EP1687086A1 - Exhaust system for a combustion engine - Google Patents

Exhaust system for a combustion engine

Info

Publication number
EP1687086A1
EP1687086A1 EP04798134A EP04798134A EP1687086A1 EP 1687086 A1 EP1687086 A1 EP 1687086A1 EP 04798134 A EP04798134 A EP 04798134A EP 04798134 A EP04798134 A EP 04798134A EP 1687086 A1 EP1687086 A1 EP 1687086A1
Authority
EP
European Patent Office
Prior art keywords
filter
exhaust system
catalyst material
approximately
surface filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04798134A
Other languages
German (de)
French (fr)
Inventor
Markus Widenmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1687086A1 publication Critical patent/EP1687086A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/27Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a liquid or molten state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/682Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium, tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions

Definitions

  • the invention relates to an exhaust system for an internal combustion engine, with a depth filter for removing soot from the exhaust gas, at least the depth filter comprising a catalyst material which promotes soot oxidation.
  • An exhaust system of the type mentioned is known from DE 101 30 338 AI. In this an exhaust system for a diesel engine is described. The exhaust system should also be able to filter out soot particles from the exhaust gas.
  • surface filters which are also implemented as wallflow or inflow filters with a honeycomb structure, the flow channels of which are mutually closed, so that the exhaust gas has to flow through the porous filter walls.
  • a filter must, however, be continuously or cyclically freed from the soot that has accumulated or has already accumulated. This is possible using thermal combustion and / or catalytic processes.
  • nitrogen monoxide When using thermal processes, nitrogen monoxide must first be converted from the exhaust gas into nitrogen dioxide. This in turn can oxidize diesel soot from temperatures of approx. 300 ° C. However, since modern internal combustion engines only emit very little nitrogen monoxide, there is often not enough nitrogen dioxide available to convert the diesel soot. In contrast, catalytic processes have so far often been comparatively inefficient because the contact areas between the soot and the catalyst are small.
  • a depth filter is also known from DE 101 30 338 AI. This has an open pore system, which is designed in such a way that even larger soot particles can be separated within the filter body. The filter effect of this depth filter therefore extends over its entire volume or its entire surface. Here too, constipation of the
  • Depth filter counteracted by the fact that it is provided with a catalyst which should enable soot oxidation in the depth filter even at comparatively low temperatures.
  • catalyst particles are finely dispersed on the surface of the depth filter.
  • the object of the present invention is to develop an exhaust system of the type mentioned at the outset in such a way that on the one hand the greatest possible proportion of soot particles the exhaust gas can be filtered out, and that, on the other hand, simple and effective regeneration of the filters used is possible.
  • an inner pore structure of the depth filter is provided with a catalyst material which, at an operating temperature of the depth filter, in particular from a temperature of approximately at most 400 ° C., more preferably of at most approximately 350 ° C, is liquid.
  • the use of a liquid catalyst in the depth filter used has the advantage that the catalyst material can flow to the soot particles in the liquid state, even cover them, and can oxidize soot that has accumulated at much lower temperatures than previously. This creates a much larger contact area between the soot particles and the catalyst material, which significantly increases the oxidation rate of the soot particles deposited in the depth filter.
  • the liquid state is already at the operating temperature of the depth filter, which is normally related to the exhaust gas temperature. The operating temperature can again be reached either in normal operation or in special operating phases.
  • the catalyst material of the depth filter comprises a "molten salt” material, in particular Cs 2 S0 4 V 2 0 5 or Cs vanadates or Ag compounds, in particular Ag vandanates. These materials are in liquid form at temperatures above approx. 350 ° C.
  • These materials can optionally be combined with other catalytically active substances, for example: Rh and / or Pd, on supports such as aluminum, zirconium, cerium oxides and / or mixed oxides such as Ce / Zr0 2 , or without a support; Group 11 elements (Ag, Au, and / or Cu) on supports such as aluminum, zirconium, cerium oxides and / or mixed oxides such as Ce / Zr0 2 , or without supports; Oxygen-storing and releasing materials, for example compounds of Mn, Fe, Ce, Pr; under
  • nitrate-forming materials in particular elements of the alkaline earth group, and of group 3 and the rare earths; and / or materials which are characterized by high acidity, for example zeolites and the following oxides or oxide mixtures: Ti0 2 , Zr0 2 , Si0 2 , Al 2 0 3 , boron oxides.
  • An exhaust system in which the depth filter comprises an open-pore silicon carbide foam filter with pore diameters in the range from approximately 40 ⁇ m to approximately 1000 ⁇ m and a porosity of at least approximately 60% is particularly advantageous.
  • Such a depth filter is comparatively inexpensive and easy to manufacture and has a sufficiently good filter performance.
  • the exhaust system comprises a downstream surface filter and that a catalyst device is arranged upstream of the surface filter, by means of which nitrogen dioxide is formed from the exhaust gas.
  • This exhaust system according to the invention makes it possible to filter out more than 99% of the soot particles contained in the exhaust gas.
  • a depth filter can only filter out a maximum of approximately 90% of the soot particles contained in the exhaust gas, this is made possible by the downstream surface filter, which in turn can filter out up to 95 to 99% of the approximately 10% soot content passing through the depth filter.
  • the downstream surface filter since overall only a small amount of soot reaches the surface filter at all, it can be operated for a comparatively long time without having to be freed from the filter cake that forms there. Overall, an exhaust system is created that works simply, has a long service life, and one
  • the proposed catalyst device can in particular work with a platinum catalyst material.
  • nitrogen dioxide is formed during operation of the internal combustion engine, which burns off the soot on the surface filter at a corresponding temperature.
  • This is also possible continuously and allows the surface filter to be kept completely free, since only a comparatively little soot reaches the surface filter from the depth filter, so that only a comparatively small amount of soot has to be burned off there.
  • the exhaust system comprises a downstream surface filter and that a structure of the surface filter is provided with a catalyst material. Particles that are not retained by the depth filter are at least to a large extent removed by the surface filter filtered out of the gas stream. Due to the upstream depth filter, however, the surface filter only has to cope with part of the total particle mass, which enables its continuous regeneration, for example by means of nitrogen oxides contained in the exhaust gas.
  • Catalyst material further improves the oxidation of the soot particles on the surface filter.
  • the catalyst material of the surface filter comprises a material from the extensive list above.
  • the catalyst material of the surface filter can also be a conventional NO x storage catalyst material, a conventional NH 3 -SCR-
  • Catalyst material and / or include another material for reducing nitrogen oxide emissions.
