EP1695366A1 - Couche de germes a motif convenant a un dispositif emetteur d'electrons et a nano-tube de carbone, et procede de production associe - Google Patents

Couche de germes a motif convenant a un dispositif emetteur d'electrons et a nano-tube de carbone, et procede de production associe

Info

Publication number
EP1695366A1
EP1695366A1 EP03818357A EP03818357A EP1695366A1 EP 1695366 A1 EP1695366 A1 EP 1695366A1 EP 03818357 A EP03818357 A EP 03818357A EP 03818357 A EP03818357 A EP 03818357A EP 1695366 A1 EP1695366 A1 EP 1695366A1
Authority
EP
European Patent Office
Prior art keywords
layer
electron
seed
elements
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03818357A
Other languages
German (de)
English (en)
Inventor
Chul Ha Chang
Jong Woo Son
Jung Jae Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
cDream Display Corp
Original Assignee
cDream Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by cDream Display Corp filed Critical cDream Display Corp
Publication of EP1695366A1 publication Critical patent/EP1695366A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/02Electrodes other than control electrodes
    • H01J2329/04Cathode electrodes
    • H01J2329/0407Field emission cathodes
    • H01J2329/0439Field emission cathodes characterised by the emitter material
    • H01J2329/0444Carbon types
    • H01J2329/0455Carbon nanotubes (CNTs)

