T. Baron, F. Martin, P. Mur, C. Wyon, M. Dupuy, Journal of Crystal Growth 290 (2000), 1004-1008.
[2] : T. Baron, F. Mazen, C Busseret, A. Souifi, P. Mur, M.N. Semeria, F. Fournel, P. Gentile, N. Magnea, H. Moriceau, B. Aspar, Microelectronic Engineering 61-62 (2002), 511.[2]: T. Baron, F. Mazen, C Busseret, A. Souifi, P. Mur, MN Semeria, F. Fournel, P. Gentile, N. Magnea, H. Moriceau, B. Aspar, Microelectronic Engineering 61- 62 (2002), 511.
[3] : P. Schmuki, LE. Erickson, G. Champion, Journal of the Electrochemical Society, vol. 148, no 3, (2001), C177.[3]: P. Schmuki, LE. Erickson, G. Champion, Journal of the Electrochemical Society, vol. 148, no 3, (2001), C177.
[4] : R. Gerlach, M. Utlaut, Proceedings of the SPIE, The International Society for Optical Engineering, vol 4510 (2001), 96. [4]: R. Gerlach, M. Utlaut, Proceedings of the SPIE, The International Society for Optical Engineering, vol 4510 (2001), 96.

Claims

REVENDICATIONS
1. Procédé de formation de nano-structures comportant - la formation de sites (4) de nucleation, en volume, par irradiation d'un substrat (2) à l'aide d'un faisceau d'ions de silicium ou de germanium, par dépôt localisé d'atomes aptes à former de tels sites, - la croissance de nano-structures (8) sur les sites de nucleation ainsi formés.1. Method for forming nanostructures comprising - the formation of nucleation sites (4), by volume, by irradiation of a substrate (2) using a beam of silicon or germanium ions, by localized deposition of atoms capable of forming such sites, - the growth of nanostructures (8) on the nucleation sites thus formed.
2. Procédé selon la revendication 1, la croissance étant obtenu par dépôt chimique en phase vapeur.2. Method according to claim 1, the growth being obtained by chemical vapor deposition.
3. Procédé selon la revendication 1 ou 2, le substrat étant en un matériau diélectrique.3. Method according to claim 1 or 2, the substrate being of a dielectric material.
4. Procédé selon la revendication 3, le substrat étant un dioxyde de silicium (Si02) ou de l'alumine (A1203) ou un nitrure de silicium (SiNx) -4. Method according to claim 3, the substrate being a silicon dioxide (Si0 2 ) or alumina (A1 2 0 3 ) or a silicon nitride (SiN x ) -
5. Procédé selon l'une des revendications 1 à 4, les nano-structures formées étant en un matériau semi-conducteur.5. Method according to one of claims 1 to 4, the nanostructures formed being of a semiconductor material.
6. Procédé selon la revendication 5, le matériau semi-conducteur étant du silicium ou du germanium. 6. Method according to claim 5, the semiconductor material being silicon or germanium.
7. Procédé selon la revendication 6, les structures formées étant obtenues respectivement à l'aide de dichlorosilane ou de germane en tant que précurseur gazeux.7. The method of claim 6, the structures formed being obtained respectively using dichlorosilane or germane as a gaseous precursor.
8. Procédé selon la revendication 5, la structure semi-conductrice formée étant en un matériau semi-conducteur de la colonne IV. 8. The method of claim 5, the semiconductor structure formed being of a semiconductor material from column IV.
9. Procédé selon la revendication 8, la structure semi-conductrice formée étant en carbure de silicium SiC ou en Diamant C.9. The method of claim 8, the semiconductor structure formed being of silicon carbide SiC or of Diamond C.
10. Procédé selon la revendication 5, la structure semi-conductrice étant en un matériau semiconducteur III - V.10. The method of claim 5, the semiconductor structure being of a III - V semiconductor material.
11. Procédé selon la revendication 5, la structure semi-conductrice étant en arséniure de gallium (GaAs) , ou en nitrure de gallium (GaN) , ou en phosphure de gallium (GaP) .11. The method of claim 5, the semiconductor structure being gallium arsenide (GaAs), or gallium nitride (GaN), or gallium phosphide (GaP).
12. Procédé selon l'une des revendications 1 à 4, les nano-structures formées étant en un matériau métallique.12. Method according to one of claims 1 to 4, the nanostructures formed being of a metallic material.
13. Procédé selon l'une des revendications 1 à 12, les nano-structures formées étant en 3 dimensions . 13. Method according to one of claims 1 to 12, the nanostructures formed being in 3 dimensions.
14. Procédé selon l'une des revendications 1 à 13, les nano-structures formées étant de diamètre D maximum compris entre lnm et 15nm.14. Method according to one of claims 1 to 13, the nanostructures formed being of maximum diameter D between lnm and 15nm.
15. Procédé selon l'une des revendications 1 à 14, les nano-structures étant formées à une densité comprise entre 108/cm2 et 1013/cm2. 15. Method according to one of claims 1 to 14, the nanostructures being formed at a density between 10 8 / cm 2 and 10 13 / cm 2 .
EP04816590A 2003-12-23 2004-12-21 Method for the organised growth of nanostructures Withdrawn EP1697559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0351186A FR2864109B1 (en) 2003-12-23 2003-12-23 ORGANIZED GROWTH OF NANO-STRUCTURES
PCT/FR2004/050743 WO2005064040A1 (en) 2003-12-23 2004-12-21 Method for the organised growth of nanostructures

