EP1687804A2 - Ultrasonic contact transducer comprising multiple emitting elements and means for pressing said elements - Google Patents

Ultrasonic contact transducer comprising multiple emitting elements and means for pressing said elements

Info

Publication number
EP1687804A2
EP1687804A2 EP04805832A EP04805832A EP1687804A2 EP 1687804 A2 EP1687804 A2 EP 1687804A2 EP 04805832 A EP04805832 A EP 04805832A EP 04805832 A EP04805832 A EP 04805832A EP 1687804 A2 EP1687804 A2 EP 1687804A2
Authority
EP
European Patent Office
Prior art keywords
elements
transducer
emitting elements
light
positions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04805832A
Other languages
German (de)
French (fr)
Other versions
EP1687804B1 (en
Inventor
Olivier Casula
Gérard CATTIAUX
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut de Radioprotection et de Surete Nucleaire (IRSN)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Institut de Radioprotection et de Surete Nucleaire (IRSN)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Institut de Radioprotection et de Surete Nucleaire (IRSN) filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1687804A2 publication Critical patent/EP1687804A2/en
Application granted granted Critical
Publication of EP1687804B1 publication Critical patent/EP1687804B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation

Definitions

  • the present invention relates to an ultrasonic contact transducer, with multiple ultrasonic emitting elements. It applies in particular to medicine and to the non-destructive testing of mechanical parts, in particular of parts having a complex shape or an irregular surface condition, for example due to grinding or a local addition of material.
  • an ultrasonic transducer In order to optimize the control of such areas, an ultrasonic transducer has been developed, capable of adapting to parts of any shape. We first sought to guarantee optimal coupling between this transducer and the surface of a part. To do this, a monolithic transducer has been replaced by a set of independent elementary transducers, this set being capable of deforming in contact with the surface of the part. This has improved the contact of the transducer with the surface of the part to be checked. It should be noted that the elementary transducers constitute a network (“array”) with multiple elements, the different acoustic characteristics of which must be determined. Next, it is necessary to transmit, in the controlled room, ultrasonic waves having the characteristics (angle of refraction and depth in the room) required for control.
  • Emission delays are then imposed on the elements of the transducer, by appropriate electronic means, in order to form the desired ultrasonic beam. Then sum the electrical signals supplied by ultrasonic sensors with which the transducer is provided, these sensors possibly being the elements mentioned above, which are then used as elementary ultrasonic receivers. To calculate the delays, which depend on the geometry and the material of the controlled part and on the characteristics sought for the ultrasonic beam, and to reconstruct the excitation signal of the elementary emitters, simulation software is used which are integrated into the electronic means for controlling the transducer. It is also necessary to know the shape of the surface of the part (which is a priori unknown). To do this, the transducer is provided with means capable of providing data which make it possible to know the local geometry of the controlled part.
  • transducers known from documents [1] to [3] do not allow optimal coupling to be maintained between them and complex parts, especially when these transducers are moved on the surface of such parts.
  • the present invention provides an ultrasonic contact transducer, with multiple elements, this transducer being characterized in that it comprises means for plating the elements on the surface of an object to be checked and means for determining positions. elements relative to the object, by means of the means for plating the elements, and in that each element is at least an ultrasonic emitter and the emitting elements are rigid and mechanically assembled together, so as to form an articulated structure. None of documents [1] to [3] discloses or suggests such a combination of means.
  • the transducer is movable relative to the object to be checked and has a deformable emitting surface which is formed by first faces of the elements and intended to be in contact with the surface of this object and from which the ultrasound is emitted towards the object, control means being provided for generating excitation pulses of the emitting elements, the determination means being provided for defining the positions of the ultrasonic emitting elements relative to the object during the movement of the transducer, processing means being provided for - establishing, from the positions thus determined, delay laws allowing the emitting elements to generate a focused ultrasonic beam, the characteristics of which are controlled with respect to the object, and - apply these delay laws to the excitation pulses, ultrasonic receiving elements, possibly constituted by the emitting elements, being intended to supply signals allowing the formation of images relating to the object, the plating means being provided for pressing the emitting elements against the surface of the object and the determination means being provided for determining the positions of the emitting elements with respect to the object by means of pressing the emitting elements.
  • the means for pressing the emitting elements against the surface of the object comprise mechanical elements, each mechanical element comprising a part which is movable relative to a rigid part of the transducer , a first end of this movable part being capable of pressing emitting elements against the surface of the object
  • the means for determining the positions of the emitting elements relative to the object comprise - first means provided for determining the positions of the emitting elements with respect to the rigid part of the transducer, by measuring the deformation of the emitting surface, and for supplying signals representative of the positions thus determined
  • the first means comprising • distance measuring means, provided for measuring the distance of a second end of the movable part of each mechanical element with respect to an area of the rigid part of the transducer and • auxiliary processing means provided for determining the positions of the emitting elements with respect to the rigid part of the transducer, from the distances thus determined
  • - second means provided for determining the position and orientation of this rigid part with respect to the
  • each movable part is rounded.
  • the rigid part of the transducer has parallel holes, in which the movable parts are respectively capable of sliding, and each mechanical element further comprises elastic means which are able to move away from the part rigid the first end of the movable part corresponding to this mechanical element.
  • each mechanical element further comprises, in the hole which corresponds to it, a means (for example a ball bushing) in which is able to slide, at low friction, the movable part of this mechanical element.
  • the distance measuring means are provided for optically measuring the distance of the second end of the movable part of each mechanical element with respect to an area of the rigid part, comprise - light emitting means fixed to the rigid part and intended to emit light towards this second end, this second end being able to reflect this light, and - light receiving means fixed to the rigid part and intended to receive the light thus reflected, these reception means being capable of supplying signals representative of the distance of this second end with respect to the corresponding zone.
  • the light emission means and the light reception means respectively comprise a photo-emitter and a photo-detector which are fixed to the rigid part, opposite from the second end.
  • the light emission means and the light reception means respectively comprise a first optical fiber capable of transmitting light and of sending light to the second end and a second optical fiber capable of transmitting the light reflected by this second end.
  • the optical distance measuring means can use continuous light beams. Alternatively, the optical distance measuring means can use discontinuous light beams, in particular light wave trains.
  • the means for pressing the emitting elements further comprise a blade which covers second faces of the emitting elements, the first end of the movable part of each mechanical element being able to press emitting elements against the surface of the object by means of the blade, this blade being able to distribute the forces exerted by the mobile elements on the emitting elements by means of the blade.
  • the emitting elements are rigid piezoelectric elements, trapped in a flexible substrate which is passive with respect to ultrasound.
  • the transducer further comprises lamellae, the number of which is equal to that of the emitting elements and which are fixed to the face of the flexible substrate which is situated opposite the mechanical elements, each lamella being opposite the mobile part of one of these mechanical elements, the first end of this mobile part being capable of pressing emitting elements against the surface of the object via the lamella opposite which it is located.
  • FIG. 1 is a schematic view of a particular embodiment of the transducer which is the subject of the invention, using photo-emitters and photo-detectors
  • FIG. 2 is a schematic and partial view of another particular embodiment, using optical fibers
  • - Figure 3 is a schematic sectional view of a matrix ultrasonic transducer according to the invention.
  • the ultrasonic transducer according to the invention is a flexible transducer and provided with instrumentation, which is suitable for controlling compact parts, whose shape is complex and to which it is difficult to access.
  • This transducer incorporates plating means and profile measurement means (relief sensor).
  • the plating means ensure a permanent acoustic coupling of the emitting elements of the transducer with the part to be inspected, during scanning thereof, while individual optical sensors measure the positions of spring pistons with which the transducer is provided. These measurements make it possible to deduce the profile of the part to determine delay laws adapted to this part.
  • FIG. 1 is to be compared with FIG. 4 of the document [1] to which we will refer.
  • a linear bar type transducer is used, which only experiences deformations in the plane of incidence of ultrasound, namely the plane (x, z) of FIG. 1.
  • This transducer comprises ultrasonic transmitter-receiver elements 2 forming a flexible assembly and connected, to do this, by elastic and flexible means 4.
  • These means 4 which ensure the mechanical cohesion of the elements 2 and the flexibility of all of them for example, can be - a cable, in the case of a flexible two-dimensional transducer, or - a polymer resin substrate, in the case of a flexible three-dimensional transducer. More generally, as mentioned in document [1], it is possible to use - a flexible piezoelectric polymer strip and a network of juxtaposed electrodes, obtained by metal deposition, or - a set of rigid piezoelectric elements, cast in a flexible substrate, inert with respect to ultrasound, or - a set of rigid ultrasonic elements, mechanically assembled so as to obtain an articulated structure. In the example in FIG.
  • the transducer comprises spring pistons 8 and a metal foil 10 which constitutes a leaf spring.
  • the latter is placed on all of the rear faces of the elements 2, each of these having a front face, or active face, which is in contact with the surface of the part to be checked 6, all of the active faces constituting a deformable emitting surface.