  • the surface filter thus has an additional function, namely it also serves as a catalyst device for reducing further emissions, in particular nitrogen oxide emissions.
  • a comparatively inexpensive surface filter is a cordierite filter with a cell number of approximately 50 to 300 cpsi, a porosity of approximately 50% and a pore diameter of at most approximately 100 ⁇ m, preferably at most approximately 40 ⁇ m, even more preferably at most approximately 10 ⁇ m.
  • the exhaust system according to the invention is particularly compact if the surface filter has a Pt
  • Catalyst material in particular Pt-Ce / Zr0 2 , and a conventional NO x on its outflow side
  • Storage catalyst material includes. In this case on
  • Input of the surface filter generates the nitrogen dioxide required for soot combustion, and on the On the outflow side, the surface filter works as a NO x storage catalytic converter, which reduces nitrogen oxide emissions.
  • the invention also relates to a method for operating an internal combustion engine with an exhaust system of the type in which a surface filter is connected downstream of the depth filter. It is proposed that soot that is deposited in the surface filter is continuously oxidized. This is possible because only comparatively few soot particles reach the surface filter, and because of the comparatively large volume flow that passes through the surface filter. In this way, the surface filter always remains as continuous as possible, which is optimal for the efficiency of the exhaust system.
  • Figure 1 is a schematic representation of an exhaust system with a depth filter and a downstream surface filter
  • FIG. 2 shows a schematic section through an area of the depth filter from FIG. 1;
  • Figure 3 shows a detail III of Figure 2.
  • FIG. 4 shows a schematic section through an area of the surface filter from FIG. 1. Description of the embodiment
  • an exhaust system of an internal combustion engine bears the reference number 10 overall.
  • the internal combustion engine itself is only shown schematically and is designated by reference number 12.
  • the hot combustion exhaust gases are discharged from the internal combustion engine 12 via an exhaust pipe 14.
  • This initially leads to a depth filter 16 which is provided with a catalytic device 18.
  • the exhaust pipe 14 leads from the depth filter 16 to a surface filter 20. This is provided on its inflow side with a catalytic device 22 and on its outflow side with a further catalytic device 24. It is also explained in great detail below.
  • the internal combustion engine 12 is a diesel internal combustion engine. Soot particles, which are filtered out of the exhaust gas stream by the two filters 16 and 20, are initially contained in their exhaust gas, especially during certain operating phases. With the depth filter 16, the soot particles are deposited inside the filter. The depth filter 16 thus has a filter effect over its total volume or its total surface area. A section of an inner region of the depth filter 16 is shown in FIG. 2. Thereafter, the depth filter 16 has pores 26 which are formed between a structure 28 of the depth filter 16. In the present exemplary embodiment, this structure is produced from silicon carbide, so that a so-called open-cell silicon carbide foam filter 16 is formed.
  • the depth filter 16 all open-porous bodies and fillings made of ceramic and metallic material or combinations of both are suitable, which are suitable for filtering out soot particles from the exhaust gas that flows through the exhaust pipe 14.
  • soot particles should also be able to be filtered out by the depth filters.
  • the pore diameter varies in the range from approximately 40 ⁇ m to approximately 1000 ⁇ m.
  • the depth filter 16 has a porosity of more than 60%.
  • the silicon carbide structure 28 of the depth filter 16 is provided with a catalytic material 18.
  • the catalytic material is selected such that it promotes the oxidation or combustion of the soot particles (reference numeral 30 in FIG. 3) at comparatively low temperatures, thereby preventing the depth filter 16 from becoming blocked.
  • the catalytic material 18 which is used in the depth filter 16 has the special feature that it is liquid at a comparatively low temperature. This temperature can be in the range of the normal operating temperature of the depth filter 16, so that the catalytic material 18 in the
  • molten salt catalyst for example CS 2 SO 4 2 O 5 or in the case of Cs vanadates
  • Temperature at which the catalytic material 18 is liquid at approximately 350 to 400 ° C. Due to the liquefaction of the catalytic material 18, the soot particles 30 deposited in the depth filter 16 are contacted very intimately by the catalytic material 18, in some cases even completely enclosed at least temporarily. As a result, a very high conversion rate is achieved with the same energy input.
  • Such liquid catalysts can also be combined with other of the catalytically active materials described at the outset.
  • the depth filter 16 shown has only a maximum filter efficiency of 90%. This means that at least 10% of the soot particles 30 pass through the depth filter 16 and reach the surface filter 20.
  • the surface filter 20 is a wall flow or wall flow filter. This has a honeycomb-like structure seen in the flow direction, which is made of cordierite and bears the reference number 32 in FIG. Some of the honeycombs are open on the side facing the internal combustion engine 12 and closed on the side facing away from the internal combustion engine 12 (the exhaust gas flow is indicated by arrows 33 in FIG. 4). These honeycombs have the reference number 34 in FIG. 4. Other honeycombs 36 adjacent to the honeycombs 34 are on the same
  • Internal combustion engine 12 side closed and open on the side facing away from the internal combustion engine 12.
  • the filter effect results from the porosity of the structure 32 of the surface filter 20, so the exhaust gas flow passes through the wall surfaces from the honeycomb 34 into the honeycomb 36, corresponding to the arrow 38 in FIG. 4.
  • the surface filter shown in FIG. 4 has a cell number from 50 to 300 cpsi, a porosity of approximately 50% and a pore diameter of 10 to 30 ⁇ m.
  • the porosity of the Structure 32 is selected such that surface filter 20 preferably filters out small soot particles from the exhaust gas flow.
  • the filter efficiency of the surface filter 20 is 95 to 99%. Overall, because of the combination of the depth filter 16 and the surface filter 20, more than 99% of the soot particles are filtered out of the exhaust gas.
  • soot particles 30 deposited on the surface filter 20 form a so-called "filter cake" which, if it is too large, can impair the permeability of the surface filter 20 and thus increase the exhaust gas back pressure.
  • this filter cake from the soot particles 30 forms only very slowly, since there are only very few soot particles overall
  • the surface filter 20 is freed from the soot particles either continuously or cyclically by a so-called CRT process.
  • the surface filter 20 has on its side facing the internal combustion engine 12 (inflow side) a structure 22 with a platinum catalyst material, in the present case a Pt-Ce / Zr0 2 mixture.
  • a platinum catalyst material in the present case a Pt-Ce / Zr0 2 mixture.
  • nitrogen monoxide contained in the exhaust gas is oxidized to nitrogen dioxide anyway.
  • the soot 30 deposited on the surface filter 20 can also preferably be oxidized continuously at comparatively low temperatures (below 400 ° C.).
  • the surface of the structure 32 of the surface filter 20 facing away from the internal combustion engine 12 is provided with a catalyst layer 24, which in the present exemplary embodiment consists of a conventional NO x storage catalyst material.
  • a catalyst layer 24 which in the present exemplary embodiment consists of a conventional NO x storage catalyst material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

