EP1689328A1 - Recouvrement différentiel et procédés de revêtement - Google Patents

Recouvrement différentiel et procédés de revêtement

Info

Publication number
EP1689328A1
EP1689328A1 EP04822000A EP04822000A EP1689328A1 EP 1689328 A1 EP1689328 A1 EP 1689328A1 EP 04822000 A EP04822000 A EP 04822000A EP 04822000 A EP04822000 A EP 04822000A EP 1689328 A1 EP1689328 A1 EP 1689328A1
Authority
EP
European Patent Office
Prior art keywords
medical appliance
stent
appliance
scaffolding
medical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04822000A
Other languages
German (de)
English (en)
Other versions
EP1689328A4 (fr
Inventor
Eric K. Mangiardi
Jason M. Reynolds
Ulf R. Borg
Tony D. Alexander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merit Medical Systems Inc
Original Assignee
Alveolus Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/718,217 external-priority patent/US7959671B2/en
Application filed by Alveolus Inc filed Critical Alveolus Inc
Publication of EP1689328A1 publication Critical patent/EP1689328A1/fr
Publication of EP1689328A4 publication Critical patent/EP1689328A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/18Internal ear or nose parts, e.g. ear-drums
    • A61F2/186Nose parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0077Special surfaces of prostheses, e.g. for improving ingrowth
    • A61F2002/009Special surfaces of prostheses, e.g. for improving ingrowth for hindering or preventing attachment of biological tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2002/043Bronchi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2002/046Tracheae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0009Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using materials or accessories for preventing galvanic or electrolytic corrosion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0051Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in tissue ingrowth capacity, e.g. made from both ingrowth-promoting and ingrowth-preventing parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0056Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in wettability, e.g. in hydrophilic or hydrophobic behaviours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/10Materials for lubricating medical devices

