EP1692458B1 - Messung der pyramidengrösse auf einer texturierten oberfläche - Google Patents

Messung der pyramidengrösse auf einer texturierten oberfläche Download PDF

Info

Publication number
EP1692458B1
EP1692458B1 EP04804767A EP04804767A EP1692458B1 EP 1692458 B1 EP1692458 B1 EP 1692458B1 EP 04804767 A EP04804767 A EP 04804767A EP 04804767 A EP04804767 A EP 04804767A EP 1692458 B1 EP1692458 B1 EP 1692458B1
Authority
EP
European Patent Office
Prior art keywords
light
intensity
textured surface
pyramids
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04804767A
Other languages
English (en)
French (fr)
Other versions
EP1692458A1 (de
Inventor
Adolf MÜNZER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SolarWorld Industries Deutschland GmbH
Original Assignee
SolarWorld Industries Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SolarWorld Industries Deutschland GmbH filed Critical SolarWorld Industries Deutschland GmbH
Priority to EP04804767A priority Critical patent/EP1692458B1/de
Publication of EP1692458A1 publication Critical patent/EP1692458A1/de
Application granted granted Critical
Publication of EP1692458B1 publication Critical patent/EP1692458B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Definitions

  • the present invention relates to a method and device for measuring an average pyramid size of pyramids on a textured surface of an object.
  • An example of such an object is a wafer for a photovoltaic cell, wherein the light-receiving surface is textured in order to improve the efficiency of the photovoltaic cell.
  • Texturing can be done by means of chemical etching, see for example J. A. Mazer, Solar Cells: An introduction to crystalline photovoltaic technology, Kluwer Academic Publishers, 1997, pages 136-138 .
  • the etchant used is an anisotropic etchant, and in combination with a particular crystallographic orientation of a surface of a wafer to be treated, pyramids extending outwardly on the surface of the wafer can be produced. Chemically etching a surface will produce pyramids of sizes in the range of 1-20 micrometers. It will be understood that the sizes are distributed around an average value.
  • the expression 'size of the pyramids' is used to refer to the height of the pyramids.
  • the pyramids can have substantially the same shape determined by the crystallographic properties of the wafer material. For example, all pyramids can have a quadratic base and a fixed ratio of height above the surface and base length.
  • the efficiency of photovoltaic cells does not depend on the size of the pyramids on the textured surface of a wafer.
  • Applicant had found that some manufacturing processes depend on the surface roughness.
  • An example of such a process is doping the wafer with a liquid dopant solution in order to manufacture a surface layer having a doping that differs from the doping of the wafer.
  • Doping the wafer is done after texturing the surface of the wafer, and the size of the pyramids affects the distribution of the liquid dopant solution and consequently the efficiency of the photovoltaic cell.
  • the efficiency increases inverse proportional to the size of the pyramids on the textured surface.
  • the pyramids should have a small average size. This not only requires a suitable etchant, but the size of the pyramids has to be measured in a practical way.
  • the size of the pyramids is measured with a microscope or an electron microscope.
  • microscopes will only give a spot measurement.
  • spot measurements In order to determine the average size a large number of spot measurements has to be made. This is not practical.
  • US patent specification No. 3 782 836 discloses a surface irregularity analysing system and method for determining the number and location of defects in the surface of a body of semiconductor material.
  • Light is irradiated onto the surface along a direction that deviates from the normal of the surface.
  • a higher intensity of reflected light is interpreted as corresponding to a higher number of etch pits.
  • US patent specification No. 5 581 346 discloses an apparatus and method for mapping defects in the surfaces of polycrystalline material, in a manner that distinguishes dislocation pits from grain boundaries.
  • Laser light is irradiated perpendicular onto the surface (i.e. parallel to the normal of the surface).
  • An etch pit density is determined from a linear relationship between etch pit density and a normalized diffused light intensity, wherein it has been observed that the slope of the relationship depends on the size of etch pits.
  • US 6 191 849 discloses a wafer inspecting apparatus suitable to determining whether a scattering substance is a surface foreign matter or an internal defect.
  • US 3 850 526 discloses a method and system for measuring surface finish of relatively smooth machines parts, and is not relevant to the present invention.
  • US 5 032 734 discloses a method and apparatus for non-destructively measuring the density and orientation of crystalline and other micro defects, and is not relevant to the present invention.
  • the first and second directions are substantially collinear, so that the light received along the second direction can be regarded as reflected light.
