EP1697529A1 - Viral particles containing an alpha virus derived vector and method for preparing said viral particle - Google Patents
Viral particles containing an alpha virus derived vector and method for preparing said viral particleInfo
- Publication number
- EP1697529A1 EP1697529A1 EP04805869A EP04805869A EP1697529A1 EP 1697529 A1 EP1697529 A1 EP 1697529A1 EP 04805869 A EP04805869 A EP 04805869A EP 04805869 A EP04805869 A EP 04805869A EP 1697529 A1 EP1697529 A1 EP 1697529A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- virus
- alpha
- vector derived
- viral
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000013598 vector Substances 0.000 title claims abstract description 102
- 239000002245 particle Substances 0.000 title claims abstract description 75
- 241000710929 Alphavirus Species 0.000 title claims abstract description 49
- 230000003612 virological effect Effects 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims description 23
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 30
- 108700019146 Transgenes Proteins 0.000 claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 claims abstract description 14
- 230000010076 replication Effects 0.000 claims abstract description 14
- 238000012217 deletion Methods 0.000 claims abstract description 6
- 230000037430 deletion Effects 0.000 claims abstract description 6
- 210000004027 cell Anatomy 0.000 claims description 93
- 230000014509 gene expression Effects 0.000 claims description 24
- 238000001890 transfection Methods 0.000 claims description 24
- 241001430294 unidentified retrovirus Species 0.000 claims description 20
- 241000700605 Viruses Species 0.000 claims description 15
- 238000004806 packaging method and process Methods 0.000 claims description 14
- 230000002950 deficient Effects 0.000 claims description 11
- 101710172711 Structural protein Proteins 0.000 claims description 7
- 238000012761 co-transfection Methods 0.000 claims description 5
- 108700004025 env Genes Proteins 0.000 claims description 5
- 101150030339 env gene Proteins 0.000 claims description 5
- 238000000338 in vitro Methods 0.000 claims description 5
- 101710091045 Envelope protein Proteins 0.000 claims description 4
- 101710188315 Protein X Proteins 0.000 claims description 4
- 230000001413 cellular effect Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 108700004026 gag Genes Proteins 0.000 claims description 3
- 108700004029 pol Genes Proteins 0.000 claims description 3
- 206010028980 Neoplasm Diseases 0.000 claims description 2
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 2
- 201000011510 cancer Diseases 0.000 claims description 2
- 239000003814 drug Substances 0.000 claims description 2
- 210000003527 eukaryotic cell Anatomy 0.000 claims description 2
- 239000008194 pharmaceutical composition Substances 0.000 claims description 2
- 238000003153 stable transfection Methods 0.000 claims description 2
- 102100021696 Syncytin-1 Human genes 0.000 claims 2
- 239000012228 culture supernatant Substances 0.000 claims 1
- 239000013604 expression vector Substances 0.000 claims 1
- 239000006228 supernatant Substances 0.000 abstract description 12
- 238000006467 substitution reaction Methods 0.000 abstract description 3
- 238000004113 cell culture Methods 0.000 abstract 1
- 241000710961 Semliki Forest virus Species 0.000 description 68
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 35
- 239000013612 plasmid Substances 0.000 description 23
- 230000001177 retroviral effect Effects 0.000 description 19
- 208000015181 infectious disease Diseases 0.000 description 17
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 10
- 108091027544 Subgenomic mRNA Proteins 0.000 description 9
- 238000010276 construction Methods 0.000 description 8
- 238000010361 transduction Methods 0.000 description 8
- 238000000636 Northern blotting Methods 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- 102100034349 Integrase Human genes 0.000 description 6
- 238000004520 electroporation Methods 0.000 description 6
- 239000012894 fetal calf serum Substances 0.000 description 6
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 6
- 230000002458 infectious effect Effects 0.000 description 6
- 238000013518 transcription Methods 0.000 description 6
- 230000035897 transcription Effects 0.000 description 6
- 230000026683 transduction Effects 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- 108010092160 Dactinomycin Proteins 0.000 description 5
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 5
- 229960000640 dactinomycin Drugs 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 4
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 3
- 241000714177 Murine leukemia virus Species 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000000805 cytoplasm Anatomy 0.000 description 3
- 108010027225 gag-pol Fusion Proteins Proteins 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 2
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 108010061833 Integrases Proteins 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 101800000514 Non-structural protein 4 Proteins 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 2
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 2
- 241000233805 Phoenix Species 0.000 description 2
- 108010076039 Polyproteins Proteins 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 241000711975 Vesicular stomatitis virus Species 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229950010131 puromycin Drugs 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 230000010415 tropism Effects 0.000 description 2
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000726306 Irus Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 101710152005 Non-structural polyprotein Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 101710114167 Polyprotein P1234 Proteins 0.000 description 1
- 101710124590 Polyprotein nsP1234 Proteins 0.000 description 1
- 101800000980 Protease nsP2 Proteins 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000710960 Sindbis virus Species 0.000 description 1
- 102100038126 Tenascin Human genes 0.000 description 1
- 108010008125 Tenascin Proteins 0.000 description 1
- 241000030538 Thecla Species 0.000 description 1
- 102000001999 Transcription Factor Pit-1 Human genes 0.000 description 1
- 108010040742 Transcription Factor Pit-1 Proteins 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 1
- 230000009088 enzymatic function Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 230000001483 mobilizing effect Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 101150088264 pol gene Proteins 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000037432 silent mutation Effects 0.000 description 1
- 108091069025 single-strand RNA Proteins 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 108700001624 vesicular stomatitis virus G Proteins 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/36011—Togaviridae
- C12N2770/36111—Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
- C12N2770/36141—Use of virus, viral particle or viral elements as a vector
- C12N2770/36143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/36011—Togaviridae
- C12N2770/36111—Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
- C12N2770/36141—Use of virus, viral particle or viral elements as a vector
- C12N2770/36145—Special targeting system for viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/50—Vectors comprising as targeting moiety peptide derived from defined protein
- C12N2810/60—Vectors comprising as targeting moiety peptide derived from defined protein from viruses
- C12N2810/6045—RNA rev transcr viruses
- C12N2810/6054—Retroviridae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/50—Vectors comprising as targeting moiety peptide derived from defined protein
- C12N2810/60—Vectors comprising as targeting moiety peptide derived from defined protein from viruses
- C12N2810/6072—Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses
- C12N2810/6081—Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses rhabdoviridae, e.g. VSV
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2840/00—Vectors comprising a special translation-regulating system
- C12N2840/20—Vectors comprising a special translation-regulating system translation of more than one cistron
- C12N2840/203—Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES
Definitions
- the invention relates to new viral particles containing a vector derived from an alpha-virus rendered defective for autonomous propagation and therefore for replication. It also relates to the process for the preparation of said particles.
- Semliki forest virus which falls into the category of alpha-viruses.
- SSV Semliki forest virus
- alpha-iruses can be considered, such as for example the Sindbis virus.
- the alpha-virus genome is in the form of a single-strand RNA of positive polarity comprising two open reading phases, respectively a first phase coding the proteins with enzymatic function, and a second phase coding the structural proteins. Replication takes place in the cytoplasm of the cell.
- the 5 ′ end of the genomic RNA is translated into a polyprotein (nsP 1-4) with RNA polymerase activity producing a negative strand complementary to the genomic RNA.
- the negative strand is used as a template for the production of two RNAs, respectively:
- the subgenomic RNA is transcribed from the p26S promoter present at the 3 ′ end of the RNA sequence coding for the nsp4 protein.
- the ratio of positive genomic RNA / subgenomic RNA is regulated by the proteolytic self-cleavage of the polyprotein into nsp 1, nsp 2, nsp 3 and nsp 4.
- expression of viral genes takes place in two phases. In a first phase, there is a main synthesis of positive genomic strands and negative strands. During the second phase, the synthesis of sub-genomic RNA is almost exclusive, thus leading to the production of structural proteins in very large quantities.
- the first solution consists in deleting the structural genes of the Semliki RNA in favor of the transgene, the transgene being placed under the dependence of the p26S promoter.
- Such a vector can be transferred to cells in the form of RNA or in the form of DNA.
- this solution is of little interest for in vivo applications, insofar as there is a low transfer efficiency using these genetic elements used in the absence of particles.
- a Semliki vector not in the form of DNA or RNA alone, but in the form of recombinant viral particles.
- a cell line is transfected with at least two plasmids, respectively, a plasmid carrying the RNA of the Semliki vector devoid of structural genes and a second plasmid carrying the Semliki structural genes under the control of the p26S promoter.
- viral particles which encapsulate only the defective RNA, that is to say the Semliki RNA carrying the transgene since it alone also carries an encapsidation sequence contained in the sequence of nsP2.
- the Rolls documents (1, 2) describe an SFV vector whose genome has been modified by replacing the structural genes with the gene encoding the VSV-G envelope, possibly associated with a transgene.
- the infectious particles thus obtained therefore consist of a VSV-G envelope and contain a vector derived from alpha virus.
- the system described is particularly dangerous because of its ability to replicate autonomously.
- An equivalent system is described in document WO 03/072771.
- the document Lebedeva et al. (3) describes the coelectroporation of BHK cells by: the capsid and the envelope of SFV as a control, or a derived vector in which the env gene of SFV is replaced by env sequences of the MLV retrovirus (Moloney murine leukemia), and the analysis of the viral particles thus produced.
- the mobilization of the vector SFV carrying the transgene in this case that of ⁇ -galactosidase, is dependent on the packaging of this recombinant genomic RNA by the capsid protein of SFV.
- the problem which the invention proposes to solve is to improve the mode of mobilization of the vectors derived from alpha-virus, in particular from the Semliki forest virus (SFV), so as to avoid any risk of recombination within the producing lines which can generate replicative particles.
- Another problem which the invention proposes to solve is to prepare viral particles containing a vector derived from alpha-virus, the tropism of which is not limited to the target cells of wild viruses.
- the Applicant has succeeded in producing viral particles which simultaneously meet the two above objectives by expressing in trans, in a cell line, the genes coding for structural elements not derived from the alpha virus and the vector derived from alpha- virus made defective for replication.
- the genes coding for structural elements not originating from the alpha-virus correspond to the only ENV gene of the vesicular stomatitis virus coding for the NSN-G envelope protein.
- VSV-G Using a VSV-G envelope has several advantages.
- the envelope protein of the vesicular stomatitis virus allows a mode of cellular entry by endocytosis which can be superimposed on that of alpha-viruses.
- VSV-G is a very stable protein, capable of being concentrated by ultra-centrifugation and making it possible to envisage parenteral administrations.
- this protein confers a very large tropism on the particles which contain it, thus widening the field of use of the viral particles of the invention to organisms as different as Drosophila and mammals.
- the expression in trans is obtained by co-transfection advantageously carried out in two distinct stages respectively, the transfection of the line with the plasmid expressing the gene of the envelope VSV-G, then a second transfection by the vector derived from alpha virus.
- co-transfection is carried out on 293T cells.
- the genes coding for structural elements not derived from the alpha virus correspond to the genes coding for the structural proteins of a retro irus.
- expression in trans is obtained by transfection of an encapsidation cell line, producer of retroviruses defective for replication, with the vector derived from alpha virus.
- This type of line is well known in the art, such as Phoenix ® system (http://www.stanford.edu/group/nolan/retroviral systems / plixiitml).
- packaging lines using structural genes of MLN can be used.
- these lines are obtained by stable transfection of a first plasmid expressing the GAG-POL genes and of a second plasmid expressing an ENV gene of a retrovirus or of another enveloped virus (4).
- the viral particles by triple transfection of a cell line, for example 293T cells, by introduction of a first viral element expressing the GAG and POL genes of retrovirus, of a second viral element expressing the ENV gene of retrovirus and of the vector derived from alpha-virus.
- the vector derived from alpha-virus is made defective for replication. This property is in practice obtained by the deletion of structural genes or their substitution for the benefit of the transgene (s) of interest in the vector genome.
- the genome of the vector derived from alpha-virus contains a signal allowing the packaging by the viral particle, called psi sequence.
- the sequence psi corcespond to the extended packaging sequence of MLN vectors obtained by amplification by PCR method (polymerase chain reaction) of the vector PL ⁇ CX (Clontech ®) from primers: - 5 'primer: L ⁇ CX Psi 2a: 5'- GGGACCACCGACCCACCACC -3 'and - primer 3': L ⁇ CX Psi 2b: 5'- GATCCTCATCCTGTCTCTTG -3 '.
- the psi sequence is reduced in size and corresponds to the minimum sequence.
- This modification is interesting insofar as the psi sequence can have an anchor point function for the entry of ribosomes (IRES).
- IRES ribosomes
- the Applicant also demonstrated that the presence of a retroviral packaging signal was not necessarily necessary.
- the quantity of AR ⁇ recombinants of the Semliki vector, found in the cytoplasm of the transfected cells is such that the latter are preferentially packaged in retroviral particles. This phenomenon is accentuated by the extinction of cellular genes, induced by the expression of the non-structural proteins of the Semliki virus.
- the sub-cellular localization of the replication complexes of the SFV virus could also play an important role (5). Therefore, and in a preferred embodiment, the vector genome is devoid of psi sequence.
- the applicant has also shown that it is possible to mobilize a vector as described above, containing a retroviral encapsidation sequence, by means of retroviral particles produced using a transcomplementation system based on vectors derived from the Semliki forest virus. (11).