  • the metallic foil 10 distributes the vertical forces exerted by the spring pistons and also allows the elements 2 to tilt transversely without being blocked by the pistons 8.
  • each spring piston 8 comprises a movable part 16, which is capable of sliding in the corresponding hole, and a spring 18 which is traversed by this movable part 16 and included between the housing 12 and the end 20 of this movable part, which is closest to the elements 2.
  • This end 20 is wider than the rest of the movable part, to retain the spring 18.
  • this end 20 is rounded, preferably hemispherical, as seen in FIG. 1, to optimize the pressure exerted on the rear faces of the elements 2 via the metal foil 10.
  • each hole 14 is placed a ball bushing 22, which has the same axis as this hole and in which couli sse the movable part 16 of the piston corresponding to this hole.
  • This ball bushing 22 is intended to improve the displacement of this part mobile in the hole, to reduce friction during this movement and to remove the play between this mobile part and the hole.
  • the positions of the elements 2 with respect to the part 6, during the displacement of the transducer, are determined by means of the spring pistons.
  • the upper part of the housing 12 comprises a (rigid) plate 24 which closes the upper ends of the holes 14 and which constitutes a geometric reference for measuring the positions of the elements 2.
  • this plate is fixed 24 a light-emitting diode 26 and a photodetector 28 in a zone 29 of the plate, located opposite the other end 30 of the movable part 16 of the piston corresponding to this hole.
  • This other end 30 is perpendicular to the axis X which is common to the hole 14 and to this movable part 16 and it is polished or made reflective, for example polished, to form a mirror.
  • This mirror reflects a fraction of a light beam emitted by the light-emitting diode 26.
  • the amount of light energy reflected is a decreasing function of the distance of the mobile part from the light-emitting diode 26.
  • the light beam reflected by the mirror is picked up by the photo-detector 28 which is placed next to the diode 26.
  • This photo-detector then provides a photo-current which is a function of the distance between the end 30 of the movable part 16 and the photodetector (and therefore plate 24) and, by Consequently, from the position of the elements 2 with respect to the rigid part 12 (knowing the length of the mobile parts 16).
  • Programmable electronic means 32 are provided for controlling the light-emitting diodes 26, for digitizing the photocurrent coming from each photodetector 28 and for converting this photo-current into a displacement.
  • the curve of the variations of displacement as a function of the photo-current is not linear so that a calibration is necessary.
  • This calibration is carried out during an acquisition step during which the photocurrent is measured for several calibrated positions of the movable part 16 of each piston 8, over the entire extent of this piston, that is to say all possible displacement for the latter.
  • the respective positions of the photodetectors with respect to the rear faces of the elements 2 being known, the profile described by these rear faces of the elements is reconstructed by interpolation methods. Then projection operations provide the coordinates of the surface of the part 6.
  • the means 32 are further provided for determining the positions of the rear faces of the elements 2 relative to the rigid housing 12.
  • Auxiliary processing means 34 determine the positions of the active faces of the elements 2 relative to the housing, as a function of the positions of the rear faces thus determined (see document [1]).
  • An articulated mechanical arm 36 makes it possible to obtain the position and orientation of the transducer in the fixed reference of the part to be checked 6.
  • Sensors 38 make it possible to locate this transducer in space and to measure its orientation during its movement relative to the part 6, as indicated in the document [1] •
  • means 40 which, depending on the positions provided by the means 34 and function of the position and the orientation provided by the sensors 38, determine the positions of the transducer with respect to the part 6.
  • control and processing means 42 provided for - generating pulses of excitation of the elements 2 , - establish, from the positions thus determined, delay laws allowing the elements 2 to generate a focused ultrasonic beam F, whose characteristics are controlled with respect to the part 2, and - apply c he laws of delay to the excitation pulses.
  • the elements 2 then supply signals to the means 42 also provided for forming, at from these signals, images relating to the part 6. These images are displayed on a screen 44.
  • inertial sensors can also be used to obtain the position and orientation of the transducer .
  • the light-emitting diodes can be controlled so as to emit continuous or, on the contrary, discontinuous light beams, in particular light pulses.
  • the means 32 can be provided for interrogating the desired photodetector 28 by controlling the corresponding light-emitting diode.
  • Figure 2 is a schematic and partial view of a variant of the transducer of Figure 1. In this variant, optical fibers are used to transmit light to the respective second ends of the moving parts of the pistons and to transmit the respectively reflected lights by these second ends.
  • the means 32 control a light source 46, the light of which is sent to the ends of optical fibers 48, the number of which is equal to that of the pistons, via an optical coupler 50.
  • the other ends of the fibers 48 open respectively into the holes 14, as can be seen in FIG. 2, in order to be able to "light up" the reflecting ends 30 of the moving parts 16. It is also possible to use a light source by optical fiber. It can be seen that each of said other ends of the fibers is fixed to zone 29 of plate 24, opposite the corresponding end 30.
  • optical fibers 52 are also provided, the number of which is equal to that of the fibers 48 and the ends of which open into the holes 14, next to the ends of the fibers 48, and are respectively fixed to the zones 29, opposite the corresponding ends.
  • the fibers 52 make it possible to recover the lights reflected by the reflecting ends 30 of the moving parts 16 and respectively transmit these lights to photodetectors 54. The latter then generate photo-currents which are transmitted to the means 32.
  • the distance measuring means making it possible in particular to detect movements of the pistons, are optical means, therefore allowing optical detection of these movements.
  • these optical means can be replaced by magnetic means.
  • the magnet is fixed to the plate 24, next to the Hall effect sensor, in the corresponding hole 14, and at least the end 30 of the movable part of each piston is made of a magnetic material such as steel. The magnetic field detected by each sensor is then disturbed by the corresponding end 30 and the sensor also supplies a signal which is a function of the distance between this end 30 and this sensor.
  • the examples of the invention which have been given, use elements that are both transmitters and receivers of ultrasound.
  • Those skilled in the art can adapt these examples to the case of transducers comprising elements only intended to emit ultrasound and other elements only intended to receive ultrasound.
  • transducers using a linear array of ultrasonic elements are used, but the invention is not limited to such transducers.
  • a person skilled in the art can adapt the examples given to matrix transducers. It is then necessary to associate parallel rows of spring pistons with such a matrix transducer, these rows being of the kind which has been described with reference to FIG. 1, and provide a metal foil on the rear faces of the elements that comprise the transducer. Another example of the invention is given below with reference to FIG.
  • the transducer which is seen in section in FIG. 3, comprises a matrix of ultrasound transmitter-receiver elements 56 which are trapped in a flexible resin substrate 58, this substrate being passive vis- with respect to ultrasound.
  • the transducer comprises a matrix set of spring pistons 62 and a rigid housing 64 whose flexible substrate 58 is made integral in a way that will be explained later.
  • the housing 64 comprises a matrix set of parallel holes 66 which are respectively associated with the spring pistons.
  • Each spring piston comprises a movable part 68, which is capable of sliding in the corresponding hole, and a spring 70 which is traversed by this movable part and included between the housing 64 and the end 72 of this movable part, which is the closer to the elements 56.
  • This end is rounded, preferably hemispherical, as in the case of FIG. 1.
  • Ball bushings 74 are further provided to improve the displacement of the parts movable 68 in the corresponding holes 68 as seen in Figure 3.
  • the positions of the elements 56 relative to the part 60, during the displacement of the transducer are determined via spring pistons and, to do this, each piston is associated with a position sensor 76 as in the example in FIG. 1.
  • each piston is associated with a position sensor 76 as in the example in FIG. 1.
  • FIG. 1 In the example in FIG.
  • lamellae 78 are fixed to the upper surface of the flexible substrate 58, respectively opposite the hemispherical ends 72 of the pistons, and thus form a matrix assembly. These strips distribute the vertical forces exerted by the spring pistons. These strips preferably form fine metal discs whose diameter is equal to that of the hemispherical ends.
  • the transducer of FIG. 3 also comprises four supports 80, which for example form angles and are at 90 ° from each other, only two of these supports being visible in FIG. 3.
  • Each of these supports is made integral with the flexible substrate 58 by means of a rod 82 which is articulated relative to this support.
  • This rod 82 is capable of sliding in an insert 84 which is embedded in the flexible resin substrate 58.
  • Each of these supports 80 is further fixed to one end of a shaft 86. The other end of these axes is slidable in a hole 88 which passes through the rigid casing, as seen in Figure 3. This hole is parallel to the holes 66 in which the moving parts of the pistons slide.
  • the use of rods 82 sliding in the inserts 84 avoids the appearance of lateral tensions which would risk tearing the substrate 58.
  • the mechanical system comprising the supports 80, the rods 86, the inserts 84, and the axes 82 allows to prevent any rotation of the flexible substrate 58, and therefore of all of the elements 56. If desired, the movement of the flexible substrate 58 relative to the housing can be measured
  • each of these rods 86 can be associated with another rod 92 capable of sliding in the housing rigid 64, through a ball bushing 94, and fixed to the corresponding support 80. As can be seen in FIG. 3, a spring 96 is then provided, between this support 80 and the rigid housing 64, and crossed by this other rod 92.
  • the rigid case 64 can be made integral with an electronic box 98 which can also serve as a handle for the transducer.
  • this electronic unit 98 To the party upper part of this electronic unit 98, we see elements 100 allowing electrical cables (not shown) to exit from this unit. These cables allow the transport of signals supplied by the transducer and by the position sensors 76.
  • a base 102 At the base of this electronic unit 90, there is a base 102 provided for receiving electrical connectors (not shown), originating from the various ultrasonic elements 56 and to connect these connectors to electronic means contained in the housing 98 and making it possible to control these elements 56 and to process the signals supplied by the latter.
  • the rods 92 which are associated with the ball bushings 94 and the springs 96 could be replaced by simple angles fixed to the supports 80 and capable of sliding in holes provided for this purpose in the rigid housing 94.

