EP1697373A1 - 6-(2,4,6-trihalogenophenyl)-triazolopyrimidines, procede pour leur production et leur utilisation pour lutter contre des champignons nuisibles, ainsi qu'agents les contenant - Google Patents

6-(2,4,6-trihalogenophenyl)-triazolopyrimidines, procede pour leur production et leur utilisation pour lutter contre des champignons nuisibles, ainsi qu'agents les contenant

Info

Publication number
EP1697373A1
EP1697373A1 EP04820434A EP04820434A EP1697373A1 EP 1697373 A1 EP1697373 A1 EP 1697373A1 EP 04820434 A EP04820434 A EP 04820434A EP 04820434 A EP04820434 A EP 04820434A EP 1697373 A1 EP1697373 A1 EP 1697373A1
Authority
EP
European Patent Office
Prior art keywords
formula
compounds
alkyl
methyl
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04820434A
Other languages
German (de)
English (en)
Inventor
Jordi Tormo I Blasco
Carsten Blettner
Bernd Müller
Markus Gewehr
Wassilios Grammenos
Thomas Grote
Joachim Rheinheimer
Peter Schäfer
Frank Schieweck
Anja Schwögler
Oliver Wagner
Maria Scherer
Siegfried Strathmann
Ulrich Schöfl
Reinhard Stierl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1697373A1 publication Critical patent/EP1697373A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system