An exhaust system for a combustion engine comprises a deep-bed filter (16) for removing soot from the exhaust gas. The deep-bed filter (16) comprises a catalyst material (18) that promotes soot oxidation. The invention provides that an inner pore structure (28) of the deep-bed filter (16) is provided with a catalyst material (18) that is liquid beyond a temperature of no more than approximately 400 DEG C, preferably of no more than approximately 350 DEG C.

Description

Abgassystem für eine BrennkraftmaschineExhaust system for an internal combustion engine
Stand der TechnikState of the art
Die Erfindung betrifft ein Abgassystem für eine Brennkraftmaschine, mit einem Tiefenfilter zur Entfernung von Ruß aus dem Abgas, wobei mindestens der Tiefenfilter ein Katalysatormaterial umfasst, welches die Rußoxidation fördert .The invention relates to an exhaust system for an internal combustion engine, with a depth filter for removing soot from the exhaust gas, at least the depth filter comprising a catalyst material which promotes soot oxidation.
Ein Abgassystem der eingangs genannten Art ist aus der DE 101 30 338 AI bekannt. In dieser wird ein Abgassystem für eine Diesel-Brennkraftmaschine beschrieben. Mit dem Abgassystem sollen auch Rußpartikel aus dem Abgas herausgefiltert werden können.An exhaust system of the type mentioned is known from DE 101 30 338 AI. In this an exhaust system for a diesel engine is described. The exhaust system should also be able to filter out soot particles from the exhaust gas.
Eine Möglichkeit hierfür sind Oberflächenfilter, welche auch als Wallflow- oder andfluss-Filter mit einer wabenartigen Struktur realisiert werden, deren Strömungskanäle wechselseitig verschlossen sind, so dass das Abgas durch die porösen Filterwände strömen muss. Um einer Verstopfung des Filters mit zunehmender Rußbeladung entgegenzuwirken, muss ein solcher Filter jedoch kontinuierlich oder zyklisch von dem sich ansammelnden oder bereits angesammelten Ruß befreit werden. Dies ist mittels thermischer Verbrennung oder/und katalytischer Verfahren möglich.One possibility for this are surface filters, which are also implemented as wallflow or inflow filters with a honeycomb structure, the flow channels of which are mutually closed, so that the exhaust gas has to flow through the porous filter walls. Around To counteract a blockage of the filter with increasing soot loading, such a filter must, however, be continuously or cyclically freed from the soot that has accumulated or has already accumulated. This is possible using thermal combustion and / or catalytic processes.
Bei der Verwendung von thermischen Verfahren muss zunächst aus dem Abgas Stickstoffmonoxid in Stickstoffdioxid umgewandelt werden. Dieses kann wiederum ab Temperaturen von ca. 300 °C Dieselruß oxidieren. Da moderne Brennkraftmaschinen jedoch nur noch sehr wenig Stickstoffmonoxid emittieren, steht oft nicht ausreichend Stickstoffdioxid für die Umwandlung des Dieselrußes zur Verfügung. Katalytische Verfahren sind dagegen bisher oft vergleichsweise ineffizient, da die Kontaktflächen zwischen dem Ruß und dem Katalysator gering sind.When using thermal processes, nitrogen monoxide must first be converted from the exhaust gas into nitrogen dioxide. This in turn can oxidize diesel soot from temperatures of approx. 300 ° C. However, since modern internal combustion engines only emit very little nitrogen monoxide, there is often not enough nitrogen dioxide available to convert the diesel soot. In contrast, catalytic processes have so far often been comparatively inefficient because the contact areas between the soot and the catalyst are small.
Aus der DE 101 30 338 AI ist auch ein Tiefenfilter bekannt. Dieser weist ein offenes Porensystem auf, welches so ausgestaltet ist, dass auch größere Rußteilchen innerhalb des Filterkörpers abgeschieden werden können. Die Filterwirkung dieses Tiefenfilters erstreckt sich daher über dessen gesamtes Volumen beziehungsweise seine gesamte Oberfläche. Auch hier wird einer Verstopfung desA depth filter is also known from DE 101 30 338 AI. This has an open pore system, which is designed in such a way that even larger soot particles can be separated within the filter body. The filter effect of this depth filter therefore extends over its entire volume or its entire surface. Here too, constipation of the
Tiefenfilters dadurch entgegengewirkt, dass dieser mit einem Katalysator versehen ist, der die Rußoxidation im Tiefenfilter auch bei vergleichsweise niedrigen Temperaturen ermöglichen soll. Hierzu werden Katalysatorpartikel feindispers auf der Oberfläche des Tiefenfilters verteilt.Depth filter counteracted by the fact that it is provided with a catalyst which should enable soot oxidation in the depth filter even at comparatively low temperatures. For this purpose, catalyst particles are finely dispersed on the surface of the depth filter.
Die vorliegende Erfindung hat die Aufgabe, ein Abgassyste der eingangs genannten Art so weiterzubilden, dass einerseits ein möglichst hoher Anteil an Rußpartikeln aus dem Abgas herausgefiltert werden kann, und dass andererseits eine einfache und wirkungsvolle Regenerierung der eingesetzten Filter möglich ist.The object of the present invention is to develop an exhaust system of the type mentioned at the outset in such a way that on the one hand the greatest possible proportion of soot particles the exhaust gas can be filtered out, and that, on the other hand, simple and effective regeneration of the filters used is possible.
Diese Aufgabe wird bei einem AbgasSystem der eingangs genannten Art dadurch gelöst, dass ein inneres Porengefüge des Tiefenfilters mit einem Katalysatormaterial versehen ist, welches bei einer Betriebstemperatur des Tiefenfilters, insbesondere ab einer Temperatur von ungefähr höchstens 400 °C, stärker bevorzugt von höchstens ungefähr 350°C, flüssig ist.This object is achieved in an exhaust gas system of the type mentioned in the introduction in that an inner pore structure of the depth filter is provided with a catalyst material which, at an operating temperature of the depth filter, in particular from a temperature of approximately at most 400 ° C., more preferably of at most approximately 350 ° C, is liquid.
Vorteile der ErfindungAdvantages of the invention
Die Verwendung eines Flüssigkatalysators bei dem eingesetzten Tiefenfilter hat den Vorteil, dass das Katalysatormaterial im flüssigen Zustand zu den Rußpartikeln strömen, ja diese sogar überdecken kann, und bei wesentlich niedrigeren Temperaturen als bisher angesammelten Ruß oxidieren kann. Dabei wird eine um ein Vielfaches größere Kontaktfläche zwischen den Rußpartikeln und dem Katalysatormaterial geschaffen, was die Oxidationsrate der im Tiefenfilter abgelagerten Rußpartikel deutlich erhöht. Der flüssige Zustand liegt dabei bereits bei Betriebstemperatur des Tiefenfilters, die normalerweise mit der Abgastemperatur zusammenhängt, vor. Die Betriebstemperatur kann wiederum entweder im normalen Betrieb oder in speziellen Betriebsphasen erreicht werden.The use of a liquid catalyst in the depth filter used has the advantage that the catalyst material can flow to the soot particles in the liquid state, even cover them, and can oxidize soot that has accumulated at much lower temperatures than previously. This creates a much larger contact area between the soot particles and the catalyst material, which significantly increases the oxidation rate of the soot particles deposited in the depth filter. The liquid state is already at the operating temperature of the depth filter, which is normally related to the exhaust gas temperature. The operating temperature can again be reached either in normal operation or in special operating phases.
Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben. Zunächst wird vorgeschlagen, dass das Katalysatormaterial des Tiefenfilters ein "Molten Salt"-Material, insbesondere Cs2S04V205 oder Cs-Vanadate oder Ag-Verbindungen, insbesondere Ag-Vandanate umfasst. Diese Materialien liegen bei Temperaturen ab ca. 350° C in flüssiger Form vor.Advantageous developments of the invention are specified in the subclaims. First, it is proposed that the catalyst material of the depth filter comprises a "molten salt" material, in particular Cs 2 S0 4 V 2 0 5 or Cs vanadates or Ag compounds, in particular Ag vandanates. These materials are in liquid form at temperatures above approx. 350 ° C.