Abstract

The invention relates to an ultrasonic contact transducer comprising multiple emitting elements and means for pressing said elements. The inventive transducer is particularly suitable for use for non-destructive testing purposes. The invention comprises means (8, 10) for pressing the emitting elements (2) against an object (6) that is to be tested and means (26, 28 and 34 to 40) for determining the positions of said elements in relation to the object, using the aforementioned press means, in order to establish the delay laws to be applied to pulses for excitation of the elements, such as to produce a focused ultrasonic beam (F).

Description

TRANSDUCTEUR ULTRASONORE DE CONTACT, A MULTIPLES ELEMENTS EMETTEURS ET MOYENS DE PLAQUAGE DE CES ELEMENTS DESCRIPTION ULTRASONIC CONTACT TRANSDUCER WITH MULTIPLE EMITTING ELEMENTS AND MEANS FOR PLATING THE SAME DESCRIPTION
DOMAINE TECHNIQUE La présente invention concerne un transducteur ultrasonore de contact, à multiples éléments émetteurs d'ultrasons. Elle s'applique notamment à la médecine et au contrôle non destructif de pièces mécaniques, en particulier de pièces ayant une forme complexe ou un état de surface irrégulier, par exemple du fait d'un meulage ou d'un ajout local de matière.TECHNICAL FIELD The present invention relates to an ultrasonic contact transducer, with multiple ultrasonic emitting elements. It applies in particular to medicine and to the non-destructive testing of mechanical parts, in particular of parts having a complex shape or an irregular surface condition, for example due to grinding or a local addition of material.
ETAT DE LA TECHNIQUE ANTERIEURE Lors de l'examen de certaines pièces par des ultrasons, on est amené à placer un transducteur ultrasonore sur un matériau dont la forme (géométrique) superficielle évolue suivant la zone considérée du matériau. Dans ce cas, le couplage acoustique entre les matériaux et la face avant du transducteur n'est pas optimal et les caractéristiques acoustiques des faisceaux ultrasonores transmis ne sont plus conservées. La qualité des inspections est alors dégradée . Les techniques classiques ne permettent donc pas de contrôler complètement des pièces dont la géométrie varie. À titre d'exemple, des variations géométriques telles que des coudes ou des piquages sont fréquentes sur les circuits de tuyauterie. Or, ce sont souvent les parties présentant de fortes variations géométriques qui sont soumises aux plus fortes contraintes mécaniques et nécessitent donc les contrôles les plus fréquents. Afin d'optimiser le contrôle de telles zones, on a développé un transducteur ultrasonore, capable de s'adapter à des pièces de formes quelconques . On a d'abord cherché à garantir un couplage optimal entre ce transducteur et la surface d'une pièce. Pour ce faire, on a remplacé un transducteur monolithique par un ensemble de transducteurs élémentaires indépendants, cet ensemble étant capable de se déformer au contact de la surface de la pièce. On a ainsi amélioré le contact du transducteur avec la surface de la pièce à contrôler. II convient de noter que les transducteurs élémentaires constituent un réseau (« array ») à éléments multiples dont on doit déterminer les différentes caractéristiques acoustiques Ensuite, il faut transmettre, dans la pièce contrôlée, des ondes ultrasonores ayant les caractéristiques (angle de réfraction et profondeur de focalisation dans la pièce) requises pour le contrôle. On impose alors des retards d'émission aux éléments du transducteur, par des moyens électroniques appropriés, afin de former le faisceau ultrasonore souhaité. Puis on somme les signaux électriques fournis par des capteurs ultrasonores dont on munit le transducteur, ces capteurs pouvant être les éléments mentionnés plus haut, que l'on utilise alors en tant que récepteurs élémentaires d'ultrasons. Pour calculer les retards, qui dépendent de la géométrie et du matériau constitutif de la pièce contrôlée et des caractéristiques recherchées pour le faisceau ultrasonore, et pour reconstruire le signal d'excitation des émetteurs élémentaires, on utilise des logiciels de simulation qui sont intégrés dans les moyens électroniques de commande du transducteur. Il faut aussi connaître la forme de la surface de la pièce (qui est a priori inconnue) . Pour ce faire, on munit le transducteur de moyens aptes à fournir des données qui permettent de connaître la géométrie locale de la pièce contrôlée. Ces données sont injectées en temps réel dans les moyens de commande du transducteur et les lois de retard correspondantes sont recalculées. On obtient ainsi un transducteur adaptatif que l'on peut considérer comme « intelligent ». Un tel transducteur est connu par le document suivant auquel on se reportera :STATE OF THE PRIOR ART When examining certain parts by ultrasound, it is necessary to place an ultrasonic transducer on a material whose surface (geometric) shape changes according to the zone considered of the material. In this case, the acoustic coupling between the materials and the front face of the transducer is not optimal and the acoustic characteristics of the transmitted ultrasonic beams are no longer preserved. The quality of inspections is then degraded. Conventional techniques therefore do not allow complete control of parts whose geometry varies. For example, geometric variations such as elbows or tappings are frequent on the piping circuits. However, it is often the parts having strong geometric variations which are subjected to the highest mechanical stresses and therefore require the most frequent checks. In order to optimize the control of such areas, an ultrasonic transducer has been developed, capable of adapting to parts of any shape. We first sought to guarantee optimal coupling between this transducer and the surface of a part. To do this, a monolithic transducer has been replaced by a set of independent elementary transducers, this set being capable of deforming in contact with the surface of the part. This has improved the contact of the transducer with the surface of the part to be checked. It should be noted that the elementary transducers constitute a network (“array”) with multiple elements, the different acoustic characteristics of which must be determined. Next, it is necessary to transmit, in the controlled room, ultrasonic waves having the characteristics (angle of refraction and depth in the room) required for control. Emission delays are then imposed on the elements of the transducer, by appropriate electronic means, in order to form the desired ultrasonic beam. Then sum the electrical signals supplied by ultrasonic sensors with which the transducer is provided, these sensors possibly being the elements mentioned above, which are then used as elementary ultrasonic receivers. To calculate the delays, which depend on the geometry and the material of the controlled part and on the characteristics sought for the ultrasonic beam, and to reconstruct the excitation signal of the elementary emitters, simulation software is used which are integrated into the electronic means for controlling the transducer. It is also necessary to know the shape of the surface of the part (which is a priori unknown). To do this, the transducer is provided with means capable of providing data which make it possible to know the local geometry of the controlled part. These data are injected in real time into the transducer control means and the corresponding delay laws are recalculated. We thus obtain an adaptive transducer which we can consider as “intelligent”. Such a transducer is known from the following document to which reference will be made:
[1] WO 00/33292 A, « Transducteur ultrasonore de contact, à éléments multiples », correspondant à US 6 424 597 A. On connaît aussi des transducteurs ultrasonores flexibles par les documents suivants : [2] US 5 913 825 A, « Ultrasonic probe and ultrasonic survey instrument », correspondant à JP 10 042 395 A[1] WO 00/33292 A, “Ultrasonic contact transducer, with multiple elements”, corresponding to US 6,424,597 A. Flexible ultrasonic transducers are also known from the following documents: [2] US 5,913,825 A, “Ultrasonic probe and ultrasonic survey instrument”, corresponding to JP 10,042,395 A
[3] US 5 680 863 A, « Flexible ultrasonic transducers and related Systems ».[3] US 5,680,863 A, "Flexible ultrasonic transducers and related Systems".
Cependant, les transducteurs connus par les documents [1] à [3] ne permettent pas de conserver un couplage optimal entre eux et des pièces complexes, surtout lorsque ces transducteurs sont déplacés à la surface de telles pièces.However, the transducers known from documents [1] to [3] do not allow optimal coupling to be maintained between them and complex parts, especially when these transducers are moved on the surface of such parts.
EXPOSÉ DE L'INVENTION La présente invention a pour but de remédier à cet inconvénient . Pour ce faire, la présente invention propose un transducteur ultrasonore de contact, à éléments multiples, ce transducteur étant caractérisé en ce qu'il comprend des moyens de plaquage des éléments sur la surface d'un objet à contrôler et des moyens de détermination des positions des éléments par rapport à l'objet, par l'intermédiaire des moyens de plaquage des éléments, et en ce que chaque élément est au moins émetteur d'ultrasons et les éléments émetteurs sont rigides et assemblés mécaniquement les uns aux autres, de manière à former une structure articulée. Aucun des documents [1] à [3] ne divulgue ou ne suggère une telle combinaison de moyens. En particulier, dans le transducteur divulgué par le document [1], rien n'est prévu pour maintenir les éléments plaqués sur l'objet que l'on contrôle, pendant les déplacements du transducteur lors du contrôle, et assurer le couplage avec l'objet. Le fait que les éléments multiples du transducteur soient des éléments émetteurs rigides et assemblés mécaniquement les une avec les autres, de manière à former une structure articulée, conduit à une simplification et une amélioration du couplage entre les émetteurs et à une fiabilité accrue puisque ce couplage est effectué même si un émetteur immédiatement adjacent à un autre est défaillant. De préférence, le transducteur est déplaçable par rapport à l'objet à contrôler et a une surface émettrice déformable qui est formée par des premières faces des éléments et destinée à être en contact avec la surface de cet objet et à partir de laquelle les ultrasons sont émis vers l'objet, des moyens de commande étant prévus pour engendrer des impulsions d'excitation des éléments émetteurs, les moyens de détermination étant prévus pour définir les positions des éléments émetteurs d'ultrasons par rapport à l'objet au cours du déplacement du transducteur, des moyens de traitement étant prévus pour - établir, à partir des positions ainsi déterminées, des lois de retard permettant aux éléments émetteurs d'engendrer un faisceau ultrasonore focalisé, dont les caractéristiques sont maîtrisées par rapport à l'objet, et - appliquer ces lois de retard aux impulsions d'excitation, des éléments récepteurs d'ultrasons, éventuellement constitués par les éléments émetteurs, étant destinés à fournir des signaux permettant la formation d'images relatives à l'objet, les moyens de plaquage étant prévus pour plaquer les éléments émetteurs contre la surface de l'objet et les moyens de détermination étant prévus pour déterminer les positions des éléments émetteurs par rapport à l'objet par l'intermédiaire des moyens de plaquage des éléments émetteurs. Selon un mode de réalisation préféré du transducteur objet de l'invention, les moyens pour plaquer les éléments émetteurs contre la surface de l'objet comprennent des éléments mécaniques, chaque élément mécanique comprenant une partie qui est mobile par rapport à une partie rigide du transducteur, une première extrémité de cette partie mobile étant apte à presser des éléments émetteurs contre la surface de l' objet, et les moyens de détermination des positions des éléments émetteurs par rapport à l'objet comprennent - des premiers moyens prévus pour déterminer les positions des éléments émetteurs par rapport à la partie rigide du transducteur, par mesure de la déformation de la surface émettrice, et pour fournir des signaux représentatifs des positions ainsi déterminées, les premiers moyens comprenant • des moyens de mesure de distance, prévus pour mesurer la distance d'une deuxième extrémité de la partie mobile de chaque élément mécanique par rapport à une zone de la partie rigide du transducteur et • des moyens de traitement auxiliaire prévus pour déterminer les positions des éléments émetteurs par rapport à la partie rigide du transducteur, à partir des distances ainsi déterminées, - des deuxièmes moyens prévus pour déterminer la position et l'orientation de cette partie rigide par rapport à l'objet et pour fournir des signaux représentatifs de la position et de l'orientation ainsi déterminées et - des troisièmes moyens prévus pour fournir les positions des éléments émetteurs par rapport à l'objet à partir des signaux fournis par les premiers et deuxièmes moyens. De préférence, la première extrémité de chaque partie mobile est arrondie. Selon un mode de réalisation préféré de l'invention, la partie rigide du transducteur comporte des trous parallèles, dans lesquels les parties mobiles sont respectivement aptes à coulisser, et chaque élément mécanique comprend en outre des moyens élastiques qui sont aptes à éloigner de la partie rigide la première extrémité de la partie mobile correspondant à cet élément mécanique. De préférence, chaque élément mécanique comprend en outre, dans le trou qui lui correspond, un moyen (par exemple une douille à billes) dans lequel est apte à coulisser, à faible frottement, la partie mobile de cet élément mécanique. Selon un mode de réalisation préféré du transducteur objet de l'invention, les moyens de mesure de distance sont prévus pour mesurer optiquement la distance de la deuxième extrémité de la partie mobile de chaque élément mécanique par rapport à une zone de la partie rigide, comprennent - des moyens d'émission de lumière fixés à la partie rigide et prévus pour émettre une lumière vers cette deuxième extrémité, cette deuxième extrémité étant apte à réfléchir cette lumière, et - des moyens de réception de lumière fixés à la partie rigide et prévus pour recevoir la lumière ainsi réfléchie, ces moyens de réception étant aptes à fournir des signaux représentatifs de la distance de cette deuxième extrémité par rapport à la zone correspondante . Selon un premier mode de réalisation particulier du transducteur objet de l'invention, les moyens d'émission de lumière et les moyens de réception de lumière comprennent respectivement un photo-émetteur et un photo-détecteur qui sont fixés à la partie rigide, en regard de la deuxième extrémité. Selon un deuxième mode de réalisation particulier du transducteur objet de l'invention, les moyens d'émission de lumière et les moyens de réception de lumière comprennent respectivement une première fibre optique apte à transmettre la lumière et à envoyer la lumière vers la deuxième extrémité et une deuxième fibre optique apte à transmettre la lumière réfléchie par cette deuxième extrémité. Les moyens optiques de mesure de distance peuvent utiliser des faisceaux lumineux continus. En variante, les moyens optiques