- a transcomplementation system based on vectors derived from the Semliki forest virus. (11).
- D. is also demonstrated that the presence of a retroviral packaging signal improves the titer of the particles by approximately one log.
- These particles are effectively used to transduce cells expressing the receptor for amphotropic viruses (Pit 2), corresponding to the retroviral envelope. used. This observation has a direct consequence on the biosecurity of the retroviral particles produced by the method of Li and Garoff (11).
- the particles produced according to the method of Li and Garoff contain, in a titer close to 10 6 part ml, genomes of recombinant SFV vectors expressing the GAG / POL or ENV sequences of the retroviruses.
- the Applicant has moreover found that the mode of transfection generally used for the recombinant ARs of the Semliki vectors, namely electroporation, leads to significant cellular suffering. Also, and to allow transfection of the producer cells by methods which are gentler than electroporation, the vector derived from alpha-virus has been modified to be expressed from a eukaryotic promoter, for example a CMN promoter positioned at 5 'of the vector sequence.
- a eukaryotic promoter for example a CMN promoter positioned at 5 'of the vector sequence.
- the p26S promoter of the alpha-virus vector is advantageously mutated.
- a particle according to the invention is like a viral particle made up of structural elements not derived from an alpha-virus and containing a vector derived from alpha-virus made defective for replication, by deletion or replacement by at at least one transgene, structural genes, the structural elements of said particle not being encoded by the genome of the vector derived from alpha-virus.
- the invention relates to the use of the viral particles according to the invention for infecting cells in vitro.
- the Applicant has shown that the particles thus produced can infect a wide variety of eukaryotic cells, both human and non-human.
- the invention also relates to a pharmaceutical composition comprising the viral particles of the invention. Likewise, it relates to the use of viral particles for the preparation of a medicament intended for the treatment of cancer.
- Figure 1 is a schematic representation of the structure of the vector derived from the Semliki Forest Virus (SFV).
- SFV Semliki Forest Virus
- Figure 2 shows the mutations made in the p26S promoter.
- the mutations introduced into the p26Sml and p26Sm2 mutants with respect to the wild-type sequence (Wt) are boxed.
- the amino acid in bold indicates a change in the coding sequence.
- FIG. 3 is the result of a Northern-blot carried out from producer cells, expressing modified SFV vectors (pEGFPCl; 2: p26Sml; 3: p26Sm2; 4: SFV without transgene), with a GFP probe of pEGFPCl.
- FIG. 4 shows the capacity of the 293T and BHK 21 cells to express the vectors derived from SFV (p26Sml and p26Sm2) and mobilized by the pseudo-particles VSV-G.
- FIG. 5 is the result of a northern blot carried out from the cells infected with the supernatant of 293 T cells transfected with the plasmid pMDG and of the vectors
- - HepG2 human hepatoma line cultivated in EM containing 10% FCS (ATCC HB-8065), - BHK21: baby hamster kidney line cultivated in GMEM containing 5% FCS and 8% liquid tryptose solution phosphate (ATCC CCL- 10), - CESC: Chicken embryo obtained and cultivated according to reference 26, - High Five cell cultivated at 27 ° C in a medium of Grace's insect cells (cat n ° B85502 Invitrogen) containing 10% FCS, - Sp2 / O: Murine line of lymphoplastoids cultivated in RPMI 1640 containing 10% FCS (ATCC CRL1581). 21 Construction of the SFV vector
- the internal promoter 26S of the SFV is mutated by PCR from the vector pSFVl (Invitrogen), which is devoid of structural genes and used as template in the presence of two primers, respectively: - a primer 26SmlF containing the restriction site Bgl U appearing in bold in the following sequence: 5'-ATCCTCGAAGATCTAGGG-3 ', - a second mutated primer 26SmlR containing the Cla l restriction site appearing in bold in the following sequence: 5 -CAATATCGAT TACTAGCGAACTAATCTAGGA-3'.
- Silent mutations are then introduced into the p26S promoter to lead to the p26Sml promoter as shown in FIG. 2.
- the product thus amplified is then cloned into a plasmid pIRES2-EGFP (Invitrogen) (FIG. 1).
- a retroviral sequence designated RS, derived from an MLV virus is then inserted between the 26S mutated promoter and the IRES sequence. Fragments containing the sequence 26S mutated, the MLV retroviral sequence and the EGFP gene are then excised with Bgl II and Hpa I and then cloned into the vector pSFVl between the Bgl JJ and Sma I restriction sites.
- the 10.5 kbp fragment containing the modified SFV replicon is finally cloned between the promoter IE CMV and the polyadenylation signal SV40 pA in a vector pJRES2-EGFP in which the sequence IRES GFP has been deleted.
- the internal promoter is mutated by PCR from the plasmid SFV1 used as template in the presence of two primers respectively, a first primer 26SmlF and a second primer 26Sm2R containing a restriction site appearing in bold in the following sequence:
- the primer 26Sm2R leads to modifications of the p26S promoter as illustrated in FIG. 2.
- the amplified product is then digested with Bgl JJ and Cla I and ligated into the vector 26Sml also digested with Bgl JJ and Cla I to remove the cross-cutting fragment .
- the cells are transfected with 5 ⁇ g of the SFV 26Sml or 26Sm2 vectors.
- the second transfection medium is left in contact with the cells between 1 pm and 5 pm.
- the medium is removed and replaced with fresh medium allowing the release of the infecting particles.
- the culture medium containing the viral particles is collected 5 to 6 hours later. 41 Transfection of the BHK21 cell line with the vectors SFV 26Sml or 26Sm2 and the vectors SFV GAGPOL and SFV ENV and collection of viral particles
- the BHK 21 cells are electroporated 5 10 6 / ml (i.e. 4 10 6 cells), at a voltage of 350 V, and a capacitance of 750 ⁇ F.
- the RNAs used for electroporation corresponding to the different vectors (26Sml or m2, SFV GAGPOL and SFV ENV), are transcribed using 1.5 ⁇ g of linearized DNA using an Invitrogen Sp6 polymerase kit.
- 22 ⁇ l of the transcription product are electroporated.
- the harvesting of the recombinant particles is carried out 14 to 16 hours later.
- the supernatants are filtered and deposited on the target cells in the presence of 2 ⁇ g / ml of polybrene.
- the supernatant of transfected 293T cell lines was collected and then filtered through 0.45 .mu.m filter (Millex ® HA, Millipore) and incubated with different cell lines in the presence of fresh medium containing polybrene used at 5 micrograms per ml (Sigma).
- the control of GFP expression in infected cells is carried out using a 1 ⁇ 50 Olympus fluorescence microscope. Quantification of transfection is performed using a FACScalibur flow cytometer from Becton Dickinson ®.
- RNAse A 10 ⁇ g per ml of RNAse A (Sigma), 1 ⁇ g per milliliter of actinomycin D (Sigma), 100 units per milliliter of DNAse I (Invitrogen), 1 mg per milliliter of geneticin (Sigma), and 3 ⁇ g per milliliter of puromycin (Cayla). 67 Concentration of viral particles
- the supernatant of the transfected 293 cells is centrifuged at 150,000 g in a rotor SW41 for one hour at 4 ° C.
- the concentrated viruses are resuspended in 300 ⁇ l of PBS and 25 ⁇ l of the solution are used to infect 5.10 5 cells (293T, BHK-21, Hela, HepG2, Sp2 / O, LMH, QM7).
- RNA from the 10 6 transfected or infected cells is extracted using a total RNA isolation system (Promega ® ).
- RNA from untransfected 293T cells is extracted as a control. 2 ⁇ g of each RNA is subjected to electrophoresis on a denaturing gel, formaldehyde, and the RNA is transferred to a positively charged nylon membrane (Hybond-XL; Amersham).
- Hybond-XL a positively charged nylon membrane
- the probes correspond to a fragment of 790 bp Age I-BamH I GFP plasmid pEGFPCl (Clontech), the fragment being labeled (Rediprime ® JJ DNA labeling system; Amersham) and column purified (ProbeQuant ® G-50 Micro Columns, Amersham ) before use.
- the vectors SFV 26Sml and 26Sm2 correspond to vectors SFV, whose promoter 26S has been mutated in order to avoid possible competition between the packaging of the genomic RNA of SFV and the subgenomic RNA produced by transcription under the influence of the 26S promoter.
- the functionality of the two vectors was checked by transfection of 293T cells. The intense expression of GFP observed suggests that the transcription and translation of the modified SFV vector are correct. This first result is then confirmed by analysis on Northern Blot from the RNA extracted from 293 cells transfected with the vector SFV 26Sml.
- the GFP probe reveals the existence of two bands corresponding to genomic RNA and subgenomic RNA, the latter suggesting that the 26S promoter is still functional.
- the same test is carried out on the second vector SFV 26Sm2 comprising additional mutations.
- the detection of GFP and the analysis by Northern Blot confirm that the mutations made in the 26Sm2 promoter inhibit the production by transcription, of the subgenomic RNA (see FIG. 3, line 3).
- 293T cells are co-transfected with the plasmid pMDG, then the vector SFV 26Sml or SFV 26Sm2 as indicated above.
- the supernatant of the transfected cells is transferred to fresh 293T cells or to BHK 21 cells.
- the strong and rapid expression of the GFP obtained shows that it is possible to mobilize SFV vectors by means of cells expressing the VSV-G envelope ( figure 4).
- the highest titer is obtained with the BHK21 cells compared to the 293T and QM7 cells.
- the expression of the GFP containing the target cells is due to a true transduction by the viral particles SFV
- the following controls are carried out.
- the SFV RNA is detected by Northern Blot from RNA extracted from the infected cells (see FIG. 5).
- the producing cells in cells infected with the vector SFV 26Sml, both genomic RNA and subgenomic RNA are observed.
- the genomic RNA is detected in cells infected with the vector SFV 26Sm2.
- the signal strength suggests intense replication of the SFV vectors.
- high concentration DNase I 1000 UJ / mi
- RNA POL JJ RNA POL JJ
- GFP can be passively transferred via retroviral particles independently of any expression.
- the target cells are pretreated with two translation inhibitors, respectively geneticin and puromycin. After treatment, the target cells show a barely detectable expression of GFP, which shows that the observed GFP results from translation and not from passive transfer (Table 2).
- the co-transfection of a plasmid pEGFPCl strongly expressing GFP with a plasmid coding for VSV-G does not lead to any pseudo-transduction of GFP.
- Il Constructions The constructions described in example 1 were used. Two other derivative constructions, having a substitution of the CMV promoter by the prokaryotic promoter SP6, were also used: - The first construction, spSFV26Sml, is directly derived from SFV26Sml.
- spSFV26Sml ⁇ The second construction, spSFV26Sml ⁇ , is obtained by digestion Bgl JJ- Sma I of a plasmid pSFNl (Invitrogen ® ), within which is cloned a fragment Bgl II- Hpa I of the plasmid ⁇ IRES2 GFP (Clontecb ® ), modified by introduction of a PCR fragment containing the 3 ′ end of the nsp4 gene and generated using the primers 26SmlF and 26SmlR (cf. example 1, section 2a).
- Producing recombinant retroviruses cells derived from 293 cells, phoenix ® (http://www.stanford.edu/group/nolan/retiOviral systems / phx.html) are cultured in DMEM medium (GJJ3CO) in the presence of serum decomplemented fetal calf (Abcys).
- the producer cells are transfected using the plasmids SFV26Sml or
- the transfection is carried out using calcium phosphate (Calcium Phosphate transfection kit, Invitrogen ® ).
- the transfection is carried out by electroporation: 40 ⁇ l of replicons produced in vitro are placed in the presence of 40 ⁇ 10 5 cells and electroporated using the EasyjecT system.
- the medium is changed. 16 hours after this change, the medium is harvested to carry out the infections. During the harvest, the medium is filtered using 0.45 ⁇ m filters
- the filtered supernatants are used to infect 293T cells, cultured in 12-well plates. Infection is carried out in the presence of a polycation necessary for virus / cell interactions, polybrene (Sigma ® ) at 5 ⁇ g / ml. On the day of infection, a well of 293T target cells is trypsinized for counting. 24 hours after infection, the cells are tryp sinized for a passage in flow cytometry (FACScalibur, Becton-Dickinson ® ). The percentage of cells expressing GFP, relative to the number of cells on the day of infection, makes it possible to calculate a titer of recombinant particles (JP / ml) (Table 3).
- Controls identical to those carried out in Example 1, were carried out: - 10 ⁇ g per ml of RNAse A (Sigma ® ), 1 ⁇ g per milliliter of actinomycin D (Sigma ® ), - 100 units per milliliter of DNAse I (Invitrogen ® ), 1 mg per milliliter of geneticin (Sigma ® ).
- retroviral particles containing either the SFV vectors used to express the transcomplementation sequences of the retroviruses, or the SFV vectors comprising the sequence of the recombinant retrovirus. This observation calls into question the use of these modes of production of retroviral vectors for clinical purposes, unlike the viral particles of the invention.
- RNA is a structural element in retrovirus particles. Proc Natl Acad Sci U S A 98, 5246-51. (2001).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Virology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
The inventive viral particle consists of structural elements not originally from an alpha-virus and containing an alpha-virus derived vector deactivated for replication, by means of deletion or substitution by at least one transgene. Said particle also consisting of structural genes and is characterised in that the structural elements of said viral particle are not encoded by the genome of the alpha-virus derived vector. The inventive method for producing said particle consists in expressing in trans the genes coding the structural elements not originally from an alpha-virus and the alpha-virus derived vector in a cell line and, afterwards in recovering the viral particles contained in a supernatant cell culture.