Kombiniert werden können diese Materialien ggf. weiteren katalytisch wirkenden Stoffen, beispielsweise: Rh und/oder Pd, auf Trägern wie Aluminium, Zirkonium, Ceroxiden und/oder Mischoxiden wie beispielsweise Ce/Zr02, oder ohne Träger; Elemente der Gruppe 11 (Ag, Au, und/oder Cu) auf Trägern wie Aluminium, Zirkonium, Ceroxiden und/oder Mischoxiden wie beispielsweise Ce/Zr02, oder ohne Träger; Sauerstoff speichernde und abgebende Materialien, beispielsweise Verbindungen von Mn, Fe, Ce, Pr; unterThese materials can optionally be combined with other catalytically active substances, for example: Rh and / or Pd, on supports such as aluminum, zirconium, cerium oxides and / or mixed oxides such as Ce / Zr0 2 , or without a support; Group 11 elements (Ag, Au, and / or Cu) on supports such as aluminum, zirconium, cerium oxides and / or mixed oxides such as Ce / Zr0 2 , or without supports; Oxygen-storing and releasing materials, for example compounds of Mn, Fe, Ce, Pr; under
Abgasbedingungen nitratbildende Materialien (NOx-Speicher) , insbesondere Elemente der Erdalkaligruppe, sowie der Gruppe 3 und der Seltenen Erden; und/oder Materialien, die sich durch eine hohe Acidität auszeichnen, beispielsweise Zeolithe und folgende Oxide oder Oxidmischungen: Ti02, Zr02, Si02, Al203, Boroxide.Exhaust gas conditions nitrate-forming materials (NO x storage), in particular elements of the alkaline earth group, and of group 3 and the rare earths; and / or materials which are characterized by high acidity, for example zeolites and the following oxides or oxide mixtures: Ti0 2 , Zr0 2 , Si0 2 , Al 2 0 3 , boron oxides.
Besonders vorteilhaft ist ein Abgassystem, bei dem der Tiefenfilter einen offenporigen Siliciumcarbid-Schaumfilter mit Porendurchmessern im Bereich von ungefähr 40μ bis ungefähr 1000 μm und einer Porosität von mindestens ungefähr 60% umfasst. Ein solcher Tiefenfilter ist vergleichsweise preiswert und einfach herstellbar und verfügt über eine ausreichend gute Filterleistung.An exhaust system in which the depth filter comprises an open-pore silicon carbide foam filter with pore diameters in the range from approximately 40 μm to approximately 1000 μm and a porosity of at least approximately 60% is particularly advantageous. Such a depth filter is comparatively inexpensive and easy to manufacture and has a sufficiently good filter performance.
Vorgeschlagen wird auch, dass das Abgassystem einen nachgeschalteten Oberflächenfilter umfasst, und dass stromaufwärts von dem Oberflächenfilter eine Katalysatoreinrichtung angeordnet ist, durch die aus dem Abgas Stickstoffdioxid gebildet wird. Dieses erfindungsgemäße Abgassystem ermöglicht es, mehr als 99% der im Abgas enthaltenen Rußpartikel herauszufiltern. Obwohl ein- Tiefenfilter prinzipbedingt nur ungefähr maximal 90% der im Abgas enthaltenen Rußpartikel herausfiltern kann, wird dies durch den nachgeschalteten Oberflächenfilter ermöglicht, der wiederum von dem durch den Tiefenfilter hindurchtretenden ungefähr 10%igen Rußanteil bis zu 95 bis 99% herausfiltern kann. Da insgesamt gesehen jedoch nur noch eine geringe Rußmenge überhaupt bis zum Oberflächenfilter gelangt, kann dieser vergleichsweise lange betrieben werden, ohne von dem sich dort bildenden Filterkuchen befreit werden zu müssen. Somit wird insgesamt ein AbgasSystem geschaffen, welches einfach arbeitet, eine hohe Lebensdauer aufweist, und einIt is also proposed that the exhaust system comprises a downstream surface filter and that a catalyst device is arranged upstream of the surface filter, by means of which nitrogen dioxide is formed from the exhaust gas. This exhaust system according to the invention makes it possible to filter out more than 99% of the soot particles contained in the exhaust gas. Although a depth filter can only filter out a maximum of approximately 90% of the soot particles contained in the exhaust gas, this is made possible by the downstream surface filter, which in turn can filter out up to 95 to 99% of the approximately 10% soot content passing through the depth filter. However, since overall only a small amount of soot reaches the surface filter at all, it can be operated for a comparatively long time without having to be freed from the filter cake that forms there. Overall, an exhaust system is created that works simply, has a long service life, and one
Herausfiltern beinahe des gesamten Rußanteils aus dem Abgas ermöglicht.Filtering almost all of the soot from the exhaust gas allows.
Die vorgeschlagene Katalysatoreinrichtung kann insbesondere mit einem Platin-Katalysatormaterial arbeiten. Hierdurch wird im Betrieb der Brennkraftmaschine Stickstoffdioxid gebildet, welches am Oberflächenfilter bei einer entsprechenden Temperatur den Ruß abbrennt. Dies ist auch kontinuierlich möglich und gestattet ein vollständiges Freihalten des Oberflächenfilters, da ja vom Tiefenfilter nur vergleichsweise wenig Ruß überhaupt zum Oberflächenfilter gelangt, dort also nur eine vergleichsweise geringe Rußmenge abgebrannt werden muss.The proposed catalyst device can in particular work with a platinum catalyst material. As a result, nitrogen dioxide is formed during operation of the internal combustion engine, which burns off the soot on the surface filter at a corresponding temperature. This is also possible continuously and allows the surface filter to be kept completely free, since only a comparatively little soot reaches the surface filter from the depth filter, so that only a comparatively small amount of soot has to be burned off there.
Möglich ist auch, dass das Abgassystem einen nachgeschalteten Oberflächenfilter umfasst, und dass eine Struktur des Oberflächenfilters mit einem Katalysatormaterial versehen ist. Durch den Oberflächenfilter werden vom Tiefenfilter nicht zurückgehaltene Partikel zumindest zu einem großen Teil aus dem Gasstrom herausgefiltert. Aufgrund des vorgeschalteten Tiefenfilters hat der Oberflächenfilter jedoch nur einen Teil der Gesamtpartikelmasse zu bewältigen, was dessen kontinuierliche Regeneration, beispielsweise mittels im Abgas enthaltener Stickoxide, ermöglicht. Durch dasIt is also possible that the exhaust system comprises a downstream surface filter and that a structure of the surface filter is provided with a catalyst material. Particles that are not retained by the depth filter are at least to a large extent removed by the surface filter filtered out of the gas stream. Due to the upstream depth filter, however, the surface filter only has to cope with part of the total particle mass, which enables its continuous regeneration, for example by means of nitrogen oxides contained in the exhaust gas. By the
Katalysatormaterial wird die Oxidation der Rußpartikel am Oberflächenfilter nochmals verbessert.Catalyst material further improves the oxidation of the soot particles on the surface filter.
Dabei ist es besonders vorteilhaft, wenn das Katalysatormaterial des Oberflächenfilters ein Material aus der obigen umfangreichen Aufzählung umfasst.It is particularly advantageous if the catalyst material of the surface filter comprises a material from the extensive list above.
Alternativ oder zusätzlich kann das Katalysatormaterial des Oberflächenfilters auch ein herkömmliches NOx -Speicher- Katalysatormaterial, ein herkömmliches NH3-SCR-Alternatively or additionally, the catalyst material of the surface filter can also be a conventional NO x storage catalyst material, a conventional NH 3 -SCR-
Katalysatormaterial, und/oder ein sonstiges Material zur Minderung von Stickoxidemissionen umfassen. Damit erhält der Oberflächenfilter eine zusätzliche Funktion, er dient nämlich auch als Katalysatoreinrichtung zur Verminderung weiterer Emissionen, insbesondere der Stickoxidemissionen.Catalyst material, and / or include another material for reducing nitrogen oxide emissions. The surface filter thus has an additional function, namely it also serves as a catalyst device for reducing further emissions, in particular nitrogen oxide emissions.
Ein vergleichsweise preiswerter Oberflächenfilter ist ein Cordieritfilter mit einer Zellenzahl von ungefähr 50 bis 300 cpsi, einer Porosität von ungefähr 50% und einem Porendurchmesser von höchstens ungefähr 100 μm, vorzugsweise höchstens ungefähr 40 μm, noch stärker bevorzugt höchstens ungefähr 10 μm.A comparatively inexpensive surface filter is a cordierite filter with a cell number of approximately 50 to 300 cpsi, a porosity of approximately 50% and a pore diameter of at most approximately 100 μm, preferably at most approximately 40 μm, even more preferably at most approximately 10 μm.