Definitions

  • the present invention relates to 6- (2,4,6-trihalophenyl) triazolopyrimidines of the formula I.
  • R 2 is hydrogen or one of the groups mentioned for R 1 ,
  • R 1 and R 2 together with the nitrogen atom to which they are attached can also form a five- or six-membered heterocyclyl or heteroaryl which is attached via N and contain one to three further heteroatoms from the group O, N and S as a ring member and / or one or more substituents from the group halogen, C ⁇ C 6 alkyl, C Ce haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, dCe alkoxy, dC 6 haloalkoxy, C 3 - C 6 alkenyloxy, C 3 -C 6 - haloalkenyloxy, (exo) -C 1 -C 3 -alkyleneoxy can carry 6 alkylene and oxy-C C;
  • R 1 and / or R 2 can carry one to four identical or different groups R a :
  • L ⁇ L 2 , L 3 independently of one another chlorine or fluorine, at least one group being chlorine;
  • X is cyano, dC 4 alkyl, dC 4 alkoxy, C 3 -C 4 alkenyloxy, CC 2 haloalkoxy or C 3 -C 4 haloalkenyloxy.
  • the invention relates to a process for the preparation of these compounds, compositions containing them and their use for controlling phytopathogenic harmful fungi.
  • 5-Halogen-6- (2,4,6-trihalogenophenyl) triazolopyrimidines are generally known from FR-A 2 784 381.
  • 5-cyano- and 5-alkoxy-triazolopyrimidines are disclosed in WO 02/083677.
  • Triazolopyrimidines with optically active amino substituents in the 7-position are generally proposed in WO 02/38565.
  • the present invention is based on the object of providing compounds with improved activity and / or broadened activity spectrum.
  • the compounds according to the invention differ from those described in the abovementioned document by the substitution in the 5-position of the triazolopyrimidine skeleton.
  • the compounds of the formula I have an increased activity or a broader spectrum of activity against harmful fungi than the known compounds.
  • the compounds according to the invention can be obtained in various ways. They are advantageously obtained from the 5-halo-6- (2,4,6-trihalogenophenyl) triazolopyrimidines of the formula II known from FR-A 2 784 381 by reaction with compounds MX (formula III).
  • Compounds III represent depending on the The meaning of the group X to be introduced is an inorganic cyanide or an alkoxylate.
  • the reaction is advantageously carried out in the presence of an inert solvent.
  • the cation M in formula III is of little importance; ammonium, tetraalkylammonium or alkali or alkaline earth metal salts are usually preferred for practical reasons.
  • the reaction temperature is usually from 0 to 120 ° C., preferably from 10 to 40 ° C. [cf. J. Heterocycl. Chem., Vol. 12, pp. 861-863 (1975)].
  • R 2 is hydrogen
  • a removable protective group is advantageously introduced before reaction with III [cf. Greene, Protective Groups in Organic Chemistry, J. Willey & Sons, (1981)].
  • Suitable solvents include ethers such as dioxane, diethyl ether and, preferably tetrahydrofuran, alcohols such as methanol or ethanol, halogenated hydrocarbons such as dichloromethane and aromatic hydrocarbons such as toluene or acetonitrile.
  • the 5-alkyl-7-hydroxy-6-phenyltriazolopyrimidines obtained in this way are converted with halogenating agents [HAL] under the conditions known from WO-A 94/20501 into the halogenopyrimidines of the formula VII, in which the shark represents a halogen atom , preferably a Bromine or a chlorine atom, in particular a chlorine atom.
  • a chlorinating or brominating agent such as phosphoroxybromide, phosphorus oxychloride, thionyl chloride, thionyl bromide or sulfuryl chloride is advantageously used as the halogenating agent [HAL].
  • This reaction is usually carried out at 0 ° C. to 150 ° C., preferably at 80 ° C. to 125 ° C. [cf. EP-A 770 615].
  • R 1 VII + H_N * ⁇ I (X alkyl)
  • R VIII The reaction of VII with amines VIII, where R 1 and R 2 are as defined in formula I, is advantageously at 0 ° C. to 70 ° C., preferably 10 ° C to 35 ° C carried out, preferably in the presence of an inert solvent such as ether, e.g. B.
  • dioxane diethyl ether or in particular tetrahydrofuran, halogenated hydrocarbons such as dichloromethane and aromatic hydrocarbons such as toluene [cf. WO-A 98/46608].
  • a base such as tertiary amines, for example triethylamine or inorganic amines, such as potassium carbonate, is preferred; Excess amine of the formula VIII can also serve as the base.
  • the subsequent saponification of the ester X takes place under generally customary conditions, depending on the various structural elements, the alkaline or acid saponification of the compounds X can be advantageous. Under the conditions of ester saponification, the decarboxylation to I can already take place in whole or in part.
  • the decarboxylation is usually carried out at from 20 ° C. to 180 ° C., preferably from 50 ° C. to 120 ° C., in an inert solvent, if appropriate in the presence of an acid.
  • Suitable acids are hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, p-toluenesulfonic acid.
  • Suitable solvents are water, aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert.
  • intermediate and end products are in the form of colorless or slightly brownish, viscous oils, which are freed from volatile components or purified under reduced pressure and at a moderately elevated temperature. If the intermediate and end products are obtained as solids, they can also be purified by recrystallization or digesting.
  • isomer mixtures occur during the synthesis, however, a separation is generally not absolutely necessary, since the individual isomers can partially convert into one another during preparation for use or during use (e.g. under the action of light, acid or base). Corresponding conversions can also take place after use, for example in the treatment of plants in the treated plant or in the harmful fungus to be controlled.
  • Halogen fluorine, chlorine, bromine and iodine
  • Alkyl saturated, straight-chain or branched hydrocarbon radicals having 1 to 4, 6 or 8 carbon atoms, for example dC 6 alkyl such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1, 1- Dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1, 1-dimethylpropyl,, 2-dimethylpropyl, 1-methylpentyl, 2- Methylpentyl, 3-methylpentyl, 4-methylpentyI, 1, 1-dimethylbutyl, 1, 2-dimethylbutyl, 1, 3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1- Ethylbutyl, 2-ethylbutyl,