Description
PARTICULES VIRALES CONTENANT UN VECTEUR DERIVE D'ALPHA VIRUS ET PROCEDE DE PREPARATION DE LADITE PARTICULE VIRALEVIRAL PARTICLES CONTAINING AN ALPHA VIRUS-DERIVED VECTOR AND PROCESS FOR THE PREPARATION OF SAID VIRAL PARTICLE
L'invention concerne de nouvelles particules virales contenant un vecteur dérivé d'un alpha-virus rendu défectif pour une propagation autonome et donc pour la réplication. Elle se rapporte également au procédé de préparation desdites particules.The invention relates to new viral particles containing a vector derived from an alpha-virus rendered defective for autonomous propagation and therefore for replication. It also relates to the process for the preparation of said particles.
Dans la suite de la description, l'invention est plus particulièrement illustrée en relation avec le virus de la forêt de Semliki (SFV) entrant dans la catégorie des alpha- virus. Bien entendu, cet exemple particulier ne limite en rien la portée de l'invention et tous les alpha- irus peuvent être envisagés, tels que par exemple le virus Sindbis.In the following description, the invention is more particularly illustrated in relation to the Semliki forest virus (SFV) which falls into the category of alpha-viruses. Of course, this particular example in no way limits the scope of the invention and all the alpha-iruses can be considered, such as for example the Sindbis virus.
Le génome des alpha-virus se présente sous la forme d'un ARN simple brin de polarité positive comprenant deux phases ouvertes de lecture, respectivement une première phase codant les protéines à fonction enzymatique, et une seconde phase codant les protéines structurales. La réplication s'effectue dans le cytoplasme de la cellule. Dans la première étape du cycle infectieux, l'extrémité 5' de l'ARN genomique est traduite en une polyprotéine (nsP 1-4) à activité RNA-polymérase produisant un brin négatif complémentaire de l'ARN genomique. Dans une seconde étape, le brin négatif est utilisé comme matrice pour la production de deux ARN, respectivement :The alpha-virus genome is in the form of a single-strand RNA of positive polarity comprising two open reading phases, respectively a first phase coding the proteins with enzymatic function, and a second phase coding the structural proteins. Replication takes place in the cytoplasm of the cell. In the first stage of the infectious cycle, the 5 ′ end of the genomic RNA is translated into a polyprotein (nsP 1-4) with RNA polymerase activity producing a negative strand complementary to the genomic RNA. In a second step, the negative strand is used as a template for the production of two RNAs, respectively:
- un ARN genomique positif correspondant au génome des virus secondaires produisant, par traduction, d'autres protéines nsp et servant de génome aux virus, - un ARN sub-génomique codant les protéines de structure du virus formant les particules infectieuses.- a positive genomic RNA corresponding to the genome of secondary viruses producing, by translation, other nsp proteins and serving as a genome for viruses, - a subgenomic RNA encoding the structural proteins of the virus forming the infectious particles.
Plus précisément, l'ARN sub-génomique est transcrit à partir du promoteur p26S présent au niveau de l'extrémité 3' de la séquence ARN codant la protéine nsp4. Le rapport ARN genomique positif/ ARN sub-génomique est régulé par l'auto- clivage protéolytique de la polyprotéine en nsp 1, nsp 2, nsp 3 et nsp 4. En pratique,
l'expression des gènes viraux se déroule en deux phases. Dans une première phase, il y a synthèse principale de brins génomiques positifs et de brins négatifs. Pendant la seconde phase, la synthèse d'ARN sub-génomique est quasiment exclusive conduisant ainsi à la production de protéines structurales en très grande quantité.More specifically, the subgenomic RNA is transcribed from the p26S promoter present at the 3 ′ end of the RNA sequence coding for the nsp4 protein. The ratio of positive genomic RNA / subgenomic RNA is regulated by the proteolytic self-cleavage of the polyprotein into nsp 1, nsp 2, nsp 3 and nsp 4. In practice, expression of viral genes takes place in two phases. In a first phase, there is a main synthesis of positive genomic strands and negative strands. During the second phase, the synthesis of sub-genomic RNA is almost exclusive, thus leading to the production of structural proteins in very large quantities.
La connaissance du mode de réplication des alpha-viridae et la simplicité de leur génome a conduit à l'émergence de systèmes de transfert de gènes utilisant ces virus, ces derniers permettant d'obtenir une forte expression du transgène dans la cellule cible.Knowledge of the mode of replication of alpha-viridae and the simplicity of their genome has led to the emergence of gene transfer systems using these viruses, the latter making it possible to obtain a high expression of the transgene in the target cell.
L'une des conditions incontournables pour qu'un vecteur dérivé d'alpha-virus puisse être utilisé en thérapie génique est qu'il ne présente aucune capacité à se répliquer. Plusieurs solutions ont été proposées pour rendre le virus Semliki défectif pour la réplication.One of the essential conditions for a vector derived from alpha-virus to be used in gene therapy is that it has no ability to replicate. Several solutions have been proposed to make the Semliki virus defective for replication.
La première solution consiste à déléter les gènes de structure de l'ARN de Semliki au profit du transgène, le transgène étant placé sous la dépendance du promoteur p26S. Un tel vecteur peut être transféré sur des cellules sous forme d'ARN ou sous forme d'ADN. Toutefois, cette solution est peu intéressante pour les applications in vivo, dans la mesure où l'on observe une faible efficacité de transfert à l'aide de ces éléments génétiques utilisés en l'absence de particules.The first solution consists in deleting the structural genes of the Semliki RNA in favor of the transgene, the transgene being placed under the dependence of the p26S promoter. Such a vector can be transferred to cells in the form of RNA or in the form of DNA. However, this solution is of little interest for in vivo applications, insofar as there is a low transfer efficiency using these genetic elements used in the absence of particles.
Une autre solution consiste à infecter les cellules cibles avec un vecteur Semliki non pas sous forme d'ADN ou d'ARN seul, mais sous forme de particules virales recombinantes. Pour ce faire, on transfecte une lignée cellulaire par au moins deux plasmides, respectivement, un plasmide portant l'ARN du vecteur Semliki dénué de gènes de structure et un second plasmide portant les gènes de structure de Semliki sous la dépendance du promoteur p26S. Au sein de la cellule sont formées des particules virales qui n'encapsident que l'ARN défectif, c'est-à-dire l'ARN de Semliki portant le transgène puisque lui seul porte également une séquence d'encapsidation contenue dans la séquence de la nsP2. Même si, en théorie, ce procédé ne génère aucune particule réplicative, les événements de recombinaison restent fréquents du
fait, notamment, du chevauchement des séquences de complémentation et du virus recombinant, et de l'abondance des ARN viraux dans le cytoplasme des cellules productrices.Another solution is to infect the target cells with a Semliki vector not in the form of DNA or RNA alone, but in the form of recombinant viral particles. To do this, a cell line is transfected with at least two plasmids, respectively, a plasmid carrying the RNA of the Semliki vector devoid of structural genes and a second plasmid carrying the Semliki structural genes under the control of the p26S promoter. Within the cell are formed viral particles which encapsulate only the defective RNA, that is to say the Semliki RNA carrying the transgene since it alone also carries an encapsidation sequence contained in the sequence of nsP2. Even if, in theory, this process does not generate any replicative particle, the recombination events remain frequent of the is, in particular, the overlap of the complementation sequences and the recombinant virus, and the abundance of viral RNA in the cytoplasm of producer cells.
Les documents Rolls (1, 2) décrivent un vecteur SFV dont le génome a été modifié par remplacement des gènes structuraux par le gène codant l'enveloppe VSV-G, éventuellement associé à un transgène. Les particules infectieuses ainsi obtenues sont donc constituées d'une enveloppe VSV-G et contiennent un vecteur dérivé d'alpha- virus. Cependant, le système décrit est particulièrement dangereux du fait de son aptitude à se répliquer de manière autonome. Un système équivalent est décrit dans le document WO 03/072771.The Rolls documents (1, 2) describe an SFV vector whose genome has been modified by replacing the structural genes with the gene encoding the VSV-G envelope, possibly associated with a transgene. The infectious particles thus obtained therefore consist of a VSV-G envelope and contain a vector derived from alpha virus. However, the system described is particularly dangerous because of its ability to replicate autonomously. An equivalent system is described in document WO 03/072771.
Le document Lebedeva et al. (3) décrit la coélectroporation de cellules BHK par : - un vecteur assurant les fonctions de réplication (Srepβgal : gène codant la réplicase du vecteur Semliki (SFV) et la β-galactosidase comme transgène), un vecteur codant les gènes structuraux : ScapSenv codant la capside et l'enveloppe de SFV comme témoin, ou un vecteur dérivé dans lequel le gène env de SFV est remplacé par des séquences env du rétrovirus MLV (Moloney murine leukemia), et l'analyse des particules virales ainsi produites. Cependant, dans ce système, la mobilisation du vecteur SFV véhiculant le transgène, en l'occurrence celui de la β- galactosidase, est sous la dépendance de l'encapsidation de cet ARN genomique recombinant par la protéine de capside de SFV.The document Lebedeva et al. (3) describes the coelectroporation of BHK cells by: the capsid and the envelope of SFV as a control, or a derived vector in which the env gene of SFV is replaced by env sequences of the MLV retrovirus (Moloney murine leukemia), and the analysis of the viral particles thus produced. However, in this system, the mobilization of the vector SFV carrying the transgene, in this case that of β-galactosidase, is dependent on the packaging of this recombinant genomic RNA by the capsid protein of SFV.
En d'autres termes, le problème que se propose de résoudre l'invention est d'améliorer le mode de mobilisation des vecteurs dérivés d'alpha- virus, en particulier du virus de la forêt de Semliki (SFV), de manière à éviter tout risque de recombinaison au sein des lignées productrices pouvant générer des particules réplicatives.
Un autre problème que se propose de résoudre l'invention est de préparer des particules virales contenant un vecteur dérivé d'alpha- virus, dont le tropisme ne soit pas limité aux cellules cibles des virus sauvages.In other words, the problem which the invention proposes to solve is to improve the mode of mobilization of the vectors derived from alpha-virus, in particular from the Semliki forest virus (SFV), so as to avoid any risk of recombination within the producing lines which can generate replicative particles. Another problem which the invention proposes to solve is to prepare viral particles containing a vector derived from alpha-virus, the tropism of which is not limited to the target cells of wild viruses.
Le Demandeur a réussi à produire des particules virales qui répondent simultanément aux deux objectifs ci-dessus en exprimant en trans, dans une lignée cellulaire, les gènes codant des éléments structuraux non issus de l'alpha-virus et le vecteur dérivé d'alpha- virus rendu défectif pour la réplication.The Applicant has succeeded in producing viral particles which simultaneously meet the two above objectives by expressing in trans, in a cell line, the genes coding for structural elements not derived from the alpha virus and the vector derived from alpha- virus made defective for replication.
Selon un premier mode de réalisation, les gènes codant des éléments structuraux non issus de l'alpha-virus correspondent au seul gène ENV du virus de la stomatite vésiculeuse codant la protéine d'enveloppe NSN-G.According to a first embodiment, the genes coding for structural elements not originating from the alpha-virus correspond to the only ENV gene of the vesicular stomatitis virus coding for the NSN-G envelope protein.
L'utilisation d'une enveloppe VSV-G présente plusieurs avantages. Tout d'abord, la protéine d'enveloppe du virus de la stomatite vésiculeuse permet un mode d'entrée cellulaire par endocytose superposable à celui des alpha-virus. En outre, la VSV-G est une protéine très stable, susceptible d'être concentrée par ultra-centrifugation et permettant d'envisager des administrations parentérales. Par ailleurs, cette protéine confère un très large tropisme aux particules qui la contiennent, élargissant ainsi le champ d'utilisation des particules virales de l'invention à des organismes aussi différents que la drosophile et les mammifères.Using a VSV-G envelope has several advantages. First of all, the envelope protein of the vesicular stomatitis virus allows a mode of cellular entry by endocytosis which can be superimposed on that of alpha-viruses. In addition, VSV-G is a very stable protein, capable of being concentrated by ultra-centrifugation and making it possible to envisage parenteral administrations. Furthermore, this protein confers a very large tropism on the particles which contain it, thus widening the field of use of the viral particles of the invention to organisms as different as Drosophila and mammals.
Selon ce premier mode de réalisation, l'expression en trans est obtenue par co- transfection avantageusement effectuée en deux étapes distinctes respectivement, la transfection de la lignée par le plasmide exprimant le gène de l'enveloppe VSV-G, puis une seconde transfection par le vecteur dérivé d'alpha- virus. En pratique, la co- transfection est effectuée sur des cellules 293T.According to this first embodiment, the expression in trans is obtained by co-transfection advantageously carried out in two distinct stages respectively, the transfection of the line with the plasmid expressing the gene of the envelope VSV-G, then a second transfection by the vector derived from alpha virus. In practice, co-transfection is carried out on 293T cells.
Dans un second mode de réalisation, les gènes codant des éléments structuraux non issus de l'alpha-virus corcespondent aux gènes codant les protéines structurales d'un rétro irus.