Besonders kompakt baut das erfindungsgemäße Abgassystem, wenn der Oberflächenfilter auf seiner Einströmseite ein Pt-The exhaust system according to the invention is particularly compact if the surface filter has a Pt
Katalysatormaterial, insbesondere Pt-Ce/Zr02, und auf seiner Ausströmseite ein herkömmliches NOx-Catalyst material, in particular Pt-Ce / Zr0 2 , and a conventional NO x on its outflow side
Speicherkatalysatormaterial umfasst. In diesem Fall wird amStorage catalyst material includes. In this case on
Eingang des Oberflächenfilters das für die Rußverbrennung erforderliche Stickstoffdioxid generiert, und auf der Ausströmseite arbeitet der Oberflächenfilter als NOx- Speicherkatalysator, welcher die Stickoxidemissionen reduziert.Input of the surface filter generates the nitrogen dioxide required for soot combustion, and on the On the outflow side, the surface filter works as a NO x storage catalytic converter, which reduces nitrogen oxide emissions.
Die Erfindung betrifft auch ein Verfahren zum Betreiben einer Brennkraftmaschine mit einem Abgassystem jener Art, bei dem dem Tiefenfilter ein Oberflächenfilter nachgeschaltet ist. Es wird vorgeschlagen, dass sich im Oberflächenfilter ablagernder Ruß kontinuierlich oxidiert wird. Dies ist möglich, da bis zum Oberflächenfilter nur noch vergleichsweise wenig Rußpartikel gelangen, und da wegen des vergleichsweise großen Volumenstroms, welcher durch den Oberflächenfilter hindurchtritt. Auf diese Weise bleibt der Oberflächenfilter immer maximal durchgängig, was für Wirkungsgrad des Abgassystems optimal ist.The invention also relates to a method for operating an internal combustion engine with an exhaust system of the type in which a surface filter is connected downstream of the depth filter. It is proposed that soot that is deposited in the surface filter is continuously oxidized. This is possible because only comparatively few soot particles reach the surface filter, and because of the comparatively large volume flow that passes through the surface filter. In this way, the surface filter always remains as continuous as possible, which is optimal for the efficiency of the exhaust system.
Zeichnungdrawing
Nachfolgend wird ein besonders bevorzugtesBelow is a particularly preferred one
Ausführungsbeispiel der vorliegenden Erfindung unter Bezugnahme auf die beiliegende Zeichnung näher erläutert. In der Zeichnung zeigen:Embodiment of the present invention explained with reference to the accompanying drawings. The drawing shows:
Figur 1 eine schematische Darstellung eines Abgassystems mit einem Tiefenfilter und einem nachgeschalteten Oberflächenfilter;Figure 1 is a schematic representation of an exhaust system with a depth filter and a downstream surface filter;
Figur 2 einen schematischen Schnitt durch einen Bereich des Tiefenfilters von Figur 1;FIG. 2 shows a schematic section through an area of the depth filter from FIG. 1;
Figur 3 ein Detail III der Figur 2; undFigure 3 shows a detail III of Figure 2; and
Figur 4 einen schematischen Schnitt durch einen Bereich des Oberflächenfilters von Figur 1. Beschreibung des AusführungsbeispielsFIG. 4 shows a schematic section through an area of the surface filter from FIG. 1. Description of the embodiment
In Figur 1 trägt ein Abgassystem einer Brennkraftmaschine insgesamt das Bezugszeichen 10. Die Brennkraftmaschine selbst ist nur schematisch dargestellt und mit dem Bezugszeichen 12 bezeichnet. Die heißen Verbrennungsabgase werden von der Brennkraftmaschine 12 über ein Abgasrohr 14 abgeleitet. Dieses führt zunächst zu einem Tiefenfilter 16, der mit einer katalytischen Einrichtung 18 versehen ist. Diese wird weiter unten noch stärker im Detail beschrieben. Vom Tiefenfilter 16 führt das Abgasrohr 14 weiter zu einem Oberflächenfilter 20. Dieser ist auf seiner Einströmseite mit einer katalytischen Einrichtung 22 und auf seiner Ausströmseite mit einer weiteren katalytischen Einrichtung 24 versehen. Er wird ebenfalls weiter unten stark im Detail erläutert .In FIG. 1, an exhaust system of an internal combustion engine bears the reference number 10 overall. The internal combustion engine itself is only shown schematically and is designated by reference number 12. The hot combustion exhaust gases are discharged from the internal combustion engine 12 via an exhaust pipe 14. This initially leads to a depth filter 16 which is provided with a catalytic device 18. This will be described in more detail below. The exhaust pipe 14 leads from the depth filter 16 to a surface filter 20. This is provided on its inflow side with a catalytic device 22 and on its outflow side with a further catalytic device 24. It is also explained in great detail below.
Bei der Brennkraftmaschine 12 handelt es sich um eine Diesel-Brennkraftmaschine. In deren Abgas sind vor allem während bestimmter Betriebsphasen zunächst noch Rußpartikel enthalten, welche von den beiden Filtern 16 und 20 aus dem Abgasstrom herausgefiltert werden. Bei dem Tiefenfilter 16 werden die Rußpartikel im Inneren des Filters abgelagert. Bei dem Tiefenfilter 16 liegt somit eine Filterwirkung über sein Gesamtvolumen beziehungsweise seine Gesamtoberfläche vor. Ein Ausschnitt eines inneren Bereichs des Tiefenfilters 16 ist in Figur 2 gezeigt. Danach weist der Tiefenfilter 16 Poren 26 auf, die zwischen einer Struktur 28 des Tiefenfilters 16 gebildet sind. Diese Struktur ist im vorliegenden Ausführungsbeispiel aus Siliciumcarbid hergestellt, so dass ein so genannter offenporiger Siliciumcarbid-Schaumfilter 16 gebildet wird.. Grundsätzlich kommen für den Tiefenfilter 16 jedoch alle offenporösen Körper und Schüttungen aus keramischem und metallischem Material beziehungsweise Kombinationen aus beidem in Betracht, welche dazu geeignet sind, Rußpartikel aus dem Abgas, welches durch das Abgasrohr 14 strömt, herauszufiltern. Insbesondere sollten auch vergleichsweise große Rußpartikel von den Tiefenfiltern herausgefiltert werden können. Der Porendurchmesser variiert im Bereich von ungefähr 40 μm bis ungefähr 1000 μm. Insgesamt weist der Tiefenfilter 16 eine Porosität von mehr als 60% auf.The internal combustion engine 12 is a diesel internal combustion engine. Soot particles, which are filtered out of the exhaust gas stream by the two filters 16 and 20, are initially contained in their exhaust gas, especially during certain operating phases. With the depth filter 16, the soot particles are deposited inside the filter. The depth filter 16 thus has a filter effect over its total volume or its total surface area. A section of an inner region of the depth filter 16 is shown in FIG. 2. Thereafter, the depth filter 16 has pores 26 which are formed between a structure 28 of the depth filter 16. In the present exemplary embodiment, this structure is produced from silicon carbide, so that a so-called open-cell silicon carbide foam filter 16 is formed. Basically, however, for the depth filter 16, all open-porous bodies and fillings made of ceramic and metallic material or combinations of both are suitable, which are suitable for filtering out soot particles from the exhaust gas that flows through the exhaust pipe 14. In particular, comparatively large soot particles should also be able to be filtered out by the depth filters. The pore diameter varies in the range from approximately 40 μm to approximately 1000 μm. Overall, the depth filter 16 has a porosity of more than 60%.
Wie aus der vergrößerten Detailansicht von Figur 3 hervorgeht, ist die Siliciumcarbidstruktur 28 des Tiefenfilters 16 mit einem katalytischen Material 18 versehen. Das katalytische Material ist so gewählt, dass es die Oxidation beziehungsweise Verbrennung der Rußpartikel (Bezugszeichen 30 in Figur 3) bei vergleichsweise niedrigen Temperaturen fördert, wodurch ein Verstopfen des Tiefenfilters 16 verhindert wird. Das katalytische Material 18, welches im Tiefenfilter 16 eingesetzt wird, weist die Besonderheit auf, dass es bei einer vergleichsweise niedrigen Temperatur flüssig ist. Diese Temperatur kann im Bereich der normalen Betriebstemperatur des Tiefenfilters 16 liegen, so dass das katalytische Material 18 imAs can be seen from the enlarged detailed view of FIG. 3, the silicon carbide structure 28 of the depth filter 16 is provided with a catalytic material 18. The catalytic material is selected such that it promotes the oxidation or combustion of the soot particles (reference numeral 30 in FIG. 3) at comparatively low temperatures, thereby preventing the depth filter 16 from becoming blocked. The catalytic material 18 which is used in the depth filter 16 has the special feature that it is liquid at a comparatively low temperature. This temperature can be in the range of the normal operating temperature of the depth filter 16, so that the catalytic material 18 in the