Definitions

  • This invention relates to carbon based field emitters. More particularly, this invention relates to the structure and fabrication of an electron-emitting device in which electrically conductive seed material is situated between electron-emissive elements, on one hand, and emitter electrodes, on the other hand, and which is suitable for use in a flat- panel display of the cathode-ray tube (“CRT”) type.
  • CTR cathode-ray tube
  • a flat-panel CRT display basically consists of an electron-emitting device and a light- emitting device that operate at low internal pressure.
  • the electron-emitting device commonly referred to as a cathode, contains electron-emissive elements that emit electrons over a wide area.
  • the emitted electrons are directed towards light-emissive elements distributed over a corresponding area in the light-emitting device. Upon being struck by the electrons, the light-emissive elements emit light that produces an image on the viewing surface of the display.
  • electrically conductive seed material is commonly placed in series with the electron- emissive elements to gate the magnitude of current flow through the electron-emissive elements.
  • Fig. 1 illustrates a conventional field-emission device, that so utilizes the seed material .
  • electrically seed (catalyst) layer 25 overlies emitter electrodes 15 provided on baseplate 10.
  • Gate (or gate) electrodes 40 one of which is depicted in Fig.
  • Electron-emissive elements 45 are situated on emitter conductive layer 25 in openings 50 through dielectric layer 35 and are exposed through corresponding openings 50 in gate electrodes 40.
  • Seed layer 25 is typically a blanket layer. That is, seed layer 25 extends in a continuous manner over the emitter electrodes 15 and the intervening portions of baseplate 10. Consequently, each electron-emissive elements 45 is electrically coupled through seed layer 25 to each other element 45.
  • the electron emissive elements are a group carbon based filaments.
  • the catalyst layer 25 is normally a conductive material that is layer 25 effectively does not electrically isolate each group of elements 45 from each other. Thus, there could be a kind of intercoupling of electrons emissive elements 45 through layer 25. That means electron emission from a group of elements 45 would have an effect on the other group of element 45.
  • a degradation of one group of elements 45 usually means other groups of elements 45 would have an effect on the emitting of other groups of element 45.
  • the intercoupling of the electron emission elements 45 also causes an undesirable process of non-uniformity of deposition, patterning and etching of the electron emission elements 45.
  • the differences in the uniformity of the electron emission elements creates a situation where the elements 45 have different threshold voltage for electron emission. Thus, most of elements 45 would not start to emit electrons at the same time.
  • a conductive seed layer that provides conductivity at selected areas along baseplate 10 but does not itself electrically interconnect these areas.
  • electron-emissive elements 45 at each location where one gate electrode 40 crosses over one emitter electrode 15 operate as a unit and need not be conductively coupled.
  • the seed layer it is also desirable to configure the seed layer in such a way that underlying emitter electrodes be externally electrically accessible along their upper surfaces without the necessity of performing a separate etching operation to cut openings through the seed layer. Furthermore, it is preferable to provide a suitable pattern in the seed layer without employing any additional masking steps beyond those used for patterning other components in the field emitter.
  • the present invention furnishes an electron-emitting device having a seed layer patterned to meet the oregoing needs .
  • the present seed layer contains multiple laterally separated sections situated between electron- emissive elements, on one hand, and emitter electrodes, on the other hand. The sections of the seed layer are spaced apart along each emitter electrode.
  • the seed sections underlie gate electrodes of the present electron-emitting device in various ways.
  • the seed sections are basically configured as seed strips situated below the gate electrodes .
  • Each seed strip is sufficiently long to extend over at least one, typically all, of the emitter electrodes.
  • the seed sections are basically configured as seed portions spaced apart below each gate electrode and above each emitter electrode. As viewed in the vertical direction, the seed portions are roughly centered at the locations where the gate electrodes cross over the emitter electrodes. As contrasted to the first-mentioned embodiment in which each seed strip extends over two or more of the emitter electrodes, each seed portion in this embodiment extends over only one of the emitter electrodes.
  • a structure is typically first provided in which a gate electrode overlies a dielectric layer that overlies an electrically seed layer overlying an emitter electrode .
  • Electron-emissive elements are situated in a composite opening extending through the gate electrode and dielectric layer in the structure so that the electron-emissive element overlies the seed layer above the emitter electrode.