  • Haloalkyl straight-chain or branched alkyl groups having 1 to 2, 4, 6 or 8 carbon atoms (as mentioned above), it being possible for some or all of the hydrogen atoms in these groups to be replaced by halogen atoms as mentioned above: in particular C 1 -C 2 haloalkyl such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoro ethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2- T
  • Alkenyl unsaturated, straight-chain or branched hydrocarbon radicals with 2 to 4, 6, 8 or 10 carbon atoms and one or two double bonds in any position, for example C 2 -C 6 alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl , 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2 -Pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2 - butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1, 1-dimethyl-2-prop
  • Haloalkenyl unsaturated, straight-chain or branched hydrocarbon radicals with 2 to 8 carbon atoms and one or two double bonds in any position (as mentioned above), the hydrogen atoms in these groups being partially or completely replaced by halogen atoms as mentioned above, in particular fluorine, chlorine and bromine could be;
  • Alkynyl straight-chain or branched hydrocarbon groups with 2 to 4, 6 or 8 carbon atoms and one or two triple bonds in any position, for example C 2 -C 6 -alkynyl such as ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2- Butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl 3-butynyl, 3-methyl-1-butynyl, 1,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-methyl-2-pentynyl
  • Cycloalkyl mono- or bicyclic, saturated hydrocarbon groups with 3 to 6 or 8 carbon ring members, for example C 3 -C 8 cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl;
  • 5- or 6-membered heterocyclyl containing one to three nitrogen atoms and / or one oxygen or sulfur atom or one or two oxygen and / or sulfur atoms e.g. 2-tetrahydrofuranyI, 3-tetrahydrofuranyl, 2-tetrahydrothienyl, 3-tetrahydrothienyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 3-isoxazolidinyl, 4-isoxazolidinyl, 5-isoxazolidinyl, 3-isothiazothiazolidinyl, 4-isothiazolidinyl, 4-isothiazolidiazine Pyrazolidinyl, 4-pyrazolidinyl, 5-pyrazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl, 2-thiazolidinyl, 4-thiazolidinyl, 5-thiazolidinyl, 2-imidazolidinyl, 4-imidazolid
  • 5-membered heteroaryl containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom
  • 5-ring heteroaryl groups which in addition to carbon atoms can contain one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom as ring members, eg 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-imidazolyl, 4-imidazolyl, and 1, 3,4-triazol-2-yl;
  • 6-membered heteroaryl containing one to three or one to four nitrogen atoms 6-ring heteroaryl groups which, in addition to carbon atoms, can contain one to three or one to four nitrogen atoms as ring members, e.g. 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-pyridazinyl, 4-pyridazinylI, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl and 2-pyrazinyl;
  • Oxyalkyleneoxy divalent unbranched chains of 1 to 3 CH 2 groups, both valences being bound to the skeleton via an oxygen atom, for example OCH 2 O, OCH 2 CH 2 O and OCH 2 CH 2 CH 2 O;
  • the scope of the present invention includes the (R) and (S) isomers and the racemates of compounds of the formula I which have chiral centers.
  • R 1 is dC-alkyl, C 2 -C 6 -alkenyl or d-Cs-haloalkyl.
  • Z 1 is hydrogen, fluorine or C ⁇ C 6 fluoroalkyl
  • Z 2 is hydrogen or fluorine, or Z 1 and Z 2 together form a double bond
  • q is 0 or 1
  • R 3 is hydrogen or methyl.
  • R 1 is C 3 -C 6 cycloalkyl, which may be substituted by dC 4 alkylI.
  • R 1 and / or R 2 contain haloalkyl or haloalkenyl groups with a chiral center, the (S) isomers are preferred for these groups.
  • the (R) -configured isomers are preferred.
  • GC 2 -C 6 alkyl especially ethyl, n- and i-propyl, n-, sec-, tert-butyl, and CC 4 - alkoxymethyl, especially ethoxymethyl, or C 3 -C 6 cycloalkyl, especially cyclopentyl or cyclohexyl ;
  • R 2 is hydrogen or methyl
  • X is as defined for formula I and in particular means cyano, methoxy or ethoxy.
  • Another preferred embodiment of the invention relates to compounds of the formula I.2.
  • Y is hydrogen or CC 4 -alkyl, in particular methyl and ethyl
  • X is as defined for formula I and in particular is cyano, methoxy or ethoxy.
  • a further preferred embodiment of the invention relates to compounds in which R 1 and R 2 together with the nitrogen atom to which they are attached form a five- or six-membered heterocyclyl or heteroaryl which is bonded via N and a further hetero atom from the group O , N and S contain as a ring member and / or one or more substituents from the group halogen, CC 6 alkyl, d- C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, CC 6 - Alkoxy, CC 6 -haloalkoxy, C 3 -C 6 -alkenyloxy, C 3 -C 6 -haloalkenyloxy, CC 6 -alkylene and oxy-C C 3 - alkyleneoxy can carry.
  • These compounds correspond in particular to formula I.3,
  • X is as defined for formula I and in particular means cyano, methoxy or ethoxy.
  • R 1 and R 2 together with the nitrogen atom to which they are attached form a piperidinyl, morpholinyl or thimorpholinyl ring, in particular a piperidinyl ring which may be halogenated by one to three groups, dC 4 alkyl or CC 4 haloalkyl is substituted.
  • the compounds in which R 1 and R 2 together with the nitrogen atom to which they are attached form a 4-methylpiperidine ring are particularly preferred.
  • R and R 2 together with the nitrogen atom to which they are attached form a pyrazole ring which may be halogen, dC -alkyl or dC-haloalkyl by one or two groups , in particular by 3,5-dimethyl or 3,5-di- (trifluoromethyl).
  • R 2 is hydrogen or methyl; or R 1 and R 2 together - (CH 2 ) 2 CH (CH 3 ) (CH 2 ) 2 -, - (CH 2 ) 2 CH (CF 3 ) (CH 2 ) 2 - or - (CH 2 ) 2 O (CH 2 ) 2 - mean.
  • compounds I are particularly preferred in which X is cyano, methoxy or ethoxy, in particular cyano or methoxy.
  • X denotes methyl.
  • the compounds I are suitable as fungicides. They are distinguished by an outstanding activity against a broad spectrum of phytopathogenic fungi, in particular from the class of the Ascomycetes, Deuteromycetes, Oomycetes and Basidiomycetes. Some of them are systemically effective and can be used in plant protection as leaf and soil fungicides.