de mesure de distance peuvent utiliser des faisceaux lumineux discontinus, en particulier des trains d'ondes lumineuses . Selon un mode de réalisation particulier de l'invention, les moyens pour plaquer les éléments émetteurs comprennent en outre une lame qui recouvre des deuxièmes faces des éléments émetteurs, la première extrémité de la partie mobile de chaque élément mécanique étant apte à presser des éléments émetteurs contre la surface de l'objet par l'intermédiaire de la lame, cette lame étant apte à répartir les forces exercées par les éléments mobiles sur les éléments émetteurs par l'intermédiaire de la lame. Selon un autre mode de réalisation particulier, les éléments émetteurs sont des éléments piézoélectriques rigides, emprisonnés dans un substrat souple qui est passif vis-à-vis des ultrasons. Dans ce cas, de préférence, le transducteur comprend en outre des lamelles dont le nombre est égal à celui des éléments émetteurs et qui sont fixées à la face du substrat souple qui est située en regard des éléments mécaniques, chaque lamelle étant en regard de la partie mobile de l'un de ces éléments mécaniques, la première extrémité de cette partie mobile étant apte à presser des éléments émetteurs contre la surface de l'objet par l'intermédiaire de la lamelle en regard de laquelle elle se trouve.PRESENTATION OF THE INVENTION The aim of the present invention is to remedy this drawback. To do this, the present invention provides an ultrasonic contact transducer, with multiple elements, this transducer being characterized in that it comprises means for plating the elements on the surface of an object to be checked and means for determining positions. elements relative to the object, by means of the means for plating the elements, and in that each element is at least an ultrasonic emitter and the emitting elements are rigid and mechanically assembled together, so as to form an articulated structure. None of documents [1] to [3] discloses or suggests such a combination of means. In particular, in the transducer disclosed in document [1], nothing is provided to keep the elements pressed against the object that is being controlled, during the movements of the transducer during the control, and to ensure coupling with the object. The fact that the multiple elements of the transducer are rigid emitting elements and mechanically assembled with each other, so as to form an articulated structure, leads to a simplification and an improvement of the coupling between the emitters and to increased reliability since this coupling is performed even if one transmitter immediately adjacent to another fails. Preferably, the transducer is movable relative to the object to be checked and has a deformable emitting surface which is formed by first faces of the elements and intended to be in contact with the surface of this object and from which the ultrasound is emitted towards the object, control means being provided for generating excitation pulses of the emitting elements, the determination means being provided for defining the positions of the ultrasonic emitting elements relative to the object during the movement of the transducer, processing means being provided for - establishing, from the positions thus determined, delay laws allowing the emitting elements to generate a focused ultrasonic beam, the characteristics of which are controlled with respect to the object, and - apply these delay laws to the excitation pulses, ultrasonic receiving elements, possibly constituted by the emitting elements, being intended to supply signals allowing the formation of images relating to the object, the plating means being provided for pressing the emitting elements against the surface of the object and the determination means being provided for determining the positions of the emitting elements with respect to the object by means of pressing the emitting elements. According to a preferred embodiment of the transducer which is the subject of the invention, the means for pressing the emitting elements against the surface of the object comprise mechanical elements, each mechanical element comprising a part which is movable relative to a rigid part of the transducer , a first end of this movable part being capable of pressing emitting elements against the surface of the object, and the means for determining the positions of the emitting elements relative to the object comprise - first means provided for determining the positions of the emitting elements with respect to the rigid part of the transducer, by measuring the deformation of the emitting surface, and for supplying signals representative of the positions thus determined, the first means comprising • distance measuring means, provided for measuring the distance of a second end of the movable part of each mechanical element with respect to an area of the rigid part of the transducer and • auxiliary processing means provided for determining the positions of the emitting elements with respect to the rigid part of the transducer, from the distances thus determined, - second means provided for determining the position and orientation of this rigid part with respect to the object and for supplying signals representative of the position and of the orientation thus determined and - of the third means provided for supplying the positions of the emitting elements with respect to the object on the basis of the signals supplied by the first and second means. Preferably, the first end of each movable part is rounded. According to a preferred embodiment of the invention, the rigid part of the transducer has parallel holes, in which the movable parts are respectively capable of sliding, and each mechanical element further comprises elastic means which are able to move away from the part rigid the first end of the movable part corresponding to this mechanical element. Preferably, each mechanical element further comprises, in the hole which corresponds to it, a means (for example a ball bushing) in which is able to slide, at low friction, the movable part of this mechanical element. According to a preferred embodiment of the transducer which is the subject of the invention, the distance measuring means are provided for optically measuring the distance of the second end of the movable part of each mechanical element with respect to an area of the rigid part, comprise - light emitting means fixed to the rigid part and intended to emit light towards this second end, this second end being able to reflect this light, and - light receiving means fixed to the rigid part and intended to receive the light thus reflected, these reception means being capable of supplying signals representative of the distance of this second end with respect to the corresponding zone. According to a first particular embodiment of the transducer which is the subject of the invention, the light emission means and the light reception means respectively comprise a photo-emitter and a photo-detector which are fixed to the rigid part, opposite from the second end. According to a second particular embodiment of the transducer which is the subject of the invention, the light emission means and the light reception means respectively comprise a first optical fiber capable of transmitting light and of sending light to the second end and a second optical fiber capable of transmitting the light reflected by this second end. The optical distance measuring means can use continuous light beams. Alternatively, the optical distance measuring means can use discontinuous light beams, in particular light wave trains. According to a particular embodiment of the invention, the means for pressing the emitting elements further comprise a blade which covers second faces of the emitting elements, the first end of the movable part of each mechanical element being able to press emitting elements against the surface of the object by means of the blade, this blade being able to distribute the forces exerted by the mobile elements on the emitting elements by means of the blade. According to another particular embodiment, the emitting elements are rigid piezoelectric elements, trapped in a flexible substrate which is passive with respect to ultrasound. In this case, preferably, the transducer further comprises lamellae, the number of which is equal to that of the emitting elements and which are fixed to the face of the flexible substrate which is situated opposite the mechanical elements, each lamella being opposite the mobile part of one of these mechanical elements, the first end of this mobile part being capable of pressing emitting elements against the surface of the object via the lamella opposite which it is located.
BRÈVE DESCRIPTION DES DESSINS La présente invention sera explicitée à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels : - la figure 1 est une vue schématique d'un mode de réalisation particulier du transducteur objet de l'invention, utilisant des photo-émetteurs et des photo-détecteurs, - la figure 2 est une vue schématique et partielle d'un autre mode de réalisation particulier, utilisant des fibres optiques, et - la figure 3 est une vue en coupe schématique d'un transducteur ultrasonore matriciel conforme à l'invention.BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be explained on reading the description of exemplary embodiments given below, by way of indication only and in no way limiting, with reference to the appended drawings in which: - Figure 1 is a schematic view of a particular embodiment of the transducer which is the subject of the invention, using photo-emitters and photo-detectors, FIG. 2 is a schematic and partial view of another particular embodiment, using optical fibers, and - Figure 3 is a schematic sectional view of a matrix ultrasonic transducer according to the invention.
EXPOSE DETAILLE DE MODES DE REALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
Le transducteur ultrasonore conforme à l'invention, que l'on va décrire en faisant référence à la figure 1, est un transducteur flexible et pourvu d'une instrumentation, qui est adapté au contrôle de pièces compactes, dont la forme est complexe et auxquelles il est difficile d'accéder. Ce transducteur incorpore des moyens de plaquage et des moyens de mesure de profil (capteur de relief) . Les moyens de plaquage assurent un couplage acoustique permanent des éléments émetteurs du transducteur avec la pièce à inspecter, au cours du balayage de celle-ci, tandis que des capteurs optiques individuels mesurent les positions de pistons à ressorts dont est pourvu le transducteur. Ces mesures permettent de déduire le profil de la pièce pour déterminer des lois de retard adaptées à cette pièce. Afin de minimiser l'encombrement du transducteur et de le rendre prehensible, on a regroupé les moyens de plaquage et les moyens de mesure de la déformation de l'ensemble des éléments émetteurs au contact de la pièce. Le couplage de ces moyens permet d'intégrer, dans le volume restreint du transducteur, un nombre suffisant de capteurs optiques et des moyens électroniques adaptatifs. La figure 1 est à comparer à la figure 4 du document [1] auquel on se reportera. Dans l'exemple de la figure 1, on utilise un transducteur de type barrette linéaire, qui n'encaisse des déformations que dans le plan d'incidence des ultrasons, à savoir le plan (x, z) de la figure 1. Ce transducteur comprend des éléments émetteurs-récepteurs d'ultrasons 2 formant un ensemble flexible et reliés, pour ce faire, par des moyens élastiques et flexibles 4. Ces moyens 4, qui assurent la cohésion mécanique des éléments 2 et la flexibilité de l'ensemble de ceux-ci, peuvent par exemple être - un câble, dans le cas d'un transducteur flexible à deux dimensions, ou - un substrat en résine polymère, dans le cas d'un transducteur flexible à trois dimensions. Plus généralement, comme cela est mentionné dans le document [1], on peut utiliser - une lame de polymère piézoélectrique souple et un réseau d'électrodes juxtaposées, obtenues par dépôt métallique, ou - un ensemble d'éléments piézoélectriques rigides, coulés dans un substrat souple, inerte vis-à- vis des ultrasons, ou - un ensemble d'éléments ultrasonores rigides, assemblés mécaniquement de façon à obtenir une structure articulée. Dans l'exemple de la figure 1, on utilise une barrette, multi-éléments linéaire et déformable, connue, dont les éléments piézoélectriques 2 ont une forme trapézoïdale. Pour maintenir ces éléments piézoélectriques 2 plaqués contre la pièce à contrôler 6, le transducteur comprend des pistons à ressort 8 et un clinquant métallique 10 qui constitue une lame- ressort. Cette dernière est placée sur l'ensemble des faces arrière des éléments 2, chacun de ceux-ci ayant une face avant, ou face active, qui est en contact avec la surface de la pièce à contrôler 6, l'ensemble des faces actives constituant une surface émettrice déformable . Le clinquant métallique 10 répartit les forces verticales exercées par les pistons à ressorts et permet aussi aux éléments 2 de s'incliner transversalement sans être bloqués par les pistons 8. Le transducteur de la figure 1 comprend aussi un boîtier rigide 12 dont la barrette à éléments multiples est rendue solidaire. Ce boîtier 12 comprend un ensemble de trous parallèles 14, dont les axes sont coplanaires et dont le nombre est égal au nombre de pistons à ressorts. Chaque piston à ressort 8 comprend une partie mobile 16, qui est apte à coulisser dans le trou correspondant, et un ressort 18 qui est traversé par cette partie mobile 16 et compris entre le boîtier 12 et l'extrémité 20 de cette partie mobile, qui est la plus proche des éléments 2. Cette extrémité 20 est plus large que le reste de la partie mobile, pour retenir le ressort 18. De plus, cette extrémité 20 est arrondie, de préférence hémisphérique, comme on le voit sur la figure 1, pour optimiser la pression exercée sur les faces arrière des éléments 2 par l'intermédiaire du clinquant métallique 10. Lorsque le transducteur est appliqué contre la pièce à contrôler 6, les ressorts 18 sont comprimés et ont donc tendance à éloigner les extrémités 20 du boîtier 12, de sorte que les éléments 2 sont en permanence maintenus plaqués contre la pièce 4. Dans chaque trou 14 est placée une douille à billes 22, qui à le même axe que ce trou et dans laquelle coulisse la partie mobile 16 du piston correspondant à ce trou. Cette douille à billes 22 est destinée à améliorer le déplacement de cette partie mobile dans le trou, de diminuer les frottements lors de ce déplacement et de supprimer le jeu entre cette partie mobile et le trou. Les positions des éléments 2 par rapport à la pièce 6, au cours du déplacement du transducteur, sont déterminées par l'intermédiaire des pistons à ressorts . Pour ce faire, la partie supérieure du boîtier 12 comporte une plaque (rigide) 24 qui ferme les extrémités supérieures des trous 14 et qui constitue une référence géométrique pour les mesures des positions des éléments 2. Dans chaque trou 14, on fixe à cette plaque 24 une diode électroluminescente 26 et un photodétecteur 28 dans une zone 29 de la plaque, située en regard de l'autre extrémité 30 de la partie mobile 16 du piston correspondant à ce trou. Cette autre extrémité 30 est perpendiculaire à l'axe X qui est commun au trou 14 et à cette partie mobile 16 et elle est polie ou rendue réflectrice, par exemple polie, pour