  • Creation of the seed sections involves removing portions of the seed layer located generally below spaces situated to the sides of the gate electrode.
  • a separate masking step may be employed in providing the requisite pattern in the seed layer.
  • Use of a separate masking step may arise as a matter of process convenience or due to overall processing constraints.
  • Fig. 1 is a cross-sectional view of the core of a conventional electron-emitting device
  • Figs. 2 is a cross-sectional structural view of the core of an electron-emitting device provided with a seed layer patterned in accordance with the invention
  • Figs. 3a - 3f. are cross-sectional structural views representing steps in manufacturing an embodiment of the electron- emitting device of Fig. 2 according to the invention.
  • Fig. 4 is a cross-sectional structural view of another embodiment of the core of an electron-emitting device provided with a seed layer patterned in accordance with the present invention.
  • a conductive seed layer connected in series with electron- emissive elements of an electron-emitting device is patterned into multiple sections laterally separated along each emitter electrode in the device.
  • the electron emitter of the invention typically operates according to field-emission principles in producing electrons that cause visible light to be emitted from corresponding light-emissive phosphor elements of a light-emitting device.
  • the combination of the electron-emitting device, often referred to as a field emitter, and the light-emitting device forms a cathode- ray tube of a flat-panel display such as a flat-panel television or a flat-panel video monitor for a personal computer, a lap-top computer, or a workstation.
  • electrically insulating generally applies to materials having a resistivity greater than 10 10 ohm-cm.
  • electrically non-insulating thus refers to materials having a resistivity below 10 10 ohm- cm. Electrically non-insulating materials are divided into (a) electrically conductive materials for which the resistivity is less than 1 ohm-cm and (b) electrically resistive materials for which the resistivity is in the range of 1 ohm-cm to 10 10 ohm-cm. These categories are determined at an electric field of no more than 1 volt/ ⁇ m.
  • electrically conductive materials are metals, metal-semiconductor compounds (such as metal suicides) , and metal-semiconductor eutectics. Electrically conductive materials also include semiconductors doped (n-type or p- type) to a moderate or high level. The semiconductors may be of the monocrystalline, multicrystalline, polycrystalline, or amorphous type.
  • Electrically resistive materials include (a) metal-insulator composites such as cermet, (b) certain silicon-carbon compounds such as silicon carbide and silicon-carbon-nitrogen, (c) forms of carbon such as graphite, amorphous carbon, and modified (e.g., doped or laser- modified) diamond, and (d) semiconductor- ceramic composites. Further examples of electrically resistive materials are intrinsic and lightly doped (n-type or p-type) semiconductors .
  • a transverse profile is a vertical cross section through a plane perpendicular to the length of- an elongated region.
  • the row direction in a matrix-addressed field emitter for a flat-panel display is the direction in which the rows of picture elements (pixels) extend.
  • the column direction is the direction in which the columns of pixels extend and runs perpendicular to the row direction.
  • Fig. 2 illustrates the core of a matrix- addressed field emitters that contain an emitter conductor patterned into conductor strips in a vertically aligned manner according to the invention.
  • the cross sections of Fig. 2 is taken through perpendicular planes .
  • the field emitter of Fig. 2 is created from a fiat electrically insulating baseplate (substrate) 100 typically consisting of glass having a thickness of approximately 1 mm. To simplify the pictorial illustration, baseplate 100 is shown in the perspective view of Fig. 2.
  • a patterned electrically conductive seed layer 120 is disposed on a resistor layer 115 which is in turn disposed on the emitter electrode 110.
  • the seed layer 120 provides a seed platform on which the electron emission elements of the present invention are built.
  • the patterned strips of seed layer 120 are typically aligned with the gate layer 130 and situated in openings 145 in a way to isolate groups of the electron emission elements 140 from each other. Isolating the group of electron emission elements ensures that a defect in one group does not affect the emission quality of the other groups .
  • Fig. 3A depicts a partial cross-sectional representation of the field emitter structure 1 of one embodiment of the present invention.
  • the method fabricating the field emitter structure 1 generally includes providing a bas plate 100 and disposing thereon a plurality of emitter electrodes.
  • the group of generally parallel emitter electrodes 110 are situated on baseplate 100.
  • Emitter electrodes 110 extend in the row direction and constitute row electrodes. As shown in Fig. 3A, each emitter electrode 110 has a transverse profile roughly in the shape of an upright isosceles trapezoid. This profile helps improve step coverage of layers formed above emitter electrodes 110.