Definitions

  • the present invention relates generally to methods of covering and/or coating medical devices and more particularly to methods of manipulating the compliance of the cover to modify fluid mechanics on the interior of the medical device and the friction points on the exterior thereof.
  • Stents are devices that are inserted into a vessel or passage to keep the lumen open and prevent closure due to a stricture, external compression, or internal obstruction.
  • stents are commonly used to keep blood vessels open in the coronary arteries and they are frequently inserted into the ureters to maintain drainage from the kidneys, the bile duct for pancreatic cancer or cholangiocarcinoma or the esophagus for strictures or cancer.
  • Vascular as well as not vascular stenting has evolved significantly; unfortunately there remain significant limitations with respect to the technology for producing stents suitable to various portions of a patient's anatomy.
  • the stent had to be manufactured from multiple materials, at least one for each characteristic desired. As a result, many of these stents are woven from two or more metals having differing shape-memories for example. Unfortunately, braided stents are vulnerable to premature obsolescence. Moreover, providing multiple material types in a single stent may lead to inconsistent characteristics along the surface area of the stent. This is particularly undesirable when the stent is to be placed in vascular or nonvascular lumens that have been occluded for one reason or another. The stent needs to be stiffer in some regions while more flexible in others.
  • cardiovascular stents since many medical device companies have chosen to use poorly adapted cardiovascular stents for Pulmonary, Gl and Peripheral Vascular indications, many of the anatomical differences in the lumens are not accounted for in stent design. For example, the pulsation of the cardiovascular lumen and the concomitant radial force requirements of a cardiovascular stent differ substantially from that of a tightly constricted lumen such as the trachea during repeated coughing. When a stent developed for the former is indicated for the latter, the stent tends to fail under the extreme conditions and lose its elasticity and therefore its ability of ensure airway patency. Non-vascular lumens also tend to have ciliated epithelia so as to facilitate clearance of fluids and particulates.
  • coated stents were not specifically designed for ciliated lumen in that the external coating damages the cilia and prevents the body's natural clearing function.
  • the coating itself is usually made of a predominately hydrophilic polymer, which can lead to mucous formation and/or fluid stagnation. Stagnation of fluids or material passing through the lumen can lead to additional complications such as in stent restenosis or bacterial infections. Therefore, there remains an existing need for a therapeutic stent that can have varying characteristics along its surface area while being stamped, not braded, from a single base material.
  • a covered stent that is preferably covered internally such that the outer scaffolding surface of the stent is raised from the outer surface of the coating.
  • cilia function is only partially limited and mucociliary clearance is not significantly affected.
  • a need also remains for a coating that itself has anti-adherent properties or is complexed with an anti-adherent such that bacteria, fungi or other microbials cannot colonize the cover in particular and the stent generally.
  • a cover for the proximal and distal ends of the stent that prevent epitheli ⁇ liz ⁇ tion and granulation tissue formation while achieving the benefits of traditional uncovered stents.
  • a principal purpose of the present invention to provide a stent, in accordance with an exemplary embodiment of the present invention, which combines many of the excellent characteristics of both silicone and metal stents while eliminating the undesirable ones.
  • it is an objective of a preferred embodiment in accordance with the present invention to provide a stent that is easily installed, yet in alternative embodiments, removable.
  • the stent in accordance with this embodiment of the present invention would not cause material infections and may be capable of reducing infection. Therefore, a principal objective of a preferred embodiment in accordance with the present invention is to provide a prosthesis that is suitable for both permanent and temporary use while being easy to insert, reposition and remove.
  • a principal objective of a preferred embodiment of the present invention is to provide a stent that may be stamped from preferably a single material that is capable of maintaining its axial working length when radially compressed. To this end, the stent does not have a seam that could aggravate luminal tissue.
  • an exemplary embodiment in accordance with the present invention is to provide a prosthesis that will have superior internal to external diameter ratio, superior radial force with dynamic expansion, while being suitable for use in pediatric and adult patients with malignant and benign disease.
  • a principal objective of an exemplary stent in accordance with the present invention is to provide a family of stents where the relative hardness/softness of regions of the stent can differ from other regions of the stent to provide additional patient comfort and resistance to radial forces.
  • An additional objective in accordance with a preferred embodiment of the present invention is to provide a prosthesis that minimizes cilia destruction at the site of implantation.
  • the preferred prosthesis is coated internally with a polyurethane such that the surfaces of the struts that come into contact with the lumen of the patient are elevated above the surface of the coating such that the cilia can move to allow for free fluid action of ciliated epithelium.
  • Still another objective in accordance with the present invention is to provide a cover and method for applying the cover to a stent.
  • the cover may be applied such that the cover is at various levels of compliance with respect to the stent struts. To this end, it provides an opportunity to manipulate flow mechanics for the inner diameter of the stent as well as the friction points of the outer diameter of the stent.
  • Yet another objective in accordance with the present invention is to provide covering about the distal end, the proximal end or combination so as to retain the benefits of an uncovered stent while retaining the ability to remove the stent. Moreover, the end only and full stent covering may be provided in addition to the coating to eliminate galvanic current. Further objectives, features and advantages of the invention will be apparent from the following detailed description taken in conjunction with the accompanying drawings.
  • FIG. 1 shows a perspective view of the cross-section of select struts of an exemplary stent with a covering applied to the internal diameter so as to cause the cover to conform to the stent struts.
  • FIG. 2 shows an alternative perspective view of the select stent strut cross-section of FIG. 1 where the cover is not compliant with the stent struts.
  • FIG. 3 shows an enlarged perspective view of a stent viewed from one end through the lumen thereof showing the compliant cover of FIG. 1 .
  • FIG. 4 shows an alternative end-to-end perspective view of the stent where the cover is super-compliant in certain regions of the stent such that the cover extends through the interstices toward the outer surface of the stent.
  • FIG. 5 shows an enlarged perspective view of the struts where the cover does not conform to the geometry of the struts.
  • a preferred embodiment of the stent provides a stent that prevents epithelialization of the stent and is not subject to premature elongation and foreshortening but is capable of engaging the desired implantation location.
  • the stent also retains its axial length while undergoing radial compression.
  • the stent is preferably formed from a composite material selected from the group consisting essentially of Ni, C, Co, Cu, Cr, H, Fe, Nb, O, Ti and combinations thereof.
  • the composite material is generally formed into a compressed tube from which the stent is etched and is formed on a suitable shaping device to give the stent the desired external geometry.