Normalbetrieb der Brennkraftmaschine 12 immer flüssig ist, sie kann jedoch auch so hoch sein, dass das katalytische Material 18 nur dann flüssig ist, wenn die Brennkraftmaschine 12 sich in einer speziellen Betriebsphase befindet, in welcher das von derNormal operation of the internal combustion engine 12 is always fluid, but it can also be so high that the catalytic material 18 is only fluid when the internal combustion engine 12 is in a special operating phase, in which the
Brennkraftmaschine 12 durch das Abgasrohr 14 abgegebene Abgas eine entsprechend hohe Temperatur aufweist.Internal combustion engine 12 through the exhaust pipe 14 exhaust gas has a correspondingly high temperature.
Bei so genannten "Molten-Salt-Katalysator"-Materialien, beispielsweise CS2SO4 2O5 oder bei Cs-Vanadaten, liegt die Temperatur, bei welcher das katalytische Material 18 flüssig ist, bei ungefähr 350 bis 400°C. Durch die Verflüssigung des katalytischen Materials 18 werden die im Tiefenfilter 16 abgeschiedenen Rußpartikel 30 von- dem katalytischen Material 18 sehr innig kontaktiert, zum Teil sogar mindestens zeitweise vollständig umschlossen. Hierdurch wird bei gleichem Energieeintrag eine sehr hohe Umwandlungsrate erreicht. Derartige Flüssigkatalysatoren können auch mit anderen der eingangs beschriebenen katalytisch wirksamen Materialien kombiniert werden.In the case of so-called “molten salt catalyst” materials, for example CS 2 SO 4 2 O 5 or in the case of Cs vanadates, this lies Temperature at which the catalytic material 18 is liquid, at approximately 350 to 400 ° C. Due to the liquefaction of the catalytic material 18, the soot particles 30 deposited in the depth filter 16 are contacted very intimately by the catalytic material 18, in some cases even completely enclosed at least temporarily. As a result, a very high conversion rate is achieved with the same energy input. Such liquid catalysts can also be combined with other of the catalytically active materials described at the outset.
Prinzipbedingt hat der gezeigte Tiefenfilter 16 jedoch nur einen Filterwirkungsgrad von maximal 90%. Dies bedeutet, dass mindestens 10% der Rußpartikel 30 durch den Tiefenfilter 16 hindurchtreten und zum Oberflächenfilter 20 gelangen. Bei dem Oberflächenfilter 20 handelt es sich um einen Wallflow- oder Wandfluss-Filte . Dieser weist eine in Strömungsrichtung gesehene wabenartige Struktur auf, welche aus Cordierit ist und in Figur 4 das Bezugszeichen 32 trägt. Einige der Waben sind auf der zur Brennkraftmaschine 12 weisenden Seite offen und auf der von der Brennkraftmaschine 12 abgewandten Seite geschlossen (der Abgasstrom ist in Figur 4 durch Pfeile 33 angedeutet) . Diese Waben tragen das Bezugszeichen 34 in Figur 4. Andere, zu den Waben 34 benachbarte Waben 36 sind auf der derIn principle, the depth filter 16 shown has only a maximum filter efficiency of 90%. This means that at least 10% of the soot particles 30 pass through the depth filter 16 and reach the surface filter 20. The surface filter 20 is a wall flow or wall flow filter. This has a honeycomb-like structure seen in the flow direction, which is made of cordierite and bears the reference number 32 in FIG. Some of the honeycombs are open on the side facing the internal combustion engine 12 and closed on the side facing away from the internal combustion engine 12 (the exhaust gas flow is indicated by arrows 33 in FIG. 4). These honeycombs have the reference number 34 in FIG. 4. Other honeycombs 36 adjacent to the honeycombs 34 are on the same
Brennkraftmaschine 12 zugewandten Seite geschlossen und auf der von der Brennkraftmaschine 12 abgewandten Seite offen.Internal combustion engine 12 side closed and open on the side facing away from the internal combustion engine 12.
Die Filterwirkung ergibt sich durch die Porosität der Struktur 32 des Oberflächenfilters 20, der Abgasstrom tritt also durch die Wandflächen von den Waben 34 in die Waben 36, entsprechend dem Pfeil 38 in Figur 4. Der in Figur 4 gezeigte Oberflächenfilter weist eine Zellenzahl von 50 bis 300 cpsi, eine Porosität von ungefähr 50% und einen Porendurchmesser von 10 bis 30μm auf. Die Porosität der Struktur 32 ist so gewählt, dass der Oberflächenfilter 20 vorzugsweise kleine Rußpartikel aus dem Abgasström herausfiltert. Der Filterwirkungsgrad des Oberflächenfilters 20 liegt bei 95 bis 99%. Insgesamt werden so aufgrund der Kombination des Tiefenfilters 16 und des Oberflächenfilters 20 über 99% der Rußpartikel aus dem Abgas herausgefiltert.The filter effect results from the porosity of the structure 32 of the surface filter 20, so the exhaust gas flow passes through the wall surfaces from the honeycomb 34 into the honeycomb 36, corresponding to the arrow 38 in FIG. 4. The surface filter shown in FIG. 4 has a cell number from 50 to 300 cpsi, a porosity of approximately 50% and a pore diameter of 10 to 30 μm. The porosity of the Structure 32 is selected such that surface filter 20 preferably filters out small soot particles from the exhaust gas flow. The filter efficiency of the surface filter 20 is 95 to 99%. Overall, because of the combination of the depth filter 16 and the surface filter 20, more than 99% of the soot particles are filtered out of the exhaust gas.
Im Laufe der Zeit bilden die am Oberflächenfilter 20 abgelagerten Rußpartikel 30 einen so genannten "Filterkuchen", welcher dann, wenn er zu groß ist, die Durchlässigkeit des Oberflächenfilters 20 beeinträchtigen und somit den Abgas-Gegendruck erhöhen kann. Dieser Filterkuchen aus den Rußpartikeln 30 bildet sich jedoch nur sehr langsam, da insgesamt ja nur sehr wenige RußpartikelOver time, the soot particles 30 deposited on the surface filter 20 form a so-called "filter cake" which, if it is too large, can impair the permeability of the surface filter 20 and thus increase the exhaust gas back pressure. However, this filter cake from the soot particles 30 forms only very slowly, since there are only very few soot particles overall
30 überhaupt bis zum Oberflächenfilter 20 gelangen. Dennoch wird der Oberflächenfilter 20 durch ein so genanntes CRT- Verfahren von den Rußpartikeln entweder kontinuierlich oder zyklisch befreit.30 ever get to the surface filter 20. Nevertheless, the surface filter 20 is freed from the soot particles either continuously or cyclically by a so-called CRT process.
Hierzu verfügt der Oberflächenfilter 20 auf seiner der Brennkraftmaschine 12 zugewandten Seite (Einströmseite) über eine Struktur 22 mit einem Platin-Katalysatormaterial, vorliegend einem Pt-Ce/Zr02-Gemisch. Hierdurch wird ohnehin im Abgas enthaltenes Stickstoffmonoxid zu Stickstoffdioxid oxidiert. Mittels dieses Stickstoffdioxids kann der am Oberflächenfilter 20 abgelagerte Ruß 30 ebenfalls bei vergleichsweise niedrigen Temperaturen (unter 400 °C) vorzugsweise kontinuierlich oxidiert werden.For this purpose, the surface filter 20 has on its side facing the internal combustion engine 12 (inflow side) a structure 22 with a platinum catalyst material, in the present case a Pt-Ce / Zr0 2 mixture. As a result, nitrogen monoxide contained in the exhaust gas is oxidized to nitrogen dioxide anyway. By means of this nitrogen dioxide, the soot 30 deposited on the surface filter 20 can also preferably be oxidized continuously at comparatively low temperatures (below 400 ° C.).
Die von der Brennkraftmaschine 12 abgewandte Oberfläche der Struktur 32 des Oberflächenfilters 20 ist mit einer Katalysatorschicht 24 versehen, die im vorliegenden Ausführungsbeispiel aus einem herkömmlichen NOx- Speicherkatalysatormaterial besteht. Hierdurch werden im Abgas befindliche Stickoxide reduziert. Dies hat mit der eigentlichen Funktion des Oberflächenfilters 20 nichts zu tun, spart jedoch Einbauraum. Grundsätzlich denkbar ist aber auch die Verwendung anderer katalytisch aktiver Materialien, wie sie eingangs aufgeführt wurden. The surface of the structure 32 of the surface filter 20 facing away from the internal combustion engine 12 is provided with a catalyst layer 24, which in the present exemplary embodiment consists of a conventional NO x storage catalyst material. As a result, Exhaust nitrogen oxides are reduced. This has nothing to do with the actual function of the surface filter 20, but saves installation space. In principle, however, it is also conceivable to use other catalytically active materials as mentioned at the beginning.