  • the compounds I are also suitable for combating harmful fungi such as Pacilomyces variotii in the protection of materials (for example wood, paper, dispersions for painting, fibers or fabrics) and in the protection of stored products.
  • the compounds I are used by treating the fungi or the plants, seeds, materials or the soil to be protected against fungal attack with a fungicidally active amount of the active compounds.
  • the application can take place both before and after the infection of the materials, plants or seeds by the fungi.
  • the fungicidal compositions generally contain between 0.1 and 95, preferably between 0.5 and 90% by weight of active ingredient.
  • the application rates in crop protection are between 0.01 and 2.0 kg of active ingredient per ha.
  • amounts of active compound of 1 to 1000 g / 100 kg, preferably 5 to 100 g, are generally required per 100 kg of seed.
  • the amount of active ingredient applied depends on the type of application and the desired effect. Usual application rates in material protection are, for example, 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active ingredient per cubic meter of treated material.
  • the compounds I can be converted into the usual formulations, e.g. Solutions, emulsions, suspensions, dusts, powders, pastes and granules.
  • the form of application depends on the respective purpose; in any case, it should ensure a fine and uniform distribution of the compound according to the invention.
  • the formulations are prepared in a known manner, e.g. by stretching the active ingredient with solvents and / or carriers, if desired using emulsifiers and dispersants.
  • solvents and auxiliaries The following are essentially considered as solvents / auxiliaries:
  • aromatic solvents e.g. Solvesso products, xylene
  • paraffins e.g. petroleum fractions
  • alcohols e.g. methanol, butanol, pentanol, benzyl alcohol
  • ketones e.g. cyclohexanone, gamma-butryolactone
  • pyrrolidones NMP, NOP
  • Acetates glycols, dimethyl fatty acid amides, fatty acids and fatty acid esters.
  • solvent mixtures can also be used
  • Carriers such as natural rock powder (e.g. kaolins, clays, talc, chalk) and synthetic rock powder (e.g. highly disperse silica, silicates); Emulsifiers such as nonionic and anionic emulsifiers (eg polyoxyethylene fatty alcohol ethers, alkyl sulfonates and aryl sulfonates) and dispersants such as lignin sulfite waste liquors and methyl cellulose.
  • natural rock powder e.g. kaolins, clays, talc, chalk
  • synthetic rock powder e.g. highly disperse silica, silicates
  • Emulsifiers such as nonionic and anionic emulsifiers (eg polyoxyethylene fatty alcohol ethers, alkyl sulfonates and aryl sulfonates) and dispersants such as lignin sulfite waste liquors and methyl cellulose.
  • mineral oil fractions from medium to high boiling points such as kerosene or diesel oil, furthermore coal tar oils as well as oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. Toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, methanol, ethanol, propanol, butanol, cyclohexanol, cyclohexanone, isophorone, strongly polar solvents, e.g. Dimethyl sulfoxide, N-methylpyrrolidone or water into consideration.
  • mineral oil fractions from medium to high boiling points such as kerosene or diesel oil
  • coal tar oils as well as oils of vegetable or animal origin
  • aliphatic, cyclic and aromatic hydrocarbons e.g. Toluene, xylene, paraffin, tetrahydronaphthalene, alkylated
  • Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active substances together with a solid carrier.
  • Granules e.g. Coating, impregnation and homogeneous granules can be produced by binding the active ingredients to solid carriers.
  • Solid carriers are e.g. Mineral earths, such as silica gels, silicates, talc, kaolin, attack clay, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics, fertilizers, e.g. Ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas and vegetable products such as cereal flour, tree bark, wood and nutshell flour, cellulose powder and other solid carriers.
  • Mineral earths such as silica gels, silicates, talc, kaolin, attack clay, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics,
  • the formulations generally contain between 0.01 and 95% by weight, preferably between 0.1 and 90% by weight, of the active ingredient.
  • the active ingredients are used in a purity of 90% to 100%, preferably 95% to 100% (according to the NMR spectrum). Examples of formulations are: 1. Products for dilution in water
  • a compound according to the invention 10 parts by weight of a compound according to the invention are dissolved in water or a water-soluble solvent. Alternatively, wetting agents or other aids are added. The active ingredient dissolves when diluted in water.
  • a compound according to the invention 20 parts by weight of a compound according to the invention are dissolved in cyclohexanone with the addition of a dispersant e.g. Dissolved polyvinyl pyrrolidone. When diluted in water, a dispersion results.
  • a dispersant e.g. Dissolved polyvinyl pyrrolidone.
  • a compound according to the invention 40 parts by weight of a compound according to the invention are dissolved in xylene with the addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (5% each).
  • This mixture is introduced into water using an emulsifying machine (Ultraturax) and brought to a homogeneous emulsion. Dilution in water results in an emulsion.
  • a compound according to the invention 20 parts by weight of a compound according to the invention are comminuted in a stirred ball mill to form a fine active ingredient suspension with the addition of dispersing and wetting agents and water or an organic solvent. Dilution in water results in a stable suspension of the active ingredient.
  • a compound according to the invention 50 parts by weight of a compound according to the invention are finely ground with the addition of dispersing and wetting agents and produced as technical equipment (e.g. extrusion, spray tower, fluidized bed) as water-dispersible or water-soluble granules. Dilution in water results in a stable dispersion or solution of the active ingredient.
  • technical equipment e.g. extrusion, spray tower, fluidized bed
  • Water-dispersible and water-soluble powders 75 parts by weight of a compound according to the invention are ground in a rotor-strator mill with the addition of dispersing and wetting agents and silica gel. at dilution in water results in a stable dispersion or solution of the active ingredient.