  • the stent is preferably formed on a shaping tool that has substantially the desired contour of the external stent dimensions.
  • optical photography and/or optical videography of the target lumen may be conducted prior to stent formation.
  • the geometry of corresponding zones and connector regions of the stent then can be etched and formed in accordance with the requirements of that target lumen. For example, if the stent were designed for the trachea, which has a substantially D shaped lumen and additionally the middle zones needed to be softer than the end zones, the stent could be designed to those specifications. Stent angles may be modified to provide different characteristics to different zones of the stent.
  • a patient specific prosthesis could be engineered.
  • These techniques can be adapted to other non-vascular lumen but is very well suited for vascular applications where patient specific topography is a function of a variety of factors such as genetics, lifestyle, etc.
  • stents in accordance with the present invention can take on an infinite number of characteristic combinations as zones and segments within a zone can be modified by changing angles, segment lengths and segment thicknesses during the etching and forming stages of stent engineering or during post formation processing and polishing steps.
  • FIGS. 1 -3 show the preferred interstice geometry. Not shown are a wide variety of interstice geometries that are also acceptable alternatives to the preferred, namely, U, V, W, Z, S and X geometries to name a few.
  • the stent also is formed of memory metal and preferably has unique geometrical interstices that are laser etched therein. However, other conventional ways of forming interstices in unitary stents, though not equivalent are contemplated, may be employed and would be within the skill set of one in the art.
  • the stent has circumferential bands extending perpendicularly with respect to the luminal device's longitudinal axis. These bands are referred to generally as zones.
  • a connector connects these bands to one another; the connector is an additional means for adjusting stent functionality.
  • the connector defines a substantially U shaped member, but could define other geometries such as U, V, W, Z, S and X to name a few.
  • a plurality of eyelets that allow a physician to purse string the stent with suture to facilitate removability.
  • the eyelets are preferably between about 200 ⁇ m and 300 ⁇ im, however, the eyelets may be smaller or larger to accommodate the need of the target site.
  • the preferred eyelet size is about 350 ⁇ m as the preferred suture type is 4-0.
  • the medic ⁇ l appliance may be pre-threaded with suture or the user may provide the suture after implantation.
  • An exemplary stent in accordance with the present invention with relatively great torsionality and radial flexibility would be rated soft.
  • An exemplary soft rated stent comprises distance between U shaped connectors of about 4.5 ⁇ m in the compressed state (i.e., contracted in the 3mm tube subject to laser etching).
  • the length of the crossing member is preferably about 1 .0 ⁇ m.
  • the lengths of the leg members are preferably about 1 .5 ⁇ long.
  • the leg members may further comprise feet that attached to the remainder of the stent scaffolding. The feet can be adjusted from a standard length of about 0.25 ⁇ m to further adjust the characteristics of the stent.
  • the softness index or relative flexibility can be increase by increasing the various lengths discussed above.
  • a U shaped connector with short legs deviating from the crossing member at angles greater than 90° will be extremely rigid and resistant to torsional strain as compared to a U shaped connector with longer legs diverging from the crossing member at angles less than 90°.
  • the interstices themselves may define various shapes that by their very nature afford novel functionality to the stent.
  • the changes of functionality are more a function of the dimensional differences of the various shapes rather than a function of the shapes themselves. Therefore, it is important to keep in mind that the dimensional differences discussed in the previous paragraph are determinative of the functionality accorded the stent by the varying interstice geometries.
  • FIGS. 1 -3 also show the coating provided in select embodiments in accordance with the present invention.
  • the coating preferably comprises a stable polymeric material such as polyurethane that can be deposited on a stent to form a thin film.
  • the film preferably forms layers when annealed to the stent such that the hydrophobic moieties within the polymer are predominately oriented outward and the hydrophilic moieties are predominately oriented inward.
  • the relative hydroaffinity may be altered depending on the characteristics desired by the user.
  • the coating would more suitably have a predominately hydrophilic outer surface.
  • the physiochemical parameters such as surface-free energy, charge density provide a substantial barrier to biofilm formation in general and ligand-binding events mediated by microbial adhesions and extracellular polymers.
  • additional anti-adherents know in the art may be applied to provide lubricity as well as an additional barrier for microbials.
  • a preferred coating in accordance with the present invention would be hydrophilic and hydroscope to ensure the surface would always be wet which prevents mucostasis as well as microbial adherence.
  • preferred stents in accordance with the present invention are covered from the interior of the stent lumen such that the stent scaffolding.
  • the cover may be strategically applied to either form a strut compliant membrane, a non-compliant membrane within the internal diameter of the stent or incrementally in between.
  • One of the principal functions of the variable covering method is to enhance friction points on the exterior of the stent and/or control flow dynamics through the interior lumen of the stent. Making specific reference to FIGS.
  • the stent struts 100 are shown with the interior lumen surface 120 facing upward.
  • a compliant cover forms angles between the struts 100 that can cause fluid retention. If this is a desirable characteristic based on the target lumen of the stent, such covering can be achieved by using a compliant heating mechanism when coupling the cover 200 to the struts.
  • the cover 200 would be applied to the struts 100 with a non-compliant device so as to prevent the cover 200 from conforming to the contours of the stent struts 100.
  • the stent is preferably coated in a multi-step process, which comprises providing a stent and initially spraying the stent with a polymeric material to coat the struts. Though the steps may be reversed it is preferable to follow the spraying step with the interior coating step.
  • the stent is placed into a hollow mold to retain the stent shape as the internal diameter of the stent is coated with the polymeric material to form a non-porous cover 200.
  • An alternative cover could be porous for breathability or selective leaching.
  • the cover 100 can be provided in sheets or additional spray applications, however, the preferred embodiment is thin sheets. Sheets are generally preferred to facilitate the proper orientation of the polymer side chains to ensure that the desired moiety (e.g., hydrophilic and/or hydrophobic) is facing the lumen.
  • an application device such as a balloon or other device in which temperature can be regulated is implanted to sandwich the layer of polymer between the stent inner diameter and the balloon.
  • the balloon is expanded and heated to a temperature of about between 200° and 400° F to anneal the polymer to the stent.
  • Preferred polymers such as various designer polyurethanes (e.g., Cronoflex ® manufactured by Cardiotech International) are suitable for such applications but other polymers are acceptable.
  • Degree of conformity may depend on the compliance of the balloon as well as the presence or absence of a collar about the external surface of the stent.
  • the collar may have ribs complementary to the stent interstices or alternatively recessed wells to facilitate the extent of super compliance of the cover. Additionally, the same methods may be employed to cover and coat portions of the stent rather than the complete stent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Surgery (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Prostheses (AREA)