constituer un miroir. Ce miroir réfléchit une fraction d'un faisceau lumineux émis par la diode électroluminescente 26. La quantité d'énergie lumineuse réfléchie est une fonction décroissante de l' éloignement de la partie mobile par rapport à la diode électroluminescente 26. Le faisceau lumineux réfléchi par le miroir est capté par le photo-détecteur 28 qui est placé à côté de la diode 26. Ce photo-détecteur fournit alors un photo-courant qui est fonction de la distance entre l'extrémité 30 de la partie mobile 16 et le photodétecteur (et donc la plaque 24) et, par conséquent, de la position des éléments 2 par rapport à la partie rigide 12 (en connaissant la longueur des parties mobiles 16) . Des moyens électroniques programmables 32 sont prévus pour commander les diodes électroluminescentes 26, pour numériser le photocourant provenant de chaque photodétecteur 28 et pour convertir ce photo-courant en un déplacement . Cependant, la courbe des variations du déplacement en fonction du photo-courant n'est pas linéaire de sorte qu'un étalonnage est nécessaire. Cet étalonnage est réalisé lors d'une étape d'acquisition au cours de laquelle on mesure le photocourant pour plusieurs positions calibrées de la partie mobile 16 de chaque piston 8, sur toute l'étendue de ce piston c'est-à-dire tout le déplacement possible pour ce dernier. Après avoir calibré chaque photo-détecteur, on est donc capable de convertir le photo-courant mesuré en un déplacement. Les positions respectives des photodétecteurs par rapport aux faces arrière des éléments 2 étant connues, on reconstruit, par des méthodes d'interpolation, le profil décrit par ces faces arrière des éléments. Puis des opérations de projection fournissent les coordonnées de la surface de la pièce 6. Plus précisément, les moyens 32 sont en outre prévus pour déterminer les positions des faces arrière des éléments 2 par rapport au boîtier rigide 12. Des moyens de traitement auxiliaire 34 déterminent les positions des faces actives des éléments 2 par rapport au boîtier, en fonction des positions des faces arrière ainsi déterminées (voir document [1] ) . Un bras mécanique articulé 36 permet d'obtenir la position et l'orientation du transducteur dans le repère fixe de la pièce à contrôler 6. Des capteurs 38, dont est muni le bras 36, permettent de situer ce transducteur dans l'espace et de mesurer son orientation au cours de son déplacement par rapport à la pièce 6, comme cela est indiqué dans le document [1] • Sur la figure 1, on voit aussi des moyens 40 qui, en fonction des positions fournies par les moyens 34 et en fonction de la position et de l'orientation fournies par les capteurs 38, déterminent les positions du transducteur par rapport à la pièce 6. On voit aussi des moyens de commande et de traitement 42 prévus pour - engendrer des impulsions d' excitation des éléments 2, - établir, à partir des positions ainsi déterminées, des lois de retard permettant aux éléments 2 d'engendrer un faisceau ultrasonore focalisé F, dont les caractéristiques sont maîtrisées par rapport à la pièce 2, et - appliquer ces lois de retard aux impulsions d'excitation. Les éléments 2 fournissent alors des signaux aux moyens 42 également prévus pour former, à partir de ces signaux, des images relatives à la pièce 6. Ces images sont affichées sur un écran 44. Comme cela est expliqué dans le document [1] , on peut aussi utiliser des capteurs inertiels pour obtenir la position et l'orientation du transducteur. Les diodes électroluminescentes peuvent être commandées de façon à émettre des faisceaux lumineux continus ou, au contraire, discontinus, en particulier des impulsions lumineuses. Les moyens 32 peuvent être prévus pour interroger le photodétecteur 28 souhaité en commandant la diode électroluminescente correspondante. La figure 2 est une vue schématique et partielle d'une variante du transducteur de la figure 1. Dans cette variante, des fibres optiques sont utilisées pour transmettre la lumière vers les deuxièmes extrémités respectives des parties mobiles des pistons et pour transmettre les lumières respectivement réfléchies par ces deuxièmes extrémités. Dans l'exemple de la figure 2, les moyens 32 commandent une source lumineuse 46 dont la lumière est envoyée aux extrémités de fibres optiques 48, dont le nombre est égal à celui des pistons, par l'intermédiaire d'un coupleur optique 50. Les autres extrémités des fibres 48 débouchent respectivement dans les trous 14, comme on le voit sur la figure 2, pour pouvoir « éclairer » les extrémités réflectrices 30 des parties mobiles 16. On peut aussi utiliser une source lumineuse par fibre optique. On voit que chacune desdites autres extrémités des fibres est fixée à la zone 29 de la plaque 24, en regard de l'extrémité 30 correspondante. On prévoit aussi d'autres fibres optiques 52, dont le nombre est égal à celui des fibres 48 et dont des extrémités, débouchent dans les trous 14, à côté des extrémités des fibres 48, et sont respectivement fixées aux zones 29, en regard des extrémités 30 correspondantes. Les fibres 52 permettent de récupérer les lumières réfléchies par les extrémités réflectrices 30 des parties mobiles 16 et transmettent respectivement ces lumières à des photodétecteurs 54. Ces derniers engendrent alors des photo-courants qui sont transmis aux moyens 32. Dans les exemples de l'invention, que l'on vient de décrire, les moyens de mesure de distance, permettant notamment de détecter des déplacements des pistons, sont des moyens optiques, permettant donc une détection optique de ces déplacements. Cependant, ces moyens optiques peuvent être remplacés par des moyens magnétiques. Dans un exemple non représenté, on remplace chaque ensemble diode 26-photodétecteur 28 de la figure 1 par un capteur à effet Hall et l'on fixe un aimant sur l'extrémité 30 de la partie mobile du piston correspondant . Le capteur à effet Hall est ainsi apte à fournir un signal qui est fonction de la distance entre ce capteur et cet aimant. En remplaçant les moyens 32 de la figure 1 par des moyens appropriés de commande du capteur et de traitement des signaux fournis par celui- ci, on est ainsi encore capable de mesurer la distance recherchée. Dans une variante (non représentée) de cet exemple, l'aimant est fixé à la plaque 24, à côté du capteur à effet Hall, dans le trou 14 correspondant, et au moins l'extrémité 30 de la partie mobile de chaque piston est faite d'un matériau magnétique tel que l' acier. Le champ magnétique détecté par chaque capteur est alors perturbé par l'extrémité 30 correspondante et le capteur fournit encore un signal qui est fonction de la distance entre cette extrémité 30 et de ce capteur. En outre, les exemples de l'invention, que l'on a donnés, utilisent des éléments à la fois émetteurs et récepteurs d'ultrasons. L'homme du métier peut adapter ces exemples au cas de transducteurs comprenant des éléments seulement prévus pour émettre des ultrasons et d'autres éléments seulement prévus pour recevoir des ultrasons. De plus, dans ces exemples, on utilise des transducteurs comprenant une barrette linéaire d'éléments ultrasonores mais l'invention n'est pas limitée à de tels transducteurs. De même que dans le document [1], l'homme du métier peut adapter les exemples donnés à des transducteurs matriciels. Il faut alors associer des rangées parallèles de pistons à ressorts a un tel transducteur matriciel, ces rangées étant du genre de celle qui a été décrite en faisant référence à la figure 1, et prévoir un clinquant métallique sur les faces arrière des éléments que comporte le transducteur. On donne ci-après, en faisant référence à la figure 3, un autre exemple de l'invention qui est plus particulièrement utilisable dans le cas où les éléments ultrasonores forment non pas une rangée mais une matrice. Le transducteur conforme à l'invention, que l'on voit en coupe sur la figure 3, comprend une matrice d'éléments émetteurs-récepteurs d'ultrasons 56 qui sont emprisonnés dans un substrat souple en résine 58, ce substrat étant passif vis-à-vis des ultrasons. Pour maintenir les éléments piézoélectriques 56 plaqués contre une pièce à contrôler 60, qui est convexe dans l'exemple de la figure 3, le transducteur comprend un ensemble matriciel de pistons à ressort 62 et un boîtier rigide 64 dont le substrat souple 58 est rendu solidaire d'une manière qui sera expliqué par la suite. Le boîtier 64 comprend un ensemble matriciel de trous parallèles 66 qui sont respectivement associés aux pistons à ressort. Chaque piston à ressort comprend une partie mobile 68, qui est apte à coulisser dans le trou correspondant, et un ressort 70 qui est traversé par cette partie mobile et compris entre le boîtier 64 et l'extrémité 72 de cette partie mobile, qui est la plus proche des éléments 56. Cette extrémité est arrondie, de préférence hémisphérique, comme dans le cas de la figure 1. Des douilles à billes 74 sont encore prévues pour améliorer le déplacement des parties mobiles 68 dans les trous correspondants 68 comme on le voit sur la figure 3. Dans l'exemple de cette figure 3, les positions des éléments 56 par rapport à la pièce 60, au cours du déplacement du transducteur, sont déterminées par l'intermédiaire des pistons à ressort et, pour ce faire, chaque piston est associé à un capteur de position 76 comme dans l'exemple de la figure 1. Dans l'exemple de la figure 3, il s'agit encore d'un capteur optique, comprenant un émetteur de lumière en direction du piston et un récepteur de la lumière réfléchie par l'extrémité arrière de la partie mobile 68 de ce piston, rendue réflectrice à cet effet. De préférence, des lamelles 78 sont fixées à la surface supérieure du substrat souple 58, respectivement en regard des extrémités hémisphériques 72 des pistons, et forment ainsi un ensemble matriciel. Ces lamelles permettent de répartir les forces verticales exercées par les pistons à ressort. Ces lamelles forment de préférence de fins disques métalliques dont le diamètre est égal à celui des extrémités hémisphériques. Le transducteur de la figure 3 comprend aussi quatre supports 80, qui forment par exemple des cornières et sont à 90° des uns des autres, seuls deux de ces supports étant visible sur la figure 3. Chacun de ces supports est rendu solidaire du substrat souple 58 par l'intermédiaire d'une tige 82 qui est articulée par rapport à ce support. Cette tige 82 est apte à coulisser dans un insert 84 qui est noyé dans le substrat souple en résine 58. Chacun de ces supports 80 est en outre fixé, à une extrémité d'un axe 86. L'autre extrémité de ces axes est apte à coulisser dans un trou 88 qui traverse le boîtier rigide, comme on le voit sur la figure 3. Ce trou est parallèle aux trous 66 dans lesquels coulissent les parties mobiles des pistons. L'utilisation des tiges 82 coulissant dans les inserts 84 évite l'apparition de tensions latérales qui risqueraient de déchirer le substrat 58. En outre, le système mécanique comprenant les supports 80, les tiges 86, les inserts 84, et les axes 82 permet d'empêcher toute rotation du substrat souple 58, et donc de l'ensemble des éléments 56. Si on le souhaite, on peut mesurer le mouvement du substrat souple 58 par rapport au boîtierThe ultrasonic transducer according to the invention, which will be described with reference to Figure 1, is a flexible transducer and provided with instrumentation, which is suitable for controlling compact parts, whose shape is complex and to which it is difficult to access. This transducer incorporates plating means and profile measurement means (relief sensor). The plating means ensure a permanent acoustic coupling of the emitting elements of the transducer with the part to be inspected, during scanning thereof, while individual optical sensors measure the positions of spring pistons with which the transducer is provided. These measurements make it possible to deduce the profile of the part to determine delay laws adapted to this part. In order to minimize the size of the transducer and to make it prehensible, the plating means and the means for measuring the deformation of all the emitting elements in contact with the part have been grouped together. The coupling of these means makes it possible to integrate, in the restricted volume of the transducer, a sufficient number of optical sensors and adaptive electronic means. FIG. 1 is to be compared with FIG. 4 of the document [1] to which we will refer. In the example in FIG. 1, a linear bar type transducer is used, which only experiences deformations in the plane of incidence of ultrasound, namely the plane (x, z) of FIG. 1. This transducer comprises ultrasonic transmitter-receiver elements 2 forming a flexible assembly and connected, to do this, by elastic and flexible means 4. These means 4, which ensure the mechanical cohesion of the elements 2 and the flexibility of all of them for example, can be - a cable, in the case of a flexible two-dimensional transducer, or - a polymer resin substrate, in the case of a flexible three-dimensional transducer. More generally, as mentioned in document [1], it is possible to use - a flexible piezoelectric polymer strip and a network of juxtaposed electrodes, obtained by metal deposition, or - a set of rigid piezoelectric elements, cast in a flexible substrate, inert with respect to ultrasound, or - a set of rigid ultrasonic elements, mechanically assembled so as to obtain an articulated structure. In the example in FIG. 1, a known linear and deformable multi-element bar is used, the piezoelectric elements 2 of which have a trapezoidal shape. To maintain these piezoelectric elements 2 pressed against the part to be checked 6, the transducer comprises spring pistons 8 and a metal foil 10 which constitutes a leaf spring. The latter is placed on all of the rear faces of the elements 2, each of these having a front face, or active face, which is in contact with the surface of the part to be checked 6, all of the active faces constituting a deformable emitting surface. The metallic foil 10 distributes the vertical forces exerted by the spring pistons and also allows the elements 2 to tilt transversely without being blocked by the pistons 8. The transducer of FIG. 1 also includes a rigid housing 12 whose multiple-element bar is made integral. This housing 12 comprises a set of parallel holes 14, the axes of which are coplanar and the number of which is equal to the number of spring pistons. Each spring piston 8 comprises a movable part 16, which is capable of sliding in the corresponding hole, and a spring 18 which is traversed by this movable part 16 and included between the housing 12 and the end 20 of this movable part, which is closest to the elements 2. This end 20 is wider than the rest of the movable part, to retain the spring 18. In addition, this end 20 is rounded, preferably hemispherical, as seen in FIG. 1, to optimize the pressure exerted on the rear faces of the elements 2 via the metal foil 10. When the transducer is applied against the part to be checked 6, the springs 18 are compressed and therefore tend to move the ends 20 of the housing 12 , so that the elements 2 are permanently kept pressed against the part 4. In each hole 14 is placed a ball bushing 22, which has the same axis as this hole and in which couli sse the movable part 16 of the piston corresponding to this hole. This ball bushing 22 is intended to improve the displacement of this part