  • a compound according to the invention 0.5 part by weight is ground finely and combined with 95.5% carriers.
  • Common processes are extrusion, spray drying or fluidized bed. This gives granules for direct application.
  • the active ingredients as such in the form of their formulations or the use forms prepared therefrom, e.g. in the form of directly sprayable solutions, powders, suspensions or dispersions, emulsions, old dispersions, pastes, dusts, sprinkling agents, granules by spraying, atomizing, dusting, scattering or pouring.
  • the application forms depend entirely on the purposes; in any case, they should ensure the finest possible distribution of the active compounds according to the invention.
  • Aqueous application forms can be prepared from emulsion concentrates, pastes or wettable powders (wettable powders, old dispersions) by adding water.
  • emulsions, pastes or old dispersions the substances as such or dissolved in an oil or solvent can be homogenized in water by means of wetting agents, adhesives, dispersants or emulsifiers.
  • concentrates composed of an active substance, wetting agent, tackifier, dispersant or emulsifier and possibly solvent or oil, which are suitable for dilution with water.
  • the active ingredient concentrations in the ready-to-use preparations can be varied over a wide range. In general, they are between 0.0001 and 10%, preferably between 0.01 and 1%.
  • the active ingredients can also be used with great success in the ultra-low-volume process (ULV), it being possible to apply formulations with more than 95% by weight of active ingredient or even the active ingredient without additives.
  • UUV ultra-low-volume process
  • Oils of various types, wetting agents, adjuvants, herbicides, fungicides, other pesticides, bactericides can be added to the active compounds, if appropriate also only immediately before use (tank mix). These agents can be added to the agents according to the invention in a weight ratio of 1:10 to 10: 1.
  • compositions according to the invention can also be present together with other active compounds which, e.g. with herbicides, insecticides, growth regulators, fungicides or also with fertilizers. Mixing the compounds I or the compositions containing them in the use form as fungicides with other fungicides results in an enlargement of the fungicidal spectrum of action in many cases.
  • Acylalanines such as benalaxyl, metalaxyl, ofurace, oxadixyl,
  • Amine derivatives such as aldimorph, dodine, dodemorph, fenpropimorph, fenpropidine, guazatine, iminoctadine, spiroxamine, tridemorph • anilinopyrimidines such as pyrimethanil, mepanipyrim or cyrodinyl,
  • Antibiotics such as cycloheximide, griseofulvin, kasugamycin, natamycin, polyoxin or streptomycin,
  • Azoles such as bitertanol, bromoconazole, cyproconazole, difenoconazole, dinitroconazole, enilconazole, epoxiconazole, fenbuconazole, fluquiconazole, flusilazole, hexaconazole, imazalil, metconazol, triazolazolone, triazolone, propiconone , Triticonazole,
  • Dicarboximides such as iprodione, myclozolin, procymidone, vinclozolin,
  • Dithiocarbamates such as Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propineb, Polycarbamat, Thiram, Ziram, Zineb, • Heterocyclic compounds such as anilazine, benomyl, boscalid, carbendazim, carboxin, oxycarboxin, cyazofamidite, dazonometone , Famoxadone, fenamidon, fenarimol, fuberidazole, flutolanil, furametpyr, isoprothiolan, mepronil, nuarimol, probenazole, procinazid, pyrifenox, pyroquilone, quinoxyfen, silthiofam, thiaben- dazol, thifluzil, tricyclic acid, thiophanoline, thiophaniline, thiophanilanol Copper fungicides such as Bordeaux broth, copper acetate, copper oxychloride
  • Nitrophenyl derivatives such as binapacryl, dinocap, dinobuton, nitrophthal-isopropyl
  • fungicides such as acibenzolar-S-methyl, benthiavalicarb, carpropamide, chlorothalonil, cyflufenamid, cymoxanil, Dazomet, diclomezin, diclocymet, Diethofen-carb, edifenphos, ethaboxam, fenhexamide, fentin acetate, fennosetanyl, ferim Fosetyl aluminum, iprovalicarb, hexachlorobenzene, metrafenone, pencycuron, propamocarb, phthalide, toloclofos-methyl, quintozene, zoxamide
  • Strobilurins such as azoxystrobin, dimoxystrobin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin or trifloxystrobin,
  • Sulfenic acid derivatives such as Captafol, Captan, dichlofluanid, Folpet, Tolylfluanid
  • Cinnamic acid amides and analogues such as dimethomorph, flumetover or flumorph.
  • the active ingredients were prepared as a stock solution with 25 mg of active ingredient, which was mixed with a mixture of acetone and / or DMSO and the emulsifier Uniperol® EL (wetting agent with emulsifying and dispersing action based on ethoxylated alkylphenols) in a volume ratio of solvent emulsifier was filled from 99 to 1 ad 10 ml. Then ad 100 ml was made up with water. This stock solution was diluted with the solvent-emulsifier / water mixture described to the active ingredient concentration given below.
  • Uniperol® EL wetting agent with emulsifying and dispersing action based on ethoxylated alkylphenols
  • test plants Sprayed dripping wet. 24 hours after the spray coating had dried on, the test plants were treated with an aqueous spore suspension of Pyrenophora [syn. Drechslera] teres, the causative agent of net spot disease. The test plants were then placed in the greenhouse at temperatures between 20 and 24 ° C. and 95 to 100% relative atmospheric humidity. After 6 days, the extent of the development of the disease was determined visually in% of the total leaf area.
  • Example of use 2 Efficacy against the gray mold on paprika leaves caused by Botrytis cinerea in protective use
  • Pepper seedlings of the "Neusiedler Ideal Elite" variety after 2 to 3 leaves had developed well, were sprayed to runoff point with an aqueous suspension in the active compound concentration given below.
  • the treated plants were inoculated with a spore suspension of Botrytis cinerea, which contained 1.7 x 10 6 spores / ml in a 2% aqueous biomalt solution.
  • the test plants were then placed in a climatic chamber at 22 to 24 ° C, darkness and high air humidity. After 5 days, the extent of the fungal attack on the leaves could be determined visually in%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