Publications (1)

Publication Number Publication Date
EP1697559A1 true EP1697559A1 (en) 2006-09-06

Family

ID=34630632

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04816590A Withdrawn EP1697559A1 (en) 2003-12-23 2004-12-21 Method for the organised growth of nanostructures

Country Status (5)

Country Link
US (1) US20070104888A1 (en)
EP (1) EP1697559A1 (en)
JP (1) JP2007517136A (en)
FR (1) FR2864109B1 (en)
WO (1) WO2005064040A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2922680A1 (en) * 2007-10-18 2009-04-24 Commissariat Energie Atomique Microelectronic component i.e. floating gate transistor, manufacturing method for flash memory device, involves carrying out thermal treatment after deposition of reactive material so that material reacts with zones to form nanocrystals
JPWO2010082345A1 (en) * 2009-01-19 2012-06-28 日新電機株式会社 Silicon dot forming method and silicon dot forming apparatus
DE102009041264A1 (en) * 2009-09-11 2011-03-24 IPHT Jena Institut für Photonische Technologien e.V. Method for producing optically active nano-structures that are utilized for e.g. surface enhanced Raman scattering spectroscopy, involves selecting characteristics by presetting position, size, shape and composition of nano-structures
US8853078B2 (en) * 2011-01-30 2014-10-07 Fei Company Method of depositing material
WO2013112596A1 (en) * 2012-01-23 2013-08-01 Stc.Unm Multi-source optimal reconfigurable energy harvester

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240723A (en) * 1985-08-17 1987-02-21 Fujitsu Ltd Manufacture of semiconductor device
JPH08973B2 (en) * 1986-03-31 1996-01-10 キヤノン株式会社 Deposited film formation method
JP2525773B2 (en) * 1986-06-30 1996-08-21 キヤノン株式会社 Semiconductor device and manufacturing method thereof
US4908226A (en) * 1988-05-23 1990-03-13 Hughes Aircraft Company Selective area nucleation and growth method for metal chemical vapor deposition using focused ion beams
US5083033A (en) * 1989-03-31 1992-01-21 Kabushiki Kaisha Toshiba Method of depositing an insulating film and a focusing ion beam apparatus
US5082359A (en) * 1989-11-28 1992-01-21 Epion Corporation Diamond films and method of growing diamond films on nondiamond substrates
JPH03262911A (en) * 1990-03-14 1991-11-22 Matsushita Electric Ind Co Ltd Probe for interatomic force microscope and production thereof
US5363793A (en) * 1990-04-06 1994-11-15 Canon Kabushiki Kaisha Method for forming crystals
JPH04118916A (en) * 1990-04-20 1992-04-20 Hitachi Ltd Semiconductor device and its manufacture
US5504340A (en) * 1993-03-10 1996-04-02 Hitachi, Ltd. Process method and apparatus using focused ion beam generating means
JP2884054B2 (en) * 1995-11-29 1999-04-19 工業技術院長 Fine processing method
US6806228B2 (en) * 2000-06-29 2004-10-19 University Of Louisville Low temperature synthesis of semiconductor fibers
CA2430888C (en) * 2000-12-11 2013-10-22 President And Fellows Of Harvard College Nanosensors
US6835613B2 (en) * 2001-12-06 2004-12-28 University Of South Florida Method of producing an integrated circuit with a carbon nanotube
US6761803B2 (en) * 2001-12-17 2004-07-13 City University Of Hong Kong Large area silicon cone arrays fabrication and cone based nanostructure modification
US7342225B2 (en) * 2002-02-22 2008-03-11 Agere Systems, Inc. Crystallographic metrology and process control
US7208094B2 (en) * 2003-12-17 2007-04-24 Hewlett-Packard Development Company, L.P. Methods of bridging lateral nanowires and device using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2005064040A1 *