Dans ce cas, l'expression en trans est obtenue par transfection d'une lignée cellulaire d'encapsidation, productrice de rétrovirus défectifs pour la réplication, par le vecteur dérivé d'alpha- virus. Ce type de lignée est bien connu de l'homme du métier, par exemple le système Phoenix® (http://www.stanford.edu/group/nolan/retroviral systems/plixiitml). On peut utiliser en particulier des lignées d'encapsidation utilisant des gènes structuraux du MLN (muiïne leukemia virus).In a second embodiment, the genes coding for structural elements not derived from the alpha virus correspond to the genes coding for the structural proteins of a retro irus. In this case, expression in trans is obtained by transfection of an encapsidation cell line, producer of retroviruses defective for replication, with the vector derived from alpha virus. This type of line is well known in the art, such as Phoenix ® system (http://www.stanford.edu/group/nolan/retroviral systems / plixiitml). In particular, packaging lines using structural genes of MLN (muiïne leukemia virus) can be used.
De manière connue, ces lignées sont obtenues par transfection stable d'un premier plasmide exprimant les gènes GAG-POL et d'un second plasmide exprimant un gène ENV de rétrovirus ou d'un autre virus enveloppé (4).In known manner, these lines are obtained by stable transfection of a first plasmid expressing the GAG-POL genes and of a second plasmid expressing an ENV gene of a retrovirus or of another enveloped virus (4).
Toutefois, il est également envisageable de préparer les particules virales par triple transfection d'une lignée cellulaire, par exemple des cellules 293T, par introduction d'un premier élément viral exprimant les gènes GAG et POL de rétrovirus, d'un second élément viral exprimant le gène ENV de rétrovirus et du vecteur dérivé d'alpha-virus.However, it is also possible to prepare the viral particles by triple transfection of a cell line, for example 293T cells, by introduction of a first viral element expressing the GAG and POL genes of retrovirus, of a second viral element expressing the ENV gene of retrovirus and of the vector derived from alpha-virus.
n est possible d'accentuer davantage encore le caractère défectif des séquences retrovirales transcomplementantes par mutation, notamment délétion des séquences nucléotidiques du gène POL codant l'intégrase (IN) et la transcriptase inverse (RT).It is possible to further accentuate the defective nature of the transcomplementing retroviral sequences by mutation, in particular deletion of the nucleotide sequences of the POL gene coding for integrase (IN) and reverse transcriptase (RT).
Dans les deux modes de réalisation de l'invention tels que précédemment décrits, le vecteur dérivé d'alpha- virus est rendu défectif pour la réplication. Cette propriété est en pratique obtenue par la délétion des gènes de structure ou leur substitution au profit du(des) transgène(s) d'intérêt dans le génome du vecteur.In the two embodiments of the invention as previously described, the vector derived from alpha-virus is made defective for replication. This property is in practice obtained by the deletion of structural genes or their substitution for the benefit of the transgene (s) of interest in the vector genome.
Selon une autre caractéristique, le génome du vecteur dérivé d'alpha-virus contient un signal permettant l'encapsidation par la particule virale, appelé séquence psi.
Selon un premier mode de réalisation, la séquence psi corcespond à la séquence de packaging étendue des vecteurs MLN, obtenue par amplification selon la méthode PCR (polymerase chain reaction) du vecteur PLΝCX (Clontech®) à partir des amorces : - amorce 5': LΝCX Psi 2a: 5'- GGGACCACCGACCCACCACC -3' et - amorce 3': LΝCX Psi 2b: 5'- GATCCTCATCCTGTCTCTTG -3'.According to another characteristic, the genome of the vector derived from alpha-virus contains a signal allowing the packaging by the viral particle, called psi sequence. According to a first embodiment, the sequence psi corcespond to the extended packaging sequence of MLN vectors obtained by amplification by PCR method (polymerase chain reaction) of the vector PLΝCX (Clontech ®) from primers: - 5 'primer: LΝCX Psi 2a: 5'- GGGACCACCGACCCACCACC -3 'and - primer 3': LΝCX Psi 2b: 5'- GATCCTCATCCTGTCTCTTG -3 '.
Avantageusement, la séquence psi est réduite en taille et correspond à la séquence minimale. Cette modification est intéressante dans la mesure où la séquence psi peut avoir une fonction de point d'ancrage pour l'entrée des ribosomes (IRES). La fonction IRES permet ainsi de supprimer le promoteur p26S du SFV, de sorte que la traduction du transgène est obtenue à partir de l'ARΝ genomique.Advantageously, the psi sequence is reduced in size and corresponds to the minimum sequence. This modification is interesting insofar as the psi sequence can have an anchor point function for the entry of ribosomes (IRES). The IRES function thus makes it possible to remove the p26S promoter from the SFV, so that the translation of the transgene is obtained from the genomic ARΝ.
Paradoxalement, le Demandeur a également démontré que la présence d'un signal d'encapsidation rétroviral n'était pas forcément nécessaire. En effet, la quantité d'ARΝ recombinants du vecteur Semliki, retrouvée dans le cytoplasme des cellules transfectées, est telle que ces derniers sont préférentiellement encapsidés dans les particules retrovirales. Ce phénomène est accentué par l'extinction des gènes cellulaires, induite par l'expression des protéines non structurales du virus Semliki. La localisation sub-cellulaire des complexes de réplication du virus SFV pourrait également jouer un rôle important (5). Dès lors, et dans un mode de réalisation préféré, le génome du vecteur est dénué de séquence psi.Paradoxically, the Applicant also demonstrated that the presence of a retroviral packaging signal was not necessarily necessary. In fact, the quantity of ARΝ recombinants of the Semliki vector, found in the cytoplasm of the transfected cells, is such that the latter are preferentially packaged in retroviral particles. This phenomenon is accentuated by the extinction of cellular genes, induced by the expression of the non-structural proteins of the Semliki virus. The sub-cellular localization of the replication complexes of the SFV virus could also play an important role (5). Therefore, and in a preferred embodiment, the vector genome is devoid of psi sequence.
Le demandeur a également montré qu'il était possible de mobiliser un vecteur comme décrit précédemment, contenant une séquence retrovirale d'encapsidation, au moyen de particules retrovirales produites en utilisant un système de transcomplémentation basé sur les vecteurs dérivés du virus de la forêt de Semliki (11). Dans ce système, il est montré que l'on peut obtenir des tiu-es de l'ordre de 10 particules par millilitre. D. est également démontré que la présence d'un signal d'encapsidation rétroviral améliore le titre des particules d'environ un log. Ces particules sont utilisées efficacement pour transduire les cellules exprimant le récepteur aux virus amphotropes (Pit 2), correspondant à l'enveloppe retrovirale
utilisée. Cette observation a une conséquence directe sur la biosécurité des particules retrovirales produites par le procédé de Li et Garoff (11). Dans ce cadre, il est démontré que les particules produites selon le procédé de Li et Garoff contiennent, à un titre proche de 106 part ml, des génomes de vecteurs SFV recombinants exprimant les séquences GAG/POL ou ENV des rétrovirus.The applicant has also shown that it is possible to mobilize a vector as described above, containing a retroviral encapsidation sequence, by means of retroviral particles produced using a transcomplementation system based on vectors derived from the Semliki forest virus. (11). In this system, it is shown that one can obtain tiu-es of the order of 10 particles per milliliter. D. is also demonstrated that the presence of a retroviral packaging signal improves the titer of the particles by approximately one log. These particles are effectively used to transduce cells expressing the receptor for amphotropic viruses (Pit 2), corresponding to the retroviral envelope. used. This observation has a direct consequence on the biosecurity of the retroviral particles produced by the method of Li and Garoff (11). In this context, it is demonstrated that the particles produced according to the method of Li and Garoff contain, in a titer close to 10 6 part ml, genomes of recombinant SFV vectors expressing the GAG / POL or ENV sequences of the retroviruses.
Le Demandeur a par ailleurs constaté que le mode de transfection généralement utilisé pour les AR recombinants des vecteurs Semliki, à savoir l'électroporation, entraînait une souffrance cellulaire importante. Aussi, et pour permettre la transfection des cellules productices par des méthodes plus douces que l'électroporation, le vecteur dérivé d'alpha-virus a été modifié pour être exprimé à partir d'un promoteur eucaryote, par exemple un promoteur CMN positionné en 5' de la séquence du vecteur.The Applicant has moreover found that the mode of transfection generally used for the recombinant ARs of the Semliki vectors, namely electroporation, leads to significant cellular suffering. Also, and to allow transfection of the producer cells by methods which are gentler than electroporation, the vector derived from alpha-virus has been modified to be expressed from a eukaryotic promoter, for example a CMN promoter positioned at 5 'of the vector sequence.
Enfin, le promoteur p26S du vecteur d'alpha-virus est avantageusement muté. Le vecteur SFV 26Sm2, et dans une moindre mesure le vecteur SFV 26Sml, n'exprime plus d'AR sub-génomique détectable, susceptible de diminuer l'encapsidation des ARΝ génomiques par compétition.Finally, the p26S promoter of the alpha-virus vector is advantageously mutated. The vector SFV 26Sm2, and to a lesser extent the vector SFV 26Sml, no longer expresses detectable sub-genomic AR, capable of reducing the encapsidation of genomic ARΝ by competition.
Ainsi, une particule selon l'invention con-espond à une particule virale constituée d'éléments structuraux non issus d'un alpha-virus et contenant un vecteur dérivé d'alpha- virus rendu défectif pour la réplication, par délétion ou remplacement par au moins un transgène, des gènes structuraux, les éléments structuraux de ladite particule n'étant pas codés par le génome du vecteur dérivé d'alpha-virus.Thus, a particle according to the invention is like a viral particle made up of structural elements not derived from an alpha-virus and containing a vector derived from alpha-virus made defective for replication, by deletion or replacement by at at least one transgene, structural genes, the structural elements of said particle not being encoded by the genome of the vector derived from alpha-virus.
Par ailleurs, l'invention concerne l'utilisation des particules virales selon l'invention pour infecter in vitro des cellules. Le Demandeur a montré que les particules ainsi produites pouvaient infecter une grande variété de cellules eucaryotes, aussi bien humaines que non humaines.Furthermore, the invention relates to the use of the viral particles according to the invention for infecting cells in vitro. The Applicant has shown that the particles thus produced can infect a wide variety of eukaryotic cells, both human and non-human.
L'invention se rapporte également à une composition pharmaceutique comprenant les particules virales de l'invention.
De même, elle se rapporte à l'utilisation des particules virales pour la préparation d'un médicament destiné au traitement du cancer.The invention also relates to a pharmaceutical composition comprising the viral particles of the invention. Likewise, it relates to the use of viral particles for the preparation of a medicament intended for the treatment of cancer.
L'invention et les avantages qui en découlent ressortiront bien des exemples suivants.The invention and the advantages which ensue therefrom will emerge clearly from the following examples.
La figure 1 est une représentation schématique de la structure du vecteur dérivé du virus de la forêt de Semliki (SFV).Figure 1 is a schematic representation of the structure of the vector derived from the Semliki Forest Virus (SFV).
La figure 2 montre les mutations effectuées dans le promoteur p26S. Les mutations introduites dans les mutants p26Sml et p26Sm2 par rapport à la séquence sauvage (Wt) sont encadrées. L'acide aminé en gras indique un changement dans la séquence codante.Figure 2 shows the mutations made in the p26S promoter. The mutations introduced into the p26Sml and p26Sm2 mutants with respect to the wild-type sequence (Wt) are boxed. The amino acid in bold indicates a change in the coding sequence.
La figure 3 est le résultat d'un Northern-blot effectué à partir de cellules productrices, exprimant des vecteurs SFV modifiés ( pEGFPCl; 2:p26Sml; 3:p26Sm2; 4:SFV sans transgène), avec une sonde GFP de pEGFPCl. La figure 4 montre la capacité des cellules 293T et BHK 21 à exprimer les vecteurs dérivés du SFV (p26Sml et p26Sm2) et mobilisés par les pseudo-particules VSV-G.FIG. 3 is the result of a Northern-blot carried out from producer cells, expressing modified SFV vectors (pEGFPCl; 2: p26Sml; 3: p26Sm2; 4: SFV without transgene), with a GFP probe of pEGFPCl. FIG. 4 shows the capacity of the 293T and BHK 21 cells to express the vectors derived from SFV (p26Sml and p26Sm2) and mobilized by the pseudo-particles VSV-G.
La figure 5 est le résultat d'un northern blot effectué à partir des cellules infectées par le surnageant de cellules 293 T transfectées par le plasmide pMDG et des vecteursFIG. 5 is the result of a northern blot carried out from the cells infected with the supernatant of 293 T cells transfected with the plasmid pMDG and of the vectors
SFV modifiés (LpEGFPCl; 2:p26Sml; 3:p26Sm2), avec une sonde GFP de pEGFPCl.Modified SFV (LpEGFPCl; 2: p26Sml; 3: p26Sm2), with a GFP probe of pEGFPCl.
EXEMPLE 1 : Production de particules virales à partir de lignées cellulaires exprimant l'enveloppe VSV-G METHODESEXAMPLE 1 Production of Viral Particles from Cell Lines Expressing the VSV-G Envelope METHODS
1/ Lignées et cultures cellulaires - 293T/17 : lignée primaire de reins embryonnaires humains (ATCC CRL- 11268), - Hela : lignée cellulaire humaine (ATCC CCL-2), - QM7 : lignée de muscle de caille (ATCC, CRL-1962), - LMH : lignée de foie de poulet (ATCC CRL-2117).