Abstract

La présente invention, dans un mode de réalisation exemplaire, propose un stent, qui combine plusieurs excellentes caractéristiques des stents en silicone et métalliques tout en éliminant les caractéristiques indésirables. En particulier, un objectif principal conformément à la présente invention est de proposer une famille de stents dans laquelle la dureté/mollesse relative de régions du stent peuvent différer des autres régions du stent pour conférer un confort supplémentaire au patient et une résistance aux forces de compression. Des modes de réalisation exemplaires proposent un stent qui est recouvert de façon à conférer certaines caractéristiques prédéfinies. En particulier, un stent recouvert est propose, lequel est revêtu au niveau interne de sorte que la surface d’accrochage externe du stent comporte des zones de frottement améliorées alors que la surface interne présente certaines caractéristiques.
EP04822000A 2003-11-20 2004-11-20 Recouvrement différentiel et procédés de revêtement Withdrawn EP1689328A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/718,217 US7959671B2 (en) 2002-11-05 2003-11-20 Differential covering and coating methods
PCT/US2004/039162 WO2005110282A1 (fr) 2002-11-05 2004-11-20 Recouvrement différentiel et procédés de revêtement

Publications (2)

Publication Number Publication Date
EP1689328A1 true EP1689328A1 (fr) 2006-08-16
EP1689328A4 EP1689328A4 (fr) 2010-12-01

Family

ID=36647294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04822000A Withdrawn EP1689328A4 (fr) 2003-11-20 2004-11-20 Recouvrement différentiel et procédés de revêtement