  • Emitter electrodes 110 typically consist of aluminum, molybdenum, or chromium, or an alloy of any of these metals. In the case of aluminum, emitter electrodes 110 are typically 0.1 - 0.5 urn in thickness .
  • the emitter electrode 110 is deposited in-situ by a number of well known deposition methods of the prior art .
  • Sputter deposition may be used.
  • a form of evaporation deposition may be used.
  • PR photo-resistive material
  • the emitter electrode 110 is patterned by a number of photolithographic processes well known in the art accordingly. Applicable etching methods include wet etching. Remaining PR askant is stripped off by methods well known in the art.
  • Fig. 3B depicts a partial cross-sectional representation of structure 1 having undergone further steps of deposition of a resistor layer 115.
  • the resistor layer 115 is then fabricated by deposition of a layer of resistive material on the emitter electrode layer 110 and remaining surfaces of the glass 100 uncovered by the emitter electrode 110 material.
  • the resistor layer 115 is deposited by a number of well known methods in the art. In one embodiment, deposition of the resistor layer 115 is accomplished by plasma enhanced chemical vapor deposition (P ⁇ CVD) method. Upon deposition of the resistor layer 115, a photo-resistive material (PR) is coated on the resistor layer 115. After coating, the PR is soft baked, exposed and developed. The PR is subsequently hard baked and dry etched to conform to the contours of the surface of the glass 100. Remaining PR maskant is stripped by methods well known in the art.
  • P ⁇ CVD plasma enhanced chemical vapor deposition
  • Fig. 3C depicts a partial cross-sectional representation of structure 1 having undergone further steps of depositing a conductive seed layer 120.
  • a patterned electrically conductive seed layer consisting of a group of laterally separated generally parallel strips 120 is disposed on top of emitter electrodes 110 and resistor layer 115.
  • the seed layer 120 provides an enhanced seeding platform on which to deposit or coat the electron emission elements of the invention.
  • Conductive seed strips 120 extend in the column direction and are spaced apart along each emitter electrode 110. Each seed strip 120 extends over portions of electrodes 110.
  • strips 120 overlie laterally separated parts of each electrode 110.
  • Strips 120 are vertical conductors in that current flows through strips 120 largely in the vertical direction between, electrodes 110 and the overlying electron-emissive elements described below.
  • Each of seed strips 120 typically consists of nickel or an alloy of nickel .
  • the thickness of the nickel layer is 0.01 - 0.15 ⁇ , typically 0.07 ⁇ m.
  • the seed layer consist of cobalt or an alloy of cobalt.
  • the thickness of the cobalt layer is 0.01 - 0.15 ⁇ m, typically 0.07 ⁇ .
  • the seed strip typically consist of iron or an alloy of iron.
  • PR photo-resistive material
  • the seed layer 120 is wet etched by applying a combination of phosphoric acid, nitride acid, acitic acid and water.
  • Fig. 3D depicts a partial cross-sectional representation of structure 1 having undergone further steps of depositing a dielectric layer 125. As shown in Fig. 3D, a blanket dielectric layer is formed on the surface of the conductive seed layer 120 and the resistor layer 115 covering portions of the resistor layer 115 that are left uncovered by the seed layer 120.
  • a group of generally parallel gate electrodes 130 overlie dielectric strips 125 above conductive strips 120.
  • Each gate electrode 130 lies on the entire top surface of a corresponding one of dielectric strips 125 and, accordingly, fully overlies underlying conductive strip 120. Due to the characteristics of the etch procedures typically used to define the longitudinal side edges of strips 120 and 125, each gate electrode 130 may be slightly wider or narrower than underlying dielectric strip 125.
  • Fig. 3E depicts a partial cross-sectional representation of structure 1 having undergone further steps of depositing a blanket passivation layer 135. The passivation layer 135 is disposed on the gate layer 130 and portions of the dielectric layer 125 uncovered by the gate layer 130.
  • passivation layer 135 overlies the entire top surface of a corresponding one of gate layer strips 130 and, accordingly, fully overlies underlying conductive seed strip 120.
  • passivation layer 135 may be silicon dioxide (Si0 2 ) , or silicon nitride (SiNx) , or a mixture of these compounds with a SiNx.
  • the passivation layer 135 is subsequently masked by a PR masking agent masking the passivation layer according to a designed pattern.
  • the passivation layer 135 and dielectric layer 125 are ecthed by a dry etching method, known in the art. Remaining PR is stripped.
  • Fig. 3F depicts a partial cross-sectional representation of structure 1 having undergone further steps of etching the structure to create cavities for depositing the electron emission elements 140.
  • the passivation layer 135, and the dielectric layer 125 are etched to create cavities or composite openings 145 for the formation of the carbon nano-tube emitters of the present invention.