Les quatre lignées cellulaires ci-dessus sont cultivées dans du DMEM (Invitrogen) contenant 10 % de sérum de veau fœtal (FCS) (Biowest). - HepG2 : lignée d'hépatome humain cultivée dans du EM contenant 10 % de FCS (ATCC HB-8065), - BHK21 : lignée de rein de bébé hamster cultivée dans du GMEM contenant 5 % de FCS et 8 % de solution liquide de tryptose phosphate (ATCC CCL- 10), - CESC : Embryon de poulet obtenu et cultivé selon la référence 26, - Cellule High Five cultivée à 27 °C dans un milieu de cellules d'insectes de Grâce (Grace's insect médium) (cat n° B85502 Invitrogen) contenant 10 % de FCS, - Sp2/O : Lignée murine de lymphoplastoïdes cultivée dans du RPMI 1640 contenant 10 % de FCS (ATCC CRL1581). 21 Construction du vecteur SFV1 / Cell lines and cultures - 293T / 17: primary line of human embryonic kidneys (ATCC CRL- 11268), - Hela: human cell line (ATCC CCL-2), - QM7: quail muscle line (ATCC, CRL- 1962), - LMH: chicken liver line (ATCC CRL-2117). The above four cell lines are grown in DMEM (Invitrogen) containing 10% fetal calf serum (FCS) (Biowest). - HepG2: human hepatoma line cultivated in EM containing 10% FCS (ATCC HB-8065), - BHK21: baby hamster kidney line cultivated in GMEM containing 5% FCS and 8% liquid tryptose solution phosphate (ATCC CCL- 10), - CESC: Chicken embryo obtained and cultivated according to reference 26, - High Five cell cultivated at 27 ° C in a medium of Grace's insect cells (cat n ° B85502 Invitrogen) containing 10% FCS, - Sp2 / O: Murine line of lymphoplastoids cultivated in RPMI 1640 containing 10% FCS (ATCC CRL1581). 21 Construction of the SFV vector
La structure du vecteur SFV est représentée sur la figure 1.The structure of the vector SFV is shown in Figure 1.
a/ Vecteur 26Smla / 26Sml Vector
Le promoteur interne 26S du SFV est muté par PCR à partir du vecteur pSFVl (Invitrogen), lequel est dénué de gènes de structure et utilisé comme matrice en présence de deux amorces, respectivement : - une amorce 26SmlF contenant le site de restriction Bgl U apparaissant en gras dans la séquence suivante : 5'-ATCCTCGAAGATCTAGGG-3', - une seconde amorce mutée 26SmlR contenant le site de restriction Cla l apparaissant en gras dans la séquence suivante : 5 -CAATATCGAT TACTAGCGAACTAATCTAGGA-3'.The internal promoter 26S of the SFV is mutated by PCR from the vector pSFVl (Invitrogen), which is devoid of structural genes and used as template in the presence of two primers, respectively: - a primer 26SmlF containing the restriction site Bgl U appearing in bold in the following sequence: 5'-ATCCTCGAAGATCTAGGG-3 ', - a second mutated primer 26SmlR containing the Cla l restriction site appearing in bold in the following sequence: 5 -CAATATCGAT TACTAGCGAACTAATCTAGGA-3'.
Des mutations silencieuses sont ensuite introduites dans le promoteur p26S pour conduire au promoteur p26Sml comme représenté sur la figure 2. Le produit ainsi amplifié est ensuite clone dans un plasmide pIRES2-EGFP (Invitrogen) (figure 1). Une séquence retrovirale désignée RS, dérivée d'un virus MLV est alors insérée entre le promoteur muté 26S et la séquence IRES. Les fragments contenant la séquence
26S mutée, la séquence retrovirale de MLV et le gène EGFP sont ensuite excisés par Bgl II et Hpa I puis clones dans le vecteur pSFVl entre les sites de restriction Bgl JJ et Sma I. Le fragment de 10,5 kpb contenant le réplicon SFV modifié est enfin clone entre le promoteur IE CMV et le signal de polyadénylation SV40 pA dans un vecteur pJRES2-EGFP dans lequel la séquence IRES GFP a été délétée.Silent mutations are then introduced into the p26S promoter to lead to the p26Sml promoter as shown in FIG. 2. The product thus amplified is then cloned into a plasmid pIRES2-EGFP (Invitrogen) (FIG. 1). A retroviral sequence designated RS, derived from an MLV virus is then inserted between the 26S mutated promoter and the IRES sequence. Fragments containing the sequence 26S mutated, the MLV retroviral sequence and the EGFP gene are then excised with Bgl II and Hpa I and then cloned into the vector pSFVl between the Bgl JJ and Sma I restriction sites. The 10.5 kbp fragment containing the modified SFV replicon is finally cloned between the promoter IE CMV and the polyadenylation signal SV40 pA in a vector pJRES2-EGFP in which the sequence IRES GFP has been deleted.
b/ Vecteur SFV26Sm2b / Vector SFV26Sm2
Le promoteur interne est muté par PCR à partir du plasmide SFV1 utilisé comme matrice en présence de deux amorces respectivement, une première amorce 26SmlF et une seconde amorce 26Sm2R contenant un site de restriction apparaissant en gras dans la séquence suivante :The internal promoter is mutated by PCR from the plasmid SFV1 used as template in the presence of two primers respectively, a first primer 26SmlF and a second primer 26Sm2R containing a restriction site appearing in bold in the following sequence:
5'-ATATCGATTACTAGCGAACTAATCTACGACCCCCGTAAAGGTGT-3*.5'-ATATCGATTACTAGCGAACTAATCTACGACCCCCGTAAAGGTGT-3 * .
L'amorce 26Sm2R conduit aux modifications du promoteur p26S comme illustré sur la figure 2. Le produit amplifié est ensuite digéré par Bgl JJ et Cla I et ligué dans le vecteur 26Sml également digéré par Bgl JJ et Cla I pour supprimer le fragment con-espondant.The primer 26Sm2R leads to modifications of the p26S promoter as illustrated in FIG. 2. The amplified product is then digested with Bgl JJ and Cla I and ligated into the vector 26Sml also digested with Bgl JJ and Cla I to remove the cross-cutting fragment .
31 Transfection de la lignée cellulaire 293T par les vecteurs SFV 26Sml ou 26Sm2 et le plasmide pMDG et collecte des particules virales Une transfection transitoire de cellules 293T au moyen d'un kit de transfection calcium / phosphate (Invitrogen) est effectuée. I s cellules 293T sont ensemencées à raison de 8.105 cellules par puits sur des plaques 6 puits et incubées à 37°C pendant une nuit, avant transfection. La transfection est effectuée en deux étapes. Le premier jour, les cellules 293T sont transfectées par 5 μg d'un plasmide pMDG contenant le gène codant pour l'enveloppe VSV-G, sous l'influence d'un promoteur JE CMV (6). Dans une seconde étape, le deuxième jour, les cellules sont transfectées par 5 μg des vecteurs SFV 26Sml ou 26Sm2. Le second milieu de transfection est laissé au contact des cellules entre 13 et 17 heures. Au jour No. 3, le milieu est retiré et remplacé par du milieu frais permettant la libération des particules infectantes. L^ milieu de culture contant les particules virales est collecté 5 à 6 heures plus tard.
41 Transfection de la lignée cellulaire BHK21 par les vecteurs SFV 26Sml ou 26Sm2 et les vecteurs SFV GAGPOL et SFV ENV et collecte des particules virales31 Transfection of the 293T cell line with the SFV vectors 26Sml or 26Sm2 and the plasmid pMDG and collection of viral particles A transient transfection of 293T cells using a calcium / phosphate transfection kit (Invitrogen) is carried out. The 293T cells are seeded at the rate of 8 × 10 5 cells per well on 6-well plates and incubated at 37 ° C. overnight, before transfection. The transfection is carried out in two stages. On the first day, the 293T cells are transfected with 5 μg of a pMDG plasmid containing the gene coding for the VSV-G envelope, under the influence of a JE CMV promoter (6). In a second step, on the second day, the cells are transfected with 5 μg of the SFV 26Sml or 26Sm2 vectors. The second transfection medium is left in contact with the cells between 1 pm and 5 pm. On day 3, the medium is removed and replaced with fresh medium allowing the release of the infecting particles. The culture medium containing the viral particles is collected 5 to 6 hours later. 41 Transfection of the BHK21 cell line with the vectors SFV 26Sml or 26Sm2 and the vectors SFV GAGPOL and SFV ENV and collection of viral particles
Les cellules BHK 21 sont électroporées 5 106 /ml (soit 4 106 cellules), à un voltage .de 350 V, et une capacitance de 750 μF. Les ARN utilisés pour l'électroporation, correspondant aux différents vecteurs (26Sml ou m2, SFV GAGPOL et SFV ENV), sont transcrits en utilisant 1,5 μg d'ADN linéarisé à l'aide d'un kit Invitrogen Sp6 polymérase. Pour l'électroporation, 22 μl du produit de transcription sont électroporés. La récolte des particules recombinantes est effectuée 14 à 16 heures plus tard. Les surnageants sont filtrés et déposés sur les cellules cibles en présence de 2μg/mL de polybrène.The BHK 21 cells are electroporated 5 10 6 / ml (i.e. 4 10 6 cells), at a voltage of 350 V, and a capacitance of 750 μF. The RNAs used for electroporation, corresponding to the different vectors (26Sml or m2, SFV GAGPOL and SFV ENV), are transcribed using 1.5 μg of linearized DNA using an Invitrogen Sp6 polymerase kit. For electroporation, 22 μl of the transcription product are electroporated. The harvesting of the recombinant particles is carried out 14 to 16 hours later. The supernatants are filtered and deposited on the target cells in the presence of 2 μg / ml of polybrene.
5/ Infection des lignées cellulaires par les particules virales5 / Infection of cell lines with viral particles
Le surnageant des lignées cellulaires 293T transfectées est collecté puis filtré sur filtre 0,45 μm (HA Millex®, Millipore) puis incubé avec différentes lignées cellulaires, en présence d'un milieu frais contenant du polybrène, utilisé à raison de 5 μg par ml (Sigma). Le contrôle de l'expression de la GFP dans les cellules infectées est effectué au moyen d'un microscope 1X50 Olympus à fluorescence. La quantification de la transfection est effectuée au moyen d'un cytomètre de flux FACScalibur® de Becton Dickinson. Pour les tests contrôles, les surnageants sont utilisés dans différents réactifs : 10 μg par ml de RNAse A (Sigma), 1 μg par millilitre d'actinomycine D (Sigma), 100 unités par millilitre de DNAse I (Invitrogen), 1 mg par millilitre de généticine (Sigma), et 3 μg par millilitre de puromycine (Cayla).
67 Concentration des particules viralesThe supernatant of transfected 293T cell lines was collected and then filtered through 0.45 .mu.m filter (Millex ® HA, Millipore) and incubated with different cell lines in the presence of fresh medium containing polybrene used at 5 micrograms per ml (Sigma). The control of GFP expression in infected cells is carried out using a 1 × 50 Olympus fluorescence microscope. Quantification of transfection is performed using a FACScalibur flow cytometer from Becton Dickinson ®. For control tests, the supernatants are used in different reagents: 10 μg per ml of RNAse A (Sigma), 1 μg per milliliter of actinomycin D (Sigma), 100 units per milliliter of DNAse I (Invitrogen), 1 mg per milliliter of geneticin (Sigma), and 3 μg per milliliter of puromycin (Cayla). 67 Concentration of viral particles
Le surnageant des cellules 293 transfectées est centrifugé à 150000 g dans un rotor SW41 pendant une heure à 4°C. Les virus concentrés sont remis en suspension dans 300 μl de PBS et 25 μl de la solution sont utilisés pour infecter 5.105 cellules (293T, BHK-21, Hela, HepG2, Sp2/O, LMH, QM7).The supernatant of the transfected 293 cells is centrifuged at 150,000 g in a rotor SW41 for one hour at 4 ° C. The concentrated viruses are resuspended in 300 μl of PBS and 25 μl of the solution are used to infect 5.10 5 cells (293T, BHK-21, Hela, HepG2, Sp2 / O, LMH, QM7).
7/ Northern Blot7 / Northern Blot
L'ARN des 106 cellules transfectées ou infectées est extrait au moyen d'un système d'isolation d'ARN total (Promega®). L'ARN de cellules 293T non transfectées est extrait en tant que contrôle. 2 μg de chaque ARN est soumis à une électrophorèse sur un gel dénaturant, formaldéhyde, et l'ARN est transféré sur une membrane nylon chargée positivement (Hybond-XL ; Amersham). L'hybridation du Northern Blot est effectuée selon les procédures standard. Les sondes correspondent à un fragment de 790 bp Age I-BamH I GFP du plasmide pEGFPCl (Clontech), le fragment étant marqué (Rediprime® JJ DNA labelling System ; Amersham) et purifié sur colonne (ProbeQuant® G-50 Micro Columns ; Amersham) avant utilisation.The RNA from the 10 6 transfected or infected cells is extracted using a total RNA isolation system (Promega ® ). RNA from untransfected 293T cells is extracted as a control. 2 μg of each RNA is subjected to electrophoresis on a denaturing gel, formaldehyde, and the RNA is transferred to a positively charged nylon membrane (Hybond-XL; Amersham). The hybridization of the Northern Blot is carried out according to standard procedures. The probes correspond to a fragment of 790 bp Age I-BamH I GFP plasmid pEGFPCl (Clontech), the fragment being labeled (Rediprime ® JJ DNA labeling system; Amersham) and column purified (ProbeQuant ® G-50 Micro Columns, Amersham ) before use.