  • the term 'reflected light' is used herein in this meaning, but it will be understood that the light received in a substantially collinear arrangement can also comprise or be formed of light that is scattered or diffracted back into the direction or the incident light.
  • Light that is scattered or diffracted in other directions can also in principle be used.
  • the first and second directions are chosen accordingly.
  • the first and second directions deviate from the direction normal to the textured surface.
  • the light beam is a beam of plane waves, which corresponds to a parallel light bundle.
  • the divergence angle (total opening angle) defining the deviation from a parallel bundle is 20 degrees or less, more preferably 10 degrees or less, most preferably 5 degrees or less.
  • the present invention is based on a discovery made when observing sunlight reflected by the textured surface of an object. Applicant found that the lustre of the textured surface, which is the intensity of the reflected sunlight, can be correlated with the average size of the pyramids. The correlation that was found was that intensity increased with increasing average size of the pyramids.
  • Figure 1 showing the device 1 for measuring the size of pyramids 3 outwardly extending on a textured surface 4 of an object in the form of a plane wafer 6.
  • the device 1 comprises an object holder 10, a light source 12, a detector 13, and means for further processing the measurements of the detector 13 in the form of a display 14 electronically connected to the detector 13 by means of a wire 15.
  • the light source 12 emits a beam of plane waves in the direction of its optical axis 20 (first direction).
  • the beam of plane waves is emitted onto a region 21 of the textured surface 4 to receive light that is reflected from the region 21.
  • the detector 13, which has an optical axis 22, measures the intensity of the reflected light that is received in this direction (second direction).
  • the intensity of the reflected light is then displayed on the display 14.
  • Both optical axes 20 and 22 deviate from the normal 25 of the surface 4 by 10 degrees or more.
  • the light source 12 is a laser.
  • the cross-sectional area of the beam is suitably between 0.2 and 2 cm 2 .
  • the pyramids outwardly extending from a surface after an etching process will have a certain distribution of size, e.g. 2 ⁇ 0.5 ⁇ m, or 2(-1 / +3) ⁇ m.
  • a relatively large region of the surface compared to the pyramid size is irradiated, an average size is measured.
  • the textured surface is preferably so oriented that the intensity of the reflected light is highest.
  • FIG. 2 shows schematically such a correlation.
  • Ps in micrometer
  • I intensity of the reflected light in arbitrary units for a given combination of light source and detector.
  • the (highest) intensity of the reflected light of an unknown object for a given combination of light source and detector is converted into average pyramid size. This conversion is carried out by the means for further processing the measurements. Then, instead of the intensity, the display 14 shows the average size. Instead of a size one can as well display an indication of the size of the pyramids 3, for example small (intensity between 0 and 200 units, size between 1 and 2 micrometer), medium (intensity between 200 and 600 units, size between 2 and 5 micrometer) and large (intensity larger than 600 units, size larger than 5 micrometer).
  • the textured surface is preferably so oriented that intensity of the reflected light is highest.
  • the device further includes a system to change the position of the object 6, the optical axis 20 of the light source 12 and the optical axis 22 of the detector 13.
  • the optical axes 20 and 22 of the light source 12 and the detector 13 are collinear. However, this cannot always be achieved, so that in general the optical axes 20 and 22 are substantially collinear.
  • the angle between the optical axes 20 and 22 is 20 degrees or less, preferably 10 degrees or less, more preferably 5 degrees or less.
  • optical axes 20 and 22 are substantially collinear is shown in Figure 1 , wherein the light source 12 and the detector 13 are arranged on top of each other and fixed to each other. The light source 12 and the detector 13 are so directed that optical axes 20 and 22 intersect at or near the textured surface 4 of the object 6. It shall be clear that in the schematic drawing the angle between the optical axes has been exaggerated.
  • the device is provided with a hinge 30 connecting the object holder 10 to a fixed reference 31, which can be a frame (not shown) supporting the assembly of light source 12 and detector 13.
  • the hinge 30 connects the object holder 10 such that the object holder 10 is rotatable about an axis (not shown) that is perpendicular to both the optical axis 20 of the light source 12 and the optical axis 22 of the detector 13.
  • the optical axis 20 and 22 lay in the plane of drawing, and therefore the axis of rotation is perpendicular to the plane of drawing.
  • the present invention provides a method and a device for measuring an average pyramid size of pyramids on a textured surface of an object, such as a wafer of a photovoltaic cell.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Optical Measuring Cells (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Claims (10)