Also Published As

Publication number Publication date
US20070104888A1 (en) 2007-05-10
WO2005064040A1 (en) 2005-07-14
FR2864109A1 (en) 2005-06-24
FR2864109B1 (en) 2006-07-21
JP2007517136A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
EP2254146B1 (en) Semiconductor structure and method of manufacturing a semiconductor structure
EP1426328B1 (en) Method for manufacturing of uniformly sized and controlled semi-conductor nano structures by CVD process on dieletric
EP1008169B1 (en) Producing microstructures or nanostructures on a support
CN101142658A (en) Method of producing a light-emitting diode comprising a nanostructured PN junction and diode thus obtained
FR2974941A1 (en) PROCESS FOR PRODUCING SEMICONDUCTOR NANOCRYSTALS
FR2897204A1 (en) VERTICAL TRANSISTOR STRUCTURE AND METHOD OF MANUFACTURE
WO2014037410A1 (en) Process for etching a crystalline semiconductor by ion implantation then hydrogen-chloride-based chemical etching
WO2020128354A1 (en) Substrate of the semi-conductor-on-insulator type for radiofrequency applications
WO2014064220A1 (en) Method for producing a semi-conductive structure
JP2012517114A (en) Epitaxial methods and structures for forming semiconductor materials
WO2005064040A1 (en) Method for the organised growth of nanostructures
FR3052911A1 (en) METHOD FOR FORMING SPACERS OF A GRID OF A TRANSISTOR
EP3809450A1 (en) Method for hetero-integration of a semiconductor material of interest in a silicon substrate
Barbagini et al. Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns
EP2849208A1 (en) Optimised method for manufacturing patterns of III-V semiconductor material on a semiconductor substrate
WO2009130416A2 (en) Method for forming porous material in microcavity or micropassage by mechanochemical polishing
FR2823739A1 (en) One-dimensional nanostructure manufacturing method, especially for nano-electronics, forming parallel atomic lines on substrate with conducting or insulating strips between them
EP3809452B1 (en) Method for epitaxy of gallium selenide (gase) on a silicon substrate oriented (111)
FR3113409A1 (en) METHOD FOR MAKING A QUANTUM DEVICE WITH NUCLEAR SPIN QUBITS
WO2021105273A1 (en) Method for producing non-contiguous metal oxide nanostructures of uniform and controlled size and density
EP1656473A2 (en) Metal nano-objects, formed on semiconductor surfaces, and methods for making said nano-objects
FR2926163A1 (en) Semi-conductor device e.g. MOS transistor, manufacturing method, involves forming cavity in coating layer, where catalyst portion is arranged in cavity, and forming crystalline portion in cavity from catalyst portion
WO2018108840A1 (en) Method for producing a device comprising a layer of iii-n material with surface defects
FR2810791A1 (en) Preparation of a coating on a substrate, e.g. metal oxides on silicon-based substrates, involves chemical atomic layer deposition using a deuterated reactant
FR2922680A1 (en) Microelectronic component i.e. floating gate transistor, manufacturing method for flash memory device, involves carrying out thermal treatment after deposition of reactive material so that material reacts with zones to form nanocrystals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

17Q First examination report despatched

Effective date: 20061218

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOUIFI, ABDELKADER

Inventor name: DECOSSAS, SEBASTIEN

Inventor name: BARON, THIERRY

Inventor name: MAZEN, FREDERIC

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100701