mobile in the hole, to reduce friction during this movement and to remove the play between this mobile part and the hole. The positions of the elements 2 with respect to the part 6, during the displacement of the transducer, are determined by means of the spring pistons. To do this, the upper part of the housing 12 comprises a (rigid) plate 24 which closes the upper ends of the holes 14 and which constitutes a geometric reference for measuring the positions of the elements 2. In each hole 14, this plate is fixed 24 a light-emitting diode 26 and a photodetector 28 in a zone 29 of the plate, located opposite the other end 30 of the movable part 16 of the piston corresponding to this hole. This other end 30 is perpendicular to the axis X which is common to the hole 14 and to this movable part 16 and it is polished or made reflective, for example polished, to form a mirror. This mirror reflects a fraction of a light beam emitted by the light-emitting diode 26. The amount of light energy reflected is a decreasing function of the distance of the mobile part from the light-emitting diode 26. The light beam reflected by the mirror is picked up by the photo-detector 28 which is placed next to the diode 26. This photo-detector then provides a photo-current which is a function of the distance between the end 30 of the movable part 16 and the photodetector (and therefore plate 24) and, by Consequently, from the position of the elements 2 with respect to the rigid part 12 (knowing the length of the mobile parts 16). Programmable electronic means 32 are provided for controlling the light-emitting diodes 26, for digitizing the photocurrent coming from each photodetector 28 and for converting this photo-current into a displacement. However, the curve of the variations of displacement as a function of the photo-current is not linear so that a calibration is necessary. This calibration is carried out during an acquisition step during which the photocurrent is measured for several calibrated positions of the movable part 16 of each piston 8, over the entire extent of this piston, that is to say all possible displacement for the latter. After having calibrated each photo-detector, we are therefore able to convert the measured photo-current into a displacement. The respective positions of the photodetectors with respect to the rear faces of the elements 2 being known, the profile described by these rear faces of the elements is reconstructed by interpolation methods. Then projection operations provide the coordinates of the surface of the part 6. More specifically, the means 32 are further provided for determining the positions of the rear faces of the elements 2 relative to the rigid housing 12. Auxiliary processing means 34 determine the positions of the active faces of the elements 2 relative to the housing, as a function of the positions of the rear faces thus determined (see document [1]). An articulated mechanical arm 36 makes it possible to obtain the position and orientation of the transducer in the fixed reference of the part to be checked 6. Sensors 38, with which the arm 36 is provided, make it possible to locate this transducer in space and to measure its orientation during its movement relative to the part 6, as indicated in the document [1] • In Figure 1, we also see means 40 which, depending on the positions provided by the means 34 and function of the position and the orientation provided by the sensors 38, determine the positions of the transducer with respect to the part 6. We also see control and processing means 42 provided for - generating pulses of excitation of the elements 2 , - establish, from the positions thus determined, delay laws allowing the elements 2 to generate a focused ultrasonic beam F, whose characteristics are controlled with respect to the part 2, and - apply c he laws of delay to the excitation pulses. The elements 2 then supply signals to the means 42 also provided for forming, at from these signals, images relating to the part 6. These images are displayed on a screen 44. As explained in document [1], inertial sensors can also be used to obtain the position and orientation of the transducer . The light-emitting diodes can be controlled so as to emit continuous or, on the contrary, discontinuous light beams, in particular light pulses. The means 32 can be provided for interrogating the desired photodetector 28 by controlling the corresponding light-emitting diode. Figure 2 is a schematic and partial view of a variant of the transducer of Figure 1. In this variant, optical fibers are used to transmit light to the respective second ends of the moving parts of the pistons and to transmit the respectively reflected lights by these second ends. In the example of FIG. 2, the means 32 control a light source 46, the light of which is sent to the ends of optical fibers 48, the number of which is equal to that of the pistons, via an optical coupler 50. The other ends of the fibers 48 open respectively into the holes 14, as can be seen in FIG. 2, in order to be able to "light up" the reflecting ends 30 of the moving parts 16. It is also possible to use a light source by optical fiber. It can be seen that each of said other ends of the fibers is fixed to zone 29 of plate 24, opposite the corresponding end 30. Other optical fibers 52 are also provided, the number of which is equal to that of the fibers 48 and the ends of which open into the holes 14, next to the ends of the fibers 48, and are respectively fixed to the zones 29, opposite the corresponding ends. The fibers 52 make it possible to recover the lights reflected by the reflecting ends 30 of the moving parts 16 and respectively transmit these lights to photodetectors 54. The latter then generate photo-currents which are transmitted to the means 32. In the examples of the invention , which has just been described, the distance measuring means, making it possible in particular to detect movements of the pistons, are optical means, therefore allowing optical detection of these movements. However, these optical means can be replaced by magnetic means. In an example not shown, each diode 26-photodetector 28 assembly of FIG. 1 is replaced by a Hall effect sensor and a magnet is fixed on the end 30 of the movable part of the corresponding piston. The Hall effect sensor is thus able to supply a signal which is a function of the distance between this sensor and this magnet. By replacing the means 32 of FIG. 1 by suitable means for controlling the sensor and processing signals supplied by it, we are still able to measure the desired distance. In a variant (not shown) of this example, the magnet is fixed to the plate 24, next to the Hall effect sensor, in the corresponding hole 14, and at least the end 30 of the movable part of each piston is made of a magnetic material such as steel. The magnetic field detected by each sensor is then disturbed by the corresponding end 30 and the sensor also supplies a signal which is a function of the distance between this end 30 and this sensor. In addition, the examples of the invention, which have been given, use elements that are both transmitters and receivers of ultrasound. Those skilled in the art can adapt these examples to the case of transducers comprising elements only intended to emit ultrasound and other elements only intended to receive ultrasound. In addition, in these examples, transducers using a linear array of ultrasonic elements are used, but the invention is not limited to such transducers. As in document [1], a person skilled in the art can adapt the examples given to matrix transducers. It is then necessary to associate parallel rows of spring pistons with such a matrix transducer, these rows being of the kind which has been described with reference to FIG. 1, and provide a metal foil on the rear faces of the elements that comprise the transducer. Another example of the invention is given below with reference to FIG. 3 which is more particularly usable in the case where the ultrasonic elements form not a row but a matrix. The transducer according to the invention, which is seen in section in FIG. 3, comprises a matrix of ultrasound transmitter-receiver elements 56 which are trapped in a flexible resin substrate 58, this substrate being passive vis- with respect to ultrasound. To maintain the piezoelectric elements 56 pressed against a part to be inspected 60, which is convex in the example of FIG. 3, the transducer comprises a matrix set of spring pistons 62 and a rigid housing 64 whose flexible substrate 58 is made integral in a way that will be explained later. The housing 64 comprises a matrix set of parallel holes 66 which are respectively associated with the spring pistons. Each spring piston comprises a movable part 68, which is capable of sliding in the corresponding hole, and a spring 70 which is traversed by this movable part and included between the housing 64 and the end 72 of this movable part, which is the closer to the elements 56. This end is rounded, preferably hemispherical, as in the case of FIG. 1. Ball bushings 74 are further provided to improve the displacement of the parts movable 68 in the corresponding holes 68 as seen in Figure 3. In the example of this Figure 3, the positions of the elements 56 relative to the part 60, during the displacement of the transducer, are determined via spring pistons and, to do this, each piston is associated with a position sensor 76 as in the example in FIG. 1. In the example in FIG. 3, it is also an optical sensor, comprising a light emitter in the direction of the piston and a receiver of the light reflected by the rear end of the movable part 68 of this piston, made reflective for this purpose. Preferably, lamellae 78 are fixed to the upper surface of the flexible substrate 58, respectively opposite the hemispherical ends 72 of the pistons, and thus form a matrix assembly. These strips distribute the vertical forces exerted by the spring pistons. These strips preferably form fine metal discs whose diameter is equal to that of the hemispherical ends. The transducer of FIG. 3 also comprises four supports 80, which for example form angles and are at 90 ° from each other, only two of these supports being visible in FIG. 3. Each of these supports is made integral with the flexible substrate 58 by means of a rod 82 which is articulated relative to this support. This rod 82 is capable of sliding in an insert 84 which is embedded in the flexible resin substrate 58. Each of these supports 80 is further fixed to one end of a shaft 86. The other end of these axes is slidable in a hole 88 which passes through the rigid casing, as seen in Figure 3. This hole is parallel to the holes 66 in which the moving parts of the pistons slide. The use of rods 82 sliding in the inserts 84 avoids the appearance of lateral tensions which would risk tearing the substrate 58. In addition, the mechanical system comprising the supports 80, the rods 86, the inserts 84, and the axes 82 allows to prevent any rotation of the flexible substrate 58, and therefore of all of the elements 56. If desired, the movement of the flexible substrate 58 relative to the housing can be measured
64 au moyen de détecteurs de position 90, du genre des détecteurs 76, et permettant de mesurer la course des axes 86 qui permettent de maintenir le substrat souple. Sur la figure 3, on voit aussi des ressorts 91 que traversent les tiges 86 et qui sont compris entre les supports 80 et le boîtier rigide 64. On peut également associer à chacune de ces tiges 86 une autre tige 92 apte à coulisser dans le boîtier rigide 64, à travers une douille à billes 94, et fixée au support correspondant 80. Comme on le voit sur la figure 3, un ressort 96 est alors prévu, entre ce support 80 et le boîtier rigide 64, et traversé par cette autre tige 92. Le boîtier rigide 64 peut être rendu solidaire d'un boîtier électronique 98 qui peut également servir de manche au transducteur. A la partie supérieure de ce boîtier électronique 98, on voit des éléments 100 permettant à des câbles électriques (non représentés) de sortir de ce boîtier. Ces câbles permettent le transport de signaux fournis par le transducteur et par les capteurs de position 76. A la base de ce boîtier électronique 90, on voit une embase 102 prévue pour recevoir des connecteurs électriques (non représentés) , issus des différents éléments ultrasonores 56 et pour relier ces connecteurs à des moyens électroniques contenus dans le boîtier 98 et permettant de commander ces éléments 56 et de traiter les signaux fournis par ces derniers. Les tiges 92, qui sont associées aux douilles à billes 94 et aux ressorts 96 pourraient être remplacées par de simples cornières fixées aux supports 80 et aptes à coulisser dans des trous prévus à cet effet dans le boîtier rigide 94. Par souci de clarté, les diverses connexions électriques qui sont nécessaires au transducteur de la figure 3 ne sont pas représentées. De même, les divers moyens de commande et de traitement de signaux, qui sont nécessaires au fonctionnement de ce transducteur, ne sont pas représentés. Ces moyens, qui correspondent à un transducteur matriciel, peuvent être déterminés par l'homme du métier, à partir des moyens du même genre qui ont été décrits en faisant référence à la figure 1, à propos d'un transducteur linéaire. 64 by means of position detectors 90, such as detectors 76, and making it possible to measure the travel of the axes 86 which make it possible to maintain the flexible substrate. In FIG. 3, we also see springs 91 which the rods 86 pass through and which are included between the supports 80 and the rigid housing 64. It is also possible to associate each of these rods 86 with another rod 92 capable of sliding in the housing rigid 64, through a ball bushing 94, and fixed to the corresponding support 80. As can be seen in FIG. 3, a spring 96 is then provided, between this support 80 and the rigid housing 64, and crossed by this other rod 92. The rigid case 64 can be made integral with an electronic box 98 which can also serve as a handle for the transducer. To the party upper part of this electronic unit 98, we see elements 100 allowing electrical cables (not shown) to exit from this unit. These cables allow the transport of signals supplied by the transducer and by the position sensors 76. At the base of this electronic unit 90, there is a base 102 provided for receiving electrical connectors (not shown), originating from the various ultrasonic elements 56 and to connect these connectors to electronic means contained in the housing 98 and making it possible to control these elements 56 and to process the signals supplied by the latter. The rods 92, which are associated with the ball bushings 94 and the springs 96 could be replaced by simple angles fixed to the supports 80 and capable of sliding in holes provided for this purpose in the rigid housing 94. For the sake of clarity, the various electrical connections that are required for the transducer of Figure 3 are not shown. Similarly, the various control and signal processing means, which are necessary for the operation of this transducer, are not shown. These means, which correspond to a matrix transducer, can be determined by a person skilled in the art, using means of the same kind which have been described with reference to FIG. 1, in connection with a linear transducer.