Claims

Ansprüche Expectations
1. Abgassystem (10) für eine Brennkraftmaschine (12), mit einem Tiefenfilter (16) zur Entfernung von Ruß (30) aus dem Abgas, wobei der Tiefenfilter (16) ein Katalysatormaterial (18) umfasst, welches die Rußoxidation fördert, dadurch gekennzeichnet, dass ein inneres Porengefüge (28) des Tiefenfilters (16) mit einem Katalysatormaterial (18) versehen ist, welches bei einer Betriebstemperatur des Tiefenfilters (16) , insbesondere ab einer Temperatur von ungefähr höchstens 400 °C, stärker bevorzugt von höchstens ungefähr 350 °C, flüssig ist.1. Exhaust system (10) for an internal combustion engine (12), with a depth filter (16) for removing soot (30) from the exhaust gas, the depth filter (16) comprising a catalyst material (18) which promotes soot oxidation, characterized that an inner pore structure (28) of the depth filter (16) is provided with a catalyst material (18) which, at an operating temperature of the depth filter (16), in particular from a temperature of approximately at most 400 ° C., more preferably of at most approximately 350 ° C, is liquid.
2. Abgassystem (16) nach Anspruch 1, dadurch gekennzeichnet, dass das Katalysatormaterial (18) des Tiefenfilters (16) "Molten Salt"-Material, insbesondere Cs2S04V2Os oder Cs-Vanadate oder Ag-Verbindungen, insbesondere Ag-Vandanate, umfasst.2. Exhaust system (16) according to claim 1, characterized in that the catalyst material (18) of the depth filter (16) "Molten Salt" material, in particular Cs 2 S0 4 V 2 O s or Cs vanadates or Ag compounds, in particular Ag-Vandanate.
3. Abgassystem nach Anspruch 2, dadurch gekennzeichnet, dass das Katalysatormaterial zusätzlich umfasst: Rh und/oder Pd, auf Trägern wie Aluminium, Zirkonium,3. Exhaust system according to claim 2, characterized in that the catalyst material additionally comprises: Rh and / or Pd, on supports such as aluminum, zirconium,
Ceroxiden und/oder Mischoxiden wie beispielsweise Ce/Zr02, oder ohne Träger; Elemente der Gruppe 11 (Ag, Au, und/oder Cu) auf Trägern wie Aluminium, Zirkonium, Ceroxiden und/oder Mischoxiden wie beispielsweise Ce/Zr02, oder ohne Träger; Sauerstoff speichernde und abgebende Materialien, beispielsweise Verbindungen von Mn, Fe, Ce, Pr; unter Abgasbedingungen nitratbildende Materialien (NOx-Speicher) , insbesondere Elemente der Erdalkaligruppe, sowie der Gruppe 3 und der Seltenen Erden; und/oder Materialien, die sich durch eine hohe Acidität auszeichnen, beispielsweise Zeolithe und folgende Oxide oder Oxidmischungen: Ti02, Zr02, Si02, A1203, Boroxide.Ceroxides and / or mixed oxides such as Ce / Zr0 2 , or without a carrier; Group 11 elements (Ag, Au, and / or Cu) on supports such as aluminum, zirconium, cerium oxides and / or mixed oxides such as Ce / Zr0 2 or without Carrier; Oxygen-storing and releasing materials, for example compounds of Mn, Fe, Ce, Pr; under exhaust gas conditions, nitrate-forming materials (NO x storage), in particular elements of the alkaline earth group, as well as of group 3 and the rare earths; and / or materials which are characterized by high acidity, for example zeolites and the following oxides or oxide mixtures: Ti0 2 , Zr0 2 , Si0 2 , A1 2 0 3 , boron oxides.
4. Abgassystem (16) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Tiefenfilter (16) einen offenporigen Siliciumcarbid-Schaumfilter (28) mit Porenduchmessern im Bereich von ungefähr 40 μm bis ungefähr 1000 μm und einer Porosität von mindestens ungefähr 60% umfasst.4. Exhaust system (16) according to one of the preceding claims, characterized in that the depth filter (16) comprises an open-pore silicon carbide foam filter (28) with pore diameters in the range from approximately 40 μm to approximately 1000 μm and a porosity of at least approximately 60% ,
5. Abgassystem (16) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es einen nachgeschalteten Oberflächenfilter (20) umfasst, und dass stromaufwärts von dem Oberflächenfilter (20) eine Katalysatoreinrichtung (22) angeordnet ist, durch die aus dem Abgas Stickstoffdioxid gebildet wird.5. Exhaust system (16) according to one of the preceding claims, characterized in that it comprises a downstream surface filter (20), and that upstream of the surface filter (20) a catalyst device (22) is arranged, through which nitrogen dioxide is formed from the exhaust gas ,
6. Abgassystem (16) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es einen nachgeschalteten Oberflächenfilter (20) umfasst, und dass eine Struktur (32) des Oberflächenfilters (20) mit einem Katalysatormaterial (24) versehen ist.6. Exhaust system (16) according to one of the preceding claims, characterized in that it comprises a downstream surface filter (20), and that a structure (32) of the surface filter (20) is provided with a catalyst material (24).
7. Abgassystem (16) nach Anspruch 6, dadurch gekennzeichnet, dass das Katalysatormaterial (24) ein Material aus der Aufzählung von Anspruch 2 umfasst.7. Exhaust system (16) according to claim 6, characterized in that the catalyst material (24) comprises a material from the list of claim 2.
8. Abgassystem (16) nach Anspruch einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass das8. Exhaust system (16) according to claim 6 or 7, characterized in that the
Katalysatormaterial (24) ein herkömmliches NOx-Speicher- Katalysatormaterial, ein herkömmliches NH3-SCR- Katalysatormaterial, und/oder ein sonstiges Material zur Minderung von Stickoxidemissionen umfasst.Catalyst material (24) a conventional NO x storage catalyst material, a conventional NH 3 -SCR- Catalyst material, and / or another material for reducing nitrogen oxide emissions.
9. Abgassystem (16) nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der Oberflächenfilter (20) einen Cordieritfilter (32) mit einer Zellenzahl von ungefähr 50 bis ungefähr 300 cpsi, einer Porosität von ungefähr 50% und einem Porendurchmesser von höchstens ungefähr 100 μm, vorzugsweise höchstens ungefähr 40 μm, noch stärker bevorzugt höchstens ungefähr 10 μm umfasst.9. Exhaust system (16) according to one of claims 6 to 8, characterized in that the surface filter (20) is a cordierite filter (32) with a cell number of approximately 50 to approximately 300 cpsi, a porosity of approximately 50% and a pore diameter of at most about 100 μm, preferably at most about 40 μm, more preferably at most about 10 μm.
10. Abgassystem (16) nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass der Oberflächenfilter (20) auf seiner Einströmseite ein Pt-Katalysatormaterial (22) , insbesondere Pt-Ce/Zr02, und auf seiner Ausströmseite ein herkömmliches NOx-Speicherkatalysatormaterial (24) umfasst.10. Exhaust system (16) according to one of claims 6 to 9, characterized in that the surface filter (20) on its inflow side a Pt catalyst material (22), in particular Pt-Ce / Zr0 2 , and on its outflow side a conventional NO x - Storage catalyst material (24) comprises.
11. Verfahren zum Betreiben einer Brennkraftmaschine mit einem Abgassystem (16) nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, dass sich im Oberflächenfilter (20) ablagernder Ruß (30) kontinuierlich oxidiert wird. 11. A method for operating an internal combustion engine with an exhaust system (16) according to one of claims 5 to 10, characterized in that soot (30) deposited in the surface filter (20) is continuously oxidized.
EP04798134A 2003-11-15 2004-11-02 Exhaust system for a combustion engine Withdrawn EP1687086A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10353426A DE10353426A1 (en) 2003-11-15 2003-11-15 Exhaust system for an internal combustion engine
PCT/EP2004/052748 WO2005046869A1 (en) 2003-11-15 2004-11-02 Exhaust system for a combustion engine