  1. Verfahren zur Messung einer Durchschnitts-Pyramidengröße (Ps) von Pyramiden, die sich auf einer texturierten Oberfläche eines Objekts (6) nach außen erstrecken, wobei das Verfahren umfasst:
    - Aussenden eines Lichtstrahls von einer Lichtquelle (12) in einer ersten Richtung auf einen Bereich (21) der texturierten Oberfläche,
    - Messen einer von diesem Bereich in einer zweiten Richtung empfangenen Lichtintensität (I), und
    - Verarbeitung der gemessenen Intensität zur Berechnung der durchschnittlichen Pyramidengröße, wobei die Durchschnitts-Pyramidengröße anhand eines vorbestimmten Verhältnisses zwischen der in der zweiten Richtung empfangenen Lichtintensität (I) und einer Pyramidengröße bestimmt wird, wobei die Pyramidengröße mit steigender Intensität des empfangenen Lichts zunimmt.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die erste und die zweite Richtung von der Normalrichtung (25) auf die texturierte Oberfläche abweichen.
  3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei dem Lichtstrahl um Strahl aus ebenen Wellen handelt.
  4. Verfahren gemäß einem der Ansprüche 1-3, dadurch gekennzeichnet, dass die erste und die zweite Richtung im Wesentlichen kollinear sind.
  5. Verfahren gemäß einem der Ansprüche 1-4, dadurch gekennzeichnet, dass die Position des Objekts (6) und/oder die ersten Richtungen des einfallenden Lichts und/oder die zweite Richtung, in der die Lichtintensität (I) gemessen wird, zur Maximierung der in der zweiten Richtung empfangenen Lichtintensität (I) angepasst sind.
  6. Vorrichtung zur Messung einer Durchschnitts-Pyramidengröße (Ps) von Pyramiden auf einer texturierten Oberfläche eines Objekts (6), welche Vorrichtung umfasst
    - einen Objekthalter (10), der eine Normalrichtung (25) auf eine texturierte Oberfläche eines Objekts im Objekthalter vorgibt,
    - eine Lichtquelle (12) mit einer optischen Achse (20), die so angeordnet ist, dass sie im Normalbetrieb einen Lichtstrahl in einer ersten Richtung auf einen Bereich (21) der texturierten Oberfläche aussendet,
    - einen Detektor (13) mit einer optischen Achse (22), der so angeordnet ist, dass er im Normalbetrieb die aus dem Bereich (21) in einer zweiten Richtung empfangene Lichtintensität misst, wobei die erste und die zweite Richtung von der Normalrichtung (25) auf die texturierte Oberfläche des Objekts im Objekthalter so abweichen, dass beide optischen Achsen von der Normalrichtung auf die texturierte Oberfläche um 10 Grad oder mehr abweichen, und
    - Mittel zur Weiterverarbeitung der Messdaten des Detektors (13) zur Berechnung der durchschnittlichen Pyramidengröße (Ps), wobei die Durchschnitts-Pyramidengröße anhand eines vorbestimmten Verhältnisses zwischen der in der zweiten Richtung empfangenen Lichtintensität (I) und einer Pyramidengröße (Ps) bestimmt wird, wobei die Pyramidengröße mit steigender Intensität des empfangenen Lichts zunimmt.
  7. Vorrichtung gemäß Anspruch 6, umfassend ein System (30) zur Veränderung der Position des Objekts (6) und/oder der optischen Achse (20) der Lichtquelle (12) und/oder der optischen Achse (22) des Detektors (13) zur Maximierung der Intensität (I) des in der zweiten Richtung empfangenen Lichts.
  8. Vorrichtung gemäß Anspruch 6 oder 7, dadurch gekennzeichnet, dass die optischen Achsen (20, 22) der Lichtquelle (12) und des Detektors (13) im Wesentlichen kollinear sind.
  9. Vorrichtung gemäß Anspruch 8, dadurch gekennzeichnet, dass die Lichtquelle (12) und der Detektor (13) aneinander befestigt sind, so dass sich die optischen Achsen an oder im Bereich der texturierten Oberfläche des Objekts schneiden.
  10. Vorrichtung gemäß Anspruch 9, dadurch gekennzeichnet, dass der Objekthalter (10) um eine Achse drehbar ist, die sowohl senkrecht zur optischen Achse (20) der Lichtquelle (12) als auch zur optischen Achse (22) des Detektors (13) ist.
EP04804767A 2003-12-12 2004-12-10 Messung der pyramidengrösse auf einer texturierten oberfläche Not-in-force EP1692458B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04804767A EP1692458B1 (de) 2003-12-12 2004-12-10 Messung der pyramidengrösse auf einer texturierten oberfläche