IV RESULTATS 1/ Fonctionnalité des vecteursIV RESULTS 1 / Functionality of the vectors
Les vecteurs SFV 26Sml et 26Sm2 coπespondent à des vecteurs SFV, dont le promoteur 26S a été muté dans le but d'éviter une éventuelle compétition entre l'empaquetage de l'ARN genomique du SFV et l'ARN sub-génomique produit par transcription sous l'influence du promoteur 26S. La fonctionnalité des deux vecteurs a été contrôlée par transfection de cellules 293T. L'expression intense de la GFP observée suggère que la transcription et la traduction du vecteur SFV modifié sont correctes. Ce premier résultat est ensuite confirmé par analyse sur Northern Blot à partir de l'ARN extrait des cellules 293 transfectées par le vecteur SFV 26Sml.The vectors SFV 26Sml and 26Sm2 correspond to vectors SFV, whose promoter 26S has been mutated in order to avoid possible competition between the packaging of the genomic RNA of SFV and the subgenomic RNA produced by transcription under the influence of the 26S promoter. The functionality of the two vectors was checked by transfection of 293T cells. The intense expression of GFP observed suggests that the transcription and translation of the modified SFV vector are correct. This first result is then confirmed by analysis on Northern Blot from the RNA extracted from 293 cells transfected with the vector SFV 26Sml.
Comme le montre la figure 3, ligne 2, la sonde GFP révèle l'existence de deux bandes correspondant à de l'ARN genomique et de l'ARN sub-génomique, ce dernier suggérant que le promoteur 26S est encore fonctionnel.
Le même test est réalisé sur le second vecteur SFV 26Sm2 comportant des mutations supplémentaires. La détection de la GFP et l'analyse par Northern Blot confirment que les mutations apportées dans le promoteur 26Sm2 inhibent la production par transcription, de l'ARN sub-génomique (voir figure 3, ligne 3).As shown in Figure 3, line 2, the GFP probe reveals the existence of two bands corresponding to genomic RNA and subgenomic RNA, the latter suggesting that the 26S promoter is still functional. The same test is carried out on the second vector SFV 26Sm2 comprising additional mutations. The detection of GFP and the analysis by Northern Blot confirm that the mutations made in the 26Sm2 promoter inhibit the production by transcription, of the subgenomic RNA (see FIG. 3, line 3).
2/ Production de particules virales Des cellules 293T sont co-transfectées par le plasmide pMDG, puis le vecteur SFV 26Sml ou SFV 26Sm2 comme indiqué précédemment. Le surnageant des cellules transfectées est transféré sur des cellules fraîches 293T ou des cellules BHK 21. La forte et rapide expression de la GFP obtenue montre qu'il est possible de mobiliser des vecteurs SFV au moyen de cellules exprimant l'enveloppe VSV-G (figure 4).2 / Production of viral particles 293T cells are co-transfected with the plasmid pMDG, then the vector SFV 26Sml or SFV 26Sm2 as indicated above. The supernatant of the transfected cells is transferred to fresh 293T cells or to BHK 21 cells. The strong and rapid expression of the GFP obtained shows that it is possible to mobilize SFV vectors by means of cells expressing the VSV-G envelope ( figure 4).
3/ Capacité des particules virales obtenues à infecter les lignées cellulaires BHK21. 293T et OM7 Les résultats sont reportés dans le tableau ci-après. Les titres viraux sont détectés 24 heures après infection par analyse FACS. Le pourcentage de cellules exprimant la GFP, rapporté au nombre de cellules au jour de l'infection, permet de calculer un titre de particules recombinantes (IP/ml).3 / Ability of the viral particles obtained to infect the BHK21 cell lines. 293T and OM7 The results are shown in the table below. Viral titers are detected 24 hours after infection by FACS analysis. The percentage of cells expressing GFP, relative to the number of cells on the day of infection, makes it possible to calculate a titer of recombinant particles (IP / ml).
Tableau 1 Table 1
Comme le montre ce tableau, le titre le plus élevé est obtenu avec les cellules BHK21 comparées aux cellules 293T et QM7.
41 L'expression de la GFP contenant les cellules cibles est due à une véritable transduction par les particules virales SFV Pour s'assurer que l'expression de la GFP est due à l'expression des vecteurs SFV et non à la mobilisation de plasmides issus de la transfection initiale ou d'une pseudo- transduction de GFP libre, les contrôles suivants sont effectués.As this table shows, the highest titer is obtained with the BHK21 cells compared to the 293T and QM7 cells. 41 The expression of the GFP containing the target cells is due to a true transduction by the viral particles SFV To ensure that the expression of the GFP is due to the expression of the SFV vectors and not to the mobilization of plasmids derived of the initial transfection or of a pseudo- transduction of free GFP, the following controls are carried out.
Tout d'abord, l'ARN de SFV est détecté par Northern Blot à partir d'ARN extrait des cellules infectées (voir figure 5). Comme pour les cellules productrices, on observe dans les cellules infectées par le vecteur SFV 26Sml, à la fois de l'ARN genomique et de l'ARN sub-génomique. Au contraire, dans les cellules infectées avec le vecteur SFV 26Sm2, seul l'ARN genomique est détecté. L'intensité du signal suggère une réplication intense des vecteurs SFV. Cependant, pour s'assurer que la forte expression de la GFP dans les cellules cibles correspond bien à la mobilisation de l'ARN de SFV, et donc que les plasmides ont bien été transférés dans les cellules cibles, en l'espèce les cellules 293T, de la DNase I à haute concentration (1000 UJ/mi) est ajoutée au surnageant de transduction. Les titres en particules virales SFV sont similaires aux titres obtenus en l'absence de DNase I, ce qui suggère une transduction plus qu'une seconde transfection. Toutefois, un tel résultat pourrait être obtenu dans l'hypothèse où le plasmide serait encapsulé dans les cellules transfectées après son entrée et délivrées ensuite dans la cellule transduite. Pour contrôler ce phénomène éventuel, les cellules cibles sont pré-traitées avec de l'actinomycine D à raison d'un microgram e par millilitre, puis incubées avec le surnageant infectieux. L'actinomycine D inhibe l'expression des gènes contrôlée par la RNA POL JJ, comme le génome du vecteur SFV dans le plasmide pSFV26Sml ou m2, mais n'a aucune action sur la replicase des SFV. Une expression similaire de la GFP est observée en présence ou en l'absence d'actinomycine D, ce qui confirme que c'est bien un ARN qui est transféré (voir tableau 2).First, the SFV RNA is detected by Northern Blot from RNA extracted from the infected cells (see FIG. 5). As for the producing cells, in cells infected with the vector SFV 26Sml, both genomic RNA and subgenomic RNA are observed. On the contrary, in cells infected with the vector SFV 26Sm2, only the genomic RNA is detected. The signal strength suggests intense replication of the SFV vectors. However, to ensure that the high expression of GFP in the target cells corresponds well to the mobilization of the RNA of SFV, and therefore that the plasmids have indeed been transferred into the target cells, in this case the 293T cells. , high concentration DNase I (1000 UJ / mi) is added to the transducing supernatant. The titers in SFV viral particles are similar to the titers obtained in the absence of DNase I, which suggests more transduction than a second transfection. However, such a result could be obtained in the hypothesis that the plasmid is encapsulated in the transfected cells after its entry and then delivered into the transduced cell. To control this possible phenomenon, the target cells are pretreated with actinomycin D at the rate of one microgram per milliliter, then incubated with the infectious supernatant. Actinomycin D inhibits gene expression controlled by RNA POL JJ, such as the genome of the vector SFV in the plasmid pSFV26Sml or m2, but has no action on the replicase of SFV. A similar expression of GFP is observed in the presence or in the absence of actinomycin D, which confirms that it is indeed an RNA which is transferred (see Table 2).
On vérifie ensuite si l'expression de la GFP est bien due à l'expression des vecteurs SFV ou à une pseudo-transduction dans les cellules cibles. En effet, certaines publications (7) ont montré que la GFP pouvait être transférée passivement par l'intermédiaire de particules retrovirales indépendamment de toute expression. Pour
s'assurer du contraire, les cellules cibles sont pré-traitées par deux inhibiteurs de traduction, respectivement la généticine et la puromycine. Après traitement, les cellules cibles montrent une expression de la GFP à peine détectable ce qui montre que la GFP observée résulte d'une traduction et non d'un transfert passif (tableau 2). En outre, la co-transfection d'un plasmide pEGFPCl exprimant fortement la GFP avec un plasmide codant pour la VSV-G ne conduit à aucune pseudo-transduction de la GFP. De la même manière, les surnageants provenant des cellules transfectées avec des vecteurs SFV seuls n'induisent pas l'expression de la GFP, ce qui prouve que la VSV-G doit être présente pour promouvoir la formation des pseudoparticules. Pour confirmer que l'ARN de SFV est protégé dans les vésicules VSV-G, les sumageants sont traités avec de la RNase A, avant transduction. Il apparaît que le traitement par la RNase A n'a pas d'effet sur les titres infectieux confirmant que l'ARN de SFV est véritablement protégé (tableau 2). Au vu de l'ensemble de ces résultats, on déduit que l'expression de la GFP dans les cellules cibles est due à une véritable transduction par les particules virales SFV.It is then checked whether the expression of GFP is due to the expression of the SFV vectors or to a pseudo-transduction in the target cells. Indeed, certain publications (7) have shown that GFP can be passively transferred via retroviral particles independently of any expression. For to ensure otherwise, the target cells are pretreated with two translation inhibitors, respectively geneticin and puromycin. After treatment, the target cells show a barely detectable expression of GFP, which shows that the observed GFP results from translation and not from passive transfer (Table 2). In addition, the co-transfection of a plasmid pEGFPCl strongly expressing GFP with a plasmid coding for VSV-G does not lead to any pseudo-transduction of GFP. Likewise, supernatants from cells transfected with SFV vectors alone do not induce GFP expression, which proves that VSV-G must be present to promote the formation of pseudoparticles. To confirm that the SFV RNA is protected in the VSV-G vesicles, the supernatants are treated with RNase A, before transduction. It appears that the treatment with RNase A has no effect on the infectious titers confirming that the RNA of SFV is truly protected (Table 2). In view of all of these results, it is deduced that the expression of GFP in the target cells is due to true transduction by the viral particles SFV.
Tableau 2 Table 2
EXEMPLE 2 :EXAMPLE 2:
V METHODESV METHODS
Il Constructions : Les constructions décrites dans l'exemple 1 ont été utilisées. Deux autres constructions dérivées, présentant une substitution du promoteur CMV par le promoteur procaryote SP6, ont également été utilisées :
- La première construction, spSFV26Sml, est directement dérivée de SFV26Sml. - La deuxième construction, spSFV26SmlΨ, est obtenue par digestion Bgl JJ- Sma I d'un plasmide pSFNl (Invitrogen®), au sein duquel est clone un fragment Bgl II- Hpa I du plasmide ρIRES2 GFP (Clontecb®), modifié par introduction d'un fragment PCR contenant l'extrémité 3' du gène nsp4 et généré en utilisant les amorces 26SmlF et 26SmlR (cf. exemple 1, section 2a).Il Constructions: The constructions described in example 1 were used. Two other derivative constructions, having a substitution of the CMV promoter by the prokaryotic promoter SP6, were also used: - The first construction, spSFV26Sml, is directly derived from SFV26Sml. - The second construction, spSFV26SmlΨ, is obtained by digestion Bgl JJ- Sma I of a plasmid pSFNl (Invitrogen ® ), within which is cloned a fragment Bgl II- Hpa I of the plasmid ρIRES2 GFP (Clontecb ® ), modified by introduction of a PCR fragment containing the 3 ′ end of the nsp4 gene and generated using the primers 26SmlF and 26SmlR (cf. example 1, section 2a).
Ces constructions sont transcrites in vitro puis les ARΝ sont introduits par electroporation dans les cellules productrices. La transcription in vitro est réalisée après linéarisation des plasmides par coupure BstB I. La transcription est réalisée en présence d'analogue de coiffe (Invitrogen®), de polymérase SP6 (Invitrogen®) et de ribonucléotides (Promega®). 2/ Cellules :These constructions are transcribed in vitro and the ARΝs are introduced by electroporation into the producer cells. In vitro transcription is carried out after linearization of the plasmids by cleavage BstB I. The transcription is performed in the presence of cap analog (Invitrogen ®), SP6 polymerase (Invitrogen ®) and ribonucleotides (Promega ®). 2 / Cells:
Les cellules productrices de rétrovirus recombinants, dérivées de cellules 293, phoenix® (http://www.stanford.edu/group/nolan/retiOviral systems/phx.html), sont cultivées en milieu DMEM (GJJ3CO) en présence de sérum de veau fœtal décomplémenté (Abcys). Les cellules productrices sont transfectées à l'aide des plasmides SFV26Sml ouProducing recombinant retroviruses cells, derived from 293 cells, phoenix ® (http://www.stanford.edu/group/nolan/retiOviral systems / phx.html) are cultured in DMEM medium (GJJ3CO) in the presence of serum decomplemented fetal calf (Abcys). The producer cells are transfected using the plasmids SFV26Sml or
26Sm2, à raison de 4 μg d'ADN pour 5.105 cellules, dans un puit de plaque six puits.26Sm2, at a rate of 4 μg of DNA for 5.10 5 cells, in a six-well plate well.