Country Status (4)

Country Link
EP (1) EP1689328A4 (fr)
JP (1) JP2007512107A (fr)
AU (1) AU2004319771A1 (fr)
CA (1) CA2546809A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021007570A1 (fr) * 2019-07-11 2021-01-14 The Cleveland Clinic Foundation Système et procédé pour la conception et le positionnement d'endoprothèse basés sur un modèle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030329A2 (fr) * 2000-10-13 2002-04-18 Rex Medical, L.P. Stents couverts a branche laterale
US20020178570A1 (en) * 1997-03-05 2002-12-05 Scimed Liffe Systems, Inc. Conformal laminate stent device
US20020198593A1 (en) * 2001-06-11 2002-12-26 Advanced Cardiovascular Systems, Inc. Intravascular stent
WO2003007781A2 (fr) * 2001-07-19 2003-01-30 The Cleveland Clinic Foundation Endoprothese vasculaire possedant une couche de tissu biologique
WO2003057075A2 (fr) * 2001-12-27 2003-07-17 Advanced Cardiovascular Systems, Inc. Stent intravasculaire hybride
WO2005030086A2 (fr) * 2003-09-24 2005-04-07 Alveolus Inc. Extenseur a revetement ayant une fonctionnalite determinee par sa geometrie et procede de fabrication correspondant
EP1550477A1 (fr) * 2002-08-23 2005-07-06 Japan as represented by president of National Cardiovascular Center Endoprothese et procede de production associe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020178570A1 (en) * 1997-03-05 2002-12-05 Scimed Liffe Systems, Inc. Conformal laminate stent device
WO2002030329A2 (fr) * 2000-10-13 2002-04-18 Rex Medical, L.P. Stents couverts a branche laterale
US20020198593A1 (en) * 2001-06-11 2002-12-26 Advanced Cardiovascular Systems, Inc. Intravascular stent
WO2003007781A2 (fr) * 2001-07-19 2003-01-30 The Cleveland Clinic Foundation Endoprothese vasculaire possedant une couche de tissu biologique
WO2003057075A2 (fr) * 2001-12-27 2003-07-17 Advanced Cardiovascular Systems, Inc. Stent intravasculaire hybride
EP1550477A1 (fr) * 2002-08-23 2005-07-06 Japan as represented by president of National Cardiovascular Center Endoprothese et procede de production associe
WO2005030086A2 (fr) * 2003-09-24 2005-04-07 Alveolus Inc. Extenseur a revetement ayant une fonctionnalite determinee par sa geometrie et procede de fabrication correspondant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2005110282A1 *

Also Published As

Publication number Publication date
AU2004319771A1 (en) 2005-11-24
JP2007512107A (ja) 2007-05-17
CA2546809A1 (fr) 2005-11-24
EP1689328A4 (fr) 2010-12-01

Similar Documents

Publication Publication Date Title
EP2594229B1 (fr) Extenseur à revêtement ayant une fonctionnalité determinée par sa géometrie et procédé de fabrication correspondant
US7527644B2 (en) Stent with geometry determinated functionality and method of making the same
US7875068B2 (en) Removable biliary stent
US7959671B2 (en) Differential covering and coating methods
JP4871692B2 (ja) 生体内留置用ステントおよび生体器官拡張器具
US7094255B2 (en) Expandable stent and method for delivery of same
JP4278874B2 (ja) 幾何学的形状が異なるストラットを有するステント
US8511310B2 (en) Therapeutic medical appliance delivery and method of use
EP1579824A2 (fr) Stent à épaisseur variable et son procédé de fabrication
WO2007024484A1 (fr) Endoprotheses a lumieres multiples et procedes permettant de realiser des endoprotheses a lumieres multiples presentant plusieurs configurations ouvertes/fermees
JP2011200705A (ja) 生体内留置用ステント
EP1689328A1 (fr) Recouvrement différentiel et procédés de revêtement
US20070043427A1 (en) Lumen-supporting stents

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060531

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MERIT MEDICAL SYSTEMS, INC.

A4 Supplementary search report drawn up and despatched

Effective date: 20101028

17Q First examination report despatched

Effective date: 20110211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121214