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03028465 2003-12-12
PCT/EP2004/053398 WO2005059469A1 (en) 2003-12-12 2004-12-10 Measuring pyramid size on a textured surface
EP04804767A EP1692458B1 (de) 2003-12-12 2004-12-10 Messung der pyramidengrösse auf einer texturierten oberfläche

Publications (2)

Publication Number Publication Date
EP1692458A1 EP1692458A1 (de) 2006-08-23
EP1692458B1 true EP1692458B1 (de) 2009-08-12

Family

ID=34684530

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04804767A Not-in-force EP1692458B1 (de) 2003-12-12 2004-12-10 Messung der pyramidengrösse auf einer texturierten oberfläche

Country Status (8)

Country Link
US (1) US7336376B2 (de)
EP (1) EP1692458B1 (de)
JP (1) JP4532503B2 (de)
AT (1) ATE439569T1 (de)
AU (1) AU2004299652B2 (de)
DE (1) DE602004022585D1 (de)
ES (1) ES2328151T3 (de)
WO (1) WO2005059469A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012012156A1 (de) 2012-06-19 2013-12-19 Audiodev Gmbh Verfahren zum optischen vermessen von pyramiden auf texturierten monokristallinen siliziumwafern

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893385B2 (en) * 2007-03-01 2011-02-22 James Neil Rodgers Method for enhancing gain and range of an RFID antenna
DE102010029133A1 (de) * 2010-05-19 2011-11-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Charakterisierung von pyramidalen Oberflächenstrukturen auf einem Substrat
US8664100B2 (en) * 2010-07-07 2014-03-04 Varian Semiconductor Equipment Associates, Inc. Manufacturing high efficiency solar cell with directional doping
JP5919567B2 (ja) * 2012-05-31 2016-05-18 パナソニックIpマネジメント株式会社 テクスチャサイズの測定装置、太陽電池の製造システム、及び太陽電池の製造方法
CN102779770B (zh) * 2012-07-25 2014-08-20 中国科学院长春光学精密机械与物理研究所 太阳能电池表面绒面结构的检测方法
CN103115574A (zh) * 2013-02-01 2013-05-22 桂林电子科技大学 太阳能电池片绒面特性检测仪
EP3851789B1 (de) * 2020-01-15 2021-12-01 Sick IVP AB Verfahren zur kalibrierung eines abbildungssystems mit einem kalibrierungszielobjekt

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782827A (en) * 1971-08-04 1974-01-01 Itek Corp Optical device for characterizing the surface or other properties of a sample
US3782836A (en) * 1971-11-11 1974-01-01 Texas Instruments Inc Surface irregularity analyzing method
US3850526A (en) * 1973-03-16 1974-11-26 Atomic Energy Commission Optical method and system for measuring surface finish
US4137123A (en) * 1975-12-31 1979-01-30 Motorola, Inc. Texture etching of silicon: method
USRE33424E (en) * 1983-12-26 1990-11-06 Hitachi, Ltd. Apparatus and method for measuring the depth of fine engraved patterns
US4615620A (en) * 1983-12-26 1986-10-07 Hitachi, Ltd. Apparatus for measuring the depth of fine engraved patterns
JPS6250612A (ja) * 1985-08-29 1987-03-05 Lion Corp 表面粗さの測定方法
US5032734A (en) * 1990-10-15 1991-07-16 Vti, Inc. Method and apparatus for nondestructively measuring micro defects in materials
JPH05332755A (ja) * 1992-05-29 1993-12-14 Mitsubishi Paper Mills Ltd 平滑性測定装置
US5581346A (en) * 1993-05-10 1996-12-03 Midwest Research Institute System for characterizing semiconductor materials and photovoltaic device
US5561346A (en) * 1994-08-10 1996-10-01 Byrne; David J. LED lamp construction
US5539213A (en) * 1995-01-27 1996-07-23 International Business Machines Corporation Process and apparatus for laser analysis of surface having a repetitive texture pattern
US5951891A (en) * 1997-03-24 1999-09-14 International Business Machines Corporation Optical apparatus for monitoring profiles of textured spots during a disk texturing process
JP3404274B2 (ja) * 1997-12-26 2003-05-06 株式会社日立製作所 ウエハ検査装置
DE19811878C2 (de) * 1998-03-18 2002-09-19 Siemens Solar Gmbh Verfahren und Ätzlösung zum naßchemischen pyramidalen Texturätzen von Siliziumoberflächen
US5978091A (en) * 1998-06-26 1999-11-02 Hmt Technology Corporation Laser-bump sensor method and apparatus
US6111638A (en) * 1998-08-21 2000-08-29 Trw Inc. Method and apparatus for inspection of a solar cell by use of a rotating illumination source
US6388229B1 (en) * 1999-08-13 2002-05-14 International Business Machines Corporation Method for laser texturing magnetic recording disk
JP2001201323A (ja) * 2000-01-20 2001-07-27 Nec Corp 溝の深さ測定方法及び測定装置
JP2004177185A (ja) * 2002-11-25 2004-06-24 Kyocera Corp 基板の検査方法および検査装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012012156A1 (de) 2012-06-19 2013-12-19 Audiodev Gmbh Verfahren zum optischen vermessen von pyramiden auf texturierten monokristallinen siliziumwafern
WO2013189592A1 (de) 2012-06-19 2013-12-27 Audio Dev Gmbh Verfahren zum optischen vermessen von pyramiden auf texturierten monokristallinen silizumwafern
DE102012012156B4 (de) * 2012-06-19 2014-05-15 Audiodev Gmbh Verfahren zum optischen vermessen von pyramiden auf texturierten monokristallinen siliziumwafern