L'invention concerne des 6-(2,4,6-trihalogénophényl)-triazolopyrimidines de formule (I) dans laquelle les substituants ont la signification suivante : R<1> représente alkyle, halogénure d'alkyle, cycloalkyle, halogénure de cycloalkyle, alcényle, halogénure d'alcényle, cycloalcényle, halogénure de cycloalcényle, alcynyle, halogénure d'alcynyle ou phényle, naphtyle ou un hétérocycle saturé, partiellement insaturé ou aromatique, à cinq ou six membres, contenant un à quatre hétéroatomes du groupe O, N ou S ; R<2> représente hydrogène ou un des groupes cités pour R<1> ; R<1> et R<2> peuvent former avec l'atome d'azote auquel ils sont liés un hétérocyclyle ou un hétéroaryle à cinq ou six membres, qui est lié par l'intermédiaire de N et qui peut contenir un à trois autres hétéroatomes du groupe O, N et S comme terme cyclique ; R<1> et/ou R<2> peuvent être substitués conformément à la description ; L<1>, L<2> et L<3> représentent chlore ou fluor, un groupe au moins étant chlore ; X représente cyano, alkyle, alcoxy, alcényloxy, halogénure d'alcoxy ou halogénure d'alcényloxy. L'invention concerne également un procédé pour produire ces composés, des agents contenant ces composés, ainsi que leur utilisation pour lutter contre des champignons nuisibles phytopathogènes.
EP04820434A 2003-12-17 2004-12-14 6-(2,4,6-trihalogenophenyl)-triazolopyrimidines, procede pour leur production et leur utilisation pour lutter contre des champignons nuisibles, ainsi qu'agents les contenant Withdrawn EP1697373A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10359439 2003-12-17
PCT/EP2004/014208 WO2005058903A1 (fr) 2003-12-17 2004-12-14 6-(2,4,6-trihalogenophenyl)-triazolopyrimidines, procede pour leur production et leur utilisation pour lutter contre des champignons nuisibles, ainsi qu'agents les contenant