La transfection est réalisée en utilisant le phosphate de calcium (Calcium Phosphate transfection kit, Invitrogen®).The transfection is carried out using calcium phosphate (Calcium Phosphate transfection kit, Invitrogen ® ).
Pour les deux constructions exprimant les vecteurs SFV sous forme d'ARN, la transfection est réalisée par electroporation: 40 μl de replicons produits in vitro sont mis en présence de 40.105 cellules et électroporés en utilisant le système EasyjecTFor the two constructions expressing the SFV vectors in the form of RNA, the transfection is carried out by electroporation: 40 μl of replicons produced in vitro are placed in the presence of 40 × 10 5 cells and electroporated using the EasyjecT system.
Plus (Equibio®).Plus (Equibio ® ).
20 heures après la transfection, quelle que soit la méthode de transfection utilisée, le milieu est changé. 16 heures après ce changement, le milieu est récolté pour réaliser les infections. Lors de la récolte, le milieu est filtré à l'aide de filtres 0,45 μm20 hours after transfection, whatever the transfection method used, the medium is changed. 16 hours after this change, the medium is harvested to carry out the infections. During the harvest, the medium is filtered using 0.45 μm filters
(Millipore®).
3/ Infections:(Millipore ® ). 3 / Infections:
Les surnageants filtrés sont utilisés pour infecter des cellules 293T, mises en culture dans des plaques 12 puits. L'infection est réalisée en présence d'un polycation nécessaire aux interactions virus/cellules, le polybrène (Sigma®) à 5 μg/ml. Le jour de l'infection, un puit de cellules cibles 293T est trypsinisé pour comptage. 24 heures après l'infection, les cellules sont tryp sinisées pour un passage en cytométrie de flux (FACScalibur, Becton-Dickinson®). Le pourcentage de cellules exprimant la GFP, rapporté au nombre de cellules au jour de l'infection, permet de calculer un titre de particules recombinantes (JP/ml) (Tableau 3).The filtered supernatants are used to infect 293T cells, cultured in 12-well plates. Infection is carried out in the presence of a polycation necessary for virus / cell interactions, polybrene (Sigma ® ) at 5 μg / ml. On the day of infection, a well of 293T target cells is trypsinized for counting. 24 hours after infection, the cells are tryp sinized for a passage in flow cytometry (FACScalibur, Becton-Dickinson ® ). The percentage of cells expressing GFP, relative to the number of cells on the day of infection, makes it possible to calculate a titer of recombinant particles (JP / ml) (Table 3).
4/ Contrôles:4 / Controls:
Des contrôles, identiques à ceux réalisés dans l'exemple 1, ont été réalisés: - 10 μg par ml de RNAse A (Sigma®), 1 μg par millilitre d'actinomycine D (Sigma®), - 100 unités par millilitre de DNAse I (Invitrogen®), 1 mg par millilitre de généticine (Sigma®).Controls, identical to those carried out in Example 1, were carried out: - 10 μg per ml of RNAse A (Sigma ® ), 1 μg per milliliter of actinomycin D (Sigma ® ), - 100 units per milliliter of DNAse I (Invitrogen ® ), 1 mg per milliliter of geneticin (Sigma ® ).
117 RÉSULTATS 1/ Infections :117 RESULTS 1 / Infections:
Les résultats des infections sont rapportés dans le Tableau 3. IP/ml: particules infectieuses par ml; NR: non réalisé.
The results of the infections are reported in Table 3. PI / ml: infectious particles per ml; NR: not carried out.
Tableau 3 Table 3
La présence de cellules exprimant la GFP confirme la possibilité de mobiliser les ARN recombinants SFV par le truchement d'une particule retrovirale. Cependant, les faibles titres observés indiquent qu'il est nécessaire de contrôler la cytotoxicité du vecteur SFV pour obtenir des titres plus importants. En effet, il existe un antagonisme entre la production des ARN du SFV et la production des protéines retrovirales. Ces dernières voient leur production diminuer lorsque la production des protéines du SFV augmente. Plusieurs mutants des SFV ont, à ce jour, été décrits et pourront être utilisés avec profit (8).The presence of cells expressing GFP confirms the possibility of mobilizing the recombinant SFV RNAs by means of a retroviral particle. However, the low titers observed indicate that it is necessary to control the cytotoxicity of the SFV vector in order to obtain higher titers. Indeed, there is an antagonism between the production of RNAs from SFV and the production of retroviral proteins. The latter see their production decrease when the production of SFV proteins increases. Several mutants of SFV have so far been described and can be used with profit (8).
La présence ou l'absence de la séquence d'encapsidation des rétrovirus ne semble pas avoir d'influence importante sur l'efficacité de l'encapsidation. Ici, l'importante concentration intracellulaire en ARN semble avoir un rôle déterminant pour promouvoir l'encapsidation, en accord avec les observations de Muriaux et al. (9). L'influence de la séquence retrovirale psi devra être réévaluée dans le contexte de vecteurs à toxicité réduite.
Par ailleurs, ces résultats semblent indiquer qu'il existe probablement une contamination des productions de rétrovirus recombinants lorsque l'on utilise un système "helper" basé sur les vecteurs SFV (10, 11). Ces contaminants sont formés de particules retrovirales contenant soit les vecteurs SFV servant à exprimer les séquences de transcomplémentation des rétrovirus, soit les vecteurs SFV comprenant la séquence du rétrovirus recombinant. Cette observation remet en cause l'utilisation de ces modes de production des vecteurs rétroviraux à des fins cliniques, contrairement aux particules virales de l'invention.
The presence or absence of the retrovirus packaging sequence does not seem to have a significant influence on the efficiency of the packaging. Here, the high intracellular concentration of RNA seems to have a decisive role in promoting packaging, in agreement with the observations of Muriaux et al. (9). The influence of the psi retroviral sequence should be reassessed in the context of vectors with reduced toxicity. Furthermore, these results seem to indicate that there is probably contamination of the production of recombinant retroviruses when using a "helper" system based on the SFV vectors (10, 11). These contaminants are formed of retroviral particles containing either the SFV vectors used to express the transcomplementation sequences of the retroviruses, or the SFV vectors comprising the sequence of the recombinant retrovirus. This observation calls into question the use of these modes of production of retroviral vectors for clinical purposes, unlike the viral particles of the invention.
BIBLIOGRAPHIEBIBLIOGRAPHY
1. Rolls, M.M., Webster, P., Balba, N.H. & Rose, J.K. Novel infectious particles generated by expression of the vesicular stomatitis virus glycoprotein from a self- replicating RNA. CeU 79, 497-506. (1994).1. Rolls, M.M., Webster, P., Balba, N.H. & Rose, J.K. Novel infectious particles generated by expression of the vesicular stomatitis virus glycoprotein from a self-replicating RNA. CeU 79, 497-506. (1994).
2. Rolls, M.M., Haglund, K. & Rose, J.K. Expression of additional gènes in a vector derived from a minimal RNA virus. Virology 218, 406-411. (1996).2. Rolls, M.M., Haglund, K. & Rose, J.K. Expression of additional genes in a vector derived from a minimal RNA virus. Virology 218, 406-411. (1996).
3. Lebedeva, L, Fujita, K., Nihrane, A. & Silver, J. Infectious particles derived from Semliki Forest Virus Vectors encoding Murine I ukemia virus envelopes. Journal of Virology 71(9), 7061-7067. (1997). 4. Russell S J, Cosset FL. Modifying the host range properties of rétroviral vectors. J Gène Med 1, 300-11. (1999).3. Lebedeva, L, Fujita, K., Nihrane, A. & Silver, J. Infectious particles derived from Semliki Forest Virus Vectors encoding Murine I ukemia virus envelopes. Journal of Virology 71 (9), 7061-7067. (1997). 4. Russell S J, Cosset FL. Modifying the host range properties of retroviral vectors. J Gen Med 1, 300-11. (1999).
5. Salonen A, Vasiljeva L, Merits A, Magden J, Jokitalo E, Kaariainen L. Properly folded nonstructural polyprotein directs the semliki forest virus réplication complex to the endosomal compartment. J Virol. 77, 1691-702. (2003).5. Salonen A, Vasiljeva L, Merits A, Magden J, Jokitalo E, Kaariainen L. Properly folded nonstructural polyprotein direct the semliki forest virus replication complex to the endosomal compartment. J Virol. 77, 1691-702. (2003).
6. Naldini, L. et al. In vivo gène delivery and stable transduction of non-dividing cells by a lentiviral vector. Science 272, 263-267 (1996). 7. Liu, M.L., Winther, B.L. & Kay, M.A. Pseudotransduction of hepatocytes by using concentrated pseudotyped vesicular stomatitis virus G glycoprotein (VSV-G)- Moloney murine leukemia virus-derived rétrovirus vectors: comparison of VSV-G and amphotropic vectors for hepatic gène transfer. J Virol 70, 2497-2502. (1996). δ.Lundstrom K, Abenavoli A, Malgaroli A, Ehrengruber MU. Novel semliki forest virus vectors with reduced cytotoxicity and température sensitivity for long-term enhancement of transgene expression. Mol Ther.2, 7202-9.(2003).6. Naldini, L. et al. In vivo gene delivery and stable transduction of non-dividing cells by a lentiviral vector. Science 272, 263-267 (1996). 7. Liu, ML, Winther, BL & Kay, MA Pseudotransduction of hepatocytes by using concentrated pseudotyped vesicular stomatitis virus G glycoprotein (VSV-G) - Moloney murine leukemia virus-derived retrovirus vectors: comparison of VSV-G and amphotropic vectors for hepatic gene transfer. J Virol 70, 2497-2502. (1996). δ.Lundstrom K, Abenavoli A, Malgaroli A, Ehrengruber MU. Novel semliki forest virus vectors with reduced cytotoxicity and temperature sensitivity for long-term enhancement of transgene expression. Mol Ther. 2, 7202-9. (2003).
9. Muriaux, D., J. Mirro, et al. . RNA is a structural élément in rétrovirus particles. Proc Natl Acad Sci U S A 98, 5246-51. (2001).9. Muriaux, D., J. Mirro, et al. . RNA is a structural element in retrovirus particles. Proc Natl Acad Sci U S A 98, 5246-51. (2001).
10. Walilfors JJ, Xanthopoulos KG, Morgan RA. Semliki Forest virus-mediated production of rétroviral vector RNA in rétro viral packaging cells. Hum Gène Ther 8, 2031-41. (1997)10. Walilfors JJ, Xanthopoulos KG, Morgan RA. Semliki Forest virus-mediated production of retroviral vector RNA in retro viral packaging cells. Hum Gen Ther 8, 2031-41. (1997)
11. Li ICJ, Garoff H. Packaging of intron-containing gènes into rétrovirus vectors by alphavirus vectors. Proc Natl Acad Sci U S A 95,3650-4. (1998).
11. Li ICJ, Garoff H. Packaging of intron-containing genes into retrovirus vectors by alphavirus vectors. Proc Natl Acad Sci U S A 95,3650-4. (1998).
Claims
REVENDICATIONS
1/ Particule virale constituée d'éléments structuraux non issus d'un alpha-virus et contenant un vecteur dérivé d'alpha-virus rendu défectif pour la réplication, par délétion ou remplacement par au moins un transgène, des gènes structuraux caractérisée en ce que les éléments structuraux de ladite particule ne sont pas codés par le génome du vecteur dérivé d'alpha- virus.1 / Viral particle consisting of structural elements not derived from an alpha-virus and containing a vector derived from an alpha-virus made defective for the replication, by deletion or replacement with at least one transgene, of structural genes characterized in that the structural elements of said particle are not coded by the genome of the vector derived from alpha virus.
2/ Particule virale selon la revendication 1, caractérisée en ce que les éléments structuraux correspondent à la protéine d'enveloppe VSV-G seule.2 / viral particle according to claim 1, characterized in that the structural elements correspond to the envelope protein VSV-G alone.
3/ Particule virale selon la revendication 1, caractérisée en ce que les éléments structuraux correspondent aux protéines structurales d'un rétrovirus.3 / viral particle according to claim 1, characterized in that the structural elements correspond to the structural proteins of a retrovirus.
4/ Particule selon l'une des revendications 1 à 3, caractérisée en ce que l'alpha-virus est un virus de la forêt de SEMLJKI.4 / Particle according to one of claims 1 to 3, characterized in that the alpha-virus is a forest virus from SEMLJKI.
5/ Particule selon l'une des revendications 1 à 4, caractérisée en ce que le génome du vecteur dérivé d'alpha-virus contient la séquence de packaging étendue des vecteurs MLV.5 / Particle according to one of claims 1 to 4, characterized in that the genome of the vector derived from alpha-virus contains the extended packaging sequence of the MLV vectors.
6/ Particule selon l'une des revendications 1 à 5, caractérisée en ce que le génome du vecteur dérivé d'alpha- virus est dénué de séquence psi.6 / Particle according to one of claims 1 to 5, characterized in that the genome of the vector derived from alpha-virus is devoid of psi sequence.