Also Published As

Publication number Publication date
EP1692458A1 (de) 2006-08-23
AU2004299652B2 (en) 2007-11-29
JP2007514155A (ja) 2007-05-31
ES2328151T3 (es) 2009-11-10
ATE439569T1 (de) 2009-08-15
DE602004022585D1 (de) 2009-09-24
AU2004299652A1 (en) 2005-06-30
US7336376B2 (en) 2008-02-26
WO2005059469A1 (en) 2005-06-30
US20050162666A1 (en) 2005-07-28
JP4532503B2 (ja) 2010-08-25

Similar Documents

Publication Publication Date Title
US5581346A (en) System for characterizing semiconductor materials and photovoltaic device
US8169613B1 (en) Segmented polarizer for optimizing performance of a surface inspection system
AU676058B2 (en) Improved defect mapping system
EP1692458B1 (de) Messung der pyramidengrösse auf einer texturierten oberfläche
CN106990120A (zh) 一种太阳能电池片的质量检测方法及其检测装置
US6122047A (en) Methods and apparatus for identifying the material of a particle occurring on the surface of a substrate
US10386310B2 (en) System for measuring levels of radiation reflecting from semiconductor material for use in measuring the dopant content thereof
WO2019042208A1 (zh) 光学测量系统及方法
CN107003112A (zh) 用于半导体检验及计量的线扫描刀口高度传感器
CN100419377C (zh) 用于光电池的纹理定量分析的光学方法和装置
CN107170692A (zh) 一种太阳能电池片制绒质量检测方法
Moralejo et al. Study of the crystal features of mc‐Si PV cells by laser beam induced current (LBIC)
KR20130099539A (ko) 태양전지 웨이퍼 비전 검사기의 조명장치
Nozka et al. Monitoring of mirror degradation of fluorescence detectors at the Pierre Auger Observatory due to dust sedimentation
Sopori et al. High-speed mapping of grown-in defects and their influence in large-area silicon photovoltaic devices
Sopori et al. Process monitoring in solar cell manufacturing
Parretta et al. A new approach to the analysis of light collected by textured silicon surfaces
Schütt et al. Fast large area reflectivity scans of wafers and solar cells with high spatial resolution
CN116793908A (zh) 一种基于偏振光能差的亚微米颗粒粒度测量方法及系统
CN116295127A (zh) 一种测量光线长度确定热电联供受光面方位的方法
Taijing et al. Characterization of surface microroughness of silicon wafers by a multipass Fabry–Perot Rayleigh–Brillouin scattering spectrometer
Jimenez et al. Light beam induced current mapping of mc-si solar cells: Influence of grain boundaries and intragrain defects
Duanmu et al. GT-PVSCAN 8000: A Versatile Tool for Photovoltaic Mapping Analysis
CN102779770A (zh) 太阳能电池表面绒面结构的检测方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLARWORLD INDUSTRIES DEUTSCHLAND GMBH

17Q First examination report despatched

Effective date: 20090115

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLARWORLD INDUSTRIES DEUTSCHLAND GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004022585

Country of ref document: DE

Date of ref document: 20090924

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2328151

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

26N No opposition filed

Effective date: 20100517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091113

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101227

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111219

Year of fee payment: 8

Ref country code: FR

Payment date: 20120103

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120217

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004022585

Country of ref document: DE

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121210

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121211