  • a patterned dielectric layer consisting of a group of laterally separated generally parallel strips 125 overlying the conductive strips 120 is formed. Each dielectric opening overlies a corresponding one of conductive strips 120. The longitudinal side edges of each dielectric strip 125 are in approximate vertical alignment with the longitudinal side edges of corresponding seed strip 120.
  • the dielectric strips 125 comprises two layers of silicon dioxide and silicon nitride having a thickness of 0.5 - 2.0 ⁇ .
  • dielectric strips 125 comprise of a single layer of silicon-oxy-nitride having a thickness of 0.5 - 2.0 ⁇ m.
  • the patterning of the seed layer 120 to form strips is typically performed with one or more wet etchants depending on the constituency of layer 120.
  • Gate electrodes 130 may be configured in various ways. For example, each electrode 130 can be implemented as a main gate portion and one or more thinner adjoining gate portions as described below in connection with Fig.
  • An array of rows and columns of laterally separated sets of electron-emissive elements 140 are disposed on top of conductive seed strips 120 in composite openings extending through dielectric strips 125 and gate electrodes 130.
  • Each composite opening consists of (a) a dielectric opening 145 extending through one of dielectric strips 125 and (b) a gate opening 145 also extending through overlying gate electrode 130.
  • the top of dielectric opening 145 is typically the same as that of the gate 130 opening.
  • the carbon based electron-emissive-elements 140 are deposited on the seed strips 120 subsequent to the creation of cavities 145.
  • a chemical vapor deposition (CVD) method of deposition may be used to deposit electron- emissive elements 140.
  • Each of the sets of electron-emissive elements 140 normally consists of multiple elements 140. Electron-emissive elements 140 in each different set contact a portion of a seed strip 120 at the location where corresponding gate electrode 130 crosses over an emitter electrode 110. Each set of elements 140 is electrically coupled through underlying seed strip 120 to underlying emitter electrode 110.
  • the sets of elements 140 in each column of the electron-emissive-element sets are respectively electrically coupled through the underlying portions of all seed strips 120 to underlying emitter electrode 110.
  • the sets of elements 140 in each row of the electron-emissive-element sets are electrically coupled through portions of underlying conductive strip 120 respectively to all of emitter electrodes 110.
  • the electron-emissive elements 140 are typically filaments in shape, as depicted in Fig. 2.
  • the principal constituent of elements 140 is typically carbon.
  • Elements 140 can be shaped dif erently,, for example, as cylindrical. Dielectric openings 145 may then be shaped differently from what is generally indicated in Fig. 2.
  • an anode in the light-emitting device situated opposite elements 140 draws the extracted electrons towards light-emissive elements located close to the anode.
  • a positive current flows through underlying seed strip 120 to underlying emitter electrode 110.
  • Seed strips 120 provide the field emitter with electron emission uniformity and short circuit protection. Strips 120 limit the number of electrons emitted by activated elements 140. Strips 120 further prevent electron emission through just a limited number of the electron
  • seed strip 120 at the short circuit location significantly limits the current flowing through the short circuit connection.
  • the presence of the short circuit does not detrimentally affect the operation of any of the other sets of electron- emissive elements 140.
  • Such a short circuit can arise by way of a conductive path created through a dielectric strip 125 or by having one or more of electron- emissive elements 140 come into contact with their gate electrode 130, In the case of a gate-electrode-to-electron-emissive-element short circuit, each shorted electron-emissive element " 140 is normally defective.
  • seed strips 120 limit the current through each shorted elements 140 sufficiently that non-shorted elements 140 in that set of electron-emissive elements may still operate in the intended manner. Seed strips 120 thus normally enable a set of electron-emissive elements 140 containing a small percentage of shorted elements 140 to perform the intended electron-emitting function in an adequate manner. Electron-emission uniformity is substantially maintained.
  • Fig. 4 illustrates the core of a matrix- addressed field emitters that contain an emitter conductor patterned into conductor strips in a vertically aligned manner according to the invention.
  • the cross sections of Fig. 4 is taken through perpendicular planes.
  • the field emitter of Fig. 4 is created the same way as the structure in Fig. 2.
  • the patterned electrically conductive seed layer 120 is patterned in a way so that the seed strips symmetrically over-align with the gate electrode 130. Symmetrically over-aligning the seed strips 120 with the gate electrode 130 reduces undesirable electron emission in the structure 1.
  • the electron emitters produced according to the invention can be employed to make flat- panel devices other than flat-panel CRT displays.
  • the present electron emitters can be used as electron sources in products other than flat-panel devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