Claims

REVENDICATIONS 1. Tranducteur ultrasonore de contact, à éléments multiples (2) , ce transducteur étant caractérisé en ce qu'il comprend des moyens (8, 10) de plaquage des éléments sur la surface d'un objet à contrôler (6) et des moyens (26, 28, 34, 36, 38, 40) de détermination des positions des éléments par rapport à l'objet, par l'intermédiaire des moyens de plaquage des éléments, et en ce que chaque élément (2) est au moins émetteur d'ultrasons et les éléments émetteurs (2) sont rigides et assemblés mécaniquement les uns aux autres de manière à former une structure articulée.  CLAIMS 1. Ultrasonic contact transducer, with multiple elements (2), this transducer being characterized in that it comprises means (8, 10) for plating the elements on the surface of an object to be checked (6) and means (26, 28, 34, 36, 38, 40) for determining the positions of the elements with respect to the object, by means of the elements plating means, and in that each element (2) is at least ultrasonic transmitter and the transmitter elements (2) are rigid and mechanically assembled to each other so as to form an articulated structure.
2. Transducteur selon la revendication 1, dans lequel le transducteur est déplaçable par rapport à l'objet à contrôler (6) et a une surface émettrice déformable qui est formée par des premières faces des éléments et destinée à être en contact avec la surface de cet objet et à partir de laquelle les ultrasons sont émis vers l'objet, des moyens de commande (42) étant prévus pour engendrer des impulsions d'excitation des éléments émetteurs, les moyens (26, 28, 34, 36, 38, 40) de détermination étant prévus pour définir les positions des éléments émetteurs d'ultrasons par rapport à l'objet au cours du déplacement du transducteur, des moyens de traitement étant prévus pour - établir, à partir des positions ainsi déterminées, des lois de retard permettant aux éléments émetteurs d'engendrer un faisceau ultrasonore focalisé (F) , dont les caractéristiques sont maîtrisées par rapport à l'objet, et - appliquer ces lois de retard aux impulsions d'excitation, des éléments récepteurs d'ultrasons, éventuellement constitués par les éléments émetteurs (2) , étant destinés à fournir des signaux permettant la formation d'images relatives à l'objet, les moyens (8, 10) de plaquage étant prévus pour plaquer les éléments émetteurs contre la surface de l'objet et les moyens de détermination étant prévus pour déterminer les positions des éléments émetteurs par rapport à l'objet par l'intermédiaire des moyens de plaquage des éléments émetteurs. 2. Transducer according to claim 1, in which the transducer is movable relative to the object to be checked (6) and has a deformable emitting surface which is formed by first faces of the elements and intended to be in contact with the surface of this object and from which the ultrasound is emitted towards the object, control means (42) being provided to generate excitation pulses of the emitting elements, the means (26, 28, 34, 36, 38, 40 ) of determination being provided for defining the positions of the ultrasound emitting elements with respect to the object during the displacement of the transducer, processing means being provided for - establishing, from the positions thus determined, delay laws allowing the emitting elements to generate a focused ultrasonic beam (F), the characteristics of which are controlled with respect to the object, and - apply these delay laws to the excitation pulses, ultrasonic receiving elements, possibly constituted by the emitting elements (2), being intended to supply signals allowing the formation of images relating to the object, the means ( 8, 10) of plating being provided to press the emitting elements against the surface of the object and the determination means being provided to determine the positions of the emitting elements relative to the object via the means of plating the elements issuers.
3. Transducteur selon la revendication 2, dans lequel les moyens pour plaquer les éléments émetteurs contre la surface de l'objet comprennent des éléments mécaniques (8), chaque élément mécanique comprenant une partie (16) qui est mobile par rapport à une partie rigide (12) du transducteur, une première extrémité de cette partie mobile étant apte à presser des éléments émetteurs contre la surface de l'objet, et les moyens de détermination des positions des éléments émetteurs par rapport à l'objet comprennent - des premiers moyens (26, 28, 34, 48, 52) prévus pour déterminer les positions des éléments émetteurs (2) par rapport à la partie rigide (12) du transducteur, par mesure de la déformation de la surface émettrice, et pour fournir des signaux représentatifs des positions ainsi déterminées, les premiers moyens comprenant • des moyens (26, 28, 48, 52) de mesure de distance, prévus pour mesurer la distance d'une deuxième extrémité (30) de la partie mobile (16) de chaque élément mécanique (8) par rapport à une zone (29) de la partie rigide (12) du transducteur et • des moyens (34) de traitement auxiliaire prévus pour déterminer les positions des éléments émetteurs par rapport à la partie rigide du transducteur, à partir des distances ainsi déterminées, - des deuxièmes moyens (36, 38) prévus pour déterminer la position et l'orientation de cette partie rigide (12) par rapport à l'objet et pour fournir des signaux représentatifs de la position et de l'orientation ainsi déterminées et - des troisièmes moyens (40) prévus pour fournir les positions des éléments émetteurs par rapport à l'objet à partir des signaux fournis par les premiers et deuxièmes moyens. 3. A transducer according to claim 2, in which the means for pressing the emitting elements against the surface of the object comprise mechanical elements (8), each mechanical element comprising a part (16) which is movable relative to a rigid part (12) of the transducer, a first end of this movable part being able to press emitting elements against the surface of the object, and the means for determining the positions of the emitting elements with respect to the object comprise - first means ( 26, 28, 34, 48, 52) provided for determining the positions of the emitting elements (2) relative to the rigid part (12) of the transducer, by measuring the deformation of the emitting surface, and for providing signals representative of the positions thus determined, the first means comprising • means (26, 28, 48, 52) for measuring distance, provided for measuring the distance of a second end (30) of the movable part (16) of each mechanical element (8) relative to an area ( 29) of the rigid part (12) of the transducer and • auxiliary treatment means (34) provided for determining the positions of the emitting elements with respect to the rigid part of the transducer, from the distances thus determined, - the second means ( 36, 38) provided for determining the position and orientation of this rigid part (12) relative to the object and for supplying signals representative of the position and orientation thus determined and - of the third means (40) provided to provide the positions of the transmitting elements relative to the object from the signals provided by the first and second means.
4. Transducteur selon la revendication 3, dans lequel la première extrémité (20) de chaque partie mobile (16) est arrondie. 4. A transducer according to claim 3, wherein the first end (20) of each movable part (16) is rounded.
5. Transducteur selon l'une quelconque des revendications 3 et 4, dans lequel la partie rigide (12) du transducteur comporte des trous (14) parallèles, dans lesquels les parties mobiles (16) sont respectivement aptes à coulisser, et chaque élément mécanique comprend en outre des moyens élastiques (18) qui sont aptes à éloigner de la partie rigide la première extrémité de la partie mobile correspondant à cet élément mécanique. 5. Transducer according to any one of claims 3 and 4, in which the rigid part (12) of the transducer comprises holes (14) parallel, in which the movable parts (16) are respectively capable of sliding, and each mechanical element further comprises elastic means (18) which are capable of moving the first end of the movable part corresponding to this mechanical element away from the rigid part.
6. Transducteur selon la revendication 5, dans lequel chaque élément mécanique comprend en outre, dans le trou qui lui correspond, un moyen (22) dans lequel est apte à coulisser, à faible frottement, la partie mobile de cet élément mécanique . 6. A transducer according to claim 5, wherein each mechanical element further comprises, in the hole which corresponds to it, a means (22) in which is capable of sliding, at low friction, the movable part of this mechanical element.
7. Transducteur selon l'une quelconque des revendication 3 à 6, dans lequel les moyens (26, 28, 48, 52) de mesure de distance sont prévus pour mesurer optiquement la distance de la deuxième extrémité (30) de la partie mobile (16) de chaque élément mécanique (8) par rapport à une zone (29) de la partie rigide (12) , comprennent - des moyens d'émission de lumière (26, 48) fixés à la partie rigide et prévus pour émettre une lumière vers cette deuxième extrémité, cette deuxième extrémité étant apte à réfléchir cette lumière, et - des moyens de réception de lumière (28, 52) fixés à la partie rigide et prévus pour recevoir la lumière ainsi réfléchie, ces moyens de réception de lumière étant aptes à fournir des signaux représentatifs de la distance de cette deuxième extrémité par rapport à la zone correspondante. 7. Transducer according to any one of claims 3 to 6, in which the distance measuring means (26, 28, 48, 52) are provided for optically measuring the distance from the second end (30) of the movable part ( 16) of each mechanical element (8) with respect to a zone (29) of the rigid part (12), comprise - light emitting means (26, 48) fixed to the rigid part and designed to emit light towards this second end, this second end being able to reflect this light, and - light receiving means (28, 52) fixed to the rigid part and designed to receive the light thus reflected, these light receiving means being able to provide signals representative of the distance of this second end from the corresponding area.
8. Transducteur selon la revendication 7, dans lequel les moyens d'émission de lumière et les moyens de réception de lumière comprennent respectivement un photo-émetteur (26) et un photodétecteur (28) qui sont fixés à la partie rigide (12) , en regard de la deuxième extrémité (30) . 8. A transducer according to claim 7, in which the light emitting means and the light receiving means respectively comprise a photo-emitter (26) and a photodetector (28) which are fixed to the rigid part (12), opposite the second end (30).
9. Transducteur selon la revendication 7, dans lequel les moyens d'émission de lumière et les moyens de réception de lumière comprennent respectivement une première fibre optique (48) apte à transmettre la lumière et à envoyer cette lumière vers la deuxième extrémité (30) et une deuxième fibre optique (52) apte à transmettre la lumière réfléchie par cette deuxième extrémité. 9. The transducer of claim 7, wherein the light emitting means and the light receiving means comprise respectively a first optical fiber (48) capable of transmitting light and of sending this light to the second end (30) and a second optical fiber (52) capable of transmitting the light reflected by this second end.
10. Transducteur selon l'une quelconque des revendications 7 à 9, dans lequel les moyens optiques de mesure de distance (26, 28, 48, 52) utilisent des faisceaux lumineux continus. 10. Transducer according to any one of claims 7 to 9, in which the optical distance measuring means (26, 28, 48, 52) use continuous light beams.
11. Transducteur selon l'une quelconque des revendications 7 à 9, dans lequel les moyens optiques de mesure de distance (26, 28, 48, 52) utilisent des faisceaux lumineux discontinus, en particulier des trains d'ondes lumineuses. 11. Transducer according to any one of claims 7 to 9, in which the optical distance measuring means (26, 28, 48, 52) use discontinuous light beams, in particular trains of light waves.
12. Transducteur selon l'une quelconque des revendications 3 à 11, dans lequel les moyens pour plaquer les éléments émetteurs comprennent en outre une lame (10) qui recouvre des deuxièmes faces des éléments émetteurs, la première extrémité de la partie mobile de chaque élément mécanique (8) étant apte à presser des éléments émetteurs contre la surface de l'objet (6) par l'intermédiaire de la lame, cette lame étant apte à répartir les forces exercées par les éléments mobiles sur les éléments émetteurs par l'intermédiaire de la lame. 12. Transducer according to any one of claims 3 to 11, in which the means for pressing the emitting elements further comprise a blade (10) which covers second faces of the emitting elements, the first end of the movable part of each element mechanical (8) being able to press emitting elements against the surface of the object (6) by means of the blade, this blade being able to distribute the forces exerted by the mobile elements on the emitting elements by means of the blade of the blade.
13. Transducteur selon l'une quelconque des revendications 3 à 11, dans lequel les éléments émetteurs sont des éléments piézoélectriques rigides, emprisonnés dans un substrat souple qui est passif vis- à-vis des ultrasons. 13. Transducer according to any one of claims 3 to 11, in which the emitting elements are rigid piezoelectric elements, trapped in a flexible substrate which is passive with respect to ultrasound.
14. Transducteur selon la revendication 13, comprenant en outre des lamelles dont le nombre est égal à celui des éléments émetteurs et qui sont fixées à la face du substrat souple qui est située en regard des éléments mécaniques, chaque lamelle étant en regard de la partie mobile de l'un de ces éléments mécaniques, la première extrémité de cette partie mobile étant apte à presser des éléments émetteurs contre la surface de l'objet par l'intermédiaire de la lamelle en regard de laquelle elle se trouve. 14. A transducer according to claim 13, further comprising lamellae the number of which is equal to that of the emitting elements and which are fixed to the face of the flexible substrate which is located opposite the mechanical elements, each lamella being opposite the part mobile of one of these mechanical elements, the first end of this mobile part being capable of pressing emitting elements against the surface of the object by means of the lamella opposite which it is located.
EP04805832.5A 2003-11-17 2004-11-16 Ultrasonic contact transducer comprising multiple emitting elements and means for pressing said elements Active EP1687804B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350842A FR2862385B1 (en) 2003-11-17 2003-11-17 ULTRASONIC CONTACT TRANSDUCER WITH MULTIPLE TRANSMITTING ELEMENTS AND MEANS FOR PLATING THESE ELEMENTS
PCT/FR2004/050589 WO2005050617A2 (en) 2003-11-17 2004-11-16 Ultrasonic contact transducer comprising multiple emitting elements and means for pressing said elements