Publications (1)

Publication Number Publication Date
EP1697373A1 true EP1697373A1 (fr) 2006-09-06

Family

ID=34683510

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04820434A Withdrawn EP1697373A1 (fr) 2003-12-17 2004-12-14 6-(2,4,6-trihalogenophenyl)-triazolopyrimidines, procede pour leur production et leur utilisation pour lutter contre des champignons nuisibles, ainsi qu'agents les contenant

Country Status (9)

Country Link
US (1) US20070135453A1 (fr)
EP (1) EP1697373A1 (fr)
JP (1) JP2007514680A (fr)
CN (1) CN1890243A (fr)
AR (1) AR046904A1 (fr)
BR (1) BRPI0417628A (fr)
IL (1) IL175397A0 (fr)
TW (1) TW200528458A (fr)
WO (1) WO2005058903A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512276A (ja) * 2003-11-25 2007-05-17 ビーエーエスエフ アクチェンゲゼルシャフト 6−(2,4,6−トリフルオロフェニル)−トリアゾロピリミジン、その製造方法、有害真菌類を防除するためのその使用、およびそれを含有している材料

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994360A (en) * 1997-07-14 1999-11-30 American Cyanamid Company Fungicidal 5-alkyl-triazolopyrimidines
WO1999041255A1 (fr) * 1998-02-11 1999-08-19 American Cyanamid Company 7-alkyl-triazolopyrimidines fongicides
US6242451B1 (en) * 1998-09-25 2001-06-05 Klaus-Juergen Pees Fungicidal trihalophenyl-triazolopyrimidines
US6380202B1 (en) * 1998-09-25 2002-04-30 Basf Aktiengesellschaft Fungicidal fluoro-substituted 7-heterocyclyl-triazolopyrimidines
US5986135A (en) * 1998-09-25 1999-11-16 American Cyanamid Company Fungicidal trifluoromethylalkylamino-triazolopyrimidines
CZ20024150A3 (cs) * 2000-06-30 2003-09-17 Wyeth Substituované triazolopyrimidiny
WO2002038565A2 (fr) * 2000-11-13 2002-05-16 Basf Aktiengesellschaft 7-(r)-amino-triazolopyrimidines, sa production et son utilisation dans la lutte contre les champignons pathogenes des plantes
JP2004526767A (ja) * 2001-04-11 2004-09-02 ビーエーエスエフ アクチェンゲゼルシャフト 6−(2−クロロ−6−フルオロ−フェニル)−トリアゾロピリミジン類
HUP0401048A3 (en) * 2001-07-18 2007-02-28 Basf Ag 6-(2,6-difluorophenyl)-triazolopyrimidines as fungicides
EP1412356A1 (fr) * 2001-07-18 2004-04-28 Basf Aktiengesellschaft Triazolopyrimides 6-(2-methoxyphenyl)substitues utilises comme fongicides
BRPI0408754A (pt) * 2003-03-31 2006-03-28 Basf Ag processo para combater fungos fitopatogênicos nocivos, compostos, processo para preparar os mesmos, e, agente adequado para combater fungos nocivos
CN100355754C (zh) * 2003-04-02 2007-12-19 巴斯福股份公司 7-炔基氨基三唑并嘧啶、其制备方法及其在防治有害真菌中的用途以及包含所述化合物的制剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005058903A1 *

Also Published As

Publication number Publication date
BRPI0417628A (pt) 2007-03-27
US20070135453A1 (en) 2007-06-14
TW200528458A (en) 2005-09-01
CN1890243A (zh) 2007-01-03
IL175397A0 (en) 2006-09-05
WO2005058903A1 (fr) 2005-06-30
JP2007514680A (ja) 2007-06-07
AR046904A1 (es) 2005-12-28