L'invention concerne un dispositif émetteur d'électrons contenant une couche de germes émettrice (120) ayant comme motif de multiples sections latéralement distinctes situées entre, d'une part, les éléments émetteurs d'électrons (140) et, d'autre part, des électrodes d'émetteurs (110). Les sections de la couche de germes sont espacées le long de chaque électrode d'émetteur (110) pour découpler électriquement les éléments émetteurs d'électrons disposés sur la couche de germes (120).
EP03818357A 2003-08-20 2003-08-20 Couche de germes a motif convenant a un dispositif emetteur d'electrons et a nano-tube de carbone, et procede de production associe Withdrawn EP1695366A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2003/026136 WO2005020266A1 (fr) 2003-08-20 2003-08-20 Couche de germes a motif convenant a un dispositif emetteur d'electrons et a nano-tube de carbone, et procede de production associe

Publications (1)

Publication Number Publication Date
EP1695366A1 true EP1695366A1 (fr) 2006-08-30

Family

ID=34215343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03818357A Withdrawn EP1695366A1 (fr) 2003-08-20 2003-08-20 Couche de germes a motif convenant a un dispositif emetteur d'electrons et a nano-tube de carbone, et procede de production associe

Country Status (3)

Country Link
EP (1) EP1695366A1 (fr)
AU (1) AU2003304451A1 (fr)
WO (1) WO2005020266A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696028A (en) * 1992-02-14 1997-12-09 Micron Technology, Inc. Method to form an insulative barrier useful in field emission displays for reducing surface leakage
US5828163A (en) * 1997-01-13 1998-10-27 Fed Corporation Field emitter device with a current limiter structure
US6204597B1 (en) * 1999-02-05 2001-03-20 Motorola, Inc. Field emission device having dielectric focusing layers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005020266A1 *

Also Published As

Publication number Publication date
WO2005020266A1 (fr) 2005-03-03
AU2003304451A1 (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US6144144A (en) Patterned resistor suitable for electron-emitting device
US5396150A (en) Single tip redundancy method and resulting flat panel display
US5151061A (en) Method to form self-aligned tips for flat panel displays
US6019657A (en) Dual-layer metal for flat panel display
EP0985220B1 (fr) Fabrication de dispositif emetteur d'electrons dote d'une electrode d'emission de type echelle
US20050236963A1 (en) Emitter structure with a protected gate electrode for an electron-emitting device
US6803708B2 (en) Barrier metal layer for a carbon nanotube flat panel display
WO2006036986A2 (fr) Structure de cathode pour dispositif a emission par effet de champ
JP3954710B2 (ja) 行−列リークの減少した電界放出素子の製造方法
US5578225A (en) Inversion-type FED method
KR100618531B1 (ko) 전자방출소자, 전자원 및 다이폴층을 가진 화상표시장치
US5710483A (en) Field emission device with micromesh collimator
KR100235212B1 (ko) 전계방출 캐소드 및 그 제조방법
US7071603B2 (en) Patterned seed layer suitable for electron-emitting device, and associated fabrication method
US7053538B1 (en) Sectioned resistor layer for a carbon nanotube electron-emitting device
US6013986A (en) Electron-emitting device having multi-layer resistor
US6984535B2 (en) Selective etching of a protective layer to form a catalyst layer for an electron-emitting device
WO2005020266A1 (fr) Couche de germes a motif convenant a un dispositif emetteur d'electrons et a nano-tube de carbone, et procede de production associe
WO2005020267A1 (fr) Couche resistive en ilots de dispositif emetteur d'electrons a nanotubes de carbone, et procede de fabrication associe
US5672933A (en) Column-to-column isolation in fed display
US20070024178A1 (en) Field emission device having insulated column lines and method of manufacture
JP3086445B2 (ja) 電界放出素子の形成方法
US5633120A (en) Method for achieving anode stripe delineation from an interlevel dielectric etch in a field emission device
JPH10233183A (ja) 冷電子放出素子マトリクス及びその製造方法
US20060113888A1 (en) Field emission display device with protection structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060619

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070901