Publications (1)

Publication Number Publication Date
EP1687086A1 true EP1687086A1 (en) 2006-08-09

Family

ID=34585139

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04798134A Withdrawn EP1687086A1 (en) 2003-11-15 2004-11-02 Exhaust system for a combustion engine

Country Status (5)

Country Link
US (1) US20070081925A1 (en)
EP (1) EP1687086A1 (en)
JP (1) JP2007514523A (en)
DE (1) DE10353426A1 (en)
WO (1) WO2005046869A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1961933B1 (en) * 2007-02-23 2010-04-14 Umicore AG & Co. KG Catalytically activated diesel particulate filter with ammoniac blocking action
DE102009033635B4 (en) * 2009-07-17 2020-11-05 Umicore Ag & Co. Kg Catalytically active particle filter with hydrogen sulfide barrier function, its use and method for removing nitrogen oxides and particles
WO2013048294A1 (en) * 2011-09-30 2013-04-04 Volvo Technology Corporation Exhaust gas after treatment system comprising multiple catalytic objects
CN106238037B (en) * 2016-07-29 2019-01-01 无锡威孚环保催化剂有限公司 One kind having high storage NH3SCR catalyst of ability and preparation method thereof
CN107754783B (en) * 2017-11-13 2018-11-30 盐城工学院 A kind of Ce- doping SrV for denitrating flue gas3O7Composite catalyst and preparation method thereof
CN111871070B (en) * 2019-11-12 2021-02-19 南京工业大学 Integrated filter material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510265A (en) * 1984-05-04 1985-04-09 Engelhard Corporation Platinum/silver vanadate catalyzed diesel exhaust particulate filter
US6218326B1 (en) * 1998-07-29 2001-04-17 University Of Iowa Research Foundation Supported molten-metal catalysts
JP3821357B2 (en) * 2001-01-17 2006-09-13 株式会社豊田中央研究所 Molten salt catalyst
EP1251249B2 (en) * 2001-04-18 2010-06-30 Umicore AG & Co. KG A process and device for removing soot particles from the exhaust gas from a diesel engine
DE10130338A1 (en) 2001-06-26 2003-04-24 Forschungszentrum Juelich Gmbh Diesel soot filter with a finely dispersed diesel soot catalyst
US6613299B2 (en) * 2001-11-13 2003-09-02 Sud-Chemie Prototech, Inc. Catalyzed diesel particulate matter exhaust filter
US6764664B2 (en) * 2002-04-22 2004-07-20 Delphi Technologies, Inc. Catalyst for the combustion of diesel soot, methods for making the catalyst and methods of using the catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005046869A1 *

Also Published As

Publication number Publication date
US20070081925A1 (en) 2007-04-12
JP2007514523A (en) 2007-06-07
WO2005046869A1 (en) 2005-05-26
DE10353426A1 (en) 2005-06-23

Similar Documents

Publication Publication Date Title
EP2558691B1 (en) Diesel particulate filter coated with reduction catalyst with improved characteristics
DE102005023518B4 (en) Blockage-free filter unit with high efficiency
DE10247946A1 (en) exhaust aftertreatment arrangement
WO2007057253A1 (en) Filter element and filter for exhaust-gas aftertreatment
DE102016111766A1 (en) CATALYTIC WALL CURRENT FILTER WITH A MEMBRANE
DE102020110011A1 (en) Exhaust gas cleaning device
EP1433519B1 (en) Method for producing a particle filter with NOx storage function
DE102015212788A1 (en) Catalytically active particle filter
WO2000070202A1 (en) Method for reducing harmful components in the exhaust gas of an internal combustion engine, especially a diesel-internal combustion engine
DE60212245T3 (en) Method and device for removing soot particles from the exhaust gas of a diesel engine
EP1527262B1 (en) Exhaust gas filter and method for cleaning an exhaust gas
EP1882090B1 (en) Exhaust system with two exhaust treatment units
EP3490693B1 (en) Catalyst for reducing nitrogen oxides
EP1687086A1 (en) Exhaust system for a combustion engine
EP1799977B1 (en) Exhaust gas system for an internal combustion engine and method for the operation of such an exhaust gas system
DE102010008969A1 (en) Particle e.g. carbon black, filter for exhaust system of diesel engine, has catalyst layer with catalyst component, where volume percentage of pores is adjusted such that particles are precipitated when exhaust gas transmits through wall
DE102008003044B4 (en) Emission control system for improved exhaust gas purification by convective mixing
WO2015074698A1 (en) Particulate filter designed as a wall-flow filter
EP2699770B1 (en) Particle filter provided with a catalytic coating
WO2009016006A1 (en) Exhaust system of an internal combustion engine
DE202006002508U1 (en) Diesel particulate filter for diesel engined vehicle, has valve unit comprising closure unit that is opened against spring dependent on gas pressure in inlet of housing and releases variable filter surface dependent on gas pressure
DE102006061693A1 (en) Exhaust gas after-treatment arrangement for diesel internal-combustion engine, has coating that limits flow channels for exhaust gas to be treated, where part of channels are opened at inflow surface, and are opened at outflow surface
DE102007063100A1 (en) Exhaust gas aftertreatment device for internal combustion engine, has filter elements, where storage capacity for soot particles of one of filter elements is larger or equal to storage capacity of another filter element
DE102008019814A1 (en) Exhaust gas cleaning body and internal combustion engine with exhaust gas cleaning body
DE102006055795A1 (en) Passage body i.e. circular cylinder shaped passage body, for exhaust gas aftertreatment in internal combustion engine of motor vehicle, has partial cross sections with flow channels uncoated in zones, and coated in remaining zones

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20080603

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091013