Publications (2)

Publication Number Publication Date
EP1687804A2 true EP1687804A2 (en) 2006-08-09
EP1687804B1 EP1687804B1 (en) 2018-07-18

Family

ID=34508764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04805832.5A Active EP1687804B1 (en) 2003-11-17 2004-11-16 Ultrasonic contact transducer comprising multiple emitting elements and means for pressing said elements

Country Status (6)

Country Link
US (1) US7955266B2 (en)
EP (1) EP1687804B1 (en)
JP (1) JP4776545B2 (en)
CA (1) CA2546176C (en)
FR (1) FR2862385B1 (en)
WO (1) WO2005050617A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770386B2 (en) * 2005-10-21 2011-09-14 株式会社日立製作所 Ultrasonic probe of ultrasonic flaw detector
FR2930642B1 (en) * 2008-04-23 2010-06-11 Commissariat Energie Atomique ULTRASOUND CONTACT TRANSLATOR WITH MULTIPLE ELEMENTS, FLEXIBLE SHEET AND PROFILOMETER
KR101107154B1 (en) * 2009-09-03 2012-01-31 한국표준과학연구원 Multi probe unit for ultrasonic flaw detection apparatus
FR2965923B1 (en) * 2010-10-11 2012-12-14 Commissariat Energie Atomique ULTRASONIC SURVEY DEVICE, METHOD FOR CONTROLLING TRANSDUCERS OF ULTRASONIC PROBE AND CORRESPONDING COMPUTER PROGRAM
DE102012101579A1 (en) * 2012-02-27 2013-08-29 Ge Sensing & Inspection Technologies Gmbh Wear sole for connection to an ultrasonic probe
FR2988173B1 (en) 2012-03-15 2014-04-11 Commissariat Energie Atomique MULTICAPTER ULTRASONIC SURVEY DEVICE AND METHOD FOR MANUFACTURING SUCH DEVICE, METHOD FOR CONTROLLING SENSORS OF ULTRASONIC PROBE AND CORRESPONDING COMPUTER PROGRAM
FR3011635B1 (en) 2013-10-09 2017-01-27 Areva ULTRASONIC PROBE FOR ULTRASONIC OBJECT EXAMINATION AND CORRESPONDING EXAMINATION METHOD
WO2015131098A1 (en) * 2014-02-27 2015-09-03 Seno Medical Instruments, Inc. Probe adapted to control blood flow through vessels during imaging and method of use of same
WO2016063163A1 (en) * 2014-10-23 2016-04-28 Koninklijke Philips N.V. Shape sensing for flexible ultrasound transducers
US9809720B2 (en) * 2015-07-06 2017-11-07 University Of Massachusetts Ferroelectric nanocomposite based dielectric inks for reconfigurable RF and microwave applications
JP7025404B2 (en) * 2016-08-02 2022-02-24 コーニンクレッカ フィリップス エヌ ヴェ Surface Adaptation Ultrasonic Transducer Array
US10839992B1 (en) 2019-05-17 2020-11-17 Raytheon Company Thick film resistors having customizable resistances and methods of manufacture

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2655179A1 (en) * 1976-12-06 1978-06-08 Kraftwerk Union Ag TEST HEAD HOLDER ON A TEST SYSTEM SUPPORT, PREFERRED FOR ULTRASONIC TEST HEADS
JPS5775640A (en) * 1980-10-29 1982-05-12 Hitachi Ltd Ultrasonic shotographing apparatus
US4437468A (en) * 1982-09-03 1984-03-20 Medtronic, Inc. Ultrasound scanning system with semi-independent transducer array
JPS59174151A (en) * 1983-03-25 1984-10-02 横河メディカルシステム株式会社 Ultrasonic image apparatus
GB9225898D0 (en) 1992-12-11 1993-02-03 Univ Strathclyde Ultrasonic transducer
US5485263A (en) * 1994-08-18 1996-01-16 United Parcel Service Of America, Inc. Optical path equalizer
US5680863A (en) * 1996-05-30 1997-10-28 Acuson Corporation Flexible ultrasonic transducers and related systems
JP3663501B2 (en) 1996-07-19 2005-06-22 神田通信工業株式会社 Ultrasonic probe and ultrasonic inspection device
FR2786651B1 (en) * 1998-11-27 2002-10-25 Commissariat Energie Atomique ULTRASONIC CONTACT TRANSDUCER, WITH MULTIPLE ELEMENTS
JP4183366B2 (en) * 2000-04-20 2008-11-19 三菱重工業株式会社 Phased array ultrasonic flaw detector
DE10043199A1 (en) * 2000-09-01 2002-09-05 Intelligendt Sys & Serv Gmbh None destructive testing of large test-pieces, especially large sheet or aerospace components, using an ultrasonic transducer array with a mounting mechanism that ensures individual transducers are aligned with the test surface
US6578424B1 (en) * 2000-09-27 2003-06-17 Digital Wave Corporation Hand-held variable angle membrane (VAM) ultrasonic scanning head for the noninvasive detection of corrosion, MIC and foreign objects in pipes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005050617A2 *

Also Published As

Publication number Publication date
FR2862385A1 (en) 2005-05-20
CA2546176A1 (en) 2005-06-02
CA2546176C (en) 2012-05-22
FR2862385B1 (en) 2006-03-10
JP2007511970A (en) 2007-05-10
WO2005050617A2 (en) 2005-06-02
US7955266B2 (en) 2011-06-07
WO2005050617A3 (en) 2005-08-18
US20070167800A1 (en) 2007-07-19
EP1687804B1 (en) 2018-07-18
JP4776545B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
CA2318378C (en) Multielement ultrasonic contact transducer
EP1687804B1 (en) Ultrasonic contact transducer comprising multiple emitting elements and means for pressing said elements
FR2930642A1 (en) ULTRASOUND CONTACT TRANSLATOR WITH MULTIPLE ELEMENTS, FLEXIBLE SHEET AND PROFILOMETER
EP2629049B1 (en) Touch probe
EP0159210B1 (en) Optical device for surface proximity detection and its application to the retrieval of a surface profile
FR2721395A1 (en) Method for locating a trihedron in space and device for implementing this method.
EP0551045A1 (en) Device for controlling the dimensions of an object, in particular the external or internal diameters of mechanical pieces
EP0712009A1 (en) Integrated angular deviation measurement system
FR2779816A1 (en) OPTICAL ENCODER
EP0133135B1 (en) Ultrasonic search unit with several transducers of different dimensions
EP1846727B1 (en) Optical probe and device and method making use thereof
CA2228675A1 (en) Non destructive control device for the ultrasound controlling of an elongate part
EP0390648B1 (en) Multidirectional contact sensor for control machines
EP1055097B1 (en) Method for controlling perpendicularity of a cylindrical part, such as a nuclear fuel pellet
FR3104719A1 (en) Ultrasonic non-destructive part testing device configured to emit at least one steerable part test beam and at least one coupling test beam
EP0943906B1 (en) Fibre-optical force sensor, fabrication method and detection device using the sensor
CH644948A5 (en) Optical method for detecting and/or measuring physical quantities, and device for implementing this method
WO2013011249A2 (en) Digital movement measuring device
WO2021122599A1 (en) Method for characterising the integrity of an object subjected to a mechanical, thermal or thermoelastic stress liable to generate elastic waves in the object
FR2748117A1 (en) METHOD FOR MEASURING ANGLE IN THE SPACE BY SCANNING AN ULTRASONIC BEAM
FR2729756A1 (en) Optical fibre sensor for measuring physical dimensions e.g. liquid or gas pressure
FR2720825A1 (en) Vibration detection technique for components of rotation machine
EP0408434A1 (en) Mirror structure and method of manufacture
EP2745071A1 (en) Optical device for interferometric analysis of the condition of the internal surface of a tube
FR2936308A1 (en) DEVICE AND METHOD FOR CONTROLLING DIMENSIONS OF A PIPE SHEATH OF A CONTROL CLUSTER FOR A NUCLEAR REACTOR HEART.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060424

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INSTITUT DE RADIOPROTECTION ET DE SURETE NUCLEAIRE

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INSTITUT DE RADIOPROTECTION ET DE SURETE NUCLEAIRE

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

17Q First examination report despatched

Effective date: 20121203

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1020199

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004052939

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180718

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1020199

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181019

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181018

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004052939

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004052939

Country of ref document: DE

26N No opposition filed

Effective date: 20190423

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181116

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20041116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211122

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221118

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221116