Il Particule selon l'une des revendications 1 à 6, caractérisée en ce que le génome du vecteur dérivé d'alpha- virus comporte un promoteur eucaryote positionné en 5'.Particle according to one of claims 1 to 6, characterized in that the genome of the vector derived from alpha-virus comprises a eukaryotic promoter positioned at 5 '.
8/ Particule selon l'une des revendications 1 à 7, caractérisée en ce que le vecteur dérivé d'alpha- virus contient un promoteur p26S muté.
9/ Utilisation de la particule virale objet de l'une des revendications 1 à 8 pour infecter une cellule eucaryote in vitro.8 / Particle according to one of claims 1 to 7, characterized in that the vector derived from alpha-virus contains a mutated p26S promoter. 9 / Use of the viral particle object of one of claims 1 to 8 to infect a eukaryotic cell in vitro.
10/ Composition pharmaceutique comprenant la particule virale objet de l'une des revendications 1 à 8.10 / A pharmaceutical composition comprising the viral particle which is the subject of one of claims 1 to 8.
11/ Utilisation de la particule virale objet de l'une des revendications 1 à 8 pour la fabrication d'un médicament destiné au traitement du cancer.11 / Use of the viral particle object of one of claims 1 to 8 for the manufacture of a medicament for the treatment of cancer.
12/ Procédé d'obtention de particules virales, constituées d'éléments structuraux non issus d'un alpha- virus et contenant un vecteur dérivé d'alpha- irus rendu défectif pour la réplication, par délétion ou remplacement par au moins un transgène, des gènes structuraux consistant : à exprimer en trans, dans une lignée cellulaire, les gènes codant les éléments structuraux non issus de l'alpha-virus et le vecteur dérivé d'alpha- virus, à récupérer les particules virales présentes dans le surnageant de la culture cellulaire.12 / Process for obtaining viral particles, consisting of structural elements not derived from an alpha-virus and containing a vector derived from alpha-irus rendered defective for replication, by deletion or replacement with at least one transgene, structural genes consisting in: expressing, in trans, in a cell line, the genes encoding the structural elements not derived from the alpha-virus and the vector derived from the alpha-virus, recovering the viral particles present in the culture supernatant cellular.
13/ Procédé selon la revendication 12, caractérisé en ce que les éléments structuraux correspondent à la protéine d'enveloppe VSV-G.13 / A method according to claim 12, characterized in that the structural elements correspond to the envelope protein VSV-G.
14/ Procédé selon la revendication 13, caractérisé en ce que l'expression en trans est obtenue par co-transfection d'une lignée cellulaire par le vecteur d'expression de l'enveloppe VSV-G et le vecteur dérivé d'alpha-virus, la co-transfection étant effectuée en deux étapes distinctes respectivement, la transfection de la lignée par le vecteur exprimant le gène de l'enveloppe VSV-G, puis une seconde transfection par le vecteur dérivé d'alpha- virus.14 / A method according to claim 13, characterized in that the expression in trans is obtained by co-transfection of a cell line by the expression vector of the envelope VSV-G and the vector derived from alpha-virus , the co-transfection being carried out in two distinct stages respectively, the transfection of the line by the vector expressing the gene of the envelope VSV-G, then a second transfection by the vector derived from alpha-virus.
15/ Procédé selon la revendication 14, caractérisé en ce que la lignée cellulaire transfectée est une lignée de cellules 293T.
16/ Procédé selon la revendication 12, caractérisé en ce que les éléments structuraux correspondent aux protéines structurales d'un rétrovirus.15 / A method according to claim 14, characterized in that the transfected cell line is a 293T cell line. 16 / A method according to claim 12, characterized in that the structural elements correspond to the structural proteins of a retrovirus.
17/ Procédé selon la revendication 16, caractérisé en ce que l'expression en trans est obtenue par transfection d'une lignée cellulaire d'encapsidation, productrice de rétrovirus défectifs pour la réplication, par le vecteur dérivé d'alpha- virus.17 / A method according to claim 16, characterized in that the expression in trans is obtained by transfection of an encapsidation cell line, producer of retroviruses defective for replication, with the vector derived from alpha virus.
18/ Procédé selon la revendication 17, caractérisé en ce que la lignée cellulaire d'encapsidation est obtenue par transfection stable d'une lignée cellulaύ-e par un premier élément viral exprimant les gènes GAG et POL de rétrovirus et d'un second élément viral exprimant le gène ENV de rétrovirus.18 / A method according to claim 17, characterized in that the packaging cell line is obtained by stable transfection of a cellulaύ-e line with a first viral element expressing the GAG and POL genes of retrovirus and a second viral element expressing the retrovirus ENV gene.
19/ Procédé selon la revendication 16, caractérisé en ce que l'expression en trans est obtenue par triple transfection d'une lignée cellulaire 293 T, par introduction d'un premier élément viral exprimant les gènes GAG et POL de rétrovirus, d'un second élément viral exprimant le gène ENV" de rétrovirus et du vecteur dérivé d'alpha- virus.19 / A method according to claim 16, characterized in that the expression in trans is obtained by triple transfection of a 293 T cell line, by introduction of a first viral element expressing the GAG and POL genes of retrovirus, of a second viral element expressing the ENV " gene of retrovirus and of the vector derived from alpha-virus.
20/ Procédé selon l'une des revendications 12 à 19, caractérisé en ce que l'alpha-virus est un virus de la forêt de SEMLIKI.20 / Method according to one of claims 12 to 19, characterized in that the alpha-virus is a virus from the SEMLIKI forest.
21/ Procédé selon l'une des revendications 12 à 20, caractérisé en ce que le génome du vecteur dérivé d'alpha-virus contient la séquence de packaging étendue des vecteurs MLV.21 / Method according to one of claims 12 to 20, characterized in that the genome of the vector derived from alpha-virus contains the extended packaging sequence of the MLV vectors.
22/ Procédé selon l'une des revendications 12 à 21, caractérisé en ce que le génome du vecteur dérivé d'alpha-virus est dénué de séquence psi.22 / Method according to one of claims 12 to 21, characterized in that the genome of the vector derived from alpha-virus is devoid of psi sequence.
23/ Procédé selon l'une des revendications 12 à 22, caractérisé en ce que le génome du vecteur dérivé d'alpha-virus comporte un promoteur eucaryote positionné en 5'.23 / Method according to one of claims 12 to 22, characterized in that the genome of the vector derived from alpha-virus comprises a eukaryotic promoter positioned in 5 '.
24/ Procédé selon l'une des revendications 12 à 23, caractérisé en ce que le vecteur dérivé d'alpha- virus contient un promoteur p26S muté.
24 / A method according to one of claims 12 to 23, characterized in that the vector derived from alpha virus contains a mutated p26S promoter.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0350951A FR2862982B1 (en) | 2003-12-02 | 2003-12-02 | VIRAL PARTICLES CONTAINING AN ALPHA VIRUS DERIVED VECTOR AND METHOD FOR PREPARING THE VIRAL PARTICLE |
PCT/FR2004/050631 WO2005056805A1 (en) | 2003-12-02 | 2004-11-30 | Viral particles containing an alpha virus derived vector and method for preparing said viral particle |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1697529A1 true EP1697529A1 (en) | 2006-09-06 |
Family
ID=34566388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04805869A Withdrawn EP1697529A1 (en) | 2003-12-02 | 2004-11-30 | Viral particles containing an alpha virus derived vector and method for preparing said viral particle |
Country Status (11)
Country | Link |
---|---|
US (1) | US20080118956A1 (en) |
EP (1) | EP1697529A1 (en) |
JP (1) | JP2007512827A (en) |
KR (1) | KR20070085044A (en) |
CN (1) | CN101006180A (en) |
AU (1) | AU2004297379A1 (en) |
BR (1) | BRPI0417126A (en) |
CA (1) | CA2547922A1 (en) |
FR (1) | FR2862982B1 (en) |
RU (1) | RU2398875C2 (en) |
WO (1) | WO2005056805A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010040023A2 (en) | 2008-10-03 | 2010-04-08 | Government Of The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Methods and compositions for protein delivery |
EP2831225A1 (en) * | 2012-03-26 | 2015-02-04 | The United States of America, As Represented by the Secretary, Dept. of Health & Human Services Office of Technology Transfer | Delivery of packaged rna to mammalian cells |
AU2014365777B2 (en) * | 2013-12-16 | 2020-06-25 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Cancer immunotherapy by delivering class II MHC antigens using a VLP-replicon |
CN105176936B (en) * | 2015-10-23 | 2019-01-11 | 中国科学院武汉物理与数学研究所 | Replicate the subclone and preparation method and application of the Semliki forest virus of tolerance type |
WO2017083356A1 (en) | 2015-11-09 | 2017-05-18 | Immune Design Corp. | A retroviral vector for the administration and expression of replicon rna expressing heterologous nucleic acids |
US20230063041A1 (en) * | 2020-01-10 | 2023-03-02 | Carogen Corporation | Compositions and methods of use of oncolytic virus like vesicles |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6015686A (en) * | 1993-09-15 | 2000-01-18 | Chiron Viagene, Inc. | Eukaryotic layered vector initiation systems |
WO1998013511A1 (en) * | 1996-09-25 | 1998-04-02 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Retroviral packaging cassettes amplified in the cytoplasm by autocatalytic togavirus vectors |
FI20020375A (en) * | 2002-02-27 | 2003-08-28 | Wahlfors | Method for generating virus-like particles (VKP), plasmid construct and uses of the method |
-
2003
- 2003-12-02 FR FR0350951A patent/FR2862982B1/en not_active Expired - Fee Related
-
2004
- 2004-11-30 CN CNA2004800407046A patent/CN101006180A/en active Pending
- 2004-11-30 CA CA002547922A patent/CA2547922A1/en not_active Abandoned
- 2004-11-30 WO PCT/FR2004/050631 patent/WO2005056805A1/en active Application Filing
- 2004-11-30 RU RU2006123079/13A patent/RU2398875C2/en not_active IP Right Cessation
- 2004-11-30 AU AU2004297379A patent/AU2004297379A1/en not_active Abandoned
- 2004-11-30 BR BRPI0417126-8A patent/BRPI0417126A/en not_active Application Discontinuation
- 2004-11-30 EP EP04805869A patent/EP1697529A1/en not_active Withdrawn
- 2004-11-30 KR KR1020067013209A patent/KR20070085044A/en not_active Application Discontinuation
- 2004-11-30 JP JP2006541991A patent/JP2007512827A/en active Pending
- 2004-11-30 US US10/581,401 patent/US20080118956A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2005056805A1 * |
Also Published As
Publication number | Publication date |
---|---|
FR2862982B1 (en) | 2006-04-28 |
FR2862982A1 (en) | 2005-06-03 |
JP2007512827A (en) | 2007-05-24 |
AU2004297379A1 (en) | 2005-06-23 |
US20080118956A1 (en) | 2008-05-22 |
WO2005056805A1 (en) | 2005-06-23 |
BRPI0417126A (en) | 2007-12-11 |
KR20070085044A (en) | 2007-08-27 |
RU2398875C2 (en) | 2010-09-10 |
CN101006180A (en) | 2007-07-25 |
CA2547922A1 (en) | 2005-06-23 |
RU2006123079A (en) | 2008-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6585237B2 (en) | Novel delivery of packaged RNA to mammalian cells | |
Frolov et al. | Alphavirus-based expression vectors: strategies and applications. | |
JP4790984B2 (en) | Alphavirus replicon vector system | |
JP4979851B2 (en) | High titer and safe production method | |
AU731663B2 (en) | Rhabdoviruses with reengineered coats | |
JPH11512615A (en) | Vectors and methods of use for delivering nucleic acids to non-dividing cells | |
FR3044017A1 (en) | TRANSIENT TRANSFECTION METHOD FOR RETROVIRAL PRODUCTION | |
JP2023516493A (en) | lentiviral vector | |
EP1697529A1 (en) | Viral particles containing an alpha virus derived vector and method for preparing said viral particle | |
AU4642297A (en) | Alphavirus-retrovirus vectors | |
WO1998015636A9 (en) | Alphavirus-retrovirus vectors | |
JP2002542791A (en) | Synthetic genes for expressing active retroviral proteins in eukaryotes | |
Lebedeva et al. | Infectious particles derived from Semliki Forest virus vectors encoding murine leukemia virus envelopes | |
EP1392838B1 (en) | Pseudotyping of hiv vectors with mokola virus envelopes | |
Dorange et al. | Vesicular stomatitis virus glycoprotein: a transducing coat for SFV‐based RNA vectors | |
Diatta et al. | Semliki Forest virus-derived virus-like particles: characterization of their production and transduction pathways | |
WO2004024905A1 (en) | Recombinant human herpes simplex virus for producing lentivirus vectors | |
CN112714790A (en) | LDLR negative packaging cell line for producing VSV-G pseudotype retroviral vector particles or viral particles thereof | |
JP2023525161A (en) | Viral vector production | |
JP2004526450A (en) | Virus vector | |
KR19990010297A (en) | Recombinant Deletion Sindbis Virus Delivers Foreign Genes in Neurons | |
FR2838132A1 (en) | VIRAL VECTORS INCLUDING A NUCLEIC SEQUENCE DERIVED FROM MURINE LEUKEMOGENIC VIRUS FOR GENE TRANSFER INTO CELLS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR |
|
17P | Request for examination filed |
Effective date: 20060918 |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BOULIKAS, PARTHENIOS (TENI) |
|
17Q | First examination report despatched |
Effective date: 20090105 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20131001 |