Similar Documents

Publication Publication Date Title
EP1663976B1 (fr) Derives de 4-pyridinylmethyl sulfonamide comme agents phytosanitaires fongicides
WO2004106341A1 (fr) Pyrazolopyrimidines substituees, procedes pour leur production, leur utilisation pour lutter contre des champignons nuisibles, et agents contenant lesdites pyrazolopyrimidines
WO2007101871A1 (fr) Imidazolopyrimidines substituées, procédés de production associés et leur utilisation pour lutter contre des champignons nuisibles, et agents les contenant
WO2005123739A1 (fr) 6-(2-fluorophenyl)-triazolopyrimidines, leur procede de fabrication et leur utilisation pour lutter contre les champignons nuisibles, et agents contenant ces composes
EP1765824B1 (fr) 6-phenyl-7-amino-triazolopyrimidines substituees, procedes permettant de les produire et leur utilisation pour lutter contre des champignons nuisibles, et agents les contenant
EP1585747B1 (fr) 5-alkyl-7-aminotriazolopyrimidines, procedes et produits intermediaires pour leur production, agents les contenant et leur utilisation pour lutter contre des champignons nocifs
EP1633728A1 (fr) Pyrimidines substituees en position 2
WO2005120233A1 (fr) Composes de triazolopyrimidine et leur utilisation pour lutter contre des champignons nocifs
WO2004046149A1 (fr) Triazolopyrimidines substituees par un groupe mercapto en position 2, leurs procedes de production, leur utilisation pour lutter contre des champignons nuisibles et agents les contenant
EP1697365B1 (fr) 6-(2-fluoro-4-alcoxyphenyl)-triazolopyrimidines, leurs procedes de fabrication, leur utilisation pour lutter contre les champignion nuisibles et agents les contenants
WO2006027170A1 (fr) 6-phenyl-7-amino-triazolopyrimidines, leurs procedes de production et leur utilisation pour lutter contre les champignons nuisibles, et agents les contenant
WO2005058904A1 (fr) 6-pentafluorophenyl-triazolopyrimidines, procede pour leur production et leur utilisation pour lutter contre des champignons nuisibles, ainsi qu&#39;agents les contenant
EP1725557B1 (fr) 6-(2-chloro-5-halogenephenyl)-triazolopyrimidines, procede de production desdits composes et leur utilisation pour lutter contre les champignons parasites, et agents contenant lesdits composes
EP1697373A1 (fr) 6-(2,4,6-trihalogenophenyl)-triazolopyrimidines, procede pour leur production et leur utilisation pour lutter contre des champignons nuisibles, ainsi qu&#39;agents les contenant
EP1735316A2 (fr) 6-(2,6-dichlorphenyl)-triazolopyrimidines, leur procede de production et leur utilisation pour lutter contre les champignons nuisibles et produits les contenant
EP1697366B1 (fr) 6-(2-chloro-4-alcoxy-phenyl)-triazolopyrimidines, procedes de preparation associes et utilisation pour lutter contre des champignons nocifs, agents les contenant
WO2005058902A1 (fr) 6-(2,3,6-trifluorophenyl)-triazolopyrimidines pour lutter contre des champignons nuisibles
EP1562950A1 (fr) Triazolopyrimidines substituees en position 2, procedes et produits intermediaires permettant de les produire, leur utilisation pour lutter contre des champignons nuisibles et agents les contenant
EP1697368A1 (fr) 6-(aminocarbonyl-phenyl)-triazolopyrimidines, procedes pour les produire, leur utilisation pour lutter contre des champignons nuisibles et agents les contenant
EP1689750A1 (fr) 6-(2,4,6-trifluorophenyl)-triazolopyrimidines, leur procede de production et leur utilisation pour lutter contre les champignons nuisibles, et agents contenant lesdits composes
EP1761543A1 (fr) Utilisation de 6-(2-tolyl)-triazolopyrimidines comme fongicide, nouvelles 6-(2-tolyl)-triazolopyrimidines, leur procede de fabrication et leur utilisation pour lutter contre les champignons nuisibles, et agents contenant ces composes
EP1697367A1 (fr) 6-(2-halogenophenyl)-triazolopyrimidines, procede pour leur production et leur utilisation pour lutter contre des champignons nuisibles, ainsi qu&#39;agents les